1
|
Dywicki J, Buitrago-Molina LE, Noyan F, Schlue J, Iordanidis K, Manns MP, Wedemeyer H, Jaeckel E, Hardtke-Wolenski M. Splenectomy induces biochemical remission and regeneration in experimental murine autoimmune hepatitis. Eur J Med Res 2022; 27:284. [PMID: 36496477 PMCID: PMC9737750 DOI: 10.1186/s40001-022-00933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic immune-mediated inflammatory liver disease. It is known that AIH originates not from the spleen but from the liver itself. Nonetheless, most details of the etiology and pathophysiology are unknown. We induced experimental murine AIH (emAIH) in NOD/Ltj mice by single administration of a replication-deficient adenovirus and performed splenectomy during late-stage disease. Biochemical disease remission occurred, which was characterized by improvement in transaminase levels. The causes of this remission included a shift in the transcriptomic signature of serum proteins toward regeneration. At the cellular level, there was a marked decrease in activated CD8+ T cells and an increase in intrahepatic regulatory T cells (Tregs). Here, intrahepatic Treg numbers correlated with biochemical remission. Notably, an imbalance in the T-cell/B-cell ratio was observed, with a disproportionate increase in total B cells. In summary, intrahepatic increases in Tregs, biochemical remission, and regeneration could be induced by splenectomy in the late stage of emAIH.
Collapse
Affiliation(s)
- Janine Dywicki
- grid.10423.340000 0000 9529 9877Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Laura Elisa Buitrago-Molina
- grid.10423.340000 0000 9529 9877Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Fatih Noyan
- grid.10423.340000 0000 9529 9877Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jerome Schlue
- grid.10423.340000 0000 9529 9877Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Konstantinos Iordanidis
- grid.10423.340000 0000 9529 9877Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael P. Manns
- grid.10423.340000 0000 9529 9877Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- grid.10423.340000 0000 9529 9877Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Elmar Jaeckel
- grid.10423.340000 0000 9529 9877Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany ,grid.17063.330000 0001 2157 2938Department of Liver Transplantation, Multi Organ Transplant Program, University Health Network, University of Toronto, Toronto, Canada
| | - Matthias Hardtke-Wolenski
- grid.10423.340000 0000 9529 9877Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany ,grid.5718.b0000 0001 2187 5445Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Dywicki J, Buitrago‐Molina LE, Noyan F, Davalos‐Misslitz AC, Hupa‐Breier KL, Lieber M, Hapke M, Schlue J, Falk CS, Raha S, Prinz I, Koenecke C, Manns MP, Wedemeyer H, Hardtke‐Wolenski M, Jaeckel E. The Detrimental Role of Regulatory T Cells in Nonalcoholic Steatohepatitis. Hepatol Commun 2022; 6:320-333. [PMID: 34532981 PMCID: PMC8793993 DOI: 10.1002/hep4.1807] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is induced by steatosis and metabolic inflammation. While involvement of the innate immune response has been shown, the role of the adaptive immune response in NASH remains controversial. Likewise, the role of regulatory T cells (Treg) in NASH remains unclear although initial clinical trials aim to target these regulatory responses. High-fat high-carbohydrate (HF-HC) diet feeding of NASH-resistant BALB/c mice as well as the corresponding recombination activating 1 (Rag)-deficient strain was used to induce NASH and to study the role of the adaptive immune response. HF-HC diet feeding induced strong activation of intrahepatic T cells in BALB/c mice, suggesting an antigen-driven effect. In contrast, the effects of the absence of the adaptive immune response was notable. NASH in BALB/c Rag1-/- mice was substantially worsened and accompanied by a sharp increase of M1-like macrophage numbers. Furthermore, we found an increase in intrahepatic Treg numbers in NASH, but either adoptive Treg transfer or anti-cluster of differentiation (CD)3 therapy unexpectedly increased steatosis and the alanine aminotransferase level without otherwise affecting NASH. Conclusion: Although intrahepatic T cells were activated and marginally clonally expanded in NASH, these effects were counterbalanced by increased Treg numbers. The ablation of adaptive immunity in murine NASH led to marked aggravation of NASH, suggesting that Tregs are not regulators of metabolic inflammation but rather enhance it.
