1
|
Nielsen MH, Nøhr-Meldgaard J, Møllerhøj MB, Oró D, Pors SE, Andersen MW, Kamzolas I, Petsalaki E, Vacca M, Harder LM, Perfield JW, Veidal S, Hansen HH, Feigh M. Characterization of six clinical drugs and dietary intervention in the nonobese CDAA-HFD mouse model of MASH and progressive fibrosis. Am J Physiol Gastrointest Liver Physiol 2025; 328:G51-G71. [PMID: 39404770 DOI: 10.1152/ajpgi.00110.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 12/17/2024]
Abstract
The choline-deficient l-amino acid defined-high-fat diet (CDAA-HFD) mouse model is widely used in preclinical metabolic dysfunction-associated steatohepatitis (MASH) research. To validate the CDAA-HFD mouse, we evaluated disease progression and responsiveness to dietary and pharmacological interventions with semaglutide, lanifibranor, elafibranor, obeticholic acid (OCA), firsocostat, and resmetirom. Disease phenotyping was performed in C57BL/6J mice fed CDAA-HFD for 3-20 wk and ranked using the MASLD Human Proximity Score (MHPS). Semaglutide, lanifibranor, elafibranor, OCA, firsocostat, or resmetirom were profiled as treatment intervention for 8 wk, starting after 6 wk of CDAA-HFD feeding. Semaglutide and lanifibranor were further evaluated as early (preventive) therapy for 9 wk, starting 3 wk after CDAA-HFD diet feeding. In addition, benefits of dietary intervention (chow reversal) for 8 wk were characterized following 6 wk of CDAA-HFD feeding. CDAA-HFD mice demonstrated a nonobese phenotype with fast onset and progression of MASH and fibrosis, high similarity to human MASH-fibrosis, and tumor development after 20 wk of diet-induction. Semaglutide and lanifibranor partially reversed fibrosis when administered as prevention but not as treatment intervention. Elafibranor was the only interventional drug therapy to improve fibrosis. In comparison, chow-reversal resulted in complete regression of steatosis with improved liver inflammation and fibrosis in CDAA-HFD mice. CDAA-HFD mice recapitulate histological hallmarks of advanced MASH with progressive severe fibrosis, however, in the absence of a clinical translational obese dysmetabolic phenotype. CDAA-HFD mice are suitable for profiling drug candidates directly targeting hepatic lipid metabolism, inflammation, and fibrosis. The timing of pharmacological intervention is critical for determining antifibrotic drug efficacy in the model.NEW & NOTEWORTHY The CDAA-HFD mouse model is widely used in preclinical MASH research, but validation of the model is lacking. This study presents the longitudinal characterization of disease progression. Furthermore, late-stage clinical compounds and dietary intervention (chow reversal) display distinct hepatoprotective effects in the model. Collectively, the study provides critical information guiding the use of the CDAA-HFD mouse model in preclinical drug discovery for MASH and fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ioannis Kamzolas
- TVP Lab, WT/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Michele Vacca
- TVP Lab, WT/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
- Laboratory of Liver Metabolism and MASLD, Roger Williams Institute of Hepatology, London, United Kingdom
| | - Lea Mørch Harder
- Research and Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - James W Perfield
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States
| | - Sanne Veidal
- Research and Early Development, Novo Nordisk A/S, Måløv, Denmark
| | | | | |
Collapse
|
2
|
Karnawat K, Parthasarathy R, Sakhrie M, Karthik H, Krishna KV, Balachander GM. Building in vitro models for mechanistic understanding of liver regeneration in chronic liver diseases. J Mater Chem B 2024; 12:7669-7691. [PMID: 38973693 DOI: 10.1039/d4tb00738g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The liver has excellent regeneration potential and attains complete functional recovery from partial hepatectomy. The regenerative mechanisms malfunction in chronic liver diseases (CLDs), which fuels disease progression. CLDs account for 2 million deaths per year worldwide. Pathophysiological studies with clinical correlation have shown evidence of deviation of normal regenerative mechanisms and its contribution to fueling fibrosis and disease progression. However, we lack realistic in vitro models that can allow experimental manipulation for mechanistic understanding of liver regeneration in CLDs and testing of candidate drugs. In this review, we aim to provide the framework for building appropriate organotypic models for dissecting regenerative responses in CLDs, with the focus on non-alcoholic steatohepatitis (NASH). By drawing parallels with development and hepatectomy, we explain the selection of critical components such as cells, signaling, and, substrate-driven biophysical cues to build an appropriate CLD model. We highlight the organoid-based organotypic models available for NASH disease modeling, including organ-on-a-chip and 3D bioprinted models. With the focus on bioprinting as a fabrication method, we prescribe building in vitro CLD models and testing schemes for exploring the regenerative responses in the bioprinted model.
Collapse
Affiliation(s)
- Khushi Karnawat
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Rithika Parthasarathy
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Mesevilhou Sakhrie
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Harikeshav Karthik
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Konatala Vibhuvan Krishna
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Gowri Manohari Balachander
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| |
Collapse
|
3
|
Rathnayake DW, Sooriyaarachchi P, Niriella MA, Ediriweera D, Perera J. Herbal treatments for non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. ADVANCES IN INTEGRATIVE MEDICINE 2024. [DOI: 10.1016/j.aimed.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Unagolla JM, Das S, Flanagan R, Oehler M, Menon JU. Targeting chronic liver diseases: Molecular markers, drug delivery strategies and future perspectives. Int J Pharm 2024; 660:124381. [PMID: 38917958 PMCID: PMC11246230 DOI: 10.1016/j.ijpharm.2024.124381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Chronic liver inflammation, a pervasive global health issue, results in millions of annual deaths due to its progression from fibrosis to the more severe forms of cirrhosis and hepatocellular carcinoma (HCC). This insidious condition stems from diverse factors such as obesity, genetic conditions, alcohol abuse, viral infections, autoimmune diseases, and toxic accumulation, manifesting as chronic liver diseases (CLDs) such as metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction-associated steatohepatitis (MASH), alcoholic liver disease (ALD), viral hepatitis, drug-induced liver injury, and autoimmune hepatitis. Late detection of CLDs necessitates effective treatments to inhibit and potentially reverse disease progression. However, current therapies exhibit limitations in consistency and safety. A potential breakthrough lies in nanoparticle-based drug delivery strategies, offering targeted delivery to specific liver cell types, such as hepatocytes, Kupffer cells, and hepatic stellate cells. This review explores molecular targets for CLD treatment, ongoing clinical trials, recent advances in nanoparticle-based drug delivery, and the future outlook of this research field. Early intervention is crucial for chronic liver disease. Having a comprehensive understanding of current treatments, molecular biomarkers and novel nanoparticle-based drug delivery strategies can have enormous impact in guiding future strategies for the prevention and treatment of CLDs.
Collapse
Affiliation(s)
- Janitha M Unagolla
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Subarna Das
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Riley Flanagan
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Marin Oehler
- Department of Biomedical Engineering, College of Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
5
|
Shen X, Yu Z, Wei C, Hu C, Chen J. Iron metabolism and ferroptosis in nonalcoholic fatty liver disease: what is our next step? Am J Physiol Endocrinol Metab 2024; 326:E767-E775. [PMID: 38506752 PMCID: PMC11376490 DOI: 10.1152/ajpendo.00260.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with increasing prevalence worldwide. NAFLD could develop from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH), NASH-related fibrosis, cirrhosis, and even hepatocellular carcinoma. However, the mechanism of NAFLD development has not yet been fully defined. Recently, emerging evidence shows that the dysregulated iron metabolism marked by elevated serum ferritin, and ferroptosis are involved in the NAFLD. Understanding iron metabolism and ferroptosis can shed light on the mechanisms of NAFLD development. Here, we summarized studies on iron metabolism and the ferroptosis process involved in NAFLD development to highlight potential medications and therapies for treating NAFLD.
Collapse
Affiliation(s)
- Xiang Shen
- Munich Medical Research School, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ziqi Yu
- Munich Medical Research School, Ludwig Maximilian University of Munich, Munich, Germany
| | - Changli Wei
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| | - Chong Hu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| | - Jianyong Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| |
Collapse
|
6
|
Duman S, Kuru D, Gumussoy M, Kiremitci S, Gokcan H, Ulas B, Ellik Z, Ozercan M, Er RE, Karakaya F, Bodakci E, Erden A, Elhan AH, Savas B, Loomba R, Idilman R. A combination of non-invasive tests for the detection of significant fibrosis in patients with metabolic dysfunction-associated steatotic liver disease is not superior to magnetic resonance elastography alone. Eur Radiol 2024; 34:3882-3888. [PMID: 37987833 DOI: 10.1007/s00330-023-10441-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/04/2023] [Accepted: 10/05/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVES The aims of the present study were to investigate a combination of magnetic resonance elastography (MRE) and vibration-controlled transient elastography (VCTE) or MRE and fibrosis score 4 (FIB-4) in the detection of significant fibrosis in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS Between November 5, 2021, and March 4, 2022, a total of 119 consecutive patients with MASLD were included. Liver stiffness was measured using liver biopsy, MRE, VCTE, and FIB-4. Data were collected from outpatient visit charts. Significant fibrosis was defined as ≥ stage 2 fibrosis. RESULTS All 119 MASLD patients were Caucasian, and their median age was 55 years. MRE, VCTE, and FIB-4 demonstrated significant accuracy in the detection of significant fibrosis with an area under the ROC curve (AUC) of 0.848 ± 0.036 (p < 0.001), 0.632 ± 0.052 (p = 0.012), and 0.664 ± 0.051 (p = 0.001), respectively. However, the diagnostic performance of MRE was superior compared to that of VCTE (AUC difference: 0.216 ± 0.053, p < 0.001) and FIB-4 (AUC difference: 0.184 ± 0.058, p = 0.001). With logistic regression analysis, it was determined that when compared to MRE alone, a combination of MRE and TE (p = 0.880) or MRE and FIB-4 (p = 0.455) were not superior for detecting significant fibrosis. CONCLUSIONS MRE alone is an accurate and non-invasive method for the identification of MASLD patients with significant fibrosis. CLINICAL RELEVANCE STATEMENT Magnetic resonance elastography alone accurately detects significant fibrosis in patients with metabolic dysfunction-associated steatotic liver disease. KEY POINTS • In routine clinical practice, several non-invasive biochemical-based biomarkers and imaging methods are widely used to assess liver fibrosis in patients with metabolic dysfunction-associated steatotic liver disease. • Magnetic resonance elastography (MRE) is more accurate than vibration-controlled transient elastography (VCTE) or fibrosis score 4 (FIB-4) for assessing liver fibrosis and identifying significant fibrosis in patients with metabolic dysfunction-associated steatotic liver disease. • The combination of MRE and VCTE or MRE and FIB-4 was not superior to MRE alone.
Collapse
Affiliation(s)
- Serkan Duman
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey.
| | - Digdem Kuru
- Department of Radiology, Ankara University School of Medicine, Ankara, Turkey
| | - Mesut Gumussoy
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Saba Kiremitci
- Department of Pathology, Ankara University School of Medicine, Ankara, Turkey
| | - Hale Gokcan
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Bahar Ulas
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Zeynep Ellik
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Mubin Ozercan
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Ramazan Erdem Er
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Fatih Karakaya
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Emin Bodakci
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Ayse Erden
- Department of Radiology, Ankara University School of Medicine, Ankara, Turkey
| | - Atilla H Elhan
- Department of Biostatistics, Ankara University School of Medicine, Ankara, Turkey
| | - Berna Savas
- Department of Pathology, Ankara University School of Medicine, Ankara, Turkey
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, CA, USA
| | - Ramazan Idilman
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey.
| |
Collapse
|
7
|
Nie YF, Shang JM, Liu DQ, Meng WQ, Ren HP, Li CH, Wang ZF, Lan J. Apical papilla stem cell-derived exosomes regulate lipid metabolism and alleviate inflammation in the MCD-induced mouse NASH model. Biochem Pharmacol 2024; 222:116073. [PMID: 38395263 DOI: 10.1016/j.bcp.2024.116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/31/2023] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Stem cells from the apical papilla(SCAPs) exhibit remarkable tissue repair capabilities, demonstrate anti-inflammatory and pro-angiogenic effects, positioning them as promising assets in the realm of regenerative medicine. Recently, the focus has shifted towards exosomes derived from stem cells, perceived as safer alternatives while retaining comparable physiological functions. This study delves into the therapeutic implications of exosomes derived from SCAPs in the methionine-choline-deficient (MCD) diet-induced mice non-alcoholic steatohepatitis (NASH) model. We extracted exosomes from SCAPs. During the last two weeks of the MCD diet, mice were intravenously administered SCAPs-derived exosomes at two distinct concentrations (50 μg/mouse and 100 μg/mouse) biweekly. Thorough examinations of physiological and biochemical indicators were performed to meticulously evaluate the impact of exosomes derived from SCAPs on the advancement of NASH in mice induced by MCD diet. This findings revealed significant reductions in body weight loss and liver damage induced by the MCD diet following exosomes treatment. Moreover, hepatic fat accumulation was notably alleviated. Mechanistically, the treatment with exosomes led to an upregulation of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) levels in the liver, enhancing hepatic fatty acid oxidation and transporter gene expression while inhibiting genes associated with fatty acid synthesis. Additionally, exosomes treatment increased the transcription levels of key liver mitochondrial marker proteins and the essential mitochondrial biogenesis factor. Furthermore, the levels of serum inflammatory factors and hepatic tissue inflammatory factor mRNA expression were significantly reduced, likely due to the anti-inflammatory phenotype induced by exosomes in macrophages. The above conclusion suggests that SCAPs-exosomes can improve NASH.
Collapse
Affiliation(s)
- Yi-Fei Nie
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Jia-Ming Shang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Duan-Qin Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Wen-Qing Meng
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Hui-Ping Ren
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Chuan-Hua Li
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhi-Feng Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China.
| | - Jing Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China.
| |
Collapse
|
8
|
Zhu S, Wu Z, Wang W, Wei L, Zhou H. A revisit of drugs and potential therapeutic targets against non-alcoholic fatty liver disease: learning from clinical trials. J Endocrinol Invest 2024; 47:761-776. [PMID: 37839037 DOI: 10.1007/s40618-023-02216-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, with a worldwide prevalence of 25%. Although numerous clinical trials have been conducted over the last few decades, an effective treatment has not been approved yet. Extensive research has accumulated a large amount of data and experience; however, the vast number of clinical trials and new therapeutic targets for NAFLD make it impossible to keep abreast of the relevant information. Therefore, a systematic analysis of the existing trials is necessary. METHODS Here, we reviewed clinical trials on NAFLD registered in the mandated federal database, ClinicalTrials.gov, to generate a detailed overview of the trials related to drugs and therapeutic targets for NAFLD treatment. Following screening for pertinence to therapy, a total of 440 entries were identified that included active trials as well as those that have already been completed, suspended, terminated, or withdrawn. RESULTS We summarize and systematically analyze the state, drug development pipeline, and discovery of treatment targets for NAFLD. We consider possible factors that may affect clinical outcomes. Furthermore, we discussed these results to explore the mechanisms responsible for clinical outcomes. CONCLUSION We summarised the landscape of current clinical trials and suggested the directions for future NAFLD therapy to assist internal medicine specialists in treating the whole clinical spectrum of this highly prevalent liver disease.
Collapse
Affiliation(s)
- S Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Z Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - W Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - L Wei
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| | - H Zhou
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
9
|
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) in the United States is 38%, having increased by 50% within the past 3 decades. The estimated NAFLD prevalence among people with type 2 diabetes is 55-70%. The presence of type 2 diabetes is associated with a higher likelihood of progression of NAFLD to fibrosis development, liver transplant, and death. Cardiovascular disease is the main cause of mortality among people with NAFLD, and the risk of death is significantly higher in people with both NAFLD and type 2 diabetes. NAFLD carries high patient and economic burdens but low awareness among both the general public and health care providers. This article reviews the epidemiology of NAFLD and discusses the need for appropriate risk stratification, referral for specialty care, management of cardiometabolic risk factors, and treatment of the disease. The authors present a call to action to raise awareness of NAFLD and address its increasing burden in a systematic and efficient manner.
Collapse
Affiliation(s)
- Zobair M. Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA; The Global NASH Council, Washington, DC, and the Center for Outcomes Research in Liver Diseases, Washington, DC
| | - Linda Henry
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA; The Global NASH Council, Washington, DC, and the Center for Outcomes Research in Liver Diseases, Washington, DC
| |
Collapse
|
10
|
Branković M, Dukić M, Gmizić T, Popadić V, Nikolić N, Sekulić A, Brajković M, Đokić J, Mahmutović E, Lasica R, Vojnović M, Milovanović T. New Therapeutic Approaches for the Treatment of Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Increased Cardiovascular Risk. Diagnostics (Basel) 2024; 14:229. [PMID: 38275476 PMCID: PMC10814440 DOI: 10.3390/diagnostics14020229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) was previously known as nonalcoholic fatty liver disease (NAFLD). The main characteristic of the disease is the process of long-term liver inflammation, which leads to hepatocyte damage followed by liver fibrosis and eventually cirrhosis. Additionally, these patients are at a greater risk for developing cardiovascular diseases (CVD). They have several pathophysiological mechanisms in common, primarily lipid metabolism disorders and lipotoxicity. Lipotoxicity is a factor that leads to the occurrence of heart disease and the occurrence and progression of atherosclerosis. Atherosclerosis, as a multifactorial disease, is one of the predominant risk factors for the development of ischemic heart disease. Therefore, CVD are one of the most significant carriers of mortality in patients with metabolic syndrome. So far, no pharmacotherapy has been established for the treatment of MASLD, but patients are advised to reduce their body weight and change their lifestyle. In recent years, several trials of different drugs, whose basic therapeutic indications include other diseases, have been conducted. Because it has been concluded that they can have beneficial effects in the treatment of these conditions as well, in this paper, the most significant results of these studies will be presented.
Collapse
Affiliation(s)
- Marija Branković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (T.M.)
| | - Marija Dukić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Tijana Gmizić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Višeslav Popadić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Novica Nikolić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Ana Sekulić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Milica Brajković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Jelena Đokić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Edvin Mahmutović
- Department of Internal Medicine, General Hospital Novi Pazar, 36300 Novi Pazar, Serbia;
| | - Ratko Lasica
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (T.M.)
- Department of Cardiology, Emergency Center, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Marko Vojnović
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Tamara Milovanović
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (T.M.)
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| |
Collapse
|
11
|
Canivet CM, Zheng MH, Qadri S, Vonghia L, Chuah KH, Costentin C, George J, Armandi A, Adams LA, Lange NF, Blanchet O, Moal V, Younes R, Roux M, Chan WK, Sturm N, Eslam M, Bugianesi E, Wang Z, Dufour JF, Francque S, Yki-Järvinen H, Zheng KI, Boursier J. Validation of the Blood Test MACK-3 for the Noninvasive Diagnosis of Fibrotic Nonalcoholic Steatohepatitis: An International Study With 1924 Patients. Clin Gastroenterol Hepatol 2023; 21:3097-3106.e10. [PMID: 37031715 DOI: 10.1016/j.cgh.2023.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/03/2023] [Accepted: 03/24/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND & AIMS Drug development in nonalcoholic steatohepatitis (NASH) is hampered by a high screening failure rate that reaches 60% to 80% in therapeutic trials, mainly because of the absence of fibrotic NASH on baseline liver histology. MACK-3, a blood test including 3 biomarkers (aspartate aminotransferase, homeostasis model assessment, and cytokeratin 18), recently was developed for the noninvasive diagnosis of fibrotic NASH. We aimed to validate the diagnostic accuracy of this noninvasive test in an international multicenter study. METHODS A total of 1924 patients with biopsy-proven nonalcoholic fatty liver disease from 10 centers in Asia, Australia, and Europe were included. The blood test MACK-3 was calculated for all patients. FibroScan-aspartate aminotransferase score (FAST), an elastography-based test for fibrotic NASH, also was available in a subset of 655 patients. Fibrotic NASH was defined as the presence of NASH on liver biopsy with a Nonalcoholic Fatty Liver Disease Activity Score of 4 or higher and fibrosis stage of F2 or higher according to the NASH Clinical Research Network scoring system. RESULTS The area under the receiver operating characteristic of MACK-3 for fibrotic NASH was 0.791 (95% CI 0.768-0.814). Sensitivity at the previously published MACK-3 threshold of less than 0.135 was 91% and specificity at a greater than 0.549 threshold was 85%. The MACK-3 area under the receiver operating characteristic was not affected by age, sex, diabetes, or body mass index. MACK-3 and FAST results were well correlated (Spearman correlation coefficient, 0.781; P < .001). Except for an 8% higher rate of patients included in the grey zone, MACK-3 provided similar accuracy to that of FAST. Both tests included 27% of patients in their rule-in zone, with 85% specificity and 35% false positives (screen failure rate). CONCLUSIONS The blood test MACK-3 is an accurate tool to improve patient selection in NASH therapeutic trials.
Collapse
Affiliation(s)
- Clémence M Canivet
- Service d'Hépato-Gastroentérologie et Oncologie Digestive, Hôpital Universitaire d'Angers, Angers, France; Laboratoire HIFIH UPRES EA3859, SFR ICAT 4208, Université d'Angers, Angers, France
| | - Ming-Hua Zheng
- Nonalcoholic Fatty Liver Disease Research Center, Department of Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sami Qadri
- Department of Medicine, University of Helsinki, Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, University Hospital of Helsinki, Helsinki, Finland
| | - Luisa Vonghia
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium; Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology-Hepatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Kee-Huat Chuah
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Charlotte Costentin
- Grenoble Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, Université Grenoble Alpes, Service d'Hépato-Gastroentérologie, Centre Hospitalier Universitaire Grenoble-Alpes, Grenoble, France
| | - Jacob George
- Storr Liver Centre, Westmead Hospital, University of Sydney, New South Wales, Australia
| | - Angelo Armandi
- Dipartimento di Scienze Mediche, Università di Torino, Turin, Italy
| | - Leon A Adams
- Medical School, University of Western Australia, Perth, Australia
| | - Naomi F Lange
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Odile Blanchet
- CRB-BB-0033-00038, Angers University Hospital, Angers, France
| | - Valérie Moal
- Biochemistry Department, Angers University Hospital, Angers, France
| | - Ramy Younes
- Dipartimento di Scienze Mediche, Università di Torino, Turin, Italy
| | - Marine Roux
- Laboratoire HIFIH UPRES EA3859, SFR ICAT 4208, Université d'Angers, Angers, France
| | - Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nathalie Sturm
- Service d'Anatomie et de Cytologie Pathologique, Centre Hospitalier Universitaire Grenoble-Alpes, La Tronche, France
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Hospital, University of Sydney, New South Wales, Australia
| | | | - Zhengyi Wang
- Medical School, University of Western Australia, Perth, Australia
| | - Jean-François Dufour
- Centre des Maladies Digestives, Lausanne, Switzerland; Swiss Nonalcoholic Steatohepatitis Foundation, Bern, Switzerland
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium; Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology-Hepatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki, Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, University Hospital of Helsinki, Helsinki, Finland
| | - Kenneth I Zheng
- Nonalcoholic Fatty Liver Disease Research Center, Department of Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jérôme Boursier
- Service d'Hépato-Gastroentérologie et Oncologie Digestive, Hôpital Universitaire d'Angers, Angers, France; Laboratoire HIFIH UPRES EA3859, SFR ICAT 4208, Université d'Angers, Angers, France.
| |
Collapse
|
12
|
Borrello MT, Mann D. Chronic liver diseases: From development to novel pharmacological therapies: IUPHAR Review 37. Br J Pharmacol 2023; 180:2880-2897. [PMID: 35393658 DOI: 10.1111/bph.15853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 12/10/2022] Open
Abstract
Chronic liver diseases comprise a broad spectrum of burdensome diseases that still lack effective pharmacological therapies. Our research group focuses on fibrosis, which is a major precursor of liver cirrhosis. Fibrosis consists in a progressive disturbance of liver sinusoidal architecture characterised by connective tissue deposition as a reparative response to tissue injury. Multifactorial events and several types of cells participate in fibrosis initiation and progression, and the process still needs to be completely understood. The development of experimental models of liver fibrosis alongside the identification of critical factors progressing fibrosis to cirrhosis will facilitate the development of more effective therapeutic approaches for such condition. This review provides an overlook of the main process leading to hepatic fibrosis and therapeutic approaches that have emerged from a deep knowledge of the molecular regulation of fibrogenesis in the liver. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Maria Teresa Borrello
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Derek Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
13
|
Dai JJ, Zhang YF, Zhang ZH. Global trends and hotspots of treatment for nonalcoholic fatty liver disease: A bibliometric and visualization analysis (2010-2023). World J Gastroenterol 2023; 29:5339-5360. [PMID: 37899789 PMCID: PMC10600806 DOI: 10.3748/wjg.v29.i37.5339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/26/2023] [Accepted: 09/04/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is chronic, with its progression leading to liver fibrosis and end-stage cirrhosis. Although NAFLD is increasingly common, no treatment guideline has been established. Many mechanistic studies and drug trials have been conducted for new drug development to treat NAFLD. An up-to-date overview on the knowledge structure of NAFLD through bibliometrics, focusing on research hotspots, is necessary to reveal the rational and timely directions of development in this field. AIM To research the latest literature and determine the current trends in treatment for NAFLD. METHODS Publications related to treatment for NAFLD were searched on the Web of Science Core Collection database, from 2010 to 2023. VOSviewers, CiteSpace, and R package "bibliometrix" were used to conduct this bibliometric analysis. The key information was extracted, and the results of the cluster analysis were based on network data for generating and investigating maps for country, institution, journal, and author. Historiography analysis, bursts and cluster analysis, co-occurrence analysis, and trend topic revealed the knowledge structure and research hotspots in this field. GraphPad Prism 9.5.1.733 and Microsoft Office Excel 2019 were used for data analysis and visualization. RESULTS In total, 10829 articles from 120 countries (led by China and the United States) and 8785 institutions were included. The number of publications related to treatment for NAFLD increased annually. While China produced the most publications, the United States was the most cited country, and the United Kingdom collaborated the most from an international standpoint. The University of California-San Diego, Shanghai Jiao Tong University, and Shanghai University of Traditional Chinese Medicine produced the most publications of all the research institutions. The International Journal of Molecular Sciences was the most frequent journal out of the 1523 total journals, and Hepatology was the most cited and co-cited journal. Sanyal AJ was the most cited author, the most co-cited author was Younossi ZM, and the most influential author was Loomba R. The most studied topics included the epidemiology and mechanism of NAFLD, the development of accurate diagnosis, the precise management of patients with NAFLD, and the associated metabolic comorbidities. The major cluster topics were "emerging drug," "glucagon-like peptide-1 receptor agonist," "metabolic dysfunction-associated fatty liver disease," "gut microbiota," and "glucose metabolism." CONCLUSION The bibliometric study identified recent research frontiers and hot directions, which can provide a valuable reference for scholars researching treatments for NAFLD.
Collapse
Affiliation(s)
- Jin-Jin Dai
- Department of Infectious Diseases, Suzhou Hospital of Anhui Medical University, Suzhou 234000, Anhui Province, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Ya-Fei Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Zhen-Hua Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| |
Collapse
|
14
|
Li J, Huang C, Lai L, Wang L, Li M, Tan Y, Zhang T. Selenium hyperaccumulator plant Cardamine enshiensis: from discovery to application. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5515-5529. [PMID: 37355493 DOI: 10.1007/s10653-023-01595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/25/2023] [Indexed: 06/26/2023]
Abstract
Selenium (Se) is an essential trace element for animals and humans. Se biofortification and Se functional agriculture are emerging strategies to satisfy the needs of people who are deficient in Se. With 200 km2 of Se-excess area, Enshi is known as the "world capital of Se." Cardamine enshiensis (C. enshiensis) is a Se hyperaccumulation plant discovered in the Se mine drainage area of Enshi. It is edible and has been approved by National Health Commission of the People's Republic of China as a new source of food, and the annual output value of the Se-rich industry in Enshi City exceeds 60 billion RMB. This review will mainly focus on the discovery and mechanism underlying Se tolerance and Se hyperaccumulation in C. enshiensis and highlight its potential utilization in Se biofortification agriculture, graziery, and human health.
Collapse
Affiliation(s)
- Jiao Li
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuying Huang
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.
| | - Lin Lai
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Li Wang
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Minglong Li
- Second Geological Brigade of Hubei Geological Bureau, Enshi, 445000, Hubei, China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Tao Zhang
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
15
|
Choudhuri G, Shah S, Kulkarni A, Jagtap N, Gaonkar P, Desai A, Adhav C. Non-alcoholic Steatohepatitis in Asians: Current Perspectives and Future Directions. Cureus 2023; 15:e42852. [PMID: 37664266 PMCID: PMC10473263 DOI: 10.7759/cureus.42852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a subset of non-alcoholic fatty liver disease (NAFLD), which, apart from excess fat in the liver, may be characterised by some level of inflammatory infiltration and fibrogenesis, occasionally progressing to liver cirrhosis or hepatocellular carcinoma (HCC). The objective of the current review is to elucidate the rising prevalence, the role of microbiome and genetics in pathogenesis, diagnostic challenges, and novel treatment alternatives for NASH. Newer diagnostic techniques are being developed since using liver biopsy in a larger population is not a reasonable option and is primarily restricted to clinical research, at least in developing countries. Besides these technical challenges, another important factor leading to deviation from guideline practice is the lack of health insurance coverage in countries like India. It leads to reluctance on the part of physicians and patients to delay required tests to curb out-of-pocket expenditure. There is no cure for NASH, with liver transplantation remaining the last option for those who progress to end-stage liver disease (ESLD) or are detected with early-stage HCC. Thus, lifestyle modification remains the only viable option for many, but compliance and long-term adherence remain major challenges. In obese individuals, bariatric surgery and weight reduction have shown favourable results. In patients with less severe obesity, endoscopic bariatric metabolic therapies (EBMT) are rapidly emerging as less invasive therapies. However, access and acceptability remain poor for these weight reduction methods. Therefore, intense research is being conducted for potential newer drug classes with several agents currently in phase II or III of clinical development. Some of these have demonstrated promising results, such as a reduction in hepatic fat content, and attenuation of fibrosis with an acceptable tolerability profile in phase II studies. The developments in the management of NASH have been fairly encouraging. Further well-designed long-term prospective studies should be undertaken to generate evidence with definitive results.
Collapse
Affiliation(s)
| | - Saumin Shah
- Gastroenterology, Gujarat Gastro and Vascular Hospital, Surat, IND
| | - Anand Kulkarni
- Gastroenterology and Hepatology, Asian Institute of Gastroenterology, Hyderabad, IND
| | - Nitin Jagtap
- Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, IND
| | | | | | | |
Collapse
|
16
|
Chen Y, Wang W, Morgan MP, Robson T, Annett S. Obesity, non-alcoholic fatty liver disease and hepatocellular carcinoma: current status and therapeutic targets. Front Endocrinol (Lausanne) 2023; 14:1148934. [PMID: 37361533 PMCID: PMC10286797 DOI: 10.3389/fendo.2023.1148934] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Obesity is a global epidemic and overwhelming evidence indicates that it is a risk factor for numerous cancers, including hepatocellular carcinoma (HCC), the third leading cause of cancer-related deaths worldwide. Obesity-associated hepatic tumorigenesis develops from nonalcoholic fatty liver disease (NAFLD), progressing to nonalcoholic steatohepatitis (NASH), cirrhosis and ultimately to HCC. The rising incidence of obesity is resulting in an increased prevalence of NAFLD and NASH, and subsequently HCC. Obesity represents an increasingly important underlying etiology of HCC, in particular as the other leading causes of HCC such as hepatitis infection, are declining due to effective treatments and vaccines. In this review, we provide a comprehensive overview of the molecular mechanisms and cellular signaling pathways involved in the pathogenesis of obesity-associated HCC. We summarize the preclinical experimental animal models available to study the features of NAFLD/NASH/HCC, and the non-invasive methods to diagnose NAFLD, NASH and early-stage HCC. Finally, since HCC is an aggressive tumor with a 5-year survival of less than 20%, we will also discuss novel therapeutic targets for obesity-associated HCC and ongoing clinical trials.
Collapse
Affiliation(s)
- Yinshuang Chen
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Maria P. Morgan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
17
|
Duseja A, Singh S, De A, Madan K, Rao PN, Shukla A, Choudhuri G, Saigal S, Shalimar, Arora A, Anand AC, Das A, Kumar A, Eapen CE, Devadas K, Shenoy KT, Panigrahi M, Wadhawan M, Rathi M, Kumar M, Choudhary NS, Saraf N, Nath P, Kar S, Alam S, Shah S, Nijhawan S, Acharya SK, Aggarwal V, Saraswat VA, Chawla YK. Indian National Association for Study of the Liver (INASL) Guidance Paper on Nomenclature, Diagnosis and Treatment of Nonalcoholic Fatty Liver Disease (NAFLD). J Clin Exp Hepatol 2023; 13:273-302. [PMID: 36950481 PMCID: PMC10025685 DOI: 10.1016/j.jceh.2022.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 03/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease globally and in India. The already high burden of NAFLD in India is expected to further increase in the future in parallel with the ongoing epidemics of obesity and type 2 diabetes mellitus. Given the high prevalence of NAFLD in the community, it is crucial to identify those at risk of progressive liver disease to streamline referral and guide proper management. Existing guidelines on NAFLD by various international societies fail to capture the entire landscape of NAFLD in India and are often difficult to incorporate in clinical practice due to fundamental differences in sociocultural aspects and health infrastructure available in India. A lot of progress has been made in the field of NAFLD in the 7 years since the initial position paper by the Indian National Association for the Study of Liver on NAFLD in 2015. Further, the ongoing debate on the nomenclature of NAFLD is creating undue confusion among clinical practitioners. The ensuing comprehensive review provides consensus-based, guidance statements on the nomenclature, diagnosis, and treatment of NAFLD that are practically implementable in the Indian setting.
Collapse
Key Words
- AASLD, American Association for the Study of Liver Diseases
- ALD, alcohol-associated liver disease
- ALT, alanine aminotransferase
- APRI, AST-platelet ratio index
- AST, aspartate aminotransferase
- BMI, body mass index
- CAP, controlled attenuation parameter
- CHB, chronic Hepatitis B
- CHC, chronic Hepatitis C
- CK-18, Cytokeratin-18
- CKD, chronic kidney disease
- CRN, Clinical Research Network
- CVD, cardiovascular disease
- DAFLD/DASH, dual etiology fatty liver disease or steatohepatitis
- EBMT, endoscopic bariatric metabolic therapy
- ELF, enhanced liver fibrosis
- FAST, FibroScan-AST
- FIB-4, fibrosis-4
- FLIP, fatty liver inhibition of progression
- FXR, farnesoid X receptor
- GLP-1, glucagon-like peptide-1
- HCC, hepatocellular carcinoma
- INASL, Indian National Association for Study of the Liver
- LAI, liver attenuation index
- LSM, liver stiffness measurement
- MAFLD
- MAFLD, metabolic dysfunction-associated fatty liver disease
- MR-PDFF, magnetic resonance – proton density fat fraction
- MRE, magnetic resonance elastography
- MetS, metabolic syndrome
- NAFL:, nonalcoholic fatty liver
- NAFLD, nonalcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- NASH, nonalcoholic steatohepatitis
- NCD, noncommunicable diseases
- NCPF, noncirrhotic portal fibrosis
- NFS, NAFLD fibrosis score
- NHL, non-Hodgkin's lymphoma
- NPCDCS, National Programme for Prevention and Control of Cancer, Diabetes, Cardiovascular Diseases and Stroke
- OCA, obeticholic acid
- PPAR, peroxisome proliferator activated receptor
- PTMS, post-transplant metabolic syndrome
- SAF, steatosis, activity, and fibrosis
- SGLT-2, sodium-glucose cotransporter-2
- SWE, shear wave elastography
- T2DM, DM: type 2 diabetes mellitus
- USG, ultrasound
- VAT, visceral adipose tissue
- VCTE, vibration controlled transient elastography
- fatty liver
- hepatic steatosis
- nonalcoholic steatohepatitis
Collapse
Affiliation(s)
- Ajay Duseja
- Departmentof Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - S.P. Singh
- Department of Gastroenterology, SCB Medical College, Cuttack, India
| | - Arka De
- Departmentof Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kaushal Madan
- Max Centre for Gastroenterology, Hepatology and Endoscopy, Max Hospitals, Saket, New Delhi, India
| | - Padaki Nagaraja Rao
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Akash Shukla
- Department of Gastroenterology, Seth GSMC & KEM Hospital, Mumbai, India
| | - Gourdas Choudhuri
- Department of Gastroenterology and Hepato-Biliary Sciences, Fortis Memorial Research Institute, Gurugram, India
| | - Sanjiv Saigal
- Max Centre for Gastroenterology, Hepatology and Endoscopy, Max Hospitals, Saket, New Delhi, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Anil Arora
- Institute of Liver, Gastroenterology and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Anil C. Anand
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Ashim Das
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Kumar
- Institute of Liver, Gastroenterology and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | | | - Krishnadas Devadas
- Department of Gastroenterology, Government Medical College, Trivandrum, India
| | | | - Manas Panigrahi
- Department of Gastroenterology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Manav Wadhawan
- Institute of Liver & Digestive Diseases, BLK Super Speciality Hospital, Delhi, India
| | - Manish Rathi
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manoj Kumar
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | | | - Neeraj Saraf
- Department of Hepatology, Medanta, The Medicity, Gurugram, India
| | - Preetam Nath
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Sanjib Kar
- Department of Gastroenterology and Hepatology, Gastro Liver Care, Cuttack, India
| | - Seema Alam
- Department of PediatricHepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Samir Shah
- Department of Hepatology, Institute of Liver Disease, HPB Surgery and Transplant, Global Hospitals, Mumbai, India
| | - Sandeep Nijhawan
- Department of Gastroenterology, Sawai Man Singh Medical College, Jaipur, India
| | - Subrat K. Acharya
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Vinayak Aggarwal
- Department of Cardiology, Fortis Memorial Research Institute, Gurugram, India
| | - Vivek A. Saraswat
- Department of Hepatology, Pancreatobiliary Sciences and Liver Transplantation, Mahatma Gandhi University of Medical Sciences and Technology, Jaipur, India
| | - Yogesh K. Chawla
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
18
|
Wang R, Liu F, Chen P, Li S, Gu Y, Wang L, Chen C, Yuan Y. Gomisin D alleviates liver fibrosis through targeting PDGFRβ in hepatic stellate cells. Int J Biol Macromol 2023; 235:123639. [PMID: 36822287 DOI: 10.1016/j.ijbiomac.2023.123639] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
Platelet-derived growth factor receptor β (PDGFRβ) plays an important role in hepatic fibrosis and is closely associated with hepatic stellate cells (HSCs) activation. Previously, by modeling PDGFRβ affinity chromatography, we found that gomisin D can target PDGFRβ. However, whether gomisin D has anti-fibrosis effects through targeting PDGFRβ remained unclear. In this study, the effect of gomisin D on hepatic fibrosis was evaluated in vivo and vitro. HSC cell lines and primary HSC were cultured and functionally we found that gomisin D promotes HSC apoptosis, inhibits HSCs activation and proliferation. A male BALB/c mouse liver fibrosis model was established to comfirm gomisin D (especially in 50 mg/kg) could improve liver fibrosis by inhibiting HSCs activation. In addition, gomisin D had a good binding ability with PDGFRβ (KD = 3.3e-5 M). Mechanically, gomisin D regulated PDGF-BB/PDGFRβ signaling pathway by targeting PDGFRβ, further more inhibited HSC activation, subsequently inhibited inflammatory factors, ultimately improved CCl4-induced liver fibrosis. Overall, gomisin D could inhibit HSC proliferation and activation, promote HSC apoptosis, and alleviate CCl4-induced hepatic fibrosis by targeting PDGFRβ and regulating PDGF-BB/PDGFRβ signaling pathway. This study provides a new drug for anti-liver firbosis therapy, and elucidates the deeper mechanism of gomisin D against HSCs activation by targeting PDGFRβ.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China
| | - Fangbin Liu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China; School of Medicine, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Panpan Chen
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China
| | - Shengnan Li
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China
| | - Lei Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China
| | - Chun Chen
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China.
| |
Collapse
|
19
|
Yang X, Batmanov K, Hu W, Zhu K, Tom AY, Guan D, Jiang C, Cheng L, McCright SJ, Yang EC, Lanza MR, Liu Y, Hill DA, Lazar MA. Hepatocytes demarcated by EphB2 contribute to the progression of nonalcoholic steatohepatitis. Sci Transl Med 2023; 15:eadc9653. [PMID: 36753562 PMCID: PMC10234568 DOI: 10.1126/scitranslmed.adc9653] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023]
Abstract
Current therapeutic strategies for treating nonalcoholic steatohepatitis (NASH) have failed to alleviate liver fibrosis, which is a devastating feature leading to hepatic dysfunction. Here, we integrated single-nucleus transcriptomics and epigenomics to characterize all major liver cell types during NASH development in mice and humans. The bifurcation of hepatocyte trajectory with NASH progression was conserved between mice and humans. At the nonalcoholic fatty liver (NAFL) stage, hepatocytes exhibited metabolic adaptation, whereas at the NASH stage, a subset of hepatocytes was enriched for the signatures of cell adhesion and migration, which were mainly demarcated by receptor tyrosine kinase ephrin type B receptor 2 (EphB2). EphB2, acting as a downstream effector of Notch signaling in hepatocytes, was sufficient to induce cell-autonomous inflammation. Knockdown of Ephb2 in hepatocytes ameliorated inflammation and fibrosis in a mouse model of NASH. Thus, EphB2-expressing hepatocytes contribute to NASH progression and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Xiao Yang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kirill Batmanov
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Wenxiang Hu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Basic Research, Guangzhou Laboratory, Guangdong 510005, China
| | - Kun Zhu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Alexander Y. Tom
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Dongyin Guan
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chunjie Jiang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Cheng
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sam J. McCright
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, PA19104, USA
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104, USA
| | - Eric C. Yang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R. Lanza
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Yifan Liu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David A. Hill
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104, USA
| | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Lead Contact
| |
Collapse
|
20
|
Sessa L, Concilio S, Fominaya J, Eletto D, Piotto S, Busquets X. A new serotonin 2A receptor antagonist with potential benefits in Non-Alcoholic Fatty Liver Disease. Life Sci 2023; 314:121315. [PMID: 36581095 DOI: 10.1016/j.lfs.2022.121315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022]
Abstract
Peripheral 5-hydroxytryptamine 2A receptor (5-HT2AR) could be a new pharmacological target for NASH, an evolution of NAFLD characterized by hepatic steatosis, cytoskeletal alterations, and hepatic inflammation that can arise with or without fibrosis. SJT4a is a synthetic β-carboline antagonist for 5-HT2AR developed by SJT molecular research to treat NASH. We performed a combined in silico/in vivo study on this potential drug to elucidate its activity and possible mechanism of action. The in silico protocol compares SJT4a with four known 5-HT2AR ligands with different activities (LSD, methiothepin, zotepine, risperidone). We performed molecular docking calculations, evaluation of binding energy by AI-based methods and Molecular Dynamics simulations of the five ligand-target complexes. Moreover, we used a pseudo-semantic analysis to evaluate the potential mechanism of action of SJT4a. In silico predictions and pseudo-semantic analysis suggested antagonistic activity for SJT4a. The in silico prediction was confirmed by [3H]-5HT radioligand binding together with SJT4a competition analysis in CHO-K1 cell cultures expressing 5-HT2AR. SJT4a was then tested in vivo. We investigated the effect of 8 weeks of treatment with SJT4A on metabolic parameters, liver pathology, NAFLD activity score, and fibrosis stage in male DIO-NASH C57BL/6 J mice diet-induced obesity fed with an obesogenic diet compared with DIO-NASH and LEAN-CHOW vehicles. In our tests, SJT4a showed intense activity in diminishing the most relevant hallmarks of NASH in the DIO-NASH mice model. We proposed a possible mode of action for SJT4a based on its 5-HT2AR antagonist activity.
Collapse
Affiliation(s)
- Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano 84084, SA, Italy; Bionam Center for Biomaterials, University of Salerno, Via Giovanni Paolo II, 132, Fisciano 84084, SA, Italy
| | - Simona Concilio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano 84084, SA, Italy; Bionam Center for Biomaterials, University of Salerno, Via Giovanni Paolo II, 132, Fisciano 84084, SA, Italy
| | - Jesús Fominaya
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122 Palma, Spain
| | - Daniela Eletto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano 84084, SA, Italy
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano 84084, SA, Italy; Bionam Center for Biomaterials, University of Salerno, Via Giovanni Paolo II, 132, Fisciano 84084, SA, Italy.
| | - Xavier Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122 Palma, Spain.
| |
Collapse
|
21
|
Santos M, Corma-Gómez A, Fernandez-Fuertes M, González-Serna A, Rincón P, Real LM, Pineda JA, Macías J. Burden of significant liver damage in people living with HIV after microelimination of the hepatitis C virus. J Infect 2023; 86:41-46. [PMID: 36410455 DOI: 10.1016/j.jinf.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Once HIV/HCV-coinfection microelimination has been virtually achieved in some countries, there is no information about the burden of liver disease among people living with HIV (PLWH). The aim of this study was to define the current prevalence and causes of significant liver damage (SLD) in PLWH. METHODS Cross-sectional study including 619 PLWH. SLD was defined as liver stiffness (LS) ≥ 7.2 kPa measured by transient elastography. Nonviral liver damage (NVLD) was considered if there was no evidence injury due to chronic hepatitis C virus (HCV) infection, active hepatitis B (HBV) or E virus infections. RESULTS One hundred and twelve of 619 (18.2%) PLWH showed SLD, including 34/112 (5.5%) with LS ≥14 kPa. 72/112 (64.3%) had cured HCV infection, 4/112 (3.6%) active HBV infection, and 2/112 HBV/prior HCV coinfection. Thus, 40 (35.7%) showed NVLD. Metabolic associated steatohepatitis (MASH) was present in 29/40 (72.5%) of patients with NVLD, alcoholic liver damage in 2/40 (2.5%) and mixed steatohepatitis in 5/40 (12.5%). CONCLUSIONS After HIV/HCV microelimination the burden of liver damage is high among PLWH. Persistent injury after HCV is a very frequent cause of SLD. However, NVLD, mainly due to MASH, is also a common condition in this population.
Collapse
Affiliation(s)
- M Santos
- Unidad de Enfermedades Infecciosas y Microbiología. Hospital Universitario Virgen de Valme. Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS), Spain; CIBERINFEC. Spain
| | - A Corma-Gómez
- Unidad de Enfermedades Infecciosas y Microbiología. Hospital Universitario Virgen de Valme. Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS), Spain; CIBERINFEC. Spain
| | - M Fernandez-Fuertes
- Unidad de Enfermedades Infecciosas y Microbiología. Hospital Universitario Virgen de Valme. Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS), Spain; CIBERINFEC. Spain
| | - A González-Serna
- Unidad de Enfermedades Infecciosas y Microbiología. Hospital Universitario Virgen de Valme. Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS), Spain; CIBERINFEC. Spain; Department of Physiology, University of Sevilla. Sevilla, Spain
| | - P Rincón
- Unidad de Enfermedades Infecciosas y Microbiología. Hospital Universitario Virgen de Valme. Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS), Spain; CIBERINFEC. Spain
| | - L M Real
- Unidad de Enfermedades Infecciosas y Microbiología. Hospital Universitario Virgen de Valme. Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS), Spain; CIBERINFEC. Spain; Department of Surgical Specialties, Biochemistry and Immunology. University of Málaga, Málaga, Spain
| | - J A Pineda
- Unidad de Enfermedades Infecciosas y Microbiología. Hospital Universitario Virgen de Valme. Sevilla, Spain; CIBERINFEC. Spain; Department of Medicine. University of Sevilla. Sevilla, Spain.
| | - J Macías
- Unidad de Enfermedades Infecciosas y Microbiología. Hospital Universitario Virgen de Valme. Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS), Spain; CIBERINFEC. Spain; Department of Medicine. University of Sevilla. Sevilla, Spain
| |
Collapse
|
22
|
Huang S, Deng Z, Wang W, Liao G, Zhao Y, Zhong H, Zhang Q, Liu J, Mao X, Chen B, Pan D, Zhou Y. CS27109, A Selective Thyroid Hormone Receptor- β Agonist Alleviates Metabolic-Associated Fatty Liver Disease in Murine Models. Int J Endocrinol 2023; 2023:4950597. [PMID: 36825196 PMCID: PMC9943626 DOI: 10.1155/2023/4950597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND/AIM Thyroid hormone receptor-β (THR-β) agonists play crucial roles in dyslipidemia and metabolic associated fatty liver disease (MAFLD). We developed a novel oral and liver-targeted THR-β agonist, CS27109, and evaluated its efficacy in the treatment of metabolic disorders. MATERIALS AND METHODS We evaluated in vitro and in vivo efficacy and/or safety of CS27109 along with MGL3196 (a phase III THR-β agonist). RESULTS CS27109 showed pronounced activity and selectivity to THR-β and favorable PK properties, which was equivalent to MGL3196. In the hamster model, animals treated with a high dose of CS27109 showed equivalent reductions in serum TC and LDL-c with groups treated with MGL3196. In the rat model, CS27109 and MGL3196 reduced serum ALT, TC, TG, LDL-c, liver weight ratio, and liver steatosis. CS27109 simultaneously decreased liver TG and TC, and MGL3196 additionally reduced AST. In the mouse model, CS27109 dose-dependently reduced serum AST, ALT, liver inflammation, and NAS score, and also downregulated TC, LDL-c, liver steatosis, and fibrosis, but not in a dose-dependent manner. MGL3196 revealed an equivalent effect with CS27109 in that model. CS27109 also exhibited tolerable toxicity to the heart. CONCLUSIONS CS27109 shows comparative in vitro and in vivo efficacy with MGL3196, suggesting its potential therapeutic application in the treatment of MAFLD such as dyslipidemia and steatohepatitis.
Collapse
Affiliation(s)
- Shengjian Huang
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen 518052, China
- Chengdu Chipscreen Pharmaceutical Ltd., Chengdu 610213, China
| | - Zhou Deng
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen 518052, China
| | - Wei Wang
- Chengdu Chipscreen Pharmaceutical Ltd., Chengdu 610213, China
| | - Guoqiang Liao
- Chengdu Chipscreen Pharmaceutical Ltd., Chengdu 610213, China
| | - Yiru Zhao
- Chengdu Chipscreen Pharmaceutical Ltd., Chengdu 610213, China
| | - Hua Zhong
- Chengdu Chipscreen Pharmaceutical Ltd., Chengdu 610213, China
| | - Qian Zhang
- Chengdu Chipscreen Pharmaceutical Ltd., Chengdu 610213, China
| | - Jing Liu
- Chengdu Chipscreen Pharmaceutical Ltd., Chengdu 610213, China
| | - Xuhua Mao
- Chengdu Chipscreen Pharmaceutical Ltd., Chengdu 610213, China
| | - Beizhong Chen
- Chengdu Chipscreen Pharmaceutical Ltd., Chengdu 610213, China
| | - Desi Pan
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen 518052, China
| | - You Zhou
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen 518052, China
| |
Collapse
|
23
|
Ren M, Zhou X, Lv L, Ji F. Endoscopic Bariatric and Metabolic Therapies for Liver Disease: Mechanisms, Benefits, and Associated Risks. J Clin Transl Hepatol 2022; 10:986-994. [PMID: 36304503 PMCID: PMC9547260 DOI: 10.14218/jcth.2021.00448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 12/04/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), including advanced-stage nonalcoholic steatohepatitis (NASH), is currently the most common chronic liver disease worldwide and is projected to become the leading indication for liver transplantation (LT). However, there are no effective pharmacological therapies for NAFLD. Endoscopic bariatric and metabolic therapies (EBMTs) are less invasive procedures for the treatment of obesity and its metabolic comorbidities. Several recent studies have demonstrated the beneficial effects of EBMTs on NAFLD/NASH. In this review, we summarize the major EBMTs and their mechanisms of action. We further discuss the current evidence on the efficacy and safety of EBMTs in people with NAFLD/NASH and obese cirrhotic LT candidates. The potential utility of EBMTs in reducing liver volume and perioperative complications in bariatric surgery candidates is also discussed. Moreover, we review the development of liver abscesses as a common serious adverse event in duodenal-jejunal bypass liner implantation.
Collapse
Affiliation(s)
| | | | | | - Feng Ji
- Correspondence to: Feng Ji, Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China. ORCID: https://orcid.org/0000-0002-1426-0802. Tel: +86-571-87236863, Fax: 86-571-87236611, E-mail:
| |
Collapse
|
24
|
Accuracy of FIB-4 to Detect Elevated Liver Stiffness Measurements in Patients with Non-Alcoholic Fatty Liver Disease: A Cross-Sectional Study in Referral Centers. Int J Mol Sci 2022; 23:ijms232012489. [PMID: 36293345 PMCID: PMC9604259 DOI: 10.3390/ijms232012489] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
The identification of advanced fibrosis by applying noninvasive tests is still a key component of the diagnostic algorithm of NAFLD. The aim of this study is to assess the concordance between the FIB-4 and liver stiffness measurement (LSM) in patients referred to two liver centers for the ultrasound-based diagnosis of NAFLD. Fibrosis 4 Index for Liver Fibrosis (FIB-4) and LSM were assessed in 1338 patients. A total of 428 (32%) had an LSM ≥ 8 kPa, whereas 699 (52%) and 113 (9%) patients had an FIB-4 < 1.3 and >3.25, respectively. Among 699 patients with an FIB-4 < 1.3, 118 (17%) had an LSM ≥ 8 kPa (false-negative FIB-4). This proportion was higher in patients ≥60 years, with diabetes mellitus (DM), arterial hypertension or a body mass index (BMI) ≥ 27 kg/m2. In multiple adjusted models, age ≥ 60 years (odds ratio (OR) = 1.96, 95% confidence interval (CI) 1.19−3.23)), DM (OR = 2.59, 95% CI 1.63−4.13), body mass index (BMI) ≥ 27 kg/m2 (OR = 2.17, 95% CI 1.33−3.56) and gamma-glutamyltransferase ≥ 25 UI/L (OR = 2.68, 95% CI 1.49−4.84) were associated with false-negative FIB-4. The proportion of false-negative FIB-4 was 6% in patients with none or one of these risk factors and increased to 16, 31 and 46% among those with two, three and four concomitant risk factors, respectively. FIB-4 is suboptimal to identify patients to refer to liver centers, because about one-fifth may be false negative at FIB-4, having instead an LSM ≥ 8 KPa.
Collapse
|
25
|
Hou HW, Bishop CA, Huckauf J, Broer I, Klaus S, Nausch H, Buyel JF. Seed- and leaf-based expression of FGF21-transferrin fusion proteins for oral delivery and treatment of non-alcoholic steatohepatitis. FRONTIERS IN PLANT SCIENCE 2022; 13:998596. [PMID: 36247628 PMCID: PMC9557105 DOI: 10.3389/fpls.2022.998596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a global disease with no effective medication. The fibroblast growth factor 21 (FGF21) can reverse this liver dysfunction, but requires targeted delivery to the liver, which can be achieved via oral administration. Therefore, we fused FGF21 to transferrin (Tf) via a furin cleavage site (F), to promote uptake from the intestine into the portal vein, yielding FGF21-F-Tf, and established its production in both seeds and leaves of commercial Nicotiana tabacum cultivars, compared their expression profile and tested the bioavailability and bioactivity in feeding studies. Since biopharmaceuticals need to be produced in a contained environment, e.g., greenhouses in case of plants, the seed production was increased in this setting from 239 to 380 g m-2 a-1 seed mass with costs of 1.64 € g-1 by side branch induction, whereas leaves yielded 8,193 g m-2 a-1 leave mass at 0.19 € g-1. FGF21-F-Tf expression in transgenic seeds and leaves yielded 6.7 and 5.6 mg kg-1 intact fusion protein, but also 4.5 and 2.3 mg kg-1 additional Tf degradation products. Removing the furin site and introducing the liver-targeting peptide PLUS doubled accumulation of intact FGF21-transferrin fusion protein when transiently expressed in Nicotiana benthamiana from 0.8 to 1.6 mg kg-1, whereas truncation of transferrin (nTf338) and reversing the order of FGF21 and nTf338 increased the accumulation to 2.1 mg kg-1 and decreased the degradation products to 7% for nTf338-FGF21-PLUS. Application of partially purified nTf338-FGF21-PLUS to FGF21-/- mice by oral gavage proved its transfer from the intestine into the blood circulation and acutely affected hepatic mRNA expression. Hence, the medication of NASH via oral delivery of nTf338-FGF21-PLUS containing plants seems possible.
Collapse
Affiliation(s)
- Hsuan-Wu Hou
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Christopher A. Bishop
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Jana Huckauf
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Inge Broer
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Henrik Nausch
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Johannes F. Buyel
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute of Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
26
|
Alshehade S, Alshawsh MA, Murugaiyah V, Asif M, Alshehade O, Almoustafa H, Al Zarzour RH. The role of protein kinases as key drivers of metabolic dysfunction-associated fatty liver disease progression: New insights and future directions. Life Sci 2022; 305:120732. [PMID: 35760093 DOI: 10.1016/j.lfs.2022.120732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), proposed in 2020 is a novel term for non-alcoholic fatty liver disease (NAFLD) which was coined for the first time in 1980. It is a leading cause of the most chronic liver disease and hepatic failure all over the world, and unfortunately, with no licensed drugs for treatment yet. The progress of the disease is driven by the triggered inflammatory process, oxidative stress, and insulin resistance in many pathways, starting with simple hepatic steatosis to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and liver cancer. Protein kinases (PKs), such as MAPK, ErbB, PKC, PI3K/Akt, and mTOR, govern most of the pathological pathways by acting on various downstream key points in MAFLD and regulating both hepatic gluco- lipo-neogenesis and inflammation. Therefore, modulating the function of those potential protein kinases that are effectively involved in MAFLD might be a promising therapeutic approach for tackling this disease. In the current review, we have discussed the key role of protein kinases in the pathogenesis of MAFLD and performed a protein-protein interaction (PPI) network among the main proteins of each kinase pathway with MAFLD-related proteins to predict the most likely targets of the PKs in MAFLD. Moreover, we have reported the experimental, pre-clinical, and clinical data for the most recent investigated molecules that are activating p38-MAPK and AMPK proteins and inhibiting the other PKs to improve MAFLD condition by regulating oxidation and inflammation signalling.
Collapse
Affiliation(s)
- Salah Alshehade
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia; Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Vikneswaran Murugaiyah
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan
| | - Omayma Alshehade
- Department of Paediatrics, Faculty of Medicine, Damascus University, Damascus, Syria
| | - Hassan Almoustafa
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Raghdaa Hamdan Al Zarzour
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia; Department of Pharmacology, Faculty of Pharmacy, Arab International University, Damascus, Syria.
| |
Collapse
|
27
|
Min RWM, Aung FWM, Liu B, Arya A, Win S. Mechanism and Therapeutic Targets of c-Jun-N-Terminal Kinases Activation in Nonalcoholic Fatty Liver Disease. Biomedicines 2022; 10:biomedicines10082035. [PMID: 36009582 PMCID: PMC9406172 DOI: 10.3390/biomedicines10082035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Non-alcoholic fatty liver (NAFL) is the most common chronic liver disease. Activation of mitogen-activated kinases (MAPK) cascade, which leads to c-Jun N-terminal kinase (JNK) activation occurs in the liver in response to the nutritional and metabolic stress. The aberrant activation of MAPKs, especially c-Jun-N-terminal kinases (JNKs), leads to unwanted genetic and epi-genetic modifications in addition to the metabolic stress adaptation in hepatocytes. A mechanism of sustained P-JNK activation was identified in acute and chronic liver diseases, suggesting an important role of aberrant JNK activation in NASH. Therefore, modulation of JNK activation, rather than targeting JNK protein levels, is a plausible therapeutic application for the treatment of chronic liver disease.
Collapse
Affiliation(s)
| | | | - Bryant Liu
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., HMR 612, Los Angeles, CA 90089, USA
| | - Aliza Arya
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., HMR 612, Los Angeles, CA 90089, USA
| | - Sanda Win
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., HMR 612, Los Angeles, CA 90089, USA
- Correspondence:
| |
Collapse
|
28
|
Castera L, Boursier J. Noninvasive Algorithms for the Case Finding of "At-Risk" Patients with NAFLD. Semin Liver Dis 2022; 42:313-326. [PMID: 35835440 DOI: 10.1055/s-0042-1751081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Despite the high prevalence of non-alcoholic fatty liver disease (NAFLD) in primary care (25%), only a small minority (< 5%) of NAFLD patients will develop advanced liver fibrosis. The challenge is to identify these patients, who are at the greatest risk of developing complications and need to be referred to liver clinics for specialized management. The focus should change from patients with abnormal liver tests toward patients "at risk of NAFLD," namely those with metabolic risk factors, such as obesity and type 2 diabetes. Non-invasive tests are well validated for diagnosing advanced fibrosis. Algorithms using FIB-4 as the first-line test, followed, if positive (≥ 1.3), by transient elastography or a patented blood test are the best strategy to define pathways for "at-risk" NAFLD patients from primary care to liver clinics. Involving general practitioners actively and raising their awareness regarding NAFLD and non-invasive tests are critical to establish such pathways.
Collapse
Affiliation(s)
- Laurent Castera
- Université de Paris, UMR1149 (CRI), INSERM, Paris, France.,Service d'Hépatologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Beaujon, Clichy, France
| | - Jérôme Boursier
- Service d'Hépato-Gastroentérologie et Oncologie Digestive, Centre Hospitalier Universitaire d'Angers, Angers, France.,Laboratoire HIFIH UPRES EA3859, SFR ICAT 4208, Université d'Angers, Angers, France
| |
Collapse
|
29
|
Branković M, Jovanović I, Dukić M, Radonjić T, Oprić S, Klašnja S, Zdravković M. Lipotoxicity as the Leading Cause of Non-Alcoholic Steatohepatitis. Int J Mol Sci 2022; 23:ijms23095146. [PMID: 35563534 PMCID: PMC9105530 DOI: 10.3390/ijms23095146] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 12/11/2022] Open
Abstract
The emerging issues nowadays are non-alcoholic fatty liver disease (NAFLD) and its advanced stage non-alcoholic steatohepatitis (NASH), which further can be a predisposing factor for chronic liver complications, such as cirrhosis and/or development of hepatocellular carcinoma (HCC). Liver lipotoxicity can influence the accumulation of reