1
|
Chen S, Li N, Safiul Azam FM, Ao L, Li N, Wang J, Zou Y, Li R, Prodhan ZH. Comparative transcriptome analysis of albino northern snakehead (Channa argus) reveals its various collagen-related DEGs in caudal fin cells. PLoS One 2024; 19:e0315996. [PMID: 39739744 DOI: 10.1371/journal.pone.0315996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/04/2024] [Indexed: 01/02/2025] Open
Abstract
The albino northern snakehead (Channa argus) is an aquaculture species characterized by heritable albino body color, in contrast to the typical coloration. Additionally, there are gray- and golden-finned individuals, which exhibit distinct coloration in their caudal fins. We performed RNA-seq to profile the transcriptome of caudal fin tissues in albino gray-finned and golden-finned C. argus, contrasting these with normal morphs to elucidate the differences between the two groups. A total of 137,130 unigenes were identified in this study. Gene Ontology (GO) analysis showed that the identified DEGs were significantly enriched in cellular components related to cytoplasm. So far, 379 common DEGs have been identified in all three groups. Notably, we observed more DEGs in golden-finned individuals compared to gray-finned individuals. We also revealed that golden-finned individuals were enriched in collagen-related pathways compared with normal individuals. The enriched DEGs of collagen components include collagen I of COL1A1 and COL1A2, collagen II of COL2A1, collagen V of COL5A1 and COL5A2, collagen VI of COL6A1 and COL6A3, collagen IX of COL9A3, collagen X of COL10A1, collagen XI of COL11A2, collagen XII of COL12A1, collagen XVI of COL16A1, collagen XVIII of COL18A1 and decorin (DCN), all of which play a role in modulating the collagen matrix. In golden-finned albino fish, collagen-related genes were downregulated, suggesting that despite the abundance of collagen types in their caudal fin cells, gene expression was slightly limited. This work provides valuable genetic insights into collagen variation in albino C. argus, lays the foundation for research on collagen genes and is crucial for the development and utilization of fish-derived collagen as a biomaterial for tissue engineering and biomedical applications.
Collapse
Affiliation(s)
- Shixi Chen
- College of Life Sciences, Neijiang Normal University, Neijiang, China
- Conservation and Utilization of Fishes resources in the Upper Reaches of the Yangtze River, Key Laboratory of Sichuan Province, Neijiang, China
| | - Ning Li
- Sichuan Yukun Aquatic Technology Co., Tongchuan District, Dazhou City, Sichuan Province, China
| | - Fardous Mohammad Safiul Azam
- College of Life Sciences, Neijiang Normal University, Neijiang, China
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, University of Development Alternative, Dhaka, Bangladesh
| | - Li Ao
- College of Life Sciences, Neijiang Normal University, Neijiang, China
| | - Na Li
- College of Life Sciences, Neijiang Normal University, Neijiang, China
| | - Jianlan Wang
- College of Life Sciences, Neijiang Normal University, Neijiang, China
| | - Yuanchao Zou
- College of Life Sciences, Neijiang Normal University, Neijiang, China
- Conservation and Utilization of Fishes resources in the Upper Reaches of the Yangtze River, Key Laboratory of Sichuan Province, Neijiang, China
| | - Rui Li
- College of Life Sciences, Neijiang Normal University, Neijiang, China
| | | |
Collapse
|
2
|
Zhang K, Wang X, Rong H, Yang W, Liang X, Liu Y, Lin X, Sui Z. Antibacterial activity and mechanism of rose essential oil against Aeromonas veronii isolated from Northern snakehead (Channa argus). J Appl Microbiol 2024; 135:lxae284. [PMID: 39510967 DOI: 10.1093/jambio/lxae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
AIMS To investigate and identify the antibacterial action and mechanism of rose essential oil (REO) against Aeromonas veronii isolated from Northern snakehead for the first time by the phenotypic and metabolic analysis. METHODS AND RESULTS The 2-fold broth microdilution and spread-plate method identified that the minimum inhibitory concentration and minimum bactericidal concentration of REO against A. veronii were 1.25 μl ml-1 and REO impaired the growth in a concentration-dependent manner, indicating that REO possessed a significant bacteriostatic activity. Electron microscopy and live-dead cell staining found that REO caused a severe disruption of cellular morphology and increased the membrane permeability. Additionally, REO treatment induced the leakage of intracellular biomolecules such as proteins and nucleic acids from the bacteria. Metabolomics analysis showed that compared with the control, the REO treatment group exhibited a total of 190 differential metabolites (118 down-regulated and 72 up-regulated), which involved in the main metabolic pathways such as biotin metabolism, arginine biosynthesis, glutathione metabolism, lysine degradation, and histidine metabolism and the TCA cycle. These results verified that REO disturbed the metabolic processes of A. veronii to achieve the bacteriostatic effect. CONCLUSION The rose essential oil exhibited the effective antibacterial activity against A. veronii via breaking the cellular structure, increasing the membrane permeation and disrupting the metabolic processes.
Collapse
Affiliation(s)
- Kai Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Xiaolei Wang
- College of Education, Linyi University, Linyi 276000, China
| | - Hui Rong
- College of Life Science, Linyi University, Linyi 276000, China
| | - Wenjing Yang
- College of Life Science, Linyi University, Linyi 276000, China
| | - Xinxin Liang
- College of Life Science, Linyi University, Linyi 276000, China
| | - Yunguo Liu
- College of Life Science, Linyi University, Linyi 276000, China
| | - Xiangna Lin
- College of Life Science, Linyi University, Linyi 276000, China
| | - Zhihai Sui
- College of Life Science, Linyi University, Linyi 276000, China
| |
Collapse
|
3
|
Lu J, Ding W, Wei J, Ye H, Luo H, Li Y, Lin Y, Yu Y, Yao J, Wu R. The role of aroA and ppk1 in Aeromonas veronii pathogenicity and the efficacy evaluation of mutant strain AV-ΔaroA/ppk1 as a live attenuated vaccine. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109869. [PMID: 39222829 DOI: 10.1016/j.fsi.2024.109869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Aeromonas veronii is an opportunistic pathogen that poses great threat to aquaculture and human health, so there is an urgent need for green and efficient methods to deal with its infection. In this study, single and double gene deletion strains (AV-ΔaroA, AV-Δppk1 and AV-ΔaroA/ppk1) that can be stably inherited were constructed. Pathogenicity test showed that the toxicity of AV-ΔaroA and AV-ΔaroA/ppk1 was significantly lower compared to wild-type A. veronii. Biological characterization analysis revealed that the decrease in pathogenicity might be due to the declined growth, motility, biofilm formation abilities and the expression of virulence-related genes in mutants. Subsequently, we evaluated the efficacy of AV-ΔaroA/ppk1 as a live attenuated vaccine (LAV). Safety assessment experiments showed that AV-ΔaroA/ppk1 injected at a concentration of 3 × 107 CFU/mL was safe for C. carassius. The relative percentage survival of AV-ΔaroA/ppk1 was 67.85 %, significantly higher than that of the inactivated A. veronii, which had an RPS of 54.84 %. This improved protective effect was mainly attributed to the increased levels of A. veronii specific IgM antibody, enhanced alkaline phosphatase, lysozyme and superoxide dismutase activities, as well as higher expression levels of several immune related genes. Together, these findings deepen our understanding of the functional roles of aroA and ppk1 in A. veronii pathogenicity, provide a good candidate of LAV for A. veronii.
