1
|
Pham N, Benhammou JN. Statins in Chronic Liver Disease: Review of the Literature and Future Role. Semin Liver Dis 2024; 44:191-208. [PMID: 38701856 DOI: 10.1055/a-2319-0694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Chronic liver disease (CLD) is a major contributor to global mortality, morbidity, and healthcare burden. Progress in pharmacotherapeutic for CLD management is lagging given its impact on the global population. While statins are indicated for the management of dyslipidemia and cardiovascular disease, their role in CLD prevention and treatment is emerging. Beyond their lipid-lowering effects, their liver-related mechanisms of action are multifactorial and include anti-inflammatory, antiproliferative, and immune-protective effects. In this review, we highlight what is known about the clinical benefits of statins in viral and nonviral etiologies of CLD and hepatocellular carcinoma (HCC), and explore key mechanisms and pathways targeted by statins. While their benefits may span the spectrum of CLD and potentially HCC treatment, their role in CLD chemoprevention is likely to have the largest impact. As emerging data suggest that genetic variants may impact their benefits, the role of statins in precision hepatology will need to be further explored.
Collapse
Affiliation(s)
- Nguyen Pham
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jihane N Benhammou
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
- Veterans Affairs Greater Los Angeles, Los Angeles, California
- Comprehensive Liver Research Center at University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
2
|
Adherence to a Fish-Rich Dietary Pattern Is Associated with Chronic Hepatitis C Patients Showing Low Viral Load: Implications for Nutritional Management. Nutrients 2021; 13:nu13103337. [PMID: 34684338 PMCID: PMC8541240 DOI: 10.3390/nu13103337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Hepatitis C virus (HCV) infection is influenced by genetic (e.g., APOE polymorphisms) and environmental factors between the virus and the host. HCV modulates the host’s lipid metabolism but dietary components influence lipids and in vitro HCV RNA replication. Few data exist on the role of dietary features or patterns (DPs) in HCV infection. Herein, we aimed to evaluate the nutritional profiles of chronic HCV (CHC) and spontaneous clearance (SC) Mexican patients in the context of APOE alleles and their correlation with HCV-related variables. The fibrosis-related APOEε3 allele prevailed in CHC and SC patients, who had four DPs (“meat and soft drinks”, DP1; “processed animal and fried foods”, DP2; “Mexican-healthy”, DP3; and “fish-rich”, DP4). In CHC subjects, polyunsaturated fatty acid intake (PUFA ≥ 4.9%) was negatively associated, and fiber intake (≥21.5 g/day) was positively associated with a high viral load (p < 0.036). High adherence to fish-rich DP4 was associated with a higher frequency of CHC individuals consuming PUFA ≥ 4.9% (p = 0.004) and low viral load (p = 0.036), but a lower frequency of CHC individuals consuming fiber ≥21.5 g/day (p = 0.038). In SC and CHC individuals, modifying unhealthy DPs and targeting HCV-interacting nutrients, respectively, could be part of a nutritional management strategy to prevent further liver damage.
Collapse
|
3
|
Thirumdas R, Kothakota A, Pandiselvam R, Bahrami A, Barba FJ. Role of food nutrients and supplementation in fighting against viral infections and boosting immunity: A review. Trends Food Sci Technol 2021; 110:66-77. [PMID: 33558789 PMCID: PMC7857987 DOI: 10.1016/j.tifs.2021.01.069] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/19/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The viral infections can be highly contagious and easily transmissible, which even can lead to a pandemic, like the recent COVID-19 outbreak, causing massive deaths worldwide. While, still the best practical way to prevent the transmission of viruses is to practice self-sanitation and follow social distancing principles, enhancing the individual's immunity through the consumption of proper foods containing balanced nutrients can have significant result against viral infections. Foods containing nutrients such as vitamins, minerals, fatty acids, few polysaccharides, and some non-nutrients (i.e. polyphenols) have shown therapeutic potential against the function of viruses and can increase the immunity of people. SCOPE AND APPROACH The results of conducted works aiming for studying the potential antiviral characteristics of diverse groups of foods and food's nutrients (in terms of polysaccharides, proteins, lipids, vitamins, and minerals) are critically discussed. KEY FINDINGS AND CONCLUSION Nutrients, besides playing an important role in maintaining normal physiology of human's body and healthiness, are also required for enhancing the immunity of the body and can be effective against viral infections. They can present antiviral capacity either by entering into the defensive mechanism directly through interfering with the target viruses, or indirectly through activating the cells associated with the adaptive immune system. During the current situation of COVID-19 pandemic (the lack of proper curative viral drug), enhancing the immunity of individual's body through proposing the appropriate diet (rich in both macro and micro-nutrients) is one of few practical preventive measures available in fighting against Coronaviruses, this significant health-threatening virus, as well as other viruses in general.
