1
|
Barbarić A, Saftić Martinović L, Marijanović Z, Juretić L, Jurič A, Petrović D, Šoljić V, Gobin I. Integrated Chemical and Biological Evaluation of Linden Honeydew Honey from Bosnia and Herzegovina: Composition and Cellular Effects. Foods 2025; 14:1668. [PMID: 40428448 PMCID: PMC12110744 DOI: 10.3390/foods14101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Honeydew honey (HH) is a distinctive type of honey known for its dark colour, high mineral and polyphenol content, and pronounced biological activity. This study continues previous research on beech and chestnut honeydew honeys by presenting a comprehensive analysis of linden honeydew honey (LHH) from Bosnia and Herzegovina-a variety that, until now, has not been characterised in detail. Physicochemical parameters confirmed its classification as HH, with high electrical conductivity (1.21 mS/cm) and low moisture (15.1%). GC-MS analysis revealed a unique volatile profile dominated by α-terpinolene (17.4%), distinguishing LHH from other HH types. The sample exhibited high total phenolic content (816.38 mg GAE/kg) and moderate antioxidant capacity (1.11 mmol TE/kg). Antimicrobial testing demonstrated strong activity against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA), with lower efficacy against Gram-negative bacteria. No cytotoxic effects were observed in HaCaT keratinocytes at concentrations up to 60 mg/mL, and wound healing assays showed improved scratch closure reaching approximately 30% after 24 h and 41% after 48 h compared to the control. These results indicate that LHH possesses promising bioactive properties and potential for dermatological application. Further studies with broader sample sets are needed to explore variability and confirm the therapeutic relevance of LHH in comparison to other honeydew types.
Collapse
Affiliation(s)
- Ana Barbarić
- Faculty of Health Studies, University of Mostar, Zrinskog Frankopana 34, 88000 Mostar, Bosnia and Herzegovina; (A.B.); (D.P.); (V.Š.)
- Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia; (L.J.); (I.G.)
| | - Lara Saftić Martinović
- Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia; (L.J.); (I.G.)
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Zvonimir Marijanović
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| | - Lea Juretić
- Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia; (L.J.); (I.G.)
| | - Andreja Jurič
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia;
| | - Danijela Petrović
- Faculty of Health Studies, University of Mostar, Zrinskog Frankopana 34, 88000 Mostar, Bosnia and Herzegovina; (A.B.); (D.P.); (V.Š.)
- Faculty of Agriculture and Food Technology, University of Mostar, Biskupa Čule bb, 88000 Mostar, Bosnia and Herzegovina
| | - Violeta Šoljić
- Faculty of Health Studies, University of Mostar, Zrinskog Frankopana 34, 88000 Mostar, Bosnia and Herzegovina; (A.B.); (D.P.); (V.Š.)
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Ivana Gobin
- Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia; (L.J.); (I.G.)
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia
| |
Collapse
|
2
|
Barazesh P, Hajihassani H, Motalebi F, Neiresi SMH, Hajihassani R, Mehrabian AR. Unlocking the Healing Potential: A Comprehensive Review of Ecology and Biology of Medical-Grade Honey in Wound Management and Tissue Regeneration. Health Sci Rep 2025; 8:e70240. [PMID: 39831079 PMCID: PMC11739614 DOI: 10.1002/hsr2.70240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/22/2025] Open
Abstract
Background and Aims Honey has long been studied for its healing abilities in wound care. This narrative review examines its properties and their impact on wound healing, particularly its ability to accelerate wound closure and promote tissue regeneration. The review focuses on how honey's botanical origins affect its medical properties and wound-healing capabilities. Finally, clinical studies on honey's effectiveness in wound healing were reviewed compared to traditional treatments. Methods Relevant keywords were searched in databases, yielding 1250 documents. After excluding nonrelevant sources, 450 documents were refined, and 167 articles were selected based on thematic alignment and originality. Data extraction focused on study design, intervention details, and outcomes, with quality assessed using standardized criteria. The study adhered to CONSORT and SANRA guidelines to ensure methodological rigor and reporting transparency. Results Honey-based medical products have demonstrated significant antibacterial, anti-inflammatory, and tissue-regenerative properties, making them highly effective in improving wound healing outcomes, particularly in chronic and burn wounds. These products have also been shown to reduce infection rates and hospital stays. While some studies have reported positive outcomes in accelerating the healing process, others have found no significant difference compared to conventional treatments. Conclusion Medical-grade honey (MGH) holds potential for wound care due to its versatility, though variations in its composition present challenges. Further research is needed to optimize its clinical use. The effectiveness of MGH in wound healing remains debated, with mixed results from trials. Genetic modification of bees to enhance MGH's properties could make it more competitive against conventional treatments. Honey-based medications could reduce costs, improve energy efficiency, and have minimal side effects. Rigorous research is necessary to determine optimal use and fully unlock MGH's potential, which could revolutionize wound management globally.
Collapse
Affiliation(s)
- Parmis Barazesh
- Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | - Helia Hajihassani
- Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | - Fatemeh Motalebi
- Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | | | | | - Ahmad Reza Mehrabian
- Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
- Bee Products Research CentreShahid Beheshti UniversityTehranIran
| |
Collapse
|
3
|
Alfei S, Schito GC, Schito AM, Zuccari G. Reactive Oxygen Species (ROS)-Mediated Antibacterial Oxidative Therapies: Available Methods to Generate ROS and a Novel Option Proposal. Int J Mol Sci 2024; 25:7182. [PMID: 39000290 PMCID: PMC11241369 DOI: 10.3390/ijms25137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The increasing emergence of multidrug-resistant (MDR) pathogens causes difficult-to-treat infections with long-term hospitalizations and a high incidence of death, thus representing a global public health problem. To manage MDR bacteria bugs, new antimicrobial strategies are necessary, and their introduction in practice is a daily challenge for scientists in the field. An extensively studied approach to treating MDR infections consists of inducing high levels of reactive oxygen species (ROS) by several methods. Although further clinical investigations are mandatory on the possible toxic effects of ROS on mammalian cells, clinical evaluations are extremely promising, and their topical use to treat infected wounds and ulcers, also in presence of biofilm, is already clinically approved. Biochar (BC) is a carbonaceous material obtained by pyrolysis of different vegetable and animal biomass feedstocks at 200-1000 °C in the limited presence of O2. Recently, it has been demonstrated that BC's capability of removing organic and inorganic xenobiotics is mainly due to the presence of persistent free radicals (PFRs), which can activate oxygen, H2O2, or persulfate in the presence or absence of transition metals by electron transfer, thus generating ROS, which in turn degrade pollutants by advanced oxidation processes (AOPs). In this context, the antibacterial effects of BC-containing PFRs have been demonstrated by some authors against Escherichia coli and Staphylococcus aureus, thus giving birth to our idea of the possible use of BC-derived PFRs as a novel method capable of inducing ROS generation for antimicrobial oxidative therapy. Here, the general aspects concerning ROS physiological and pathological production and regulation and the mechanism by which they could exert antimicrobial effects have been reviewed. The methods currently adopted to induce ROS production for antimicrobial oxidative therapy have been discussed. Finally, for the first time, BC-related PFRs have been proposed as a new source of ROS for antimicrobial therapy via AOPs.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| |
Collapse
|
4
|
Aburayyan WS, Seder N, Al-fawares O, Fararjeh A, Majali IS, Al-Hajaya Y. Characterization of Antibiofilm and Antimicrobial Effects of Trigona Stingless Bee Honey Compared to Stinging Bee Centaurea hyalolepis and Citrus Honeys. J Evid Based Integr Med 2024; 29:2515690X241271978. [PMID: 39118572 PMCID: PMC11311187 DOI: 10.1177/2515690x241271978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 05/15/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
The antibiofilm and antimicrobial properties of tropical honey types including Malaysian stingless bee honey remain explicitly unexplored when compared with Apies honey. The antibiofilm and antimicrobial activities of the Malaysian Trigona honey were characterized with two stinging bee honey types (Centaurea hyalolepis and Citrus honeys) from Jordan. The antibiofilm and antimicrobial investigations were conducted on a set of seven microbial strains; five bacterial species of Pseudomonas aeruginosa ATCC 10145, Streptococcus pyogenes ATCC 19615, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 13883, and two fungal strains Candida albicans ATCC 10231 and Candida krusei ATCC 14243. The antimicrobial investigations revealed a broad spectrum activity for Trigona honey against Gram-positive, Gram-negative, and fungal strains over the two honey types. One-way ANOVA showed a significant difference (p < 0.001) in the zone of inhibition ranging from 9 to 25 mm and minimum inhibition activity (MIC) ranged from 9.4-29.6% (w/v) against the microbial strains. Moreover, the addition of honey to established biofilms has induced a degradation activity in the biofilm mass. Two-way ANOVA showed a significant biofilm degradation proportion (p < 0.001) ranging from 1.3% to 91.3% following treatment with Trigona honey and the other honey types in relevance to the concentration ranging from 10% to 50% (w/v). Moreover, the antibiofilm activity was highly consistent with MIC affecting bacterial growth inhibition. In conclusion, a robust antimicrobial and antibiofilm activity for Trigona stingless bee honey over the stinging bee Centaurea hyalolepis and Citrus honeys is noticed which endows the usage of Trigona honey in the antimicrobial industry.
Collapse
Affiliation(s)
- Walid Salem Aburayyan
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Nesrin Seder
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - O’la Al-fawares
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - AbdulFattah Fararjeh
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Ibrahim S. Majali
- Department of Medical Laboratory Sciences, Mutah University, Karak, Jordan
| | - Yousef Al-Hajaya
- Department of Biological Sciences, Mutah University, Karak, Jordan
| |
Collapse
|
5
|
Chatzimisios K, Tsioli V, Brellou GD, Apostolopoulou EP, Angelou V, Pratsinakis ED, Cremers NAJ, Papazoglou LG. Evaluation of the Effectiveness of Medical-Grade Honey and Hypericum Perforatum Ointment on Second-Intention Healing of Full-Thickness Skin Wounds in Cats. Animals (Basel) 2023; 14:36. [PMID: 38200767 PMCID: PMC10778018 DOI: 10.3390/ani14010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
This study aimed to determine the effects of two topical treatments on second-intention wound healing in cats. Eight 2 × 2 cm full-thickness wounds were created, four on each side of the dorsal midline of eight laboratory cats, to receive either medical-grade honey ointment (MGH) and its control (HC), or Hypericum-based ointment (HP) and its control (HPC). MGH or HP ointment was applied to four wounds on the same side, while the remaining four were used as controls, chosen at random. Planimetry, laser Doppler flowmetry, daily physical examinations, and histologic examinations on days 0, 7, 14, and 25 were used to assess the healing of wounds. Tissue perfusion was better in the MGH-treated (2.14 ± 0.18 mm/s) and HP-treated wounds (2.02 ± 0.13 mm/s) than in the untreated controls HC (1.59 ± 0.11 mm/s) and HPC (1.60 ± 0.05 mm/s), respectively (p = 0.001). Histopathology revealed that the median edema score was lower in the MGH-treated (2; range 1-4) compared to the HC-treated wounds (3; range 2-4) on day 7 (p < 0.05). The median angiogenesis score was higher on day 7 in the MGH-treated (2; range 1-3) compared to the HP-treated wounds (2; range 1-2) (p = 0.046). The fibroblast concentration was increased in the MGH-treated wounds (3.5; range 3-4) compared to the HP-treated wounds (3; range 2-4) on day 25 (p = 0.046). MGH and HP increased tissue perfusion compared to the untreated controls. The MGH-treated wounds had histologic parameters superior to the HP-treated wounds regarding angiogenesis and fibroblast concentration in cutaneous wound healing in cats. Topical application of MGH and HP did not accelerate the healing process of feline cutaneous wounds.