Collapse
Affiliation(s)
- Jiahui Lu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Wan'e Ding
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Jinming Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Hua Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Hui Luo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Yun Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Ying Lin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Jiayun Yao
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Ronghua Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Wang C, Shu Q, Zeng N, Xie S, Zou J, Tang H, Zhou A. Immune response for acute Aeromonas hydrophila infection in two distinct color morphs of northern snakehead, Channa argus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101321. [PMID: 39260082 DOI: 10.1016/j.cbd.2024.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
To compare and analyze the differences in immunological response between the two color morphs of Channa argus, a fish cohort was divided into four groups: black C argus + PBS (B-PBS), black C argus + Aeromonas hydrophila (B-Ah), white C. argus + PBS (W-PBS), and white C. argus + A hydrophila (W-Ah). The B-PBS and W-PBS groups received 100 μL PBS, while the B-Ah and W-Ah groups received 3.6 × 105 CFU/mL A. hydrophila in the same volume. The death rate in each group was noted, changes in plasma biochemical indicators and the expression of liver immune-related genes were examined, and transcriptome techniques were used to compare the differences between the two colors of C. argus following stress. No mortality occurred in the B-PBS and W-PBS groups. Mortality in the W-Ah and B-Ah groups showed an upward and then downward trend after A. hydrophila injection. The highest mortality occurred within 24 h and was higher in the W-Ah group than in the B-Ah group. MDA levels in the B-Ah and W-Ah groups increased and then decreased, while SOD and T-AOC showed the reverse tendency. The W-Ah and W-PBS groups differed significantly in MDA at 3, 12, and 24 h, SOD from 6 to 96 h, and T-AOC between 6 and 48 h. Plasma MDA and T-AOC levels at 12 h and SOD levels at 24 and 48 h differed significantly between the B-PBS and B-Ah groups. In both the W-Ah and B-Ah groups, the expression levels of IL-1β and IL-8 in the liver showed a temporal pattern with an initial increase followed by a decrease, reaching peak levels after 24 h, while IL-10 showed the reverse pattern. Transcriptome analysis of the liver revealed significant differences between the two C. argus colors. Differential genes in black C. argus were mainly enriched in steroid biosynthesis, glycolysis/gluconeogenesis, and glutathione and propanoate metabolism pathways 24 h after infection. In contrast, differential genes in white C. argus were mainly enriched in pathways such as oxidative phosphorylation, pancreatic secretion, and protein digestion and absorption 24 h after infection. After A. hydrophila infection, white C. argus had higher mortality, more severe oxidative stress and inflammatory responses, and lower antioxidant capacity than black C. argus.
Collapse
Affiliation(s)
- Chong Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qingsong Shu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Nanyang Zeng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Huijuan Tang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Aiguo Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
5
|
Sun XN, Wang Q, Wang YF, Tao Y, Zheng CL, Wang MH, Che MY, Cui ZH, Li XL, Zhang Q, Xu MX, Wang S, Nie P, Sun YL. Isolation and identification of vapA-absent Aeromonas salmonicida in diseased snakehead Channa argus in China. Int Microbiol 2024; 27:1137-1150. [PMID: 38062211 DOI: 10.1007/s10123-023-00455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 08/06/2024]
Abstract
Aeromonas salmonicida is the typical pathogen causing furunculosis, reported widely in salmonids. Because of multiple serotypes, the control of A. salmonicida-caused disease has increasingly received much attention. Recently, A. salmonicida infection was reported in non-salmonid fish species. Here, a pathogenic A. salmonicida, named as As-s, was isolated from cultured snakehead (Channa argus) in a local fish farm in Shandong, China. As-s displayed clear hemolysis, amylase, and positive catalase activities, and grew at a wide range of temperatures (10-37 °C) and pH values (5.5-8.5). As-s was highly sensitive to cefuroxime sodium, ceftriaxone, ceftazidime, piperacillin, and cefoperazone and also apparently sensitive to chloramphenicol, erythromycin, and 25% cinnamaldehyde. The Virulence array protein gene cloning' results suggested that As-s has this gene compared with the other two vapA-containing strains, despite a close relationship of these strains via phylogenetic analysis. Severe ulcers on skin, muscle, and abnormal liver, and hemorrhage in pectoral/ventral fins and anal region were observed, and exophthalmos were also noticed in infected juvenile snakehead, as well as necrosis and infiltration of blood cells emerged in the internal organs using pathological section. In addition, As-s caused high mortality in snakehead, consistently with its immune gene response. This study reports the first isolation of vapA-absent A. salmonicida in snakehead.
Collapse
Affiliation(s)
- Xin Na Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Qing Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Ying Fei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Ye Tao
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Chao Li Zheng
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Ming Hao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Ming Yue Che
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Zhen Hao Cui
- School of Marine Sciences, Ningbo University, 315832, Ningbo, Zhejiang, China
| | - Xin Long Li
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Qian Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Meng Xi Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Su Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Pin Nie
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China
| | - Yan Ling Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, 266237, Qingdao, Shandong, China.
| |
Collapse
|
6
|
Legario FS, Choresca CH, Grace K, Turnbull JF, Crumlish M. Identification and characterization of motile Aeromonas spp. isolated from farmed Nile tilapia (Oreochromis niloticus) in the Philippines. J Appl Microbiol 2023; 134:lxad279. [PMID: 38012120 DOI: 10.1093/jambio/lxad279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/20/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
AIMS Motile Aeromonas septicaemia (MAS) caused by motile Aeromonas species is an important disease in farmed freshwater fish due to intensification of culture and improper farm practices. This study characterized and profiled motile Aeromonas species recovered from clinically sick tilapia farmed in the Philippines, with a view to identifying targeted disease prevention and control measures against MAS in farmed tilapia species. METHODS AND RESULTS Sixteen isolates from diseased farmed Nile tilapia were identified as Aeromonas veronii (n = 14), Aeromonas caviae (n = 1), and Aeromonas dhakensis (n = 1). Five biochemical profiles using API 20E were exhibited by the A. veronii strains giving an unreliable identification. A high level of agreement was observed in identifying the Aeromonas strains using 16S rRNA and rpoD gene sequencing, although the latter has a higher discriminatory value. Three or more virulence genes dominated by cytotoxic enterotoxin act and aerolysin aer were detected. Different genotypes based on virulence gene clustering suggested varied mechanisms used by Aeromonas to colonize and infect or to mutualistically co-exist with the fish. Acquired multiple antibiotic resistance was found in a single A. veronii isolate. All were susceptible to enrofloxacin, oxolinic acid, florfenicol, and chloramphenicol. Tetracycline and sulfonamide resistances and class 1 integron were detected in three A. veronii isolates. CONCLUSION Several strains of motile aeromonads, especially A. veronii, which have varied genotypes based on virulence, biochemical profile, and antibiotic resistance, are involved in MAS in natural disease outbreaks in farmed Nile tilapia in the Philippines.
Collapse
Affiliation(s)
- Francis S Legario
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
- Natural Sciences Department, Iloilo Science and Technology University, Iloilo City, 5000, The Philippines
| | - Casiano H Choresca
- National Fisheries Research and Development Institute-Fisheries Biotechnology Centre, Science City of Muñoz, 3120, The Philippines
| | - Kathryn Grace
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - James F Turnbull
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - Margaret Crumlish
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| |
Collapse
|
7
|
Wang C, Wang S, Zeng N, Péré M, Xu G, Zou J, Zhou A. Effect of kelp powder on the resistance of Aeromonas hydrophila in the gut of hybrid snakeheads (Channa maculata ♀ × Channa argus ♂). FISH & SHELLFISH IMMUNOLOGY 2023; 139:108916. [PMID: 37355219 DOI: 10.1016/j.fsi.2023.108916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023]
Abstract
To assess the level of oxidative stress, expression of immune-related genes, histomorphology, and changes in the intestinal tract of hybrid snakeheads(Channa maculata ♀ × Channa argus ♂) under stress from kelp powder in place of flour against Aeromonas hydrophila. We set up experimental diets: a control (C) diet of 20% flour, an experimental (MR) diet of 10% kelp powder and 10% flour, and an experimental (FR) diet of 0% starch and 15% kelp powder. The experimental fish in each group were infected with Aeromonas hydrophila after 60 days of feeding. For this experiment, some of the experimental fish in group C were injected with PBS as a negative control group (PBS). The results showed that the C group had significantly higher SOD, CAT, and T-AOC activity and expression of TAK1, IKKβ, IL-1β, and TNF-α genes in the MyD88 pathway than the PBS group. CAT activity and the expression of TAK1, IL-1β and TNF-α genes in the MyD88 pathway were significantly lower in the MR group than in the C group. Furthermore, the number of goblet cells in the MR group was significantly higher than in the C group. Furthermore, microorganisms such as Bacteroidota and Actinobacteriota were significantly lower in the C group than in the PBS and FR groups, as were beneficial bacteria such as Clostridium_sensu_stricto_1 and Sphingomonas. Replacing flour with kelp powder increases hybrid snakehead gut resistance to Aeromonas hydrophila.