Collapse
Affiliation(s)
- Rohit Thirumdas
- Department of Food Process Technology, College of Food Science & Technology, PJTSAU, Telangana, India
| | - Anjinelyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, 695 019, Kerala, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, 671 124, Kerala, India
| | - Akbar Bahrami
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, València, Spain
| |
Collapse
|
4
|
Dysregulation in Plasma ω3 Fatty Acids Concentration and Serum Zinc in Heavy Alcohol-Drinking HCV Patients. Adv Virol 2020; 2020:7835875. [PMID: 32565809 PMCID: PMC7301182 DOI: 10.1155/2020/7835875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
Alcohol use disorder (AUD) patients comorbid with hepatitis C virus (HCV) infection (HCV + AUD) could have progressively severe clinical sequels of liver injury and inflammation. Serum zinc and several polyunsaturated fatty acids (PUFAs) get dysregulated in AUD as well as HCV. However, the extent of dysregulation of PUFAs and zinc deficiency and their interaction in HCV + AUD as a comorbid pathology has not been studied. We examined the role of dysregulation of FAs and low zinc in HCV + AUD patients. 138 male and female participants aged 21-67 years were grouped as HCV-only (Gr. 1; n = 13), HCV + AUD (Gr. 2; n = 25), AUD without liver injury (Gr. 3; n = 37), AUD with liver injury (Gr. 4; n = 51), and healthy volunteers (Gr. 5 or HV; n = 12). Drinking history, individual demographic measures, fasting fatty acids, liver function, and zinc were measured and analyzed. HCV + AUD patients showed the highest ALT level compared to the rest of the groups. Serum zinc concentrations were the lowest, and the proinflammatory shift was the highest (characterized by ω6 : ω3 ratio) in the HCV + AUD patients. Total ω3, eicosapentaenoic acid (EPA), and docosapentaenoic acid (DPA5,3) were the lowest in HCV + AUD patients. Total ω3, α-linoleic acid (α-LA) along with covariable number of drinking days past 90 days (NDD90), eicosapentaenoic acid (EPA), and docosapentaenoic acid (DPA5,3) independently showed significant association with low zinc in the HCV + AUD patients. Heavy drinking pattern showed that NDD90 has a significant mediating role in the representation of the relationship between candidate ω3 PUFAs and zinc uniquely in the HCV + AUD patients. Low serum zinc showed a distinctively stronger association with total and candidate ω3s in the HCV + AUD patients compared to the patients with HCV or AUD alone, supporting dual mechanism involved in the exacerbation of the proinflammatory response in this comorbid cohort. This trial is registered with NCT#00001673.