Collapse
Affiliation(s)
- Kyriakos Chatzimisios
- Unit of Surgery and Obstetrics, Companion Animal Clinic, School of Veterinary Medicine, Faculty of HealthSciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (K.C.)
| | - Vassiliki Tsioli
- Clinic of Surgery, School of Veterinary Medicine, University of Thessaly, 224 Trikalon Street, Box Office 199, 43100 Karditsa, Greece
| | - Georgia D. Brellou
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.D.B.); (E.P.A.)
| | - Emmanouela P. Apostolopoulou
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.D.B.); (E.P.A.)
| | - Vasileia Angelou
- Unit of Surgery and Obstetrics, Companion Animal Clinic, School of Veterinary Medicine, Faculty of HealthSciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (K.C.)
| | - Emmanouil D. Pratsinakis
- Laboratory of Agronomy, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Niels A. J. Cremers
- Department of Gynecology and Obstetrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands;
- Triticum Exploitatie BV/Theomanufacturing BV, Sleperweg 44, 6222 NK Maastricht, The Netherlands
| | - Lysimachos G. Papazoglou
- Unit of Surgery and Obstetrics, Companion Animal Clinic, School of Veterinary Medicine, Faculty of HealthSciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (K.C.)
| |
Collapse
|
6
|
Lozada Lawag I, Green KJ, Khairul Islam M, Locher C, Hammer KA. Bioactivities and Phenolic Profiles of Honeys Derived from Plants of the Goldfields, Esperance and Wheatbelt Regions of Western Australia. Chem Biodivers 2023; 20:e202301678. [PMID: 37968896 DOI: 10.1002/cbdv.202301678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/17/2023]
Abstract
The aim of this study was to examine a collection of 79 honeys derived from plants endemic to several Western Australian unique bioregions for bioactivity and physicochemical characteristics. For physicochemical analyses, total phenolic content, high performance thin layer chromatography (HPTLC) fingerprints, pH, Brix, colour and hydrogen peroxide generation were examined. Brix (82.6±1.3) and pH (4.34±0.24) values were within expected ranges, whereas hydrogen peroxide levels determined using an o-dianisidine/horseradish peroxidase assay were relatively low, ranging from 0-244 μM. Antibacterial activity determined by the broth microdilution assay showed that Moort (Eucalyptus platypus) and Yate (Eucalyptus occidentalis) honeys had the highest overall activity with mean minimum inhibitory concentrations of 24.8 % and 25.1 % (w/v) honey, respectively. Yate honey also had the highest overall antioxidant activity (4.38±0.58 mmol Fe2+ /kg of honey), followed by Mallee honeys from various eucalypts, as determined by FRAP (Ferric reducing antioxidant power) and DPPH⋅ (2,2-Diphenyl-1-picrylhydrazyl) assays. This study identified new sources of honeys with potentially useful therapeutic properties from bioregions within Western Australia.
Collapse
Affiliation(s)
- Ivan Lozada Lawag
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), Yanchep, WA, 6035, Australia
- Division of Pharmacy, School of Allied Health, The University of Western Australia, Crawley, 6009, Australia
| | - Kathryn J Green
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), Yanchep, WA, 6035, Australia
- Marshall Centre for Research and Training, School of Biomedical Sciences, UWA, Crawley, 6009, Australia
| | - Md Khairul Islam
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), Yanchep, WA, 6035, Australia
- Division of Pharmacy, School of Allied Health, The University of Western Australia, Crawley, 6009, Australia
| | - Cornelia Locher
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), Yanchep, WA, 6035, Australia
- Division of Pharmacy, School of Allied Health, The University of Western Australia, Crawley, 6009, Australia
| | - Katherine A Hammer
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), Yanchep, WA, 6035, Australia
- Marshall Centre for Research and Training, School of Biomedical Sciences, UWA, Crawley, 6009, Australia
| |
Collapse
|
7
|
Jones ZJM, Huang Y, Green KJ, Hammer KA. Changes in antibacterial activity, colour, and hydrogen peroxide content of Western Australian Jarrah and Marri honeys after storage at different temperatures over time. J Appl Microbiol 2023; 134:lxad164. [PMID: 37505452 DOI: 10.1093/jambio/lxad164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/08/2023] [Accepted: 07/28/2023] [Indexed: 07/29/2023]
Abstract
AIMS This study aimed to evaluate the effects of storage and different temperatures on the antibacterial activity and physicochemical characteristics of several types of honey. METHODS AND RESULTS Honeys stored for 16 weeks at 37 and 45°C showed significant declines in antibacterial activity determined by minimum inhibitory concentrations, the loss of hydrogen peroxide, decreases in honey pH, and increases in honey colour, with changes most pronounced at 45°C. In contrast, honeys stored for 16 weeks at ambient (∼22°C) and cold (4, -20, and -80°C) temperatures showed only minor changes. In a second set of 12 honeys stored for 16-32 months at ambient temperature and then 4°C, honeys showed minor changes in antibacterial activity, increases in colour, and decreases in pH. For a third set of 17 honeys stored for five years at ambient temperature, the honeys showed almost complete loss of hydrogen peroxide and were all significantly darker in colour, but showed varied changes in antibacterial activity. CONCLUSIONS Heat was detrimental to the antibacterial activity of honeys, as was long-term storage at ambient temperatures for some honeys but not others.
Collapse
Affiliation(s)
- Zachary J M Jones
- School of Biomedical Sciences, The University of Western Australia, Crawley WA 6009, Australia
| | - Yina Huang
- School of Biomedical Sciences, The University of Western Australia, Crawley WA 6009, Australia
| | - Kathryn J Green
- School of Biomedical Sciences, The University of Western Australia, Crawley WA 6009, Australia
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), The University of Western Australia, Crawley 6009, Australia
| | - Katherine A Hammer
- School of Biomedical Sciences, The University of Western Australia, Crawley WA 6009, Australia
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), The University of Western Australia, Crawley 6009, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, Crawley 6009, Australia
| |
Collapse
|
8
|
Honey's Antioxidant and Antimicrobial Properties: A Bibliometric Study. Antioxidants (Basel) 2023; 12:antiox12020414. [PMID: 36829972 PMCID: PMC9952334 DOI: 10.3390/antiox12020414] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
Research attention has been drawn to honey's nutritional status and beneficial properties for human health. This study aimed to provide a bibliometric analysis of honey's antioxidant and antimicrobial properties. The research advancements within this field from 2001 to 2022 were addressed using the Scopus database, R, and VOSviewer. Of the 383 results, articles (273) and reviews (81) were the most common document types, while the annual growth rate of published manuscripts reached 17.5%. The most relevant topics about honey's antimicrobial and antioxidant properties were related to the agricultural and biological sciences, biochemistry, and pharmacology. According to a keyword analysis, the most frequent terms in titles, abstracts, and keywords were honey, antimicrobial, antioxidant, bee, propolis, phenolic compounds, wound, antibacterial, anti-inflammatory, and polyphenols. A trend topic analysis showed that the research agenda mainly encompassed antioxidants, pathogens, and anti-infection and chemical agents. In a co-occurrence analysis, antioxidants, anti-infection agents, and chemistry were connected to honey research. The initial research focus of this domain was primarily on honey's anti-inflammatory and antineoplastic activity, wound healing, and antibacterial agents. The research agenda was enriched in the subsequent years by pathogens, propolis, oxidative stress, and flavonoids. It was possible to pinpoint past trends and ongoing developments and provide a valuable insight into the field of honey research.
Collapse
|
9
|
The Antioxidant, Antibacterial and Anti-Biofilm Properties of Rapeseed Creamed Honey Enriched with Selected Plant Superfoods. Antibiotics (Basel) 2023; 12:antibiotics12020235. [PMID: 36830146 PMCID: PMC9951885 DOI: 10.3390/antibiotics12020235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The aim of the study is to evaluate the effect of the addition of selected fruits and herbs belonging to the "superfoods" category for the bioactivity of a rapeseed honey matrix. Flavored creamed honeys with nine types of various additives (2 and 4% of content) were prepared and analyzed for the content of total phenols, flavonoids, antioxidant (FRAP, DPPH and ABTS) and antibacterial activity against four strains of bacteria. Additionally, the impact of three months of storage on the antioxidant properties of the products obtained was examined. The significant dose-dependent increase in the content of bioactive ingredients and antioxidant capacity in spiced honeys, as compared to control honey, was observed. The highest enrichment was obtained for the addition of powdered sea buckthorn leaves and black raspberry fruits. Honey with the addition of sea buckthorn leaves inhibited the growth of P. aeruginosa, S. aureus and K. pneumonia, whereas honeys with black raspberry and blackcurrant fruits showed activity only on the latter two strains. Furthermore, what is more interesting, honey supplemented with sea buckthorn leaf and black raspberry fruits inhibited S. aureus biofilm formation at the sub-minimum inhibitory concentrations (sub-MICs), showing a dose-dependent anti-biofilm effect.
Collapse
|
10
|
Lawag IL, Islam MK, Sostaric T, Lim LY, Hammer K, Locher C. Antioxidant Activity and Phenolic Compound Identification and Quantification in Western Australian Honeys. Antioxidants (Basel) 2023; 12:antiox12010189. [PMID: 36671051 PMCID: PMC9854687 DOI: 10.3390/antiox12010189] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
This study reports on the total phenolic content and antioxidant activity as well as the phenolic compounds that are present in Calothamnus spp. (Red Bell), Agonis flexuosa (Coastal Peppermint), Corymbia calophylla (Marri) and Eucalyptus marginata (Jarrah) honeys from Western Australia. The honey's total phenolic content (TPC) was determined using a modified Folin-Ciocalteu assay, while their total antioxidant activity was determined using FRAP and DPPH assays. Phenolic constituents were identified using a High Performance Thin-Layer Chromatography (HTPLC)-derived phenolic database, and the identified phenolic compounds were quantified using HPTLC. Finally, constituents that contribute to the honeys' antioxidant activity were identified using a DPPH-HPTLC bioautography assay. Based on the results, Calothamnus spp. honey (n = 8) was found to contain the highest (59.4 ± 7.91 mg GAE/100 g) TPC, followed by Eucalyptus marginata honey (50.58 ± 3.76 mg GAE/100 g), Agonis flexuosa honey (36.08 ± 4.2 mg GAE/100 g) and Corymbia calophylla honey (29.15 ± 5.46 mg GAE/100 g). In the FRAP assay, Calothamnus spp. honey also had the highest activity (9.24 ± 1.68 mmol Fe2+/kg), followed by Eucalyptus marginata honey (mmol Fe2+/kg), whereas Agonis flexuosa (5.45 ± 1.64 mmol Fe2+/kg) and Corymbia calophylla honeys (4.48 ± 0.82 mmol Fe2+/kg) had comparable FRAP activity. In the DPPH assay, when the mean values were compared, it was found that Calothamnus spp. honey again had the highest activity (3.88 ± 0.96 mmol TE/kg) while the mean DPPH antioxidant activity of Eucalyptus marginata, Agonis flexuosa, and Corymbia calophylla honeys were comparable. Kojic acid and epigallocatechin gallate were found in all honeys, whilst other constituents (e.g., m-coumaric acid, lumichrome, gallic acid, taxifolin, luteolin, epicatechin, hesperitin, eudesmic acid, syringic acid, protocatechuic acid, t-cinnamic acid, o-anisic acid) were only identified in some of the honeys. DPPH-HPTLC bioautography demonstrated that most of the identified compounds possess antioxidant activity, except for t-cinnamic acid, eudesmic acid, o-anisic acid, and lumichrome.