Collapse
Affiliation(s)
- Chong Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Shaodan Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Nanyang Zeng
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Maxime Péré
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 16 510070, China.
| | - Jixing Zou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Aiguo Zhou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Pulpipat T, Heckman TI, Boonyawiwat V, Kerddee P, Phatthanakunanan S, Soto E, Surachetpong W. Concurrent infections of Streptococcus iniae and Aeromonas veronii in farmed Giant snakehead (Channa micropeltes). JOURNAL OF FISH DISEASES 2023; 46:629-641. [PMID: 36866813 DOI: 10.1111/jfd.13774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 05/07/2023]
Abstract
The giant snakehead, Channa micropeltes, is an increasingly important economic freshwater fish in Thailand and other regions of Asia. Presently, giant snakehead are cultured under intensive aquaculture conditions, leading to high stress and conditions favouring disease. In this study, we reported a disease outbreak in farmed giant snakehead with a cumulative mortality of 52.5%, continuing for 2 months. The affected fish exhibited signs of lethargy, anorexia and haemorrhage of the skin and eyes. Further bacterial isolations revealed two different types of colonies on tryptic soy agar: small white, punctate colonies of gram-positive cocci and cream-coloured, round and convex colonies of rod-shaped gram-negative bacteria. Additional biochemical and species-specific PCR analysis based on 16S rRNA confirmed the isolates as Streptococcus iniae and Aeromonas veronii. Multilocus sequence analysis (MLSA) placed the S. iniae isolate into a large clade of strains from clinically infected fish worldwide. Gross necropsy findings showed liver congestion, pericarditis and white nodules in the kidney and liver. Histologically, the affected fish showed focal to multifocal granulomas with inflammatory cell infiltration in kidney and liver, enlarged blood vessels with mild congestion within the meninges of the brain and severe necrotizing and suppurative pericarditis with myocardial infarction. Antibiotic susceptibility tests revealed that S. iniae was sensitive to amoxicillin, erythromycin, enrofloxacin, oxytetracycline, doxycycline and resistant to sulfamethoxazole-trimethoprim, while the A. veronii was susceptible to erythromycin, enrofloxacin, oxytetracycline, doxycycline, sulfamethoxazole-trimethoprim and resistant to amoxicillin. Conclusively, our findings highlighted the natural concurrent bacterial infections in cultured giant snakehead, which support the implementation of appropriate treatment and control strategies.
Collapse
Affiliation(s)
- Theeraporn Pulpipat
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Nakorn Pathom, Thailand
| | - Taylor I Heckman
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Visanu Boonyawiwat
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Nakorn Pathom, Thailand
| | - Pattarawit Kerddee
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Sakuna Phatthanakunanan
- Kamphang Saen Veterinary Diagnostic Center, Faculty of Veterinary Medicine, Kasetsart University, Nakorn Pathom, Thailand
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
9
|
Behera BK, Parida SN, Kumar V, Swain HS, Parida PK, Bisai K, Dhar S, Das BK. Aeromonas veronii Is a Lethal Pathogen Isolated from Gut of Infected Labeo rohita: Molecular Insight to Understand the Bacterial Virulence and Its Induced Host Immunity. Pathogens 2023; 12:pathogens12040598. [PMID: 37111485 PMCID: PMC10143776 DOI: 10.3390/pathogens12040598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
A case of severe mortality in farmed Labeo rohita was investigated to characterize the causative agent. We identified the bacterial strain as Aeromonas veronii isolated from the gut of infected L. rohita by biochemical assay, scanning electron microscopy and 16S rRNA gene sequence analysis. The in vivo challenge experiment showed that the LD50 of A. veronii was 2.2 × 104 CFU/fish. Virulence gene investigation revealed that the isolated A. veronii possesses Aerolysin, Cytotoxic enterotoxin, Serine protease, Dnase and Type III secretion system genes. The isolated strain was resistant to two antibiotics (ampicillin and dicloxacillin) while susceptible to 22 other antibiotics. The study further revealed that A. veronii induced both stresses along with non-specific and specific immune responses marked by elevated cortisol HSP70, HSP90 and IgM levels in the treated L. rohita fingerlings. Although the bacterial pathogen enhances the immune response, the negative effect on fish, including stress, and high mortality, create concern and a need for A. veronii management in L. rohita farms. The knowledge gained from this study would facilitate future research aimed at assessing the pathogenicity of A. veronii, with an emphasis on microbial disease management in other farmed fish species.
Collapse
Affiliation(s)
- Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Satya Narayan Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Vikash Kumar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Himanshu Sekhar Swain
- Aquaculture Production and Environment Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Orissa, India
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Kampan Bisai
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Souvik Dhar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| |
Collapse
|
10
|
Cheng Z, Zhao X, Jiang X, Zhang J, Li L, Pei C, Zhou Y, Zeng L, Kong X. Contribution of flagellar cap gene in virulence and pathogenicity of Aeromonas veronii. JOURNAL OF FISH DISEASES 2023; 46:247-259. [PMID: 36515399 DOI: 10.1111/jfd.13739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Aeromonas veronii is an important zoonotic and aquatic pathogen that causes a number of illnesses in both humans and animals. It is related to gastroenteritis, skin and soft tissue infections and bacteremia in humans, as well as causing significant economic losses in aquaculture owing to fish sepsis. Here, we constructed the flagellar cap gene (fliD) mutant strain of A. veronii by suicide plasmid-mediated homologous recombination system and analysed its characteristics. It was found that the deletion of fliD had no effect on growth and biochemical properties and could be inherited stably. However, the motility of A. veronii ΔfliD was significantly reduced, the flagellum was defective and the biofilm formation was attenuated compared with that of A. veronii wild-type strain. In vivo experiments revealed that the colonization capacity of ΔfliD was significantly lower than that of the wild-type strain in the period of first 24 h, and the median lethal dose (LD50 ) was 56 times higher than that of the wild-type strain. The Cyprinus carpio infected with the wild-type strain indicated faster death speed and more severe clinical signs compared to ΔfliD strain. These results suggest that fliD is closely related to the virulence of A. veronii and plays an important role in pathogenicity, providing the foundation for pathogenic mechanism studies of A. veronii.
Collapse
Affiliation(s)
- Zhao Cheng
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
11
|
Zhang D, Li W, Hu X, Huang H, Zhang X. Requiring Reconsideration of Differences of Aeromonas Infections Between Extra-Intestinal and Intestinal in Hospitalized Patients. Infect Drug Resist 2023; 16:487-497. [PMID: 36721629 PMCID: PMC9884451 DOI: 10.2147/idr.s393347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Purpose The purpose of this study is to examine the variations between extra-intestinal and intestinal infections of Aeromonas in terms of strain types, risk factors, drug susceptibility results, and the distribution of drug resistance and virulence genes. Patients and Methods A total of 188 Aeromonas strains were identified to the species level using housekeeping genes (rpoD, gyrB, and gyrA). The risk factors for Aeromonas extra-intestinal and intestinal infection, as well as mortality, were retrospectively examined in this study. The broth microdilution method was used to investigate the antimicrobial susceptibility profiles. Touchdown polymerase chain reaction (PCR) assays and DNA sequencing were employed to confirm virulence and the presence of drug resistance genes. Results The housekeeping genes identified 188 strains into 7 species. Extra-intestinal isolates generally contained A. caviae and A. hydrophila, while intestinal were A. veronii (p=0.0001). Extra-intestinal infections (158/188) were the main type and accounted for 24/27 of all fatalities. Malignant tumors, hepatobiliary diseases, anemia, and hypoproteinemia were linked to infections. Poor results were associated with septic shock. Using the broth microdilution method, over 80% isolates were susceptible to most antimicrobials, except for ceftazidime (79.8%) and ceftriaxone (69.7%). Except for imipenem, intestinal strains were more susceptible to other medications than extra-intestinal. Using touch-down polymerase chain reaction testing and DNA sequencing, 6 strains, 31 strains, and a strain only had bla TEM, bla CphA, and bla VIM, respectively. Two Aeromonas hydrophila each possessed bla CphA+ bla CTXM-M-9, and bla CphA + bla CTX-M-1 + bla CTX-M-15-like + bla TEM; two Aeromonas caviae each possessed bla NDM + bla CTX-M-1 +bla CTX-M-15-like + bla TEM, and bla NDM + bla TEM. Thirty-four of the 42 strains mentioned above were isolated from extra-intestinal. Act, aexT, and ascF-G, were in intestinal more frequently, but alt, hlyA, ela, and lip were in extra-intestinal more frequently. Conclusion Aeromonas inside and outside intestinal differed in their clinical characteristics, drug susceptibility, drug resistance and virulence genes.