Collapse
Affiliation(s)
- Janine Dywicki
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Laura Elisa Buitrago‐Molina
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
- Department of Gastroenterology and HepatologyEssen University HospitalUniversity Duisburg‐EssenEssenGermany
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Ana C. Davalos‐Misslitz
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Katharina L. Hupa‐Breier
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Maren Lieber
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Martin Hapke
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Jerome Schlue
- Institute of PathologyHannover Medical SchoolHannoverGermany
| | - Christine S. Falk
- Institute of Transplant ImmunologyHannover Medical SchoolHannoverGermany
| | - Solaiman Raha
- Institute of ImmunologyHannover Medical SchoolHannoverGermany
| | - Immo Prinz
- Institute of ImmunologyHannover Medical SchoolHannoverGermany
- Institute of Systems ImmunologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christian Koenecke
- Institute of ImmunologyHannover Medical SchoolHannoverGermany
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell TransplantationHannover Medical SchoolHannoverGermany
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Heiner Wedemeyer
- Department of Gastroenterology and HepatologyEssen University HospitalUniversity Duisburg‐EssenEssenGermany
| | - Matthias Hardtke‐Wolenski
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
- Department of Gastroenterology and HepatologyEssen University HospitalUniversity Duisburg‐EssenEssenGermany
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
3
|
Sirbe C, Simu G, Szabo I, Grama A, Pop TL. Pathogenesis of Autoimmune Hepatitis-Cellular and Molecular Mechanisms. Int J Mol Sci 2021; 22:13578. [PMID: 34948375 PMCID: PMC8703580 DOI: 10.3390/ijms222413578] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
Pediatric autoimmune liver disorders include autoimmune hepatitis (AIH), autoimmune sclerosing cholangitis (ASC), and de novo AIH after liver transplantation. AIH is an idiopathic disease characterized by immune-mediated hepatocyte injury associated with the destruction of liver cells, causing inflammation, liver failure, and fibrosis, typically associated with autoantibodies. The etiology of AIH is not entirely unraveled, but evidence supports an intricate interaction among genetic variants, environmental factors, and epigenetic modifications. The pathogenesis of AIH comprises the interaction between specific genetic traits and molecular mimicry for disease development, impaired immunoregulatory mechanisms, including CD4+ T cell population and Treg cells, alongside other contributory roles played by CD8+ cytotoxicity and autoantibody production by B cells. These findings delineate an intricate pathway that includes gene to gene and gene to environment interactions with various drugs, viral infections, and the complex microbiome. Epigenetics emphasizes gene expression through hereditary and reversible modifications of the chromatin architecture without interfering with the DNA sequence. These alterations comprise DNA methylation, histone transformations, and non-coding small (miRNA) and long (lncRNA) RNA transcriptions. The current first-line therapy comprises prednisolone plus azathioprine to induce clinical and biochemical remission. Further understanding of the cellular and molecular mechanisms encountered in AIH may depict their impact on clinical aspects, detect biomarkers, and guide toward novel, effective, and better-targeted therapies with fewer side effects.
Collapse
Affiliation(s)
- Claudia Sirbe
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Gelu Simu
- Cardiology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Cardiology Department, Rehabilitation Hospital, 400066 Cluj-Napoca, Romania
| | - Iulia Szabo
- Department of Rheumatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Alina Grama
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Tudor Lucian Pop
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Patel AM, Liu YS, Davies SP, Brown RM, Kelly DA, Scheel-Toellner D, Reynolds GM, Stamataki Z. The Role of B Cells in Adult and Paediatric Liver Injury. Front Immunol 2021; 12:729143. [PMID: 34630404 PMCID: PMC8495195 DOI: 10.3389/fimmu.2021.729143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
B lymphocytes are multitasking cells that direct the immune response by producing pro- or anti-inflammatory cytokines, by presenting processed antigen for T cell activation and co-stimulation, and by turning into antibody-secreting cells. These functions are important to control infection in the liver but can also exacerbate tissue damage and fibrosis as part of persistent inflammation that can lead to end stage disease requiring a transplant. In transplantation, immunosuppression increases the incidence of lymphoma and often this is of B cell origin. In this review we bring together information on liver B cell biology from different liver diseases, including alcohol-related and metabolic fatty liver disease, autoimmune hepatitis, primary biliary and primary sclerosing cholangitis, viral hepatitis and, in infants, biliary atresia. We also discuss the impact of B cell depletion therapy in the liver setting. Taken together, our analysis shows that B cells are important in the pathogenesis of liver diseases and that further research is necessary to fully characterise the human liver B cell compartment.
Collapse
Affiliation(s)
- Arzoo M. Patel
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Yuxin S. Liu
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Scott P. Davies
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Rachel M. Brown
- Department of Histopathology, Queen Elizabeth Hospital, Birmingham Women’s and Children’s National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Deirdre A. Kelly
- The Liver Unit, Birmingham Women’s and Children’s Hospital and the University of Birmingham, Birmingham, United Kingdom
| | - Dagmar Scheel-Toellner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Gary M. Reynolds
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- The Liver Unit, Birmingham Women’s and Children’s Hospital and the University of Birmingham, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
5
|
Buitrago-Molina LE, Dywicki J, Noyan F, Schepergerdes L, Pietrek J, Lieber M, Schlue J, Manns MP, Wedemeyer H, Jaeckel E, Hardtke-Wolenski M. Anti-CD20 Therapy Alters the Protein Signature in Experimental Murine AIH, but Not Exclusively towards Regeneration. Cells 2021; 10:cells10061471. [PMID: 34208308 PMCID: PMC8231180 DOI: 10.3390/cells10061471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Autoimmune hepatitis (AIH) is a chronic autoimmune inflammatory disease that usually requires lifelong immunosuppression. Frequent recurrences after the discontinuation of therapy indicate that intrahepatic immune regulation is not restored by current treatments. Studies of other autoimmune diseases suggest that temporary depletion of B cells can improve disease progression in the long term. Methods: We tested a single administration of anti-CD20 antibodies to reduce B cells and the amount of IgG to induce intrahepatic immune tolerance. We used our experimental murine AIH (emAIH) model and treated the mice with anti-CD20 during the late stage of the disease. Results: After treatment, the mice showed the expected reductions in B cells and serum IgGs, but no improvements in pathology. However, all treated animals showed a highly altered serum protein expression pattern, which was a balance between inflammation and regeneration. Conclusions: In conclusion, anti-CD20 therapy did not produce clinically measurable results because it triggered inflammation, as well as regeneration, at the proteomic level. This finding suggests that anti-CD20 is ineffective as a sole treatment for AIH or emAIH.
Collapse
Affiliation(s)
- Laura Elisa Buitrago-Molina
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Janine Dywicki
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Lena Schepergerdes
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Julia Pietrek
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Maren Lieber
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Jerome Schlue
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany;
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (L.E.B.-M.); (J.D.); (F.N.); (L.S.); (M.L.); (M.P.M.); (H.W.); (E.J.)
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
- Correspondence: ; Tel.: +49-201-723-6081; Fax: +49-201-723-6915
| |
Collapse
|
6
|
Splenectomy Prior to Experimental Induction of Autoimmune Hepatitis Promotes More Severe Hepatic Inflammation, Production of IL-17 and Apoptosis. Biomedicines 2021; 9:biomedicines9010058. [PMID: 33435354 PMCID: PMC7827897 DOI: 10.3390/biomedicines9010058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 01/25/2023] Open
Abstract
Autoimmune hepatitis (AIH) is detected at a late stage in the course of the disease. Therefore, induction and etiology are largely unclear. It is controversial if the induction of autoimmunity occurs in the liver or in the spleen. In our experimental murine AIH model, the induction of autoimmunity did not occur in the spleen. Instead, a protective role of the spleen could be more likely. Therefore, we splenectomized mice followed by induction of experimental murine AIH. Splenectomized mice presented more severe portal inflammation. Furthermore, these mice had more IL-17, IL-23 receptor (IL-23R) and caspase 3 (casp3) and a decreased amount of erythropoietin in serum, while intrahepatic T cell compartments were unaffected. These results indicate that the spleen is not necessary for induction of AIH, and splenectomy disrupts the ability to immune regulate the intensity of hepatic inflammation, production of IL-17 and apoptosis.
Collapse
|
7
|
Buitrago-Molina LE, Pietrek J, Noyan F, Schlue J, Manns MP, Wedemeyer H, Hardtke-Wolenski M, Jaeckel E. Treg-specific IL-2 therapy can reestablish intrahepatic immune regulation in autoimmune hepatitis. J Autoimmun 2020; 117:102591. [PMID: 33387980 DOI: 10.1016/j.jaut.2020.102591] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022]
Abstract
Autoimmune hepatitis (AIH) is a chronic autoimmune inflammatory disease that usually requires life-long immunosuppression. Frequent relapses after discontinuation of therapy indicate that intrahepatic immune regulation is not restored by current therapies. As steroid therapy preferentially depletes intrahepatic regulatory T cell (Tregs), immune regulation might be re-established by increasing and functionally strengthening intrahepatic Tregs. In recent clinical trials with low dose IL-2, the Treg compartment was strengthened in autoimmune diseases. Therefore, we tested complexed IL-2/anti-IL-2 to increase the selectivity for Tregs. We used our model of experimental murine AIH (emAIH) and treated the mice with complexed IL-2/anti-Il-2 in the late course of the disease. The mice showed increased intrahepatic and systemic Treg numbers after treatment and a reduction in activated, intrahepatic effector T cells (Teffs). This resulted in a reduction in liver-specific ALT levels and a molecular pattern similar to that of healthy individuals. In conclusion, complexed IL-2/anti-IL-2 restored the balance between Tregs and Teffs within the liver, thereby improving the course of emAIH. Treg-specific IL-2 augmentation offers new hope for reestablishing immune tolerance in patients with AIH.