Collapse
|
5
|
Balaramnavar VM, Ahmad K, Saeed M, Ahmad I, Kamal M, Jawed T. Pharmacophore-based approaches in the rational repurposing technique for FDA approved drugs targeting SARS-CoV-2 Mpro. RSC Adv 2020; 10:40264-40275. [PMID: 35520834 PMCID: PMC9057460 DOI: 10.1039/d0ra06038k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/25/2020] [Accepted: 10/10/2020] [Indexed: 01/20/2023] Open
Abstract
Novel coronavirus (CoV) is the primary etiological virus responsible for the pandemic that started in Wuhan in 2019–2020. This viral disease is extremely prevalent and has spread around the world. Preventive steps are restricted social contact and isolation of the sick individual to avoid person-to-person transmission. There is currently no cure available for the disease and the search for novel medications or successful therapeutics is intensive, time-consuming, and laborious. An effective approach in managing this pandemic is to develop therapeutically active drugs by repurposing or repositioning existing drugs or active molecules. In this work, we developed a feature-based pharmacophore model using reported compounds that inhibit SARS-CoV-2. This model was validated and used to screen the library of 565 FDA-approved drugs against the viral main protease (Mpro), resulting in 66 drugs interacting with Mpro with higher binding scores in docking experiments than drugs previously reported for the target diseases. The study identified drugs from many important classes, viz. D2 receptor antagonist, HMG-CoA inhibitors, HIV reverse transcriptase and protease inhibitors, anticancer agents and folate inhibitors, which can potentially interact with and inhibit the SARS-CoV-2 Mpro. This validated approach may help in finding the urgently needed drugs for the SARS-CoV-2 pandemic with infinitesimal chances of failure. Novel coronavirus (CoV) is the primary etiological virus responsible for the pandemic that started in Wuhan in 2019–2020.![]()
Collapse
Affiliation(s)
- Vishal M. Balaramnavar
- Department of Medicinal and Pharmaceutical Chemistry
- Global Institute of Pharmaceutical Education and Research
- Kashipur
- India
| | - Khurshid Ahmad
- Department of Medical Biotechnology
- Yeungnam University
- Gyeongsan 38541
- South Korea
| | - Mohd Saeed
- Department of Biology College of Scienes
- University of Hail
- Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Science
- College of Applied Medical Sciences
- King Khalid University
- Abha
- Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- Prince Sattam Bin Abdulaziz University
- Al-Kharj 11942
- Kingdom of Saudi Arabia
| | - Talaha Jawed
- Department of Pharmacology
- College of Medicine
- Al Imam Mohammad Ibn Saud Islamic University (IMSIU)
- Riyadh 13317
- Saudi Arabia
| |
Collapse
|
6
|
Moctezuma-Velázquez C, Abraldes JG, Montano-Loza AJ. The Use of Statins in Patients With Chronic Liver Disease and Cirrhosis. ACTA ACUST UNITED AC 2018; 16:226-240. [PMID: 29572618 DOI: 10.1007/s11938-018-0180-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Statins are drugs developed to treat hypercholesterolemia. Its use in patients with liver disease has been limited because one of its potential and most feared side effects is hepatotoxicity. However, there is robust evidence that supports the safety of statins in this population in the absence of severe liver dysfunction. In this review, we will summarize the efficacy and safety of statins in cirrhosis. RECENT FINDINGS Statins are effective in the treatment of dyslipidemia in patients with liver disease, because of their pleiotropic properties. These properties are independent of their effect on cholesterol levels, such as improving endothelial dysfunction or having antioxidant, antifibrotic, anti-inflammatory, antiproliferative, antiangiogenic, proapoptotic, or immunomodulation properties. Statins have been studied in other areas such as in treatment of portal hypertension, prevention of hepatocellular carcinoma, and/or protection against ischemia/reperfusion injury. Approved indications for statins in patients with cirrhosis are those of the general population, including dyslipidemia and increased cardiovascular risk. Compensated cirrhosis is not a contraindication. In patients with decompensated cirrhosis, statins should be prescribed with extreme caution at low doses, and with frequent monitoring of creatinine phosphokinase levels in order to detect adverse events in a timely fashion.