Collapse
Affiliation(s)
- Ivan Lozada Lawag
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), The University of Western Australia, Agriculture North M085, Crawley, WA 6009, Australia
- Division of Pharmacy, School of Allied Health, The University of Western Australia, Curnow Building M315, Crawley, WA 6009, Australia
| | - Md Khairul Islam
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), The University of Western Australia, Agriculture North M085, Crawley, WA 6009, Australia
- Division of Pharmacy, School of Allied Health, The University of Western Australia, Curnow Building M315, Crawley, WA 6009, Australia
| | - Tomislav Sostaric
- Division of Pharmacy, School of Allied Health, The University of Western Australia, Curnow Building M315, Crawley, WA 6009, Australia
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, The University of Western Australia, Curnow Building M315, Crawley, WA 6009, Australia
| | - Katherine Hammer
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), The University of Western Australia, Agriculture North M085, Crawley, WA 6009, Australia
- School of Biomedical Sciences, The University of Western Australia, L Block QEII Medical Centre, Monash Ave., Crawley, WA 6009, Australia
| | - Cornelia Locher
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), The University of Western Australia, Agriculture North M085, Crawley, WA 6009, Australia
- Division of Pharmacy, School of Allied Health, The University of Western Australia, Curnow Building M315, Crawley, WA 6009, Australia
- Correspondence:
| |
Collapse
|
11
|
Romário-Silva D, Alencar SM, Bueno-Silva B, Sardi JDCO, Franchin M, de Carvalho RDP, Ferreira TEDSA, Rosalen PL. Antimicrobial Activity of Honey against Oral Microorganisms: Current Reality, Methodological Challenges and Solutions. Microorganisms 2022; 10:microorganisms10122325. [PMID: 36557578 PMCID: PMC9781356 DOI: 10.3390/microorganisms10122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Honey has been shown to have antimicrobial activity against different microorganisms, but its effects on oral biofilms are largely unknown. In this review, we analyzed the currently available literature on the antimicrobial activity of honey against oral biofilms in order to determine its potential as a functional food in the treatment and/or prevention of oral diseases. Here, we compare studies reporting on the antimicrobial activity of honey against systemic and oral bacteria, discuss methodological strategies, and point out current gaps in the literature. To date, there are no consistent studies supporting the use of honey as a therapy for oral diseases of bacterial origin, but current evidence in the field is promising. The lack of studies examining the antibiofilm activity of honey against oral microorganisms reveals a need for additional research to better define aspects such as chemical composition, the mechanism(s) of action, and antimicrobial action.
Collapse
Affiliation(s)
- Diego Romário-Silva
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, Brazil
- Research Program in Integrated Dental Sciences, University of Cuiabá, Cuiabá 78065-900, Brazil
| | - Severino Matias Alencar
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture (Escola Superior de Agricultura “Luiz de Queiroz”—ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - Bruno Bueno-Silva
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil
| | - Janaína de Cássia Orlandi Sardi
- Research Program in Integrated Dental Sciences, University of Cuiabá, Cuiabá 78065-900, Brazil
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil
| | - Marcelo Franchin
- School of Dentistry, Federal University of Alfenas (Unifal-MG), Alfenas 37130-001, Brazil
- Correspondence: (M.F.); (P.L.R.)
| | | | - Thayná Ellen de Sousa Alves Ferreira
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, Brazil
- Research Program in Integrated Dental Sciences, University of Cuiabá, Cuiabá 78065-900, Brazil
| | - Pedro Luiz Rosalen
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, Brazil
- Biological Sciences Graduate Program, Federal University of Alfenas (Unifal-MG), Alfenas 37130-001, Brazil
- Correspondence: (M.F.); (P.L.R.)
| |
Collapse
|
12
|
Wultańska D, Paterczyk B, Nowakowska J, Pituch H. The Effect of Selected Bee Products on Adhesion and Biofilm of Clostridioides difficile Strains Belonging to Different Ribotypes. Molecules 2022; 27:7385. [PMID: 36364211 PMCID: PMC9654997 DOI: 10.3390/molecules27217385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 10/20/2024] Open
Abstract
There is an ongoing search for alternative treatments for Clostridioides difficile infections. The aim of the study was to investigate the antibacterial and antibiotic activity of bee products against C. difficile strains with different polymerase chain reaction ribotypes (RTs). The minimum inhibitory concentration (MICs) of Manuka honey 550+, goldenrod honey, pine honey, and bee bread were determined by the broth dilution method. C. difficile adhesion to HT-29, HT-29 MTX, and CCD 841 CoN cell lines was assessed. Biofilm was cultured in titration plates and visualized by confocal microscopy. The MICs of Manuka honey for C. difficile 630 and ATCC 9689 strains and control strain, M 120, were 6.25%, 6.25%, and 1.56% (v/v), respectively; of goldenrod honey, 50%, 50%, and 12.5%, respectively; of pine honey, 25%, 25%, and 25%, respectively; and of bee bread, 100 mg/L, 50 mg/L, and 100 mg/L, respectively. Manuka honey (1%) increased adhesion of C. difficile RT176 strains, and one strain of RT023, to the CCD 841 cell line. Pine honey (1%) increased RT027 adhesion to the HT-29 cell line. Manuka honey, pine honey, and bee bread at subinhibitory concentrations increased the adhesion of C. difficile. Our research proved that bee products are active against the tested strains of C. difficile.
Collapse
Affiliation(s)
- Dorota Wultańska
- Department of Medical Microbiology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Bohdan Paterczyk
- Imaging Laboratory, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Julita Nowakowska
- Imaging Laboratory, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Hanna Pituch
- Department of Medical Microbiology, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
13
|
Bioactivity and Chemical Characterization of Sudanese Bee Honey: Crude Acacia and Its Organic Extracts. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8441239. [PMID: 36033555 PMCID: PMC9402308 DOI: 10.1155/2022/8441239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022]
Abstract
Honey has recently been rediscovered as an antibacterial and wound-healing natural product. The medicinal properties of honey originate from the floral source used by bees. The objective of the current study was to evaluate the antimicrobial activity of Sudanese crude acacia bee honey and its solvent extracts regarding its biological activity and chemical characterization. To verify the nature of the antibacterial agent(s) of honey, sample (A) Sudanese crude unprocessed acacia bee honey obtained from west of Sudan (Nyala) during October 2019 was tested in vitro for antibacterial activity against 10 standard microorganisms Enterobacter aerogenes: ATCC: 13048, Enterococcus faecalis: ATCC: 29212, Escherichia coli: ATCC: 25922, Klebsiella pneumoniae: ATCC: 700603, Pseudomonas aeruginosa: ATCC: 27853, Serratia marcescens: ATCC: 8100, Staphylococcus aureus: ATCC: 29213, Staphylococcus epidermidis: ATCC: 12228, Staphylococcus Methicillin Sensitive MSSA: ATCC: 29213, and Staphylococcus Methicillin-Resistant MRSA: ATCC: 23591. Extraction of honey sample was carried out by petroleum ether followed by ethyl acetate using liquid/liquid extraction technique, using separating funnels. All organic extracts in addition to their aqueous residue were tested in vitro for antibacterial activity against the10 standard microorganisms. Ethyl acetate extract was subjected to gas chromatography-mass spectrometer (GC-MS) for chemical characterization. Sudanese crude unprocessed acacia honey showed inhibitory effects against the 10 standard microorganisms. Petroleum ether extract showed no antibacterial activity against the tested organisms, while its water residue exhibited remarkable activity. The ethyl acetate extract exhibited strong antibacterial activity against the tested organisms, while its aqueous residue showed no activity. Ethyl acetate extract subjected to gas chromatography-mass spectrometer (GC-MS) showed twenty-one chemical constituents. The GC-MS showed twenty-one chemical compounds, and phenolic compound was the highest concentration. Ethyl acetate extract exhibited strong antibacterial activity which can be formulated as topical dressing for wounds and burns. The usage of honey in a professional context should be taken into consideration while treating burns and wounds.
Collapse
|
14
|
Honey: An Advanced Antimicrobial and Wound Healing Biomaterial for Tissue Engineering Applications. Pharmaceutics 2022; 14:pharmaceutics14081663. [PMID: 36015289 PMCID: PMC9414000 DOI: 10.3390/pharmaceutics14081663] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023] Open
Abstract
Honey was used in traditional medicine to treat wounds until the advent of modern medicine. The rising global antibiotic resistance has forced the development of novel therapies as alternatives to combat infections. Consequently, honey is experiencing a resurgence in evaluation for antimicrobial and wound healing applications. A range of both Gram-positive and Gram-negative bacteria, including antibiotic-resistant strains and biofilms, are inhibited by honey. Furthermore, susceptibility to antibiotics can be restored when used synergistically with honey. Honey’s antimicrobial activity also includes antifungal and antiviral properties, and in most varieties of honey, its activity is attributed to the enzymatic generation of hydrogen peroxide, a reactive oxygen species. Non-peroxide factors include low water activity, acidity, phenolic content, defensin-1, and methylglyoxal (Leptospermum honeys). Honey has also been widely explored as a tissue-regenerative agent. It can contribute to all stages of wound healing, and thus has been used in direct application and in dressings. The difficulty of the sustained delivery of honey’s active ingredients to the wound site has driven the development of tissue engineering approaches (e.g., electrospinning and hydrogels). This review presents the most in-depth and up-to-date comprehensive overview of honey’s antimicrobial and wound healing properties, commercial and medical uses, and its growing experimental use in tissue-engineered scaffolds.
Collapse
|
15
|
Chemical Composition, Antioxidant and Antimicrobial Activity of Some Types of Honey from Banat Region, Romania. Molecules 2022; 27:molecules27134179. [PMID: 35807424 PMCID: PMC9268046 DOI: 10.3390/molecules27134179] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 01/27/2023] Open
Abstract
Honey is a natural product with multiple health benefits. The paper presents the chemical characterization and the antioxidant and antimicrobial potential of ten types of honey (knotweed, linden, wild cherry, acacia, honeydew, oilseed rape, sunflower, phacelia, plain polyflora and hill polyflora) from the Banat region, Romania. We studied the water content, dry matter, impurities, acidity and pH of honey. We also determined the content of reducing sugar, minerals and flavonoids and the total phenolic content. All honey samples analysed showed good nutritional characteristics according to the standard codex for honey. From the analysis of the mineral content of the honey samples, we observed a variability in the macro and microminerals, influenced by the botanical origin, ranging between 0.25% (wild cherry honey) and 0.54% (honeydew). The toxic metals’ (Cd and Pb) levels met the standard for almost all samples analysed except for knotweed. The flavonoid content of the samples ranged from 9.29 mg QE/100 g for wild cherry honey to 263.86 mg QE/100 g for linden honey, and for polyphenols between 177.6 mgGAE/100 g for acacia honey and 1159.3 mgGAE/100 g for honeydew. The best antioxidant capacity was registered in the case of linden honey (79.89%) and honeydew (79.20%) and the weakest in acacia (41.88%) and wild cherries (50.4%). All studied honey samples showed antimicrobial activity, depending on the type of honey, concentration and strain analysed. The novelty of this study is given by the complex approach of the study of honey quality, both from the perspective of chemical attributes and the evaluation of the antimicrobial potential on specific strains in correlation with the botanical and geographical origin of the analyzed area.
Collapse
|
16
|
Ben Amor S, Mekious S, Allal Benfekih L, Abdellattif MH, Boussebaa W, Almalki FA, Ben Hadda T, Kawsar SMA. Phytochemical Characterization and Bioactivity of Different Honey Samples Collected in the Pre-Saharan Region in Algeria. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070927. [PMID: 35888017 PMCID: PMC9321394 DOI: 10.3390/life12070927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 01/22/2023]
Abstract
Despite the challenging conditions in the pre-Saharan areas of Algeria, such as weak plant cover and a harsh climate, beekeeping is being developed and spread. In the present work, honey samples collected from ten locations in the El Oued region were examined during the spring of 2021. A melissopalynological analysis was carried out, followed by a floristic investigation. The 10 honey samples were also investigated for their physicochemical properties and antioxidant and antibacterial activity against five strains: Escherichia coli, Staphylococcus aureus, Bacillus subtilus, Listeria innocua, and Micrococcus luteus. The floristic analysis found 65 species belonging to 33 botanical families, with a dominance of the Asteraceae family accounting for 18.461% of the total. The melissopalynological study revealed only one monofloral honey (Ziziphus lotus), whereas the nine others were multi-floral. The honey’s color changed from light to dark amber, and most tested honey was of high quality, fulfilling international criteria. The total phenol and flavonoid contents varied considerably amongst the various honey samples. Furthermore, LC-MS-MS phenolic profile analysis identified the presence of 20 chemicals, of which only three phenols were found in all honey types. Antioxidant capacity analyzed with FRAP test and antiradical activities against DPPH differed from one honey sample to another. Moreover, a significant correlation was recorded between the antioxidant activity, honey’s color, polyphenol, and flavonoid contents. The S. aureus strain was the most sensitive regarding honey antibacterial activity, while M. luteus and B. subtilis strains were only moderately sensitive.
Collapse
Affiliation(s)
- Safia Ben Amor
- Laboratory for Research on Medicinal and Aromatic Plants, Faculty of Nature Sciences and Life, Saad Dahlab University, Blida 1, Route de Soumâa, Blida 09000, Algeria; (S.M.); (L.A.B.)
- Correspondence: (S.B.A.); (S.M.A.K.)
| | - Scherazad Mekious
- Laboratory for Research on Medicinal and Aromatic Plants, Faculty of Nature Sciences and Life, Saad Dahlab University, Blida 1, Route de Soumâa, Blida 09000, Algeria; (S.M.); (L.A.B.)
- Faculty of Nature Sciences and Life, Ziane Achour University, Djelfa 17000, Algeria
| | - Leila Allal Benfekih
- Laboratory for Research on Medicinal and Aromatic Plants, Faculty of Nature Sciences and Life, Saad Dahlab University, Blida 1, Route de Soumâa, Blida 09000, Algeria; (S.M.); (L.A.B.)
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, Al-Haweiah, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Walid Boussebaa
- Scientific and Technical Research Center in Physico-Chemical Analysis, Headquarters Ex-Pasna Industrial Zone, Bou-Ismail CP, Tipaza 42004, Algeria;
| | - Faisal A. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (F.A.A.); (T.B.H.)
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (F.A.A.); (T.B.H.)
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Université Mohamed Premier, BV Mohammed VI, BP 717, Oujda 60000, Morocco
| | - Sarkar M. A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
- Correspondence: (S.B.A.); (S.M.A.K.)
| |
Collapse
|
17
|
Wang T, Bai Y, Du Y, An S, Han B, Yang X, He C, Sun H, Zhao K, Xue X, Kang J. HPLC-DVD combined with chemometrics to analyze the correlation between the Q-marker content and color of Corni Fructus. Food Funct 2022; 13:5455-5465. [PMID: 35475458 DOI: 10.1039/d1fo03866d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although Corni Fructus (CF) is a fruit with great economic value and development potential in medicine and food, too much reliance on personal experience for quality evaluation seriously limits the trading and circulation of CF. In the present study, through the research on the correlation between the chemical composition and the appearance color, a standard colorimetric card related to CF quality was established, which simplified the quality evaluation process and improved the accuracy of the visual evaluation of CF. Firstly, a total of 29 batches of CF from different places were collected. Then, "imread" in the MATLAB software was used to convert the color of all samples into RGB values, and HPLC-DVD was used to measure the content of the main chemical components in CF. Thereafter, the correlation between the content and color was studied by using MLR, BP-ANNs and SVM chemometric tools to screen the Q-marker of CF, which was further confirmed by in vivo and in vitro experiments. Finally, the Q-marker standard colorimetric card with the best fitting degree is established according to the prediction model. Thus, this study provides an auxiliary reference for the color evaluation of CF and a reference for the standardization and quantification of the macro characteristics of traditional Chinese medicine and food.
Collapse
Affiliation(s)
- Ting Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Yilin Bai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Yating Du
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Shujing An
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Binkai Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Xiaolin Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Changfen He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Haoqiang Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Ke Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Xiaochang Xue
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Jiefang Kang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| |
Collapse
|
18
|
Hulea A, Obiștioiu D, Cocan I, Alexa E, Negrea M, Neacșu AG, Hulea C, Pascu C, Costinar L, Iancu I, Tîrziu E, Herman V. Diversity of Monofloral Honey Based on the Antimicrobial and Antioxidant Potential. Antibiotics (Basel) 2022; 11:antibiotics11050595. [PMID: 35625239 PMCID: PMC9137981 DOI: 10.3390/antibiotics11050595] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
This study aimed to investigate the antioxidant profile and the antimicrobial activity of four different types of monofloral honey (manuka (MH), brassica rapeseed (BH), acacia (AH), and linden honey (LH)) against some bacterial/fungal ATCC strains and some multidrug-resistant strains isolated from chronic otitis in dogs. For the characterisation of the antioxidant profile of each honey, we extracted the honey samples by hydroalcoholic extraction and analysed them in terms of total polyphenols (TPC), total flavonoids (TFC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) using the spectrophotometric method. The antimicrobial activity was determined using the microdilution method at concentrations of 10%, 15%, and 20%, with the results expressed in OD (optical density) calculated as BIR% (bacterial inhibition rate)/MIR% (mycelial inhibition rate). The antioxidant characterisation of the analysed honey samples showed the highest antioxidant activity and concentrations of TPC and TFC in MH, followed by LH. MH was proven to be the most effective on most clinical isolates concerning the antimicrobial activity in comparison with BH, AH, and LH. Except for B. cepacia and P. vulgaris, all the clinical isolates were sensitive to the antibacterial activity of honey. Regarding the ATCC strains, MH 10% was the most effective in inhibiting all the strains tested except for P. aeruginosa. In conclusion, the efficacy classification in our study was MH > BH > AH > LH.
Collapse
Affiliation(s)
- Anca Hulea
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| | - Diana Obiștioiu
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
- Correspondence: (D.O.); (I.C.)
| | - Ileana Cocan
- Faculty of Food Engineering, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (E.A.); (M.N.)
- Correspondence: (D.O.); (I.C.)
| | - Ersilia Alexa
- Faculty of Food Engineering, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (E.A.); (M.N.)
| | - Monica Negrea
- Faculty of Food Engineering, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (E.A.); (M.N.)
| | - Alina-Georgeta Neacșu
- Faculty of Agriculture, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300641 Timisoara, Romania;
| | - Călin Hulea
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| | - Corina Pascu
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| | - Luminita Costinar
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| | - Ionica Iancu
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| | - Emil Tîrziu
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| | - Viorel Herman
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| |
Collapse
|
19
|
Becerril-Sánchez AL, Quintero-Salazar B, Dublán-García O, Escalona-Buendía HB. Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants (Basel) 2021; 10:1700. [PMID: 34829570 PMCID: PMC8614671 DOI: 10.3390/antiox10111700] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 02/02/2023] Open
Abstract
Honey has been employed since antiquity due to its sensory, nutritional, and therapeutic properties. These characteristics are related to its physical and chemical composition. For example, phenolic compounds are substances that can determine antioxidant activity, as well as sensory characteristics, and can be employed as biomarkers of floral and geographical origin. This has generated a growing interest in the study of phenolic compounds and their influence in the intrinsic properties of this beekeeping product. This review aims to summarize, analyze, and update the status of the research that demonstrates the role of phenolic compounds in antioxidant activity, botanical-geographical origin, and the sensory characteristics of honey. These phenolic compounds, according to various results reported, have great relevance in honey's biological and functional activity. This leads to research that will link phenolic compounds to their floral, geographical, productive, and territorial origin, as well as some sensory and functional characteristics.
Collapse
Affiliation(s)
- Ana L. Becerril-Sánchez
- Food and Environmental Toxicology Laboratory, Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Mexico;
| | | | - Octavio Dublán-García
- Food and Environmental Toxicology Laboratory, Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50120, Mexico;
| | - Héctor B. Escalona-Buendía
- Sensory Evaluation and Consumer Studies Laboratory, Biotechnology Department, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico;
| |
Collapse
|
20
|
Speer K, Tanner N, Kölling-Speer I, Rohleder A, Zeippert L, Beitlich N, Lichtenberg-Kraag B. Cornflower Honey as a Model for Authentication of Unifloral Honey Using Classical Methods Combined with Plant-Based Marker Substances Such as Lumichrome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11406-11416. [PMID: 34529418 DOI: 10.1021/acs.jafc.1c03621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
According to legislation, unifloral honeys are characterized by their organoleptic, physicochemical, and microscopic properties. Melissopalynology is the established method for identifying the pollen taken up with the floral nectar by forager bees and is used for authentication of the nectar sources in honey. For cornflower honey (Centaurea cyanus), the pollen input does not correlate with the nectar input, because the nectar is produced both in floral and in extrafloral nectaries. The well-known cornflower marker lumichrome has now also been detected in the extrafloral nectar. Therefore, lumichrome is a suitable marker substance for cornflower honey. Four different methods for the sole analysis of lumichrome in honey were validated and compared. Studies over nine years have shown that unifloral cornflower honey should contain approximately 35 mg/kg lumichrome. For a further differentiated cornflower honey specific verification, other nonvolatile compounds like 7-carboxylumichrome and volatiles, such as 3,4-dihydro-3-oxoedulan I and 3,4-dihydro-3-oxoedulan II, should be analyzed. This enables a more specific accuracy for the classification of unifloral cornflower honey.
Collapse
Affiliation(s)
- Karl Speer
- Food Chemistry, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | - Norman Tanner
- Institute for Bee Research Hohen Neuendorf, Friedrich-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany
| | | | - Anke Rohleder
- Food Chemistry, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | - Linda Zeippert
- Food Chemistry, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | - Nicole Beitlich
- Food Chemistry, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | - Birgit Lichtenberg-Kraag
- Institute for Bee Research Hohen Neuendorf, Friedrich-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany
| |
Collapse
|
21
|
Nader RA, Mackieh R, Wehbe R, El Obeid D, Sabatier JM, Fajloun Z. Beehive Products as Antibacterial Agents: A Review. Antibiotics (Basel) 2021; 10:717. [PMID: 34203716 PMCID: PMC8232087 DOI: 10.3390/antibiotics10060717] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 12/31/2022] Open
Abstract
Honeybees are one of the most marvelous and economically beneficial insects. As pollinators, they play a vital role in every aspect of the ecosystem. Beehive products have been used for thousands of years in many cultures for the treatment of various diseases. Their healing properties have been documented in many religious texts like the Noble Quran and the Holy Bible. Honey, bee venom, propolis, pollen and royal jelly all demonstrated a richness in their bioactive compounds which make them effective against a variety of bacterial strains. Furthermore, many studies showed that honey and bee venom work as powerful antibacterial agents against a wide range of bacteria including life-threatening bacteria. Several reports documented the biological activities of honeybee products but none of them emphasized on the antibacterial activity of all beehive products. Therefore, this review aims to highlight the antibacterial activity of honey, bee venom, propolis, pollen and royal jelly, that are produced by honeybees.
Collapse
Affiliation(s)
- Rita Abou Nader
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon; (R.A.N.); (R.M.)
| | - Rawan Mackieh
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon; (R.A.N.); (R.M.)
| | - Rim Wehbe
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Dany El Obeid
- Faculty of Agriculture & Veterinary Sciences, Lebanese University, Dekwaneh, Beirut 2832, Lebanon;
| | - Jean Marc Sabatier
- Faculté de Médecine Secteur Nord, 51, Université Aix-Marseille, Institut de Neuro-Physiopathologie, UMR 7051, Boulevard Pierre Dramard-CS80011, CEDEX 15, 13344 Marseille, France
| | - Ziad Fajloun
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon; (R.A.N.); (R.M.)
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| |
Collapse
|
22
|
The Antibacterial and Antioxidant Roles of Buckwheat Honey (BH) in Liquid Preservation of Boar Semen. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5573237. [PMID: 34189137 PMCID: PMC8192209 DOI: 10.1155/2021/5573237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022]
Abstract
In the present study, we hypothesized that buckwheat honey (BH) should be regarded as a potential alternative to antibacterial and antioxidant agent in liquid storage of boar semen. To this end, boar semen was firstly studied for in vitro dose tolerability to BH by measuring sperm progressive motility. The optimum progressive motility of boar spermatozoa was observed in extender with 0.5% and 0.6% BH addition. Afterward, sperm quality parameters, bacterial profile and composition, total antioxidant (T-AOC), catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) levels of control, BH supplementation, antibiotics supplementation, and incorporated supplementation were compared during liquid storage period, to further investigate antibacterial and antioxidant properties of BH. The results showed that BH supplementation significantly improved sperm motility, acrosome integrity, plasma membrane integrity, inhibited opportunistic bacterial growth, and altered microbial compositions at the end of preservation. Additionally, T-AOC, SOD, and CAT levels were significantly higher in the BH supplementation group than those in the control and antibiotic supplementation group, whereas MDA level exhibited opposite change pattern. Importantly, BH addition to the extender was able to exert a synergistic effect in combination of antibiotic use. Our findings suggested that the appropriate concentrations (0.5% and 0.6%) of BH were added to the extender could act antibacterial and antioxidant roles in liquid preservation of boar semen.
Collapse
|
23
|
Transcriptomic Analysis of Pseudomonas aeruginosa Response to Pine Honey via RNA Sequencing Indicates Multiple Mechanisms of Antibacterial Activity. Foods 2021; 10:foods10050936. [PMID: 33923242 PMCID: PMC8145095 DOI: 10.3390/foods10050936] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
Pine honey is a unique type of honeydew honey produced exclusively in Eastern Mediterranean countries like Greece and Turkey. Although the antioxidant and anti-inflammatory properties of pine honey are well documented, few studies have investigated so far its antibacterial activity. This study investigates the antibacterial effects of pine honey against P. aeruginosa PA14 at the molecular level using a global transcriptome approach via RNA-sequencing. Pine honey treatment was applied at sub-inhibitory concentration and short exposure time (0.5× of minimum inhibitory concentration –MIC- for 45 min). Pine honey induced the differential expression (>two-fold change and p ≤ 0.05) of 463 genes, with 274 of them being down-regulated and 189 being up-regulated. Gene ontology (GO) analysis revealed that pine honey affected a wide range of biological processes (BP). The most affected down-regulated BP GO terms were oxidation-reduction process, transmembrane transport, proteolysis, signal transduction, biosynthetic process, phenazine biosynthetic process, bacterial chemotaxis, and antibiotic biosynthetic process. The up-regulated BP terms, affected by pine honey treatment, were those related to the regulation of DNA-templated transcription, siderophore transport, and phosphorylation. Pathway analysis revealed that pine honey treatment significantly affected two-component regulatory systems, ABC transporter systems, quorum sensing, bacterial chemotaxis, biofilm formation and SOS response. These data collectively indicate that multiple mechanisms of action are implicated in antibacterial activity exerted by pine honey against P. aeruginosa.
Collapse
|
24
|
Masad RJ, Haneefa SM, Mohamed YA, Al-Sbiei A, Bashir G, Fernandez-Cabezudo MJ, al-Ramadi BK. The Immunomodulatory Effects of Honey and Associated Flavonoids in Cancer. Nutrients 2021; 13:1269. [PMID: 33924384 PMCID: PMC8069364 DOI: 10.3390/nu13041269] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Honey has exerted a high impact in the field of alternative medicine over many centuries. In addition to its wound healing, anti-microbial and antioxidant properties, several lines of evidence have highlighted the efficiency of honey and associated bioactive constituents as anti-tumor agents against a range of cancer types. Mechanistically, honey was shown to inhibit cancer cell growth through its pro-apoptotic, anti-proliferative and anti-metastatic effects. However, the potential of honey to regulate anti-tumor immune responses is relatively unexplored. A small number of in vitro and in vivo studies have demonstrated the ability of honey to modulate the immune system by inducing immunostimulatory as well as anti-inflammatory effects. In the present review, we summarize the findings from different studies that aimed to investigate the immunomodulatory properties of honey and its flavonoid components in relation to cancer. While these studies provide promising data, additional research is needed to further elucidate the immunomodulatory properties of honey, and to enable its utilization as an adjuvant therapy in cancer.
Collapse
Affiliation(s)
- Razan J. Masad
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (R.J.M.); (S.M.H.); (Y.A.M.); (G.B.)
| | - Shoja M. Haneefa
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (R.J.M.); (S.M.H.); (Y.A.M.); (G.B.)
| | - Yassir A. Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (R.J.M.); (S.M.H.); (Y.A.M.); (G.B.)
| | - Ashraf Al-Sbiei
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (A.A.-S.); (M.J.F.-C.)
| | - Ghada Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (R.J.M.); (S.M.H.); (Y.A.M.); (G.B.)
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (A.A.-S.); (M.J.F.-C.)
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (R.J.M.); (S.M.H.); (Y.A.M.); (G.B.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
25
|
Overcoming bacterial resistance to antibiotics: the urgent need – a review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The discovery of antibiotics is considered one of the most crucial breakthroughs in medicine and veterinary science in the 20th century. From the very beginning, this type of drug was used as a ‘miraculous cure’ for every type of infection. In addition to their therapeutic uses, antibiotics were also used for disease prevention and growth promotion in livestock. Though this application was banned in the European Union in 2006, antibiotics are still used in this way in countries all over the world. The unlimited and unregulated use of antibiotics has increased the speed of antibiotic resistance’s spread in different types of organisms. This phenomenon requires searching for new strategies to deal with hard-to-treat infections. The antimicrobial activity of some plant derivatives and animal products has been known since ancient times. At the beginning of this century, even more substances, such as antimicrobial peptides, were considered very promising candidates for becoming new alternatives to commonly used antimicrobials. However, many preclinical and clinical trials ended without positive results. A variety of strategies to fight microbes exist, but we are a long way from approving them as therapies. This review begins with the discovery of antibiotics, covers the modes of action of select antimicrobials, and ends with a literature review of the newest potential alternative approaches to overcoming the drug resistance phenomenon.
Collapse
|
26
|
Synergistic Antimicrobial Activity of Supplemented Medical-Grade Honey against Pseudomonas aeruginosa Biofilm Formation and Eradication. Antibiotics (Basel) 2020; 9:antibiotics9120866. [PMID: 33291554 PMCID: PMC7761815 DOI: 10.3390/antibiotics9120866] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Biofilms hinder wound healing. Medical-grade honey (MGH) is a promising therapy because of its broad-spectrum antimicrobial activity and the lack of risk for resistance. This study investigated the inhibitory and eradicative activity against multidrug-resistant Pseudomonas aeruginosa biofilms by different established MGH-based wound care formulations. Six different natural wound care products (Medihoney, Revamil, Mebo, Melladerm, L-Mesitran Ointment, and L-Mesitran Soft) were tested in vitro. Most of them contain MGH only, whereas some were supplemented. L-Mesitran Soft demonstrated the most potent antimicrobial activity (6.08-log inhibition and 3.18-log eradication). Other formulations ranged between 0.89-log and 4.80-log inhibition and 0.65-log and 1.66-log eradication. Therefore, the contribution of different ingredients of L-Mesitran Soft was investigated in more detail. The activity of the same batch of raw MGH (1.38-log inhibition and 2.35-log eradication), vitamins C and E (0.95-log inhibition and 0.94-log eradication), and all ingredients except MGH (1.69-log inhibition and 0.75-log eradication) clearly support a synergistic activity of components within the L-Mesitran Soft formulation. Several presented clinical cases illustrate its clinical antimicrobial efficacy against Pseudomonas aeruginosa biofilms. In conclusion, MGH is a potent treatment for Pseudomonas biofilms. L-Mesitran Soft has the strongest antimicrobial activity, which is likely due to the synergistic activity mediated by its supplements.
Collapse
|
27
|
Sharma R, Martins N, Chaudhary A, Garg N, Sharma V, Kuca K, Nepovimova E, Tuli HS, Bishayee A, Chaudhary A, Prajapati PK. Adjunct use of honey in diabetes mellitus: A consensus or conundrum? Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Cilia G, Fratini F, Marchi M, Sagona S, Turchi B, Adamchuk L, Felicioli A, Kačániová M. Antibacterial Activity of Honey Samples from Ukraine. Vet Sci 2020; 7:vetsci7040181. [PMID: 33233581 PMCID: PMC7712053 DOI: 10.3390/vetsci7040181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
The employment of natural substances such as beehive products with a preventive and therapeutic purpose has been a widespread custom since ancient times. In this investigation, the antibacterial activity of 41 honey samples from different Ukraine regions has been evaluated. For each honey, melissopalynological and physico-chemical analysis were performed in order to determine botanical origin, pH, glucose and fructose contents and free acidity. So, antibacterial activity against Staphylococcusaureus CCM 4223, Listeria monocytogenes ATCC 7644, Salmonella enterica serovar Typhimurium CCM 3807 and Escherichia coli ATCC 25922 was assessed through the determination of MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values by the microdilutions method. The results show that the most susceptible bacterial strain was L. monocytogenes. Its growth was inhibited at a honey concentration ranging from 0.094 to 0.188 g/mL. The most resistant bacterial strain was S. aureus. As concerns MBC values, L. monocytogenes was the most susceptible bacteria, while S. aureus was the most resistant. Helianthus spp. honeys was the most effective against all tested bacterial strains, followed by Robinia spp. and multifloral honeys. Promising results for MIC tests have been found for Brassica spp.
Collapse
Affiliation(s)
- Giovanni Cilia
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 20159 Pisa, Italy; (G.C.); (M.M.); (B.T.); (A.F.)
| | - Filippo Fratini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 20159 Pisa, Italy; (G.C.); (M.M.); (B.T.); (A.F.)
- Correspondence:
| | - Matilde Marchi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 20159 Pisa, Italy; (G.C.); (M.M.); (B.T.); (A.F.)
| | - Simona Sagona
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy;
| | - Barbara Turchi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 20159 Pisa, Italy; (G.C.); (M.M.); (B.T.); (A.F.)
| | - Leonora Adamchuk
- Department of Horse-Breeding and Beekeeping, National University of Life and Environmental Sciences of Ukraine, Henerala Rodimtseva Str.19, 03041 Kyiv, Ukraine;
| | - Antonio Felicioli
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 20159 Pisa, Italy; (G.C.); (M.M.); (B.T.); (A.F.)
| | - Miroslava Kačániová
- Department of Fruit Sciences, Viticulture and Enology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland
| |
Collapse
|
29
|
Wijesooriya LI, Waidyathilake D. Antimicrobial Properties of Nonantibiotic Agents for Effective Treatment of Localized Wound Infections: A Minireview. INT J LOW EXTR WOUND 2020; 21:207-218. [PMID: 32746677 DOI: 10.1177/1534734620939748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Wounds present serious health problems in humans and animals. Importantly, if left untreated, wounds invariably lead to long-term morbidity. The inappropriate use and costs of antibiotics place significant challenges globally and affect the health budgets of many countries. Though some antibiotics are administered systemically, treatment of localized infections, in particular, chronic wound infections, does not need such therapy-this would minimize development of antibiotic resistance. Of these measures, nanoparticles of silver, ZnO, and gold seem to give promising results against common wound pathogens while having few limitations. Chemical components of essential oils, which are extracted from different plants, have been shown to act against common wound pathogens. Plant extracts have shown different mechanisms in biofilm elimination. Chlorhexidine and chlorine derivatives act as wound antiseptics. Attempts with biological agents such as maggots have also been shown to provide anti-infective as well as mechanical removal of wound debris. Honey, including those obtained from bees, has a wide coverage against wound pathogens. Glycerin and hypertonic saline are anti-infective through the concentration-dependent killing of pathogens. Hyperbaric oxygen acts against many wound pathogens, in particular anaerobes. This review is focused on nonantibiotic attempts for the cure of localized infections, in particular, chronic wounds with common wound pathogens.
Collapse
|
30
|
Prasad Dewangan R, Kumari S, Kumar Mahto A, Jain A, Pasha S. Self assembly and hydrogelation of N-terminal modified tetrapeptide for sustained release and synergistic action of antibacterial drugs against methicillin resistant S. aureus. Bioorg Chem 2020; 102:104052. [PMID: 32659487 DOI: 10.1016/j.bioorg.2020.104052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/11/2020] [Accepted: 06/26/2020] [Indexed: 01/01/2023]
Abstract
Self assembly is a ubiquitous process of complex bio-molecules to perform various biological functions. This bottom-up approach applies in engineering of various nanostructures in different technological and biomedical applications. Here we report design and synthesis of phenolic acid conjugated tetra peptides which self assembled in uniform nanofibrils upon dissolution in aqueous solutions at physiological pH and formed stiff and transparent hydrogel. Gel inversion assay, HR-TEM, FT-IR, CD spectroscopy and rheometric analysis characterized the developed hydrogel (HG-2). This gel exhibits characteristics of thixotropy and injectability. Structure-gelation relationship studies of peptide revealed the importance of π-π interactions in self assembly and hydrogelation. Further, this hydrogel used for entrapment and sustained release of antibiotics, rifampicin and ciprofloxacin at physiological pH and temperature for 5 days. The hydrogelator peptide has shown moderate antibacterial activity alone, whereas in combination with rifampicin and ciprofloxacin showed a remarkable synergistic antibacterial activity against clinically relevant multidrug resistant methicillin resistant S. aureus (MRSA). Interestingly, this hydrogel neither cause significant damage to hRBCsnor to human keratinocyte up to hydrogelation concentrations tested by haemolytic and MTT assay. These characteristics of present peptide hold future promising soft materials for treatment of infections and drug delivery applications.
Collapse
Affiliation(s)
- Rikeshwer Prasad Dewangan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Deemed to be University), New Delhi 110062, India.
| | - Shalini Kumari
- CSIR- Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India
| | - Aman Kumar Mahto
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Deemed to be University), New Delhi 110062, India
| | - Aditi Jain
- CSIR- Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India
| | - Santosh Pasha
- CSIR- Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India
| |
Collapse
|
31
|
Paenibacillus alvei MP1 as a Producer of the Proteinaceous Compound with Activity against Important Human Pathogens, Including Staphylococcus aureus and Listeria monocytogenes. Pathogens 2020; 9:pathogens9050319. [PMID: 32344843 PMCID: PMC7281493 DOI: 10.3390/pathogens9050319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 01/15/2023] Open
Abstract
An emerging need for new classes of antibiotics is, on the one hand, evident as antimicrobial resistance continues to rise. On the other hand, the awareness of the pros and cons of chemically synthesized compounds’ extensive use leads to a search for new metabolites in already known reservoirs. Previous research showed that Paenibacillus strain (P. alvei MP1) recovered from a buckwheat honey sample presented a wide spectrum of antimicrobial activity against both Gram-positive and Gram-negative pathogens. Recent investigation has confirmed that P. alvei MP1 (deposited at DDBJ/ENA/GenBank under the accession WSQB00000000) produces a proteinaceous, heat-stable compound(s) with the maximum antimicrobial production obtained after 18 h of P. alvei MP1 growth in LB medium at 37 °C with continuous shaking at 200 RPM. The highest activity was found in the 40% ammonium sulfate precipitate, with high activity also remaining in the 50% and 60% ammonium sulfate precipitates. Moderate to high antimicrobial activity that is insensitive to proteases or heat treatment, was confirmed against pathogenic bacteria that included L. monocytogenes FSL – X1-0001 (strain 10403S), S. aureus L1 – 0030 and E. coli O157: H7. Further studies, including de novo sequencing of peptides by mass spectrometry, are in progress.
Collapse
|
32
|
Dżugan M, Grabek-Lejko D, Swacha S, Tomczyk M, Bednarska S, Kapusta I. Physicochemical quality parameters, antibacterial properties and cellular antioxidant activity of Polish buckwheat honey. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100538] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Propolis Extract: A Possible Antiseptic Oral Care against Multidrug-Resistant Non-Fermenting Bacteria Isolated from Non-Ventilator Hospital-Acquired Pneumonia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
34
|
Smaropoulos E, Cremers NAJ. Medical grade honey for the treatment of paediatric abdominal wounds: a case series. J Wound Care 2020; 29:94-99. [DOI: 10.12968/jowc.2020.29.2.94] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective: Children are at high risk of injuries and wounds. The application of medical grade honey is a promising approach to improving the healing of wounds of various origin and severity. However, the use of medical grade honey in young paediatric patients remains limited. The aim of this study is to show the safety, efficacy and usefulness of medical grade honey in abdominal wounds, of different causes, in paediatric patients. Method: This was a prospective, observational case series evaluating five young infants with abdominal wounds at the General Hospital in Thessaloniki. All wounds were treated in the same manner with daily medical grade honey applied to the wound area and closely monitored. Results: All treated wounds rapidly presented granulation tissue formation and underwent re-epithelialisation. Peripheral oedema and inflammation decreased upon initial application. Necrotic tissue was effectively debrided when present. Slough was removed and no signs of infection were detected, irrespective of initial wound presentations. Scar formation was minimal and the full range of motion was preserved in all cases. Conclusion: Based on this case study, medical grade honey is safe and effective in treating different abdominal wounds, including infected or dehisced wounds as well as burns. The easy application and broad applicability make medical grade honey recommendable as a first-line treatment in paediatric patients.
Collapse
Affiliation(s)
- Eleftherios Smaropoulos
- Aristotle University of Thessaloniki, Thessaloniki, Greece
- St. Luke Private Clinic, Thessaloniki, Greece
| | - Niels AJ Cremers
- Triticum Exploitatie BV, Capucijnenstraat 71, 6211 RP Maastricht, PO Box 370, 6200 AJ Maastricht, the Netherlands
| |
Collapse
|
35
|
Olas B. Honey and Its Phenolic Compounds as an Effective Natural Medicine for Cardiovascular Diseases in Humans? Nutrients 2020; 12:E283. [PMID: 31973186 PMCID: PMC7070389 DOI: 10.3390/nu12020283] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 12/26/2022] Open
Abstract
Honey is a sweet, viscous syrup produced by the honey bee (Apis mellifera). It is probably the first natural sweetener ever discovered, and is currently used as a nutritious food supplement and medicinal agent. The aim of the present mini-review is to summarize and update the current knowledge regarding the role of honey in CVDs based on various experimental models. It also describes the role of its phenolic compounds in treating CVDs. Many such phenolic and flavonoid compounds, including quercetin, kaempferol, apigenin, and caffeic acid, have antioxidant and anti-platelet potential, and hence may ameliorate cardiovascular diseases (CVDs) through various mechanisms, such as by decreasing oxidative stress and inhibiting blood platelet activation. However, as the phenolic content of a particular type of honey is not always known, it can be difficult to determine whether any observed effects on the human cardiovascular system may be associated with the consumption of honey or its constituents. Therefore, further experiments in this area are needed.
Collapse
Affiliation(s)
- Beata Olas
- Faculty of Biology and Environmental Protection, Department of General Biochemistry, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
| |
Collapse
|
36
|
Cremers N, Belas A, Santos Costa S, Couto I, de Rooster H, Pomba C. In vitro antimicrobial efficacy of two medical grade honey formulations against common high-risk meticillin-resistant staphylococci and Pseudomonas spp. pathogens. Vet Dermatol 2019; 31:90-96. [PMID: 31808237 DOI: 10.1111/vde.12811] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Antimicrobial resistance is a problem in human and animal healthcare. Honey may be used for its wound healing properties and antimicrobial effects. OBJECTIVE To investigate the antimicrobial activity of two commercially available medical grade honeys (MGHs) against Staphylococcus spp. and Pseudomonas spp. isolates. METHODS AND MATERIALS Two formulations, MGH1 (40% w/v honey) and MGH2 (80% w/v Manuka honey), were tested in vitro for minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) against 11 Staphylococcus and 11 Pseudomonas isolates at low [1.5 × 104 colony forming units (cfu)/well] and high (1.5 × 106 cfu/well) concentrations of inoculum, representing systemic and cutaneous bacterial loads during infection, respectively. RESULTS MGH2 showed a lower MIC against staphylococci than MGH1, although this was not statistically significant. MGH1 had stronger bactericidal effects against staphylococci than MGH2, although this effect was statistically significant only at the higher bacterial concentration (P < 0.01). For Pseudomonas spp., MGH1 had significantly higher antimicrobial activity (both MIC and MBC) than MGH2 against all isolates tested and at both bacterial concentrations (P < 0.05). CONCLUSIONS AND CLINICAL IMPORTANCE Both MGHs were effective in vitro against common cutaneous pathogens including meticillin-resistant staphylococci and Pseudomonas species. The higher efficacy of the MGH1 formulation against Pseudomonas and its consistent effects against staphylococci, while containing only half of the amount of honey compared to MGH2, invites further investigation of the mechanisms and clinical applications of MGH1.
Collapse
Affiliation(s)
- Niels Cremers
- Triticum Exploitatie BV, Sleperweg 44, 6222NK, Maastricht, the Netherlands
| | - Adriana Belas
- CIISA- Centre of Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Sofia Santos Costa
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Isabel Couto
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Hilde de Rooster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Constança Pomba
- CIISA- Centre of Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.,Genevet, Laboratório de Diagnóstico Molecular Veterinário, Rua Margarida Palla 5A, 1495-143, Algés, Portugal
| |
Collapse
|
37
|
Sindi A, Chawn MVB, Hernandez ME, Green K, Islam MK, Locher C, Hammer K. Anti-biofilm effects and characterisation of the hydrogen peroxide activity of a range of Western Australian honeys compared to Manuka and multifloral honeys. Sci Rep 2019; 9:17666. [PMID: 31776432 PMCID: PMC6881396 DOI: 10.1038/s41598-019-54217-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
The antibacterial activity of honeys derived from the endemic flora of the southwest corner of Western Australia, including the trees Jarrah (Eucalyptus marginata) and Marri (Corymbia calophylla), remains largely unexplored. Investigation of these honeys showed minimum inhibitory concentrations (MICs) of 6.7-28.0% (w/v) against Gram positive and negative bacteria. Honey solutions showed enhanced antibacterial activity after hydrogen peroxide was allowed to accumulate prior to testing, with a mean MIC after accumulation of 14.3% compared to 17.4% before accumulation. Antibacterial activity was reduced after treatment with catalase enzyme, with a mean MIC of 29.4% with catalase compared to 15.2% without catalase. Tests investigating the role of the Gram negative outer membrane in honey susceptibility revealed increases in activity after destabilisation of the outer membrane. Honeys reduced both the formation of biofilm and the production of bacterial pigments, which are both regulated by quorum sensing. However, these reductions were closely correlated with global growth inhibition. Honey applied to existing biofilms resulted in decreased metabolic activity and minor decreases in viability. These results enhance our understanding of the mechanisms of antibacterial action of Jarrah and Marri honeys, and provide further support for the use of honey in the treatment of infected wounds.
Collapse
Affiliation(s)
- Azhar Sindi
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Moses Van Bawi Chawn
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Magda Escorcia Hernandez
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Kathryn Green
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia.,The Cooperative Research Centre for Honey Bee Products Limited, Western Australia, Australia
| | - Md Khairul Islam
- The Cooperative Research Centre for Honey Bee Products Limited, Western Australia, Australia.,School of Allied Health, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Cornelia Locher
- The Cooperative Research Centre for Honey Bee Products Limited, Western Australia, Australia.,School of Allied Health, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Katherine Hammer
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia. .,The Cooperative Research Centre for Honey Bee Products Limited, Western Australia, Australia.
| |
Collapse
|
38
|
The role of hydrogen peroxide in the antibacterial activity of different floral honeys. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03393-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Mokaya HO, Bargul JL, Irungu JW, Lattorff HMG. Bioactive constituents, in vitro radical scavenging and antibacterial activities of selected Apis mellifera honey from Kenya. Int J Food Sci Technol 2019; 55:1246-1254. [PMID: 33071471 PMCID: PMC7540667 DOI: 10.1111/ijfs.14403] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022]
Abstract
There is limited information about the relative composition and health benefits of various honey consumed across Africa. This study aimed at estimating the bioactive constituents, in vitro radical scavenging and antibacterial activities of 16 kinds of honey obtained from different geographical locations in Kenya. Manuka 5 + honey was included for comparison. Some of the tested honey had biochemicals and bioactivities similar to or higher than Manuka 5 + honey. The honey exhibited DPPH radical scavenging ability, with several types of honey showing superior scavenging potential than Manuka 5 + honey, owing to their high phenol content. All types of honey inhibited the growth of E. coli and further showed a substantial amount of nonperoxide antimicrobial activity. The geographical origin of honey had an influence on its bioactive contents. Overall, these findings suggest that Kenyan honey has great therapeutic potential, and thus, its clinical application should not be overlooked.
Collapse
Affiliation(s)
- Hosea O Mokaya
- International Centre of Insect Physiology and Ecology (icipe) P.O. Box 30772-00100 Nairobi Kenya.,Biochemistry Department Jomo Kenyatta University of Agriculture and Technology P.O. Box 62000-00200 Nairobi Kenya
| | - Joel L Bargul
- International Centre of Insect Physiology and Ecology (icipe) P.O. Box 30772-00100 Nairobi Kenya.,Biochemistry Department Jomo Kenyatta University of Agriculture and Technology P.O. Box 62000-00200 Nairobi Kenya
| | - Janet W Irungu
- International Centre of Insect Physiology and Ecology (icipe) P.O. Box 30772-00100 Nairobi Kenya
| | - Hans Michael G Lattorff
- International Centre of Insect Physiology and Ecology (icipe) P.O. Box 30772-00100 Nairobi Kenya.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Deutscher Platz 5e 04103 Leipzig Germany.,Naturwissenschaftliche Fakultät I Martin-Luther-Universität Halle-Wittenberg 06099 Halle (Saale) Germany
| |
Collapse
|
40
|
Scripcă LA, Norocel L, Amariei S. Comparison of Physicochemical, Microbiological Properties and Bioactive Compounds Content of Grassland Honey and other Floral Origin Honeys. Molecules 2019; 24:E2932. [PMID: 31412647 PMCID: PMC6721125 DOI: 10.3390/molecules24162932] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to compare the physicochemical, the microbiological, and the antioxidant characteristics of unifloral honey, polyfloral honey, honeydew, and hay meadows honey. Hay meadow is type of semi-natural grassland with a great floral diversity, an important resource for pollinators. Grasslands are the source of the spring nectar honey obtained in May and June. Water content, sugars (fructose, glucose, sucrose, trehalose, melezitose, maltose, erlose, turanose, and raffinose), electrical conductivity, phenolic content (gallic acid, protocatechuic acid, 4-hydrxybenzoic acid, vanilic acid, chlorogenic acid, caffeic acid, p-coumaric acid, rosmarinic acid, myricetin, quercitin, luteolin, kaempferol), color, viscosity, and microbiological characteristics were performed for all samples of honey. The total polyphenols content was significant for grassland honey (21.50 mg/100 g) and honeydew (30.49 mg/100 g) and less significant for acacia (0.08 mg/100 g) and rape honey (0.14 mg/100 g). All samples were microbiologically safe, and standard plate count (SPC) values were <10 cfu/g for all the samples, but the grassland honey had the highest microbiological quality: 33.3% of samples without microorganisms, 50.0% with the presence of yeast under limit, and 16.7% with yeast and mold under limit, a situation that does not meet other types of honey. The results of statistical analysis obtained with principal component analysis (PCA) showed a major difference between the grassland honey and the other types of honey.
Collapse
Affiliation(s)
- Laura Agripina Scripcă
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Liliana Norocel
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Sonia Amariei
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania.
| |
Collapse
|
41
|
Negut I, Grumezescu V, Grumezescu AM. Treatment Strategies for Infected Wounds. Molecules 2018; 23:E2392. [PMID: 30231567 PMCID: PMC6225154 DOI: 10.3390/molecules23092392] [Citation(s) in RCA: 383] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022] Open
Abstract
The treatment of skin wounds is a key research domain owing to the important functional and aesthetic role of this tissue. When the skin is impaired, bacteria can soon infiltrate into underlying tissues which can lead to life-threatening infections. Consequently, effective treatments are necessary to deal with such pathological conditions. Recently, wound dressings loaded with antimicrobial agents have emerged as viable options to reduce wound bacterial colonization and infection, in order to improve the healing process. In this paper, we present an overview of the most prominent antibiotic-embedded wound dressings, as well as the limitations of their use. A promising, but still an underrated group of potential antibacterial agents that can be integrated into wound dressings are natural products, especially essential oils. Some of the most commonly used essential oils against multidrug-resistant microorganisms, such as tea tree, St. John's Wort, lavender and oregano, together with their incorporation into wound dressings are presented. In addition, another natural product that exhibits encouraging antibacterial activity is honey. We highlight recent results of several studies carried out by researchers from different regions of the world on wound dressings impregnated with honey, with a special emphasis on Manuka honey. Finally, we highlight recent advances in using nanoparticles as platforms to increase the effect of pharmaceutical formulations aimed at wound healing. Silver, gold, and zinc nanoparticles alone or functionalized with diverse antimicrobial compounds have been integrated into wound dressings and demonstrated therapeutic effects on wounds.
Collapse
Affiliation(s)
- Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-77125, Romania.
- Faculty of Physics, University of Bucharest, Magurele 077125, Romania.
| | - Valentina Grumezescu
- National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-77125, Romania.
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Bucharest 011061, Romania.
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Bucharest 011061, Romania.
- Research Institute of University of Bucharest, ICUB, Bucharest 050107, Romania.
| |
Collapse
|
42
|
Pajor M, Worobo RW, Milewski S, Szweda P. The Antimicrobial Potential of Bacteria Isolated from Honey Samples Produced in the Apiaries Located in Pomeranian Voivodeship in Northern Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2002. [PMID: 30223435 PMCID: PMC6163485 DOI: 10.3390/ijerph15092002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022]
Abstract
The principal objective of this study was to determine whether the honeys produced in apiaries located in Pomeranian Voivodeship (Northern Poland) contain bacteria producing metabolites with growth inhibition potential against important human and animal pathogens. The pathogens included Staphylococcus aurues, Staphyloccocus epidermidis, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Candida albicans. From 12 samples of honey, 163 strains of bacteria were isolated. Activity against reference staphylococci: S. aurues ATCC 25923; S. aureus ATCC 29213; S. epidermidis 12228 was observed in 33 (20.3%), 38 (23.3%), and 41 (25.1%) isolates, respectively. High inhibitory activity was also found against Listeria monocytogenes ATCC 7644 in 34 strains (20.9%). Activity against Candida albicans ATCC 10231 and especially Gram-negative bacteria: Pseudomonas aeruginosa ATCC 27857 and Escherichia coli ATCC 25922 was rarely observed. Production of metabolites exhibiting activity against the three pathogens mentioned above was confirmed for 13 (7.8%), 3 (1.8%), and 2 (1.2%) isolates, respectively. Forty-six isolates were selected for further analysis. Within this group, metabolites synthesized by 18 producing strains (39.13%) inhibited growth of only one of the reference strains of pathogenic microorganisms. However, 14 (30.44%), 8 (17.39%), and 6 (13.04%) strains produced agents active against three, two, and four pathogens, respectively. Sequencing of the 16S rRNA gene revealed that 80.4% of these 46 producing strains belong to the genus Bacillus. However, some producing strains belonging to the genus of Peanibacillus, Lysinibacillus, Microbacterium, and Staphylococcus were also identified. Furthermore, the analysis of the sequences of 16S rRNA, as well as RAPD-PCR, exhibited a significant diversity in the strains tested, even in the case of bacteria isolated from the same honey (and classified to the same genus, usually Bacillus spp.). This observation suggests environmental origin (nectar, water, or pollen) of the producing strains. The research carried out confirmed that honey produced in Northern Poland is a promising source of strains of bacteria producing metabolites with antimicrobial activity.
Collapse
Affiliation(s)
- Magdalena Pajor
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Randy W Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | - Sławomir Milewski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
43
|
Cianciosi D, Forbes-Hernández TY, Afrin S, Gasparrini M, Reboredo-Rodriguez P, Manna PP, Zhang J, Bravo Lamas L, Martínez Flórez S, Agudo Toyos P, Quiles JL, Giampieri F, Battino M. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018; 23:E2322. [PMID: 30208664 PMCID: PMC6225430 DOI: 10.3390/molecules23092322] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022] Open
Abstract
Honey is a natural substance appreciated for its therapeutic abilities since ancient times. Its content in flavonoids and phenolic acids plays a key role on human health, thanks to the high antioxidant and anti-inflammatory properties that they exert. Honey possesses antimicrobial capacity and anticancer activity against different types of tumors, acting on different molecular pathways that are involved on cellular proliferation. In addition, an antidiabetic activity has also been highlighted, with the reduction of glucose, fructosamine, and glycosylated hemoglobin serum concentration. Honey exerts also a protective effect in the cardiovascular system, where it mainly prevents the oxidation of low-density lipoproteins, in the nervous system, in the respiratory system against asthma and bacterial infections, and in the gastrointestinal system. A beneficial effect of honey can also be demonstrated in athletes. The purpose of this review is to summarize and update the current information regarding the role of honey in health and diseases.
Collapse
Affiliation(s)
- Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Tamara Yuliett Forbes-Hernández
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Patricia Reboredo-Rodriguez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
- Departamento de Química Analítica y Alimentaria, Grupo de Nutrición y Bromatología, Universidade de Vigo, 32004 Ourense, Spain.
| | - Piera Pia Manna
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Jiaojiao Zhang
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Leire Bravo Lamas
- Center for Nutrition & Health, Universidad Europea del Atlántico (UEA), 39011 Santander, Spain; (L.B.L.).
| | - Susana Martínez Flórez
- Center for Nutrition & Health, Universidad Europea del Atlántico (UEA), 39011 Santander, Spain; (L.B.L.).
| | - Pablo Agudo Toyos
- Center for Nutrition & Health, Universidad Europea del Atlántico (UEA), 39011 Santander, Spain; (L.B.L.).
| | - José Luis Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix", Biomedical Research Centre, University of Granada, Armilla, 18100 Granada, Spain.
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| |
Collapse
|
44
|
Kuś PM, Jerković I. New Sample Preparation Method for Honey Volatiles Fingerprinting Based on Dehydration Homogeneous Liquid⁻Liquid Extraction (DHLLE). Molecules 2018; 23:E1769. [PMID: 30029465 PMCID: PMC6099691 DOI: 10.3390/molecules23071769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 11/24/2022] Open
Abstract
Qualitative chemical fingerprinting of the honey volatiles by gas chromatography and mass spectrometry (GC-MS) has been an efficient authentication tool that allowed for the classification of the honey botanical origin (strongly related to its medicinal and market value). However, the usage of current sample preparation methods is limited by selectivity of the volatiles extraction from the honey matrix and requires significant solvent volume. Therefore, a new sample preparation method based on dehydrating homogeneous liquid⁻liquid extraction (DHLLE) involving reduced solvent usage was developed for screening volatiles and semi-volatiles from the honey. The effective extraction was achieved by implementing a miscible liquid extraction system (aqueous honey solution/isopropanol) followed by separation through dehydration with MgSO₄ and purification by a solvent polarity change and washing. The method was evaluated by estimating accuracy and precision. The DHLLE method showed satisfactory recoveries (75.2 to 93.5%) for typical honey volatiles: linalool, borneol, terpinen-4-ol, α-terpineol, p-anisaldehyde, eugenol, and vanillin. It also showed superior repeatability with percent relative standard deviation (RSD%) 0.8⁻8.9%. For benzyl alcohol, methyl syringate, and caffeine, the recoveries were 54.3 to 63.9% and 67.3 to 77.7% at lower and higher spiking levels, respectively. Applied to unifloral apple honey, the DHLLE method allowed for the identification of 40 compounds including terpenes, hydrocarbons, phenylpropanoids, and other benzene derivatives, which makes it suitable for fingerprinting and chemical marker screening. The obtained results were comparable or better than those obtained with ultrasonic extraction with dichloromethane.
Collapse
Affiliation(s)
- Piotr M Kuś
- Department of Pharmacognosy, Wrocław Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland.
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia.
| |
Collapse
|
45
|
Stagos D, Soulitsiotis N, Tsadila C, Papaeconomou S, Arvanitis C, Ntontos A, Karkanta F, Adamou-Androulaki S, Petrotos K, Spandidos DA, Kouretas D, Mossialos D. Antibacterial and antioxidant activity of different types of honey derived from Mount Olympus in Greece. Int J Mol Med 2018; 42:726-734. [PMID: 29749429 PMCID: PMC6034916 DOI: 10.3892/ijmm.2018.3656] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/27/2018] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to examine the antioxidant and antibacterial activity of 21 types of honey derived from Mount Olympus (Mt. Olympus), a region with great plant biodiversity. The antibacterial activity was examined against the growth of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) by the agar well diffusion assay and the determination of the minimum inhibitory concentration (MIC). The antioxidant activity was assessed by using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS•+) free radical scavenging assays. These activities were compared to Manuka honey which is used as an alternative medicine. The results revealed that all tested honey types exhibited antibacterial activity against S. aureus and P. aeruginosa. The MIC of the tested honey types against S. aureus ranged from 3.125 to 12.5% (v/v), while MIC of Manuka honey was determined to be 6.25% (v/v). The MIC values of the tested honey types against P. aeruginosa ranged from 6.25 to 12.5% (v/v) and the MIC of Manuka honey was determined at 12.5% (v/v). Moreover, the results suggested that the presence of hydrogen peroxide and proteinaceous compounds in the honey types accounted, at least in part, for the antibacterial activity. In addition, the total polyphenolic content (TPC) of the honey types seemed to contribute to the antibacterial activity against P. aeruginosa. Furthermore, some of the tested honey types exhibited potent free radical scavenging activity against DPPH and ABTS•+ radicals, which was greater than that of Manuka honey. The results indicated that not only the quantity, but also the quality of the polyphenols were responsible for the antioxidant activity. Moreover, four honey types exhibiting great antioxidant activity were converted to powder using a freeze drying method. The results indicated that following conversion to powder all honey types, apart from one, retained their antioxidant activity, although their TPC was reduced. On the whole, and at least to the best of our knowledge, the present study is the first that extensively examined the bioactivities of different types of honey derived from Mt. Olympus.