Collapse
Affiliation(s)
- Daiqin Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Wenting Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xin Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hongyu Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaobing Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China,Correspondence: Xiaobing Zhang, Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, People’s Republic of China, Tel +86-15123967161, Fax +86-23-89012742, Email
| |
Collapse
|
12
|
Díaz-Torres O, Lugo-Melchor OY, de Anda J, Orozco-Nunnelly DA, Gradilla-Hernández MS, Senés-Guerrero C. Characterizing a subtropical hypereutrophic lake: From physicochemical variables to shotgun metagenomic data. Front Microbiol 2022; 13:1037626. [DOI: 10.3389/fmicb.2022.1037626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022] Open
Abstract
Lake Cajititlán is a subtropical and endorheic lake, which is heavily impacted by nutrient pollution. Agricultural runoff and poorly treated wastewater have entered this reservoir at alarming rates during past rainy seasons, causing the cultural eutrophication of this body of water and resulting in several massive fish kill events. In this study, shotgun metagenomic sequencing was used to examine the taxonomic and functional structure of microbial communities in Lake Cajititlán during the rainy season. Several water quality features and their interactions with microbial communities were also assessed to identify the major factors affecting the water quality and biota, specifically fish species. According to current water quality regulations, most of the physicochemical variables analyzed (dissolved oxygen, pH, Secchi disk, NH4+, NO3−, blue-green algae, total phosphorus, and chlorophyll-a) were outside of the permissible limits. Planktothrix agardhii and Microcystis aeruginosa were the most abundant phytoplankton species, and the dominant bacterial genera were Pseudomonas, Streptomyces, and Flavobacterium, with Pseudomonas fluorescens, Stenotrophomonas maltophilia, and Aeromonas veronii representing the most abundant bacterial species. All of these microorganisms have been reported to be potentially harmful to fish, and the latter three (P. fluorescens, S. maltophilia, A. veronii) also contain genes associated with pathogenicity in fish mortality (fur, luxS, aer, act, aha, exu, lip, ser). Genetic evidence from the microbial communities analyzed herein reveals that anthropogenic sources of nutrients in the lake altered genes involved in nitrogen, phosphorus, sulfur, and carbon metabolism, mainly at the beginning of the rainy season. These findings suggest that abiotic factors influence the structure of the microbial communities, along with the major biogeochemical cycles of Lake Cajititlán, resulting in temporal variations and an excess of microorganisms that can thrive in high-nutrient and low-oxygen environments. After reviewing the literature, this appears to be the first study that focuses on characterizing the water quality of a subtropical hypereutrophic lake through associations between physicochemical variables and shotgun metagenomic data. In addition, there are few studies that have coupled the metabolism of aquatic ecosystems with nutrient cycles.
Collapse
|
13
|
Youssef HA, Ayoub HF, Soror EI, Matter AF. Virulence genes contributing to Aeromonas veronii pathogenicity in Nile tilapia ( Oreochromis niloticus): approaching the development of live and inactivated vaccines. AQUACULTURE INTERNATIONAL : JOURNAL OF THE EUROPEAN AQUACULTURE SOCIETY 2022; 31:1253-1267. [PMID: 36439703 PMCID: PMC9676859 DOI: 10.1007/s10499-022-01023-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/09/2022] [Indexed: 05/29/2023]
Abstract
This study aimed to develop and evaluate live and inactivated vaccines to Aeromonas veronii pathogenicity in Nile tilapia. Therefore, five well-identified Aeromonas veronii isolates, including A (HY1), A (HY2), A (HY3), A (HY4), and A (HY6) isolated from diseased Nile tilapia (Oreochromis niloticus), were used for vaccine preparation. Virulence genes detected by a polymerase chain reaction (PCR) and lethal dose determination were conducted. Nile tilapia, each with a body weight of 25 ± 0.5 g were divided into six experimental groups (each of 20): T1 group (control), fish were injected with saline as a negative control, T2 group (formalin-killed vaccine) for the A (HY2) strain, T3 group ( formalized killed vaccine) for the A (HY4), T4 group (autoclaved vaccine) for the A (HY2), T5 group (autoclaved vaccine) for A (HY4), and T6 (live vaccine) for A (HY1), triplicate. At the end of the immunization period, all groups were challenged by A. veronii, A (HY2). Blood samples were drawn 21 days post-immunization and 3 days after the challenge test for antibody titer assay. The results showed that the pathogenicity of strains A (HY2) and A (HY4) was the strongest, as the lethality rates (LR) were 100% and 90%, respectively, whereas the pathogenicity was moderate for strains A (HY3) and A (HY6) (LR 60% for each). A (AY1) was the weakest strain as no dead fish was found for this strain. The presence of alt, act, aerolysin, lipase, and fla genes as the main cause of the pathogenesis. The best protective efficacy was obtained from the live vaccine, A (HY1) with a protective rate of about 94.12% (relative percentage of survival, RPS), compared to autoclaved killed vaccines and formalin-killed vaccines. Based on immunoglobulin estimation (IgM) and RPS%, our data concluded that A (HY1) live vaccine had the best vaccine prophylactic effect against the highly pathogenic strain A(HY2).
Collapse
Affiliation(s)
- Hadeer A. Youssef
- Department of Aquatic Animals Medicine, Faculty of Veterinary Medicine, MoshtohorBenha University, Benha, Egypt
| | - Hala F. Ayoub
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research (CLAR) Agricultural Research Center (ARC), Abbassa, Sharqia Egypt
| | - Eman I. Soror
- Department of Aquatic Animals Medicine, Faculty of Veterinary Medicine, MoshtohorBenha University, Benha, Egypt
| | - Aya F. Matter
- Department of Aquatic Animals Medicine, Faculty of Veterinary Medicine, MoshtohorBenha University, Benha, Egypt
| |
Collapse
|
14
|
Algammal AM, Ibrahim RA, Alfifi KJ, Ghabban H, Alghamdi S, Kabrah A, Khafagy AR, Abou-Elela GM, Abu-Elala NM, Donadu MG, El-Tarabili RM. A First Report of Molecular Typing, Virulence Traits, and Phenotypic and Genotypic Resistance Patterns of Newly Emerging XDR and MDR Aeromonas veronii in Mugil seheli. Pathogens 2022; 11:1262. [PMID: 36365013 PMCID: PMC9695981 DOI: 10.3390/pathogens11111262] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
Aeromonas veronii is associated with substantial economic losses in the fish industry and with food-borne illness in humans. This study aimed to determine the prevalence, antibiogram profiles, sequence analysis, virulence and antimicrobial resistance genes, and pathogenicity of A. veronii recovered from Mugil seheli. A total of 80 fish were randomly gathered from various private farms in Suez Province, Egypt. Subsequently, samples were subjected to clinical, post-mortem, and bacteriological examinations. The retrieved isolates were tested for sequence analysis, antibiogram profile, pathogenicity, and PCR detection of virulence and resistance genes. The prevalence of A. veronii in the examined M. seheli was 22.5 % (18/80). The phylogenetic analyses revealed that the tested A. veronii strains shared high genetic similarity with other A. veronii strains from India, UK, and China. Using PCR it was revealed that the retrieved A. veronii isolates harbored the aerA, alt, ser, ompAII, act, ahp, and nuc virulence genes with prevalence of 100%, 82.9%, 61.7%, 55.3%, 44.7%, 36.17%, and 29.8%, respectively. Our findings revealed that 29.8% (14/47) of the retrieved A. veronii strains were XDR to nine antimicrobial classes and carried blaTEM, blaCTX-M, blaSHV,tetA, aadA1, and sul1 resistance genes. Likewise, 19.1% (9/47) of the obtained A. veronii strains were MDR to eight classes and possessed blaTEM, blaCTX-M, blaSHV,tetA, aadA1, and sul1 genes. The pathogenicity testing indicated that the mortality rates positively correlated with the prevalence of virulence-determinant genes. To our knowledge, this is the first report to reveal the occurrence of XDR and MDR A. veronii in M. seheli, an emergence that represents a risk to public health. Emerging XDR and MDR A. veronii in M. seheli frequently harbored aerA, alt, ser, ompAII, and act virulence genes, and blaTEM, sul1, tetA, blaCTX-M, blaSHV, and aadA1 resistance genes.