Collapse
Affiliation(s)
- Carlos Moctezuma-Velázquez
- Division of Gastroenterology and Liver Unit, University of Alberta, 8540 112 Street NW, Zeidler Ledcor Centre, Room 1-20B, Edmonton, Alberta, T6G 2X8, Canada
| | - Juan G Abraldes
- Division of Gastroenterology and Liver Unit, University of Alberta, 8540 112 Street NW, Zeidler Ledcor Centre, Room 1-20B, Edmonton, Alberta, T6G 2X8, Canada
| | - Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, University of Alberta, 8540 112 Street NW, Zeidler Ledcor Centre, Room 1-20B, Edmonton, Alberta, T6G 2X8, Canada.
| |
Collapse
|
7
|
Abstract
BACKGROUND Fluvastatin is thought to be the least potent statin on the market, however, the dose-related magnitude of effect of fluvastatin on blood lipids is not known. OBJECTIVES Primary objectiveTo quantify the effects of various doses of fluvastatin on blood total cholesterol, low-density lipoprotein (LDL cholesterol), high-density lipoprotein (HDL cholesterol), and triglycerides in participants with and without evidence of cardiovascular disease.Secondary objectivesTo quantify the variability of the effect of various doses of fluvastatin.To quantify withdrawals due to adverse effects (WDAEs) in randomised placebo-controlled trials. SEARCH METHODS The Cochrane Hypertension Information Specialist searched the following databases for randomised controlled trials up to February 2017: the Cochrane Central Register of Controlled Trials (CENTRAL) (2017, Issue 1), MEDLINE (1946 to February Week 2 2017), MEDLINE In-Process, MEDLINE Epub Ahead of Print, Embase (1974 to February Week 2 2017), the World Health Organization International Clinical Trials Registry Platform, CDSR, DARE, Epistemonikos and ClinicalTrials.gov. We also contacted authors of relevant papers regarding further published and unpublished work. No language restrictions were applied. SELECTION CRITERIA Randomised placebo-controlled and uncontrolled before and after trials evaluating the dose response of different fixed doses of fluvastatin on blood lipids over a duration of three to 12 weeks in participants of any age with and without evidence of cardiovascular disease. DATA COLLECTION AND ANALYSIS Two review authors independently assessed eligibility criteria for studies to be included, and extracted data. We entered data from placebo-controlled and uncontrolled before and after trials into Review Manager 5 as continuous and generic inverse variance data, respectively. WDAEs information was collected from the placebo-controlled trials. We assessed all trials using the 'Risk of bias' tool under the categories of sequence generation, allocation concealment, blinding, incomplete outcome data, selective reporting, and other potential biases. MAIN RESULTS One-hundred and forty-five trials (36 placebo controlled and 109 before and after) evaluated the dose-related efficacy of fluvastatin in 18,846 participants. The participants were of any age with and without evidence of cardiovascular disease, and fluvastatin effects were studied within a treatment period of three to 12 weeks. Log dose-response data over doses of 2.5 mg to 80 mg revealed strong linear dose-related effects on blood total cholesterol and LDL cholesterol and a weak linear dose-related effect on blood triglycerides. There was no dose-related effect of fluvastatin on blood HDL cholesterol. Fluvastatin 10 mg/day to 80 mg/day reduced LDL cholesterol by 15% to 33%, total cholesterol by 11% to 25% and triglycerides by 3% to 17.5%. For every two-fold dose increase there was a 6.0% (95% CI 5.4 to 6.6) decrease in blood LDL cholesterol, a 4.2% (95% CI 3.7 to 4.8) decrease in blood total cholesterol and a 4.2% (95% CI 2.0 to 6.3) decrease in blood triglycerides. The quality of evidence for these effects was judged to be high. When compared to atorvastatin and rosuvastatin, fluvastatin was about 12-fold less potent than atorvastatin and 46-fold less potent than rosuvastatin at reducing LDL cholesterol. Very low quality of evidence showed no difference in WDAEs between fluvastatin and placebo in 16 of 36 of these short-term trials (risk ratio 1.52 (95% CI 0.94 to 2.45). AUTHORS' CONCLUSIONS Fluvastatin lowers blood total cholesterol, LDL cholesterol and triglyceride in a dose-dependent linear fashion. Based on the effect on LDL cholesterol, fluvastatin is 12-fold less potent than atorvastatin and 46-fold less potent than rosuvastatin. This review did not provide a good estimate of the incidence of harms associated with fluvastatin because of the short duration of the trials and the lack of reporting of adverse effects in 56% of the placebo-controlled trials.