Collapse
Affiliation(s)
- Dimitrios Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Nikolaos Soulitsiotis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Christina Tsadila
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Stamatina Papaeconomou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Charalampos Arvanitis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Alexandros Ntontos
- Department of Biosystems Engineering, Technical Education Institute of Thessaly, 41110 Larissa, Greece
| | - Fani Karkanta
- Department of Biosystems Engineering, Technical Education Institute of Thessaly, 41110 Larissa, Greece
| | | | - Konstantinos Petrotos
- Department of Biosystems Engineering, Technical Education Institute of Thessaly, 41110 Larissa, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Dimitris Mossialos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
46
|
Szweda P, Gorczyca G, Tylingo R. Comparison of antimicrobial activity of selected, commercially available wound dressing materials. J Wound Care 2018; 27:320-326. [DOI: 10.12968/jowc.2018.27.5.320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Piotr Szweda
- Adjunct; Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Grzegorz Gorczyca
- Researcher; Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Robert Tylingo
- Adjunct; Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
47
|
Poli JP, Guinoiseau E, Luciani A, Yang Y, Battesti MJ, Paolini J, Costa J, Quilichini Y, Berti L, Lorenzi V. Key role of hydrogen peroxide in antimicrobial activity of spring, Honeydew maquis and chestnut grove Corsican honeys on Pseudomonas aeruginosa DNA. Lett Appl Microbiol 2018; 66:427-433. [PMID: 29478286 DOI: 10.1111/lam.12868] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/12/2018] [Accepted: 02/16/2018] [Indexed: 11/29/2022]
Abstract
In honeys, several molecules have been known for their antibacterial or wound healing properties. Corsican honeys just began to be tested for their antimicrobial activity with promising results on Pseudomonas aeruginosa. So, identification of active molecules and their mode of action was determined. Hydrogen peroxide concentrations were evaluated and, in parallel, the minimal inhibitory concentrations (MIC) values were performed with and without catalase. More, the quantity of phenolic compounds and ORAC assay were measured. Observation of antibacterial action was done using scanning electron microscopy (SEM) followed by plasmidic DNA extraction. MIC values of chestnut grove and honeydew maquis honeys vary between 7 and 8%, showing a strong antimicrobial capacity, associated with a plasmidic DNA degradation. When catalase is added, MIC values significatively increase (25%) without damaging DNA, proving the importance of H2 O2 . This hypothesis is confirmed by SEM micrographies which did not show any morphological damages but a depletion in bacterial population. Although, such low concentrations of H2 O2 (between 23 μmol l-1 and 54 μmol l-1 ) cannot explain antimicrobial activity and might be correlated with phenolic compounds concentration. Thus, Corsican honeys seem to induce DNA damage when H2 O2 and phenolic compounds act in synergy by a putative pro-oxidant effect. SIGNIFICANCE AND IMPACT OF THE STUDY We started to determine the antibacterial efficiency of Corsican chestnut grove and honeydew maquis honeys on Pseudomonas aeruginosa. No morphological alteration of the bacterial surface was observed. Antimicrobial action seems to be related to the synergy between hydrogen peroxide and phenolic compounds. The exerted pro-oxidant activity leads to a degradation of P. aeruginosa plasmidic DNA. This is the first study that investigate the primary antibacterial mechanism of Corsican honeys.
Collapse
Affiliation(s)
- J-P Poli
- Laboratoire de Biochimie et de Biologie Moléculaire du végétal, UMR CNRS 6134, Université de Corse, Corte, France
| | - E Guinoiseau
- Laboratoire de Biochimie et de Biologie Moléculaire du végétal, UMR CNRS 6134, Université de Corse, Corte, France
| | - A Luciani
- Laboratoire de Biochimie et de Biologie Moléculaire du végétal, UMR CNRS 6134, Université de Corse, Corte, France
| | - Y Yang
- Laboratoire de Chimie des Produits Naturels UMR CNRS 6134, Université de Corse, Corte, France
| | - M-J Battesti
- Laboratoire de Chimie des Produits Naturels UMR CNRS 6134, Université de Corse, Corte, France
| | - J Paolini
- Laboratoire de Chimie des Produits Naturels UMR CNRS 6134, Université de Corse, Corte, France
| | - J Costa
- Laboratoire de Chimie des Produits Naturels UMR CNRS 6134, Université de Corse, Corte, France
| | - Y Quilichini
- Laboratoire Parasites et Ecosystèmes Méditerranéens, UMR CNRS 6134, Université de Corse, Corte, France
| | - L Berti
- Laboratoire de Biochimie et de Biologie Moléculaire du végétal, UMR CNRS 6134, Université de Corse, Corte, France
| | - V Lorenzi
- Laboratoire de Biochimie et de Biologie Moléculaire du végétal, UMR CNRS 6134, Université de Corse, Corte, France
| |
Collapse
|
48
|
Grecka K, Kuś PM, Worobo RW, Szweda P. Study of the Anti-Staphylococcal Potential of Honeys Produced in Northern Poland. Molecules 2018; 23:molecules23020260. [PMID: 29382105 PMCID: PMC6017226 DOI: 10.3390/molecules23020260] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 01/21/2023] Open
Abstract
The antimicrobial activity of 144 samples of honeys including 95 products from apiaries located in Northern Poland was evaluated. The antibacterial activity of those natural products, their thermal stability, and activity in the presence of catalase was investigated by microdilution assays in titration plates. The MTT assay was performed for the determination of anti-biofilm activity. Spectrophotometric assays were used for the determination of antioxidant potential, total phenolic content, and ability to generate hydrogen peroxide. Some of the investigated honeys exhibited surprisingly high antimicrobial, especially anti-staphylococcal, potential, with Minimal Inhibitory Concentration (MIC) values of only 1.56% (v/v). Much higher resistance was observed in the case of staphylococci growing as biofilms. Lower concentrations of the product, up to 12.5% (v/v) stimulated its growth and effective eradication of biofilm required concentration of at least 25% (v/v). Hydrogen peroxide has been identified as a crucial contributor to the antimicrobial activity of honeys supplied by Polish beekeepers. However, some of the results suggest that phytochemicals, especially polyphenols, play an important role depending on botanical source (both positive, e.g., in the case of buckwheat honeys as well as negative, e.g., in the case of some rapeseed honeys) in their antimicrobial potential.
Collapse
Affiliation(s)
- Katarzyna Grecka
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Piotr M Kuś
- Department of Pharmacognosy, Wrocław Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland.
| | - Randy W Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
49
|
Sowa P, Grabek-Lejko D, Wesołowska M, Swacha S, Dżugan M. Hydrogen peroxide-dependent antibacterial action of Melilotus albus honey. Lett Appl Microbiol 2017; 65:82-89. [PMID: 28426165 DOI: 10.1111/lam.12749] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 01/18/2023]
Abstract
Honey originating from different floral sources exhibits the broad spectrum of antibacterial activity as a result of the presence of hydrogen peroxide as well as nonperoxide bioactive compounds. The mechanisms of antibacterial activity of Polish melilot honey were investigated for the first time. Polish melilot honey samples (Melilotus albus biennial = 3 and annual = 5, Melilotus officinalis = 1) were collected directly from beekeepers and analysed for pollen profile, basic physicochemical parameters, antioxidant capacity, radical scavenging activity, total phenolic contents as well as antibacterial properties against pathogenic bacteria Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Salmonella spp. The physicochemical properties of melilot honey were specific for light-coloured unifloral honey samples and were not dependent on its botanical and geographical origin (P > 0·05). All tested honey samples exhibited inhibitory activity (above 90%) against Gram-positive bacteria at the concentration of 12·5-25%. Above 30-50% of antibacterial activity of melilot honey was connected with glucose oxidase enzyme action and was destroyed in the presence of catalase. Hydrogen peroxide-dependent antibacterial activity of honey was inversely correlated with its radical scavenging activity (r = -0·67) and phenolic compounds (r = -0·61). Antibacterial action of melilot honey depends not only on hydrogen peroxide produced by glucose oxidase, but also on other nonperoxide bioactive components of honey. SIGNIFICANCE AND IMPACT OF THE STUDY Melilot honey is used in traditional medicine as an anticoagulant agent due to the possibility of the presence of the coumarin compounds which are specific for Melilotus plant. Melilotus albus is rarely used to produce honey, and antibacterial properties of this variety of honey had not been studied yet. Nine samples of melilot honey produced in different regions of Poland were analysed according to their antibacterial activity which was correlated with physiochemical parameters and antioxidant activity. It was shown that antibacterial activity of melilot honey is created by hydrogen peroxide and other bioactive compounds.
Collapse
Affiliation(s)
- P Sowa
- Department of Chemistry and Food Toxicology, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland
| | - D Grabek-Lejko
- Department of Biotechnology and Microbiology, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland
| | - M Wesołowska
- Department of Chemistry and Food Toxicology, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland
| | - S Swacha
- Department of Chemistry and Food Toxicology, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland
| | - M Dżugan
- Department of Chemistry and Food Toxicology, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
50
|
Poovelikunnel TT, Gethin G, Solanki D, McFadden E, Codd M, Humphreys H. Randomized controlled trial of honey versus mupirocin to decolonize patients with nasal colonization of meticillin-resistant Staphylococcus aureus. J Hosp Infect 2017; 98:141-148. [PMID: 29107078 DOI: 10.1016/j.jhin.2017.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Mupirocin is used specifically for the eradication of nasal meticillin-resistant Staphylococcus aureus (MRSA), but increasing mupirocin resistance restricts its repeated use. The antibacterial effects of manuka honey have been established in vitro; antibacterial activity of other honeys has also been reported. AIM To describe the learning experience from a randomized controlled trial (RCT) comparing the efficacy of medical-grade honey (MGH) with mupirocin 2% for the eradication of nasal MRSA. METHODS Patients colonized in the nose with MRSA and age ≥18 years were recruited. Participants received either one or two courses of MGH or mupirocin 2%, three times per day for five consecutive days. FINDINGS The proportion of patients who were decolonized after one or two courses of treatment was not significantly different between MGH [18/42; 42.8%; 95% confidence interval (CI): 27.7-59.0] and mupirocin 2% (25/44; 56.8%; 95% CI: 41.0-71.7). Non-nasal MRSA colonization was significantly associated with persistent nasal colonization (odds ratio: 5.186; 95% CI: 1.736-5.489; P = 0.003). The rate of new acquisition of mupirocin resistance was 9.75%. CONCLUSION Although not significant, a decolonization rate of 42.8% for MGH was impressive. Our findings suggest that this strategy, which has the potential to combat antimicrobial resistance, should be assessed in similar but larger studies.
Collapse
Affiliation(s)
- T T Poovelikunnel
- Infection Prevention and Control Department, Beaumont Hospital, Dublin, Ireland; Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland.
| | - G Gethin
- School of Nursing and Midwifery, Áras Moyola, National University of Ireland, Galway, Ireland
| | - D Solanki
- Department of Pharmacy, Beaumont Hospital, Dublin, Ireland
| | - E McFadden
- Microbiology Department, Beaumont Hospital, Dublin, Ireland
| | - M Codd
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - H Humphreys
- Infection Prevention and Control Department, Beaumont Hospital, Dublin, Ireland; Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|