Collapse
Affiliation(s)
- Abdelazeem M. Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Reham A. Ibrahim
- National Institute of Oceanography and Fisheries, Cairo 11516, Egypt
| | - Khyreyah J. Alfifi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Hanaa Ghabban
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed Kabrah
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed R. Khafagy
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | - Nermeen M. Abu-Elala
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Faculty of Veterinary Medicine, King Salman International University, El Tor 46612, Egypt
| | - Matthew Gavino Donadu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Reham M. El-Tarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
15
|
Zhao T, Yang B, Li H, Qian A, Cong W, Sun W, Kang Y. Essential role of ascO for virulence of Aeromonas veronii and inducing apoptosis. JOURNAL OF FISH DISEASES 2022; 45:1477-1489. [PMID: 35749548 DOI: 10.1111/jfd.13676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Aeromonas veronii is a significant pathogen that is capable of infecting humans, animals, and aquatic animals. The type III secretion system (T3SS) is intimately associated with bacterial pathogenicity. The ascO gene is an important core component of T3SS in A. veronii, but its function is still unclear. The ascO gene of A. veronii TH0426 was deleted by using the pRE112 suicide plasmid to study its function. The study results showed that the ability of ∆ascO to adhere and invade EPC cells was significantly reduced by 1.28 times. The toxicity of the mutant strain ΔascO to EPC cells was consistently significantly lower than wild-type strain TH0426 at 1, 2, and 4 h. The LD50 values of ∆ascO against zebrafish and Carassius auratus (C. auratus) were 53 and 15 times that of the wild-type strain. In addition, the bacterial load of the mutant strain ΔascO in blood, heart, liver, and spleen was lower than wild-type strain TH0426. The Hoechst staining showed that the apoptotic degree of EPC cells induced by the mutant strain ΔascO was lower than that of the wild-type strain TH0426. Furthermore, real-time quantitative PCR (RT-qPCR) analysis revealed lower expression levels of pro-apoptotic genes (including cytC, cas3, cas9, TNF-α, and IL-1β) in C. auratus tissues infected with the mutant strain ΔascO compared to the wild-type strain TH0426. The results of in vivo and in vitro experiments have shown that ascO gene mutation can reduce the adhesion and toxicity of A. veronii to EPC and reduce the level of apoptosis induced by A. veronii. As a result, these insights will help further elucidate the function of the ascO gene and thus contribute to understanding the pathogenesis of A. veronii.
Collapse
Affiliation(s)
- Tong Zhao
- College of Veterinary Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Marine College, Shandong University, Weihai, China
| | - Bintong Yang
- Marine College, Shandong University, Weihai, China
| | - Hongjin Li
- College of Veterinary Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Marine College, Shandong University, Weihai, China
| | - Aidong Qian
- College of Veterinary Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wei Cong
- Marine College, Shandong University, Weihai, China
| | - Wuwen Sun
- College of Veterinary Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuanhuan Kang
- College of Veterinary Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Marine College, Shandong University, Weihai, China
| |
Collapse
|
16
|
Yang C, Dong J, Sun C, Li W, Tian Y, Liu Z, Gao F, Ye X. Exposure to heat stress causes downregulation of immune response genes and weakens the disease resistance of Micropterus salmoides. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101011. [PMID: 35839613 DOI: 10.1016/j.cbd.2022.101011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
In order to understand the molecular mechanism of response to heat stress in largemouth bass (LMB) Micropterus salmoides, we performed transcriptome analysis of spleen tissue of LMB subjected to heat stress and challenged with A. veronii under heat stress. A total of 2162 DEGs were identified between the heat stressed (32 °C) and control groups (24 °C) after 7 d treatment. Gene Ontology (GO) annotation analysis revealed that these differentially expressed genes (DEGs) were mainly enriched on GO terms of biological regulation, membrane part, and binding. ELISA validation indicated that except major histocompatibility complex II (Mhc II), the protein levels of t-Sod, caspase 3 (Casp3), tumor necrosis factor-α (Tnf-α), and complement component 3 (C3) were consistent with RNA-seq results. In the experiment of A. veronii challenged under heat stress (32 °C), 2899 and 2663 DEGs were obtained from the heat stress-challenged group (H6 vs H0, H12 vs H0), while 1485 and 3501 DEGs from the control-challenged group (C6 vs C0, C12 vs C0). GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that immune-related categories and pathways were significantly enriched, such as immune system process, immune response and positive regulation of immune response in GO enrichment analysis, and cytokine-cytokine receptor interaction, human cytomegalovirus infection in KEGG signaling pathways. The expressions of f11, c1q and c3 in complement and coagulation pathway, as well as that of proinflammatory genes tnf-α and il-8, were deeply inhibited. Real-time quantitative PCR validation for nine DEGs showed that most of them had consistent expression trends with RNA-seq results. Our results indicated that heat stress affects the immunity and metabolism of LMB. In particular, it aggravates the inhibitory effects of A. veronii on the complement and coagulation systems while downregulating proinflammatory cytokine expression, thereby weakening the resistance of LMB to pathogen infection. Our results contribute to the elucidation of A. veronii infection pathogenic mechanisms in LMB under heat stress.
Collapse
Affiliation(s)
- Chao Yang
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Junjian Dong
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Chengfei Sun
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Wuhui Li
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zhigang Liu
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Fengying Gao
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Xing Ye
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
17
|
Mursalim MF, Budiyansah H, Raharjo HM, Debnath PP, Sakulworakan R, Chokmangmeepisarn P, Yindee J, Piasomboon P, Elayaraja S, Rodkhum C. Diversity and antimicrobial susceptibility profiles of Aeromonas spp. isolated from diseased freshwater fishes in Thailand. JOURNAL OF FISH DISEASES 2022; 45:1149-1163. [PMID: 35598068 DOI: 10.1111/jfd.13650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Motile Aeromonas septicemia (MAS), a disease caused by Aeromonas spp., is recognized as a major disease in freshwater aquaculture. This study aimed to investigate the distribution and diversity of Aeromonas spp. and their antimicrobial susceptibility patterns. A total of 86 isolates of Aeromonas spp. were recovered from diseased freshwater fishes from 13 farms in Thailand. All isolates were identified using biochemical characteristics, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), polymerase chain reaction assays, and the gyrB gene sequence analysis. The result of MALDI-TOF MS showed 100% (86 isolates) accuracy at genus-level identification, and 88.4% (76 isolates) accuracy at species-level identification. Six species of Aeromonas were confirmed through nucleotide sequencing and phylogenetic analysis of the gyrB gene Aeromonas veronii (72.1%), Aeromonas jandaei (11.6%), Aeromonas schubertii (9.3%), Aeromonas diversa (3.5%), Aeromonas hydrophila (2.3%), and Aeromonas punctata (1.2%). Antimicrobial susceptibility tests for all isolates revealed resistance against amoxicillin (99%), ampicillin (98%), oxolinic acid (81.4%), oxytetracycline (77%), trimethoprim-sulfamethoxazole (24%), and enrofloxacin (21%). The multiple antibiotic resistance (MAR) index varied between 0.14 and 0.86, with MAR values more than 0.2 in 99% of isolates. Furthermore, four diverse multidrug-resistant (MDR) patterns were found among Aeromonas isolates. Our finding show that A. veronii is the most abundant species in Thai cultured freshwater fish with the highest MDR patterns.
Collapse
Affiliation(s)
- Muhammad Fadhlullah Mursalim
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Study Program, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Hendri Budiyansah
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Hartanto Mulyo Raharjo
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Partho Pratim Debnath
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Rungnapa Sakulworakan
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Putita Chokmangmeepisarn
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Jitrapa Yindee
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Patharapol Piasomboon
- Department of Veterinary Medicine, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sivaramasamy Elayaraja
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
18
|
Yu M, Zhang Y, Zhang D, Wang Q, Wang G, Elsadek M, Yao Q, Chen Y, Guo Z. The effect of adding Bacillus amyloliquefaciens LSG2-8 in diets on the growth, immune function, antioxidant capacity, and disease resistance of Rhynchocypris lagowskii. FISH & SHELLFISH IMMUNOLOGY 2022; 125:258-265. [PMID: 35580796 DOI: 10.1016/j.fsi.2022.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this study was to investigate the effect of Bacillus amyloliquefaciens LSG2-8 on the growth performance, immune function, antioxidant capacity, and disease resistance of Rhynchocypris lagowskii. Fish were fed with the feed containing five levels such as 0, 1.0 × 106, 1.0 × 107, 1.0 × 108, and 1.0 × 109 CFU/g of the B. amyloliquefaciens LSG2-8 for 56 days. After 56 days of feeding, twenty four fish were randomly selected to test various growth, immune and antioxidant parameters. Ten fish were challenged with Aeromonas hydrophila for 14 days; the mortality rate was recorded 14 days after infection. The results showed that B. amyloliquefaciens LSG2-8 could significantly increase the growth parameters of R. lagowskii's, such as final body weight, weight gain rate, specific growth rate, and feed efficiency (p < 0.05). Further examination revealed the activity of antioxidant enzymes, Nrf-2 mRNA, and Keap-1 mRNA gene expression in the intestine and liver, and the serum immune index of R. lagowskii in the 1.0 × 108 CFU/g were all significantly higher compared to the other groups. Furthermore, fish fed a diet supplemented with B. amyloliquefaciens LSG2-8 had a significantly lower (p < 0.05) post-challenge mortality rate than the control fish. In summary, the research results showed that B. amyloliquefaciens LSG2-8 could improve the growth performance, immune function, antioxidant capacity, and disease resistance of R. lagowskii and be used in aquaculture.
Collapse
Affiliation(s)
- Mengnan Yu
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China; College of Life Science, Jilin Agricultural University, Changchun, China
| | - Yurou Zhang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China; College of Life Science, Jilin Agricultural University, Changchun, China
| | - Dongming Zhang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China; College of Life Science, Jilin Agricultural University, Changchun, China
| | - Qiuju Wang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China; College of Life Science, Jilin Agricultural University, Changchun, China
| | - Guiqin Wang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China; College of Life Science, Jilin Agricultural University, Changchun, China
| | - Mahmound Elsadek
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China; Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, 11884, Egypt
| | - Qi Yao
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China; College of Life Science, Jilin Agricultural University, Changchun, China
| | - Yuke Chen
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China; College of Life Science, Jilin Agricultural University, Changchun, China.
| | - Zhixin Guo
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China; College of Life Science, Jilin Agricultural University, Changchun, China; Tonghua Normal University, College of Life Science, Jilin, Tonghua, 134001, China.
| |
Collapse
|
19
|
Kumar CB, Kumar A, Paria A, Kumar S, Prasad KP, Rathore G. Effect of spatio-temporal variables, host fish species and on-farm biosecurity measures on the prevalence of potentially pathogenic Aeromonas species in freshwater fish farms. J Appl Microbiol 2021; 132:1700-1712. [PMID: 34664343 DOI: 10.1111/jam.15330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
AIMS To determine the prevalence of Aeromonas species in freshwater fish farms, factors affecting their prevalence and virulence factors associated with each species. METHODS AND RESULTS In a cross-sectional study from 128 farms in four districts of Uttar Pradesh, India, 11 species of Aeromonas were identified by gyrB sequencing including the first report of Aeromonas crassostreae from fish. Four species of Aeromonas were more prevalent (MP) in fish farms, A. veronii bv. sobria (50.0%) was the highest, followed by A. caviae (18.8%), A. veronii bv. veronii (11.7%) and A. dhakensis (7.0%). The less prevalent (LP) species were A. hydrophila, A. media, A. jandaei, A. allosaccharophila, A. salmonicida, A. crassostreae and A. taiwanensis. Spatial variation in the prevalence of Aeromonas species was observed. Dominance of biovar sobria ranged from 33.3 to 68.6%, notably lesser in farms with on-farm biosecurity measures. The prevalence of biovar veronii was significantly associated with pangas fish, rainy season and farms with on-farm biosecurity measures. The prevalence of LP species was significantly higher in mrigal fish and winter season. Multiple virulence factors (>6) were detected in 70.2% of the Aeromonas species. Significant association of β-hemolysin, DNase, slime production, act, ahh1, aexT and lip was observed with different species of Aeromonas. Moreover, 75.8% of Aeromonas species possessed one or more enterotoxins genes (act/alt/ast). CONCLUSION Significant association of spatio-temporal variables, host fish species and on-farm biosecurity measures were observed on the prevalence of some of the Aeromonas species in freshwater fish farms. Most of the Aeromonas species harboured virulence factors indicating their potential for pathogenicity. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study that determined the prevalence and identified the factors that affect the prevalence of Aeromonas species in freshwater fish farms. This information will be useful in managing Aeromonas infection in fish and their risks to public health.
Collapse
Affiliation(s)
| | - Anil Kumar
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, India
| | - Anutosh Paria
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, India
| | - Saurav Kumar
- ICAR- Central Institute of Fisheries Education, Andheri (west), India
| | - K Pani Prasad
- ICAR- Central Institute of Fisheries Education, Andheri (west), India
| | - Gaurav Rathore
- ICAR- Central Institute of Fisheries Education, Andheri (west), India
| |
Collapse
|
20
|
Zhang DF, Xiong XL, Wang YJ, Gao YX, Ren Y, Wang Q, Shi CB. Bacillus velezensis WLYS23 strain possesses antagonistic activity against hybrid snakehead bacterial pathogens. J Appl Microbiol 2021; 131:3056-3068. [PMID: 34037300 DOI: 10.1111/jam.15162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022]
Abstract
AIM The aims of this study were to screen an antagonistic probiotic for the prevention and control of bacterial diseases in snakehead fish and to evaluate the antimicrobial activities, biosafety and biocontrol effect of the antagonistic strain. METHODS AND RESULTS In this study, the WLYS23 strain exhibiting the most effective antagonistic properties against several fish pathogens was selected from the intestine of healthy snakehead fish. The strain was identified as Bacillus velezensis based on morphological, physiological and biochemical characteristics, and phylogenetic analysis. This strain showed amylase, cellulase, protease and lipase activities according to extracellular enzyme activity assays. Moreover, the cell-free extract of the WLYS23 strain exhibited strong antibacterial activity, with MICs of ≤64 μg ml-1 for most fish pathogens. Additionally, the cell-free extract was heat and pH stable, and resistant to protease, whereas their antimicrobial activities were significantly influenced by metal ions at high concentration. The WLYS23 strain and its cell-free extract were safe for snakehead and zebrafish. The disease resistance of snakehead fish was significantly increased following administration of the WLYS23 strain and its cell-free extract respectively. The complete genome of the WLYS23 strain was sequenced and found to harbour seven gene clusters encoding secondary metabolites with antimicrobial activity. CONCLUSION The WLYS23 strain possesses great potential as a biocontrol agent, which can be commercially developed to improve disease control in freshwater aquaculture. SIGNIFICANCE AND IMPACT OF THE STUDY Snakehead fish are important commercially farmed fish worldwide. However, the bacterial diseases caused by Aeromonas sp. and Nocardia seriolae in farmed snakehead fish lead to huge economic losses. Safe, economical and efficient probiotics are limited to prevent and control these diseases. Here, we provide a promising biocontrol agent with antagonistic activity against bacterial diseases of snakehead.
Collapse
Affiliation(s)
- D F Zhang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - X L Xiong
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Y J Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Y X Gao
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Y Ren
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Q Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - C B Shi
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
21
|
Yang B, Chen C, Sun Y, Cao L, Zhang D, Sun W, Zhang L, Wang G, Shan X, Kang Y, Qian A. Comparative genomic analysis of different virulence strains reveals reasons for the increased virulence of Aeromonas veronii. JOURNAL OF FISH DISEASES 2021; 44:11-24. [PMID: 33137224 DOI: 10.1111/jfd.13262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Aeromonas veronii is an important zoonotic and aquatic agent. More and more cases have shown that it has caused huge economic losses in the aquaculture industry in addition to threatening human health. But the reasons for the increasing virulence of A. veronii are still unclear. In order to further understand the reasons for the increased virulence of A. veronii, we conducted a comparative analysis of the genomes of A. veronii with different virulence. The analysis revealed that there are multiple virulence factors, such as those related to fimbriae, flagella, toxins, iron ion uptake systems and type II, type III and type VI secretion systems in the virulent strain TH0426 genome. And comparative analysis showed that there were two complete type III secretion systems (API1 and API2), of which the API2 and iron ion transport system were unique to the TH0426 strain. In addition, TH0426 strain also has unique functional gene clusters, which may play important roles in terms of resisting infection, adapting to different environments and genetic evolution. These particular virulence factors and gene clusters may be the important reasons for the increased virulence. These insights will provide a reference for the study of the pathogenesis of A. veronii.
Collapse
Affiliation(s)
- Bintong Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
- College of Life Science, Changchun Sci-Tech University, Changchun, China
| | - Chong Chen
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yufeng Sun
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Linan Cao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Dongxing Zhang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wuwen Sun
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guiqin Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yuanhuan Kang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Aidong Qian
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
22
|
Yang BT, Sun YF, Cao LN, Raza SHA, Zhou JH, Li YN, Sun WW, Wang GQ, Shan XF, Kang YH, Qian AD. Comparative proteomic analysis reveals novel potential virulence factors of Aeromonas veronii. Ann N Y Acad Sci 2020; 1486:58-75. [PMID: 33009679 DOI: 10.1111/nyas.14480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
Aeromonas veronii is an important zoonotic and aquatic pathogen. An increasing number of reports indicate that it has caused substantial economic losses in the aquaculture industry, in addition to threatening human health. However, little is known about its pathogenesis. Exploration of new virulence factors of A. veronii would be helpful for further understanding its pathogenesis. Hence, we comparatively analyzed the proteomes of virulent, attenuated, and avirulent strains of A. veronii using tandem mass tag (TMT) protein labeling and found numerous proteins either up- or downregulated in the virulent strain. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that these differentially expressed proteins (DEPs) were involved mainly in pathways associated with bacterial chemotaxis and microbial metabolism in diverse environments. Furthermore, the expression levels of lysine decarboxylase, endoribonuclease, maltoporin, pullulanase, and aerolysin were positively correlated with the virulence of the strains, suggesting that their function may be closely related to the virulence of A. veronii. The results of qRT-PCR and multiple reaction monitoring for some DEPs were consistent with the results of TMT protein labeling. These results suggest that these DEPs may be novel potential virulence factors and will help to further understand the pathogenesis of A. veronii.
Collapse
Affiliation(s)
- Bin-Tong Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China.,College of Life Science, Changchun Sci-Tech University, Changchun, Jilin, China
| | - Yu-Feng Sun
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Li-Nan Cao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | | | - Jin-Hua Zhou
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Ya-Nan Li
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Wu-Wen Sun
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Gui-Qin Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Yuan-Huan Kang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
23
|
Huang M, Chen H, Li C, Liu Y, Gan C, El-Sayed Ahmed MAEG, Liu R, Shen C, Zhong R, Tian GB, Huang X, Xia J. Rapid Fulminant Progression and Mortality Secondary to Aeromonas dhakensis Septicemia with Hepatitis B Virus Infection Following the Ingestion of Snakehead Fish in Mainland China: A Case Report. Foodborne Pathog Dis 2020; 17:743-749. [PMID: 32985901 DOI: 10.1089/fpd.2019.2780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aeromonas dhakensis is an important ubiquitous Gram-negative and freshwater bacterium detected in different reservoirs. It can cause invasive diseases in humans. Herein, we report the first case in Mainland China of a fulminant death of a 29-year-old man as a result of a new, unexpected association between septicemic A. dhakensis and hepatitis B viral infection (HBV). Herein, the patient died from multiple organ failure 5 d postadmission after the ingestion of Snakehead Fish meal. The isolated bacterium was initially misidentified as Aeromonas hydrophila using VITEK-2, while whole-genome sequencing (WGS) revealed that the isolate is A. dhakensis. WGS revealed the occurrence of three antimicrobial genes of resistance: imiH, cphA2, and blaOXA-12; besides, major virulence factors were detected. In silico, multilocus sequence typing (MLST) showed that our A. dhakensis 17FW001 belonged to a novel sequence type (ST557). A comparative genomic analysis of our isolate with nine selected Aeromonas species was done, which elucidated the pathogenicity of our A. dhakensis. In conclusion, we reported for the first time the association between A. dhakensis and HBV in Mainland China. We revealed that septicemic A. dhakensis could result in severe adverse clinical outcomes that end up with unexpected fulminant death especially when it is accompanied with HBV and sheds light on the virulence of A. dhakensis and the high rate of its misdiagnosis that requires to urgently consider screening of all cases of A. dhakensis for HBV in the future. Besides, caution should be taken while dealing with snakeheads which act as a vector for A. dhakensis.
Collapse
Affiliation(s)
- Mingxing Huang
- Department of Infectious Diseases, Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Hongtao Chen
- Clinical Laboratory, Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Chunna Li
- Department of Infectious Diseases, Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yan Liu
- Clinical Laboratory, Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Chongjie Gan
- Department of Infectious Diseases, Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Mohamed Abd El-Gawad El-Sayed Ahmed
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Cairo, 6th of October City, Egypt
| | - Ruihong Liu
- United Laboratory of the Fifth Affiliated Hospital and BGI, Department of Experimental Medicine, Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Cong Shen
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Ruoxuan Zhong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Guo-Bao Tian
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xi Huang
- Program of Pathobiology and Immunology, Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Zhuhai, China
| | - Jinyu Xia
- Department of Infectious Diseases, Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| |
Collapse
|
24
|
Zhang HP, Chen MY, Xu YX, Xu GY, Chen JR, Wang YM, Kang YH, Shan XF, Kong LC, Ma HX. An effective live attenuated vaccine against Aeromonas veronii infection in the loach (Misgurnus anguillicaudatus). FISH & SHELLFISH IMMUNOLOGY 2020; 104:269-278. [PMID: 32439515 DOI: 10.1016/j.fsi.2020.05.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/22/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Aeromonas veronii is a major pathogenic bacterium in humans and animals. When it causes outbreaks, there are enormous economic losses to the aquaculture industry. An effective live attenuated vaccine strain, ΔhisJ, was obtained in our previous studies by gene knockout in Aeromonas veronii TH0426 using the suicide vector pRE112. Here, we evaluated whether the live attenuated vaccine ΔhisJ was suitable for prevention of Aeromonas veronii infection by injection and immersion in loaches. Compared with that of the TH0426 wild-type strain, the virulence of the live vaccine was significantly weakened. Vaccine safety assessment results also indicated that 1 × 107 CFU/mL live vaccine was safe and did not induce clinical symptoms or obvious pathological changes. Additionally, after challenging loaches with Aeromonas veronii TH0426, the relative percent survival of the IN3 injection group was 65.66%, and that of the IM group was 50.78%. Our data show that the live attenuated vaccine ΔhisJ can improve the immune protection rate of loaches. Furthermore, increased enzyme activity parameters (SOD, LZM, ACP, and AKP) in the skin mucus, increased enzyme activity parameters (SOD, LZM, ACP, AKP, and GPx) in the serum, increased specific IgM antibodies and cytokine IL-1β contents in the serum, and increased cytokine (IL-15, pIgR, IL-1β, and TNF-α) expression in the liver and spleen were observed. These data are the first to indicate that the live attenuated vaccine ΔhisJ is suitable for the development of a safe and effective vaccine against Aeromonas veronii infection in loach aquaculture.
Collapse
Affiliation(s)
- Hai-Peng Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Meng-Yao Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Xuan Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Guan-Yi Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jing-Rui Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yi-Ming Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yuan-Huan Kang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ling-Cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Hong-Xia Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
25
|
Li T, Raza SHA, Yang B, Sun Y, Wang G, Sun W, Qian A, Wang C, Kang Y, Shan X. Aeromonas veronii Infection in Commercial Freshwater Fish: A Potential Threat to Public Health. Animals (Basel) 2020; 10:ani10040608. [PMID: 32252334 PMCID: PMC7222775 DOI: 10.3390/ani10040608] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 11/16/2022] Open
Abstract
Aeromonas veronii is an important pathogen causing freshwater fish sepsis and ulcer syndrome. An increasing number of cases have demonstrated its significance as an aquatic zoonotic agent. The purpose of this study was to ensure the safety of freshwater products by evaluating the infection status of edible freshwater fish. In this experiment, we isolated A. veronii from several species of apparently healthy freshwater fish, including Carassius auratus, Cyprinus carpio, Ctenopharyngodon idella, and Silurus asotus. A. veronii was identified through bacterial staining, culture characteristics, and 16S rDNA gene sequence. In addition, polymerase chain reaction (PCR) was used to investigate the distribution of seven major virulence genes, including aerolysin (aer: 88.51%), cytotoxic enterotoxin (act: 71.26%), serine proteinase (ser: 54.02%), adhesin (Aha: 40.23%), phospholipase (lip: 45.98%), nuclease (exu: 51.72%), and quorum sensing-controlled virulence factor (LuxS: 59.77%). In total, 496 strains of Aeromonas were isolated, including 87 strains of A. veronii. The isolates of A. veronii were Gram-negative, rod-shaped bacteria, and the colonies are yellow on Rimler-Shotts (RS) medium and showed greater than 99% homology with A. veronii ATCC35624 according to analyses of the 16S rDNA sequence. Nearly 50% of the A. veronii isolates carried at least four or more virulence genes, 25% of the isolates carried at least five types of virulence genes, and 59.77% isolates carried the LuxS gene, and the isolates carrying more virulence genes were found to be more virulent. These results are of great significance for further improving the food safety assessment of freshwater aquatic products.
Collapse
Affiliation(s)
- Tong Li
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; (T.L.); (B.Y.); (Y.S.); (G.W.); (W.S.); (A.Q.); (C.W.)
| | | | - Bintong Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; (T.L.); (B.Y.); (Y.S.); (G.W.); (W.S.); (A.Q.); (C.W.)
- College of Life Science, Changchun Sci-Tech University, Shuangyang District, Changchun 130600, China
| | - Yufeng Sun
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; (T.L.); (B.Y.); (Y.S.); (G.W.); (W.S.); (A.Q.); (C.W.)
| | - Guiqin Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; (T.L.); (B.Y.); (Y.S.); (G.W.); (W.S.); (A.Q.); (C.W.)
| | - Wuwen Sun
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; (T.L.); (B.Y.); (Y.S.); (G.W.); (W.S.); (A.Q.); (C.W.)
| | - Aidong Qian
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; (T.L.); (B.Y.); (Y.S.); (G.W.); (W.S.); (A.Q.); (C.W.)
| | - Chunfeng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; (T.L.); (B.Y.); (Y.S.); (G.W.); (W.S.); (A.Q.); (C.W.)
| | - Yuanhuan Kang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; (T.L.); (B.Y.); (Y.S.); (G.W.); (W.S.); (A.Q.); (C.W.)
- Correspondence: (Y.K.); (X.S.); Tel.: +86-0431-84533426 (Y.K.)
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; (T.L.); (B.Y.); (Y.S.); (G.W.); (W.S.); (A.Q.); (C.W.)
- Correspondence: (Y.K.); (X.S.); Tel.: +86-0431-84533426 (Y.K.)
| |
Collapse
|
26
|
Yang B, Song H, An D, Zhang D, Raza SHA, Wang G, Shan X, Qian A, Kang Y, Wang C. Functional Analysis of preA in Aeromonas veronii TH0426 Reveals a Key Role in the Regulation of Virulence and Resistance to Oxidative Stress. Int J Mol Sci 2019; 21:ijms21010098. [PMID: 31877791 PMCID: PMC6981600 DOI: 10.3390/ijms21010098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023] Open
Abstract
Aeromonas veronii is one of the main pathogens causing freshwater fish sepsis and ulcer syndrome. This bacterium has caused serious economic losses in the aquaculture industry worldwide, and it has become an important zoonotic and aquatic agent. However, little is known about the molecular mechanism of pathogenesis of A. veronii. In this study, we first constructed an unmarked mutant strain (ΔpreA) by generating an in-frame deletion of the preA gene, which encodes a periplasmic binding protein, to investigate its role in A. veronii TH0426. Our results showed that the motility and biofilm formation ability of ΔpreA were similar to those of the wild-type strain. However, the adhesion and invasion ability in epithelioma papulosum cyprini (EPC) cells were significantly enhanced (2.0-fold). Furthermore, the median lethal dose (LD50) of ΔpreA was 7.6-fold higher than that of the wild-type strain, which illustrates that the virulence of the mutant was significantly enhanced. This finding is also supported by the cytotoxicity test results, which showed that the toxicity of ΔpreA to EPC cells was enhanced 1.3-fold relative to the wild type. Conversely, tolerance test results showed that oxidative stress resistance of ΔpreA decreased 5.9-fold compared to with the wild-type strain. The results suggest that preA may negatively regulate the virulence of A. veronii TH0426 through the regulation of resistance to oxidative stress. These insights will help to further elucidate the function of preA and understand the pathogenesis of A. veronii.
Collapse
Affiliation(s)
- Bintong Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (B.Y.); (H.S.); (D.A.); (D.Z.); (G.W.); (X.S.); (A.Q.)
- College of Life Science, Changchun Sci-Tech University, Shuangyang District, Changchun 130600, China
| | - Haichao Song
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (B.Y.); (H.S.); (D.A.); (D.Z.); (G.W.); (X.S.); (A.Q.)
| | - Dingjie An
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (B.Y.); (H.S.); (D.A.); (D.Z.); (G.W.); (X.S.); (A.Q.)
| | - Dongxing Zhang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (B.Y.); (H.S.); (D.A.); (D.Z.); (G.W.); (X.S.); (A.Q.)
| | | | - Guiqin Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (B.Y.); (H.S.); (D.A.); (D.Z.); (G.W.); (X.S.); (A.Q.)
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (B.Y.); (H.S.); (D.A.); (D.Z.); (G.W.); (X.S.); (A.Q.)
| | - Aidong Qian
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (B.Y.); (H.S.); (D.A.); (D.Z.); (G.W.); (X.S.); (A.Q.)
| | - Yuanhuan Kang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (B.Y.); (H.S.); (D.A.); (D.Z.); (G.W.); (X.S.); (A.Q.)
- Correspondence: (Y.K.); (C.W.); Tel.: +86-0431-84533426 (Y.K. & C.W.)
| | - Chunfeng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (B.Y.); (H.S.); (D.A.); (D.Z.); (G.W.); (X.S.); (A.Q.)
- Correspondence: (Y.K.); (C.W.); Tel.: +86-0431-84533426 (Y.K. & C.W.)
| |
Collapse
|