Collapse
Affiliation(s)
- Stephen P Adams
- University of British ColumbiaDepartment of Anesthesiology, Pharmacology and Therapeutics2176 Health Sciences Mall, Medical Block CVancouverBCCanadaV6T 1Z3
| | - Sarpreet S Sekhon
- University of British ColumbiaDepartment of Anesthesiology, Pharmacology and Therapeutics2176 Health Sciences Mall, Medical Block CVancouverBCCanadaV6T 1Z3
| | - Michael Tsang
- McMaster UniversityDepartment of Internal Medicine, Internal Medicine Residency Office, Faculty of Medicine1200 Main Street WestHSC 3W10HamiltonONCanadaL8N 3N5
| | - James M Wright
- University of British ColumbiaDepartment of Anesthesiology, Pharmacology and Therapeutics2176 Health Sciences Mall, Medical Block CVancouverBCCanadaV6T 1Z3
| | | |
Collapse
|
8
|
Mildenberger J, Johansson I, Sergin I, Kjøbli E, Damås JK, Razani B, Flo TH, Bjørkøy G. N-3 PUFAs induce inflammatory tolerance by formation of KEAP1-containing SQSTM1/p62-bodies and activation of NFE2L2. Autophagy 2017; 13:1664-1678. [PMID: 28820283 PMCID: PMC5640206 DOI: 10.1080/15548627.2017.1345411] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inflammation is crucial in the defense against infections but must be tightly controlled to limit detrimental hyperactivation. Our diet influences inflammatory processes and omega-3 polyunsaturated fatty acids (n-3 PUFAs) have known anti-inflammatory effects. The balance of pro- and anti-inflammatory processes is coordinated by macrophages and macroautophagy/autophagy has recently emerged as a cellular process that dampens inflammation. Here we report that the n-3 PUFA docosahexaenoic acid (DHA) transiently induces cytosolic speckles of the autophagic receptor SQSTM1/p62 (sequestosome 1) (described as SQSTM1/p62-bodies) in macrophages. We suggest that the formation of SQSTM1/p62-bodies represents a fast mechanism of NFE2L2/Nrf2 (nuclear factor, erythroid 2 like 2) activation by recruitment of KEAP1 (kelch like ECH associated protein 1). Further, the autophagy receptor TAX1BP1 (Tax1 binding protein 1) and ubiquitin-editing enzyme TNFAIP3/A20 (TNF α induced protein 3) could be identified in DHA-induced SQSTM1/p62-bodies. Simultaneously, DHA strongly dampened the induction of pro-inflammatory genes including CXCL10 (C-X-C motif chemokine ligand 10) and we suggest that formation of SQSTM1/p62-bodies and activation of NFE2L2 leads to tolerance towards selective inflammatory stimuli. Finally, reduced CXCL10 levels were related to the improved clinical outcome in n-3 PUFA-supplemented heart-transplant patients and we propose CXCL10 as a robust marker for the clinical benefits mobilized by n-3 PUFA supplementation.