Collapse
Affiliation(s)
- Laura Elisa Buitrago-Molina
- Dept. of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany; Dept. of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Julia Pietrek
- Dept. of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Fatih Noyan
- Dept. of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jerome Schlue
- Inst. of Pathology, Hannover Medical School, Hannover, Germany
| | - Michael P Manns
- Dept. of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Dept. of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany; Dept. of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Matthias Hardtke-Wolenski
- Dept. of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany; Dept. of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Elmar Jaeckel
- Dept. of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Liu SP, Bian ZH, Zhao ZB, Wang J, Zhang W, Leung PSC, Li L, Lian ZX. Animal Models of Autoimmune Liver Diseases: a Comprehensive Review. Clin Rev Allergy Immunol 2020; 58:252-271. [PMID: 32076943 DOI: 10.1007/s12016-020-08778-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autoimmune liver diseases (AILDs) are potentially life-threatening chronic liver diseases which include autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, and recently characterized IgG4-related sclerosing cholangitis. They are caused by immune attack on hepatocytes or bile ducts, with different mechanisms and clinical manifestations. The etiologies of AILDs include a susceptible genetic background, environment insults, infections, and changes of commensal microbiota, but remain complicated. Understanding of the underlying mechanisms of AILDs is mandatory for early diagnosis and intervention, which is of great importance for better prognosis. Thus, animal models are developed to mimic the pathogenesis, find biomarkers for early diagnosis, and for therapeutic attempts of AILDs. However, no animal models can fully recapitulate features of certain AILD, especially the late stages of diseases. Certain limitations include different living condition, cell composition, and time frame of disease development and resolution. Moreover, there is no IgG4 in rodents which exists in human. Nevertheless, the understanding and therapy of AILDs have been greatly advanced by the development and mechanistic investigation of animal models. This review will provide a comprehensive overview of traditional and new animal models that recapitulate different features and etiologies of distinct AILDs.
Collapse
Affiliation(s)
- Shou-Pei Liu
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zhen-Hua Bian
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi-Bin Zhao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jinjun Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Weici Zhang
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Patrick S C Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Liang Li
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China. .,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Zhe-Xiong Lian
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China. .,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Römermann D, Ansari N, Schultz-Moreira AR, Michael A, Marhenke S, Hardtke-Wolenski M, Longerich T, Manns MP, Wedemeyer H, Vogel A, Buitrago-Molina LE. Absence of Atg7 in the liver disturbed hepatic regeneration after liver injury. Liver Int 2020; 40:1225-1238. [PMID: 32141704 DOI: 10.1111/liv.14425] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Autophagy is a critical process in cell survival and the maintenance of homeostasis. However, the implementation of therapeutic approaches based on autophagy mechanisms after liver damage is still challenging. METHODS We used a hepatospecific Atg7-deficient murine model to address this question. RESULTS We showed that the proliferation and regeneration capacity of Atg7-deficient hepatocytes was impaired. On the one hand, Atg7-deficient hepatocytes showed steady-state hyperproliferation. On the other hand, external triggers such as partial hepatectomy (PHx) or cell transplantation did not induce hepatocellular proliferation or liver repopulation. After PHx, hepatocyte proliferation was strongly decreased, accompanied by high mortality. This increase in mortality could be overcome by pharmacological mTOR inhibition. In accordance with hepatocyte hypoproliferation after damage, Atg7-deficient hepatocytes failed to repopulate the liver in a hepatic injury model. Atg7-deficient mice showed hepatic hypertrophy, transient cellular hypertrophy, and high transaminase levels followed by strong perisinusoidal/pericellular fibrosis with age. Their elevated modified hepatic activity index (mHAI) was almost exclusively due to apoptosis without any inflammation. These parameters were associated with variations in the triglyceride content and compromised lipid droplet formation after PHx. Mechanistically, we also observed a modulation of HGF, PAK4, NOTCH3 and YES1, which are proteins involved in cell cycle regulation. CONCLUSION We demonstrated the important role of autophagy in the regeneration capacity of hepatocytes. We showed the causative relationship between autophagy and triglycerides that is essential for promoting liver recovery. Finally, pharmacological mTOR inhibition overcame the impact of autophagy deficiency after liver damage and prevented mortality.
Collapse
Affiliation(s)
- Dorothee Römermann
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Nadiea Ansari
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Adriana Rita Schultz-Moreira
- Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| | - Alina Michael
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Silke Marhenke
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| | - Thomas Longerich
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Laura Elisa Buitrago-Molina
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| |
Collapse
|