Collapse
Affiliation(s)
- Jennifer Mildenberger
- a Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences , Norwegian University of Science and Technology , Trondheim , Norway.,b Department of Biomedical Laboratory Science, Faculty of Natural Sciences , Norwegian University of Science and Technology , Trondheim , Norway
| | - Ida Johansson
- a Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences , Norwegian University of Science and Technology , Trondheim , Norway
| | - Ismail Sergin
- d Department of Medicine, Cardiovascular Division , Washington University School of Medicine , St. Louis , MO , USA
| | - Eli Kjøbli
- b Department of Biomedical Laboratory Science, Faculty of Natural Sciences , Norwegian University of Science and Technology , Trondheim , Norway
| | - Jan Kristian Damås
- a Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences , Norwegian University of Science and Technology , Trondheim , Norway.,c Department of Infectious Diseases , St Olav University Hospital , Trondheim , Norway
| | - Babak Razani
- d Department of Medicine, Cardiovascular Division , Washington University School of Medicine , St. Louis , MO , USA.,e Department of Pathology & Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Trude Helen Flo
- a Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences , Norwegian University of Science and Technology , Trondheim , Norway
| | - Geir Bjørkøy
- a Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences , Norwegian University of Science and Technology , Trondheim , Norway.,b Department of Biomedical Laboratory Science, Faculty of Natural Sciences , Norwegian University of Science and Technology , Trondheim , Norway
| |
Collapse
|
9
|
Janicko M, Drazilova S, Pella D, Fedacko J, Jarcuska P. Pleiotropic effects of statins in the diseases of the liver. World J Gastroenterol 2016; 22:6201-6213. [PMID: 27468210 PMCID: PMC4945979 DOI: 10.3748/wjg.v22.i27.6201] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/26/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Statins are a class of molecules that inhibit HMG CoA reductase. They are usually prescribed as a lipid lowering medication. However, there is accumulating evidence that statins have multiple secondary effects both related and unrelated to their lipid-lowering effect. This narrative review of the literature aims to provide the reader with information from clinical studies related to the effect of statin and statins' potential use in patients with liver diseases. In patients with advanced liver disease due to any etiology, statins exhibit an antifibrotic effect possibly through the prevention of hepatic sinusoidal microthrombosis. Two randomized controlled trials confirmed that statins decrease hepatic vein pressure gradient in patients with portal hypertension and improve the survival of patients after variceal bleeding. Lower rates of infections were observed in patients with cirrhosis who received statin treatment. Statins decrease the risk of hepatocellular carcinoma (HCC) in patients with advanced liver disease in general but particularly in patients with chronic hepatitis B and C. Statins in patients with chronic hepatitis C likely increase the virological response to the treatment with pegylated interferon and ribavirin and have the potential to decrease the rate of fibrosis. Finally, data from randomized controlled trials also confirmed that the addition of statin prolongs the survival of patients with advanced HCC even more than sorafenib. Statins are a very promising group of drugs especially in patients with liver disease, where therapeutic options can often be limited. Some indications, such as the prevention of re-bleeding from esophageal varices and the palliative treatment of HCC have been proven through randomized controlled trials, while additional indications still need to be confirmed through prospective studies.
Collapse
|
10
|
Aizawa Y, Seki N, Nagano T, Abe H. Chronic hepatitis C virus infection and lipoprotein metabolism. World J Gastroenterol 2015; 21:10299-10313. [PMID: 26420957 PMCID: PMC4579877 DOI: 10.3748/wjg.v21.i36.10299] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/11/2015] [Accepted: 08/30/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a hepatotrophic virus and a major cause of chronic liver disease, including hepatocellular carcinoma, worldwide. The life cycle of HCV is closely associated with the metabolism of lipids and lipoproteins. The main function of lipoproteins is transporting lipids throughout the body. Triglycerides, free cholesterol, cholesteryl esters, and phospholipids are the major components of the transported lipids. The pathway of HCV assembly and secretion is closely linked to lipoprotein production and secretion, and the infectivity of HCV particles largely depends on the interaction of lipoproteins. Moreover, HCV entry into hepatocytes is strongly influenced by lipoproteins. The key lipoprotein molecules mediating these interactions are apolipoproteins. Apolipoproteins are amphipathic proteins on the surface of a lipoprotein particle, which help stabilize lipoprotein structure. They perform a key role in lipoprotein metabolism by serving as receptor ligands, enzyme co-factors, and lipid transport carriers. Understanding the association between the life cycle of HCV and lipoprotein metabolism is important because each step of the life cycle of HCV that is associated with lipoprotein metabolism is a potential target for anti-HCV therapy. In this article, we first concisely review the nature of lipoprotein and its metabolism to better understand the complicated interaction of HCV with lipoprotein. Then, we review the outline of the processes of HCV assembly, secretion, and entry into hepatocytes, focusing on the association with lipoproteins. Finally, we discuss the clinical aspects of disturbed lipid/lipoprotein metabolism and the significance of dyslipoproteinemia in chronic HCV infection with regard to abnormal apolipoproteins.
Collapse
|
11
|
Bridge SH, Sheridan DA, Felmlee DJ, Crossey MME, Fenwick FI, Lanyon CV, Dubuc G, Seidah NG, Davignon J, Thomas HC, Taylor-Robinson SD, Toms GL, Neely RDG, Bassendine MF. PCSK9, apolipoprotein E and lipoviral particles in chronic hepatitis C genotype 3: evidence for genotype-specific regulation of lipoprotein metabolism. J Hepatol 2015; 62:763-70. [PMID: 25463543 DOI: 10.1016/j.jhep.2014.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 10/28/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) associates with lipoproteins to form "lipoviral particles" (LVPs) that can facilitate viral entry into hepatocytes. Initial attachment occurs via heparan sulphate proteoglycans and low-density lipoprotein receptor (LDLR); CD81 then mediates a post-attachment event. Proprotein convertase subtilisin kexin type 9 (PCSK9) enhances the degradation of the LDLR and modulates liver CD81 levels. We measured LVP and PCSK9 in patients chronically infected with HCV genotype (G)3. PCSK9 concentrations were also measured in HCV-G1 to indirectly examine the role of LDLR in LVP clearance. METHODS HCV RNA, LVP (d<1.07g/ml) and non-LVP (d>1.07g/ml) fractions, were quantified in patients with HCV-G3 (n=39) by real time RT-PCR and LVP ratios (LVPr; LVP/(LVP+non-LVP)) were calculated. Insulin resistance (IR) was assessed using the homeostasis model assessment of IR (HOMA-IR). Plasma PCSK9 concentrations were measured by ELISA in HCV-G3 and HCV-G1 (n=51). RESULTS In HCV-G3 LVP load correlated inversely with HDL-C (r=-0.421; p=0.008), and apoE (r=-0.428; p=0.013). The LVPr varied more than 35-fold (median 0.286; range 0.027 to 0.969); PCSK9 was the strongest negative predictor of LVPr (R(2)=16.2%; p=0.012). HOMA-IR was not associated with LVP load or LVPr. PCSK9 concentrations were significantly lower in HCV-G3 compared to HCV-G1 (p<0.001). PCSK9 did not correlate with LDL-C in HCV-G3 or G1. CONCLUSIONS The inverse correlation of LVP with apoE in HCV-G3, compared to the reverse in HCV-G1 suggests HCV genotype-specific differences in apoE mediated viral entry. Lower PCSK9 and LDL concentrations imply upregulated LDLR activity in HCV-G3.
Collapse
Affiliation(s)
- Simon H Bridge
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| | - David A Sheridan
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Institute of Translational & Stratified Medicine, Plymouth University Peninsula School of Medicine & Dentistry, United Kingdom
| | - Daniel J Felmlee
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Inserm U1110, University of Strasbourg and Center for Liver and Digestive Diseases, Strasbourg University Hospitals, 3 Rue Koeberlé, F-67000 Strasbourg, France
| | - Mary M E Crossey
- Liver Unit, Department of Medicine, Imperial College London, St Mary's Hospital Campus, Praed Street, London, United Kingdom
| | - Fiona I Fenwick
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Clare V Lanyon
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Geneviève Dubuc
- Hyperlipidemia and Atherosclerosis Research Group, Clinical Research Institute of Montréal (IRCM), Montréal, Canada; University of Montréal, Montréal, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montréal, Montréal, Canada; University of Montréal, Montréal, Canada
| | - Jean Davignon
- Hyperlipidemia and Atherosclerosis Research Group, Clinical Research Institute of Montréal (IRCM), Montréal, Canada; University of Montréal, Montréal, Canada
| | - Howard C Thomas
- Liver Unit, Department of Medicine, Imperial College London, St Mary's Hospital Campus, Praed Street, London, United Kingdom
| | - Simon D Taylor-Robinson
- Liver Unit, Department of Medicine, Imperial College London, St Mary's Hospital Campus, Praed Street, London, United Kingdom
| | - Geoffrey L Toms
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - R Dermot G Neely
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Clinical Biochemistry, Newcastle upon Tyne Hospitals NHS Foundation Trust, Royal Victoria Infirmary, United Kingdom
| | - Margaret F Bassendine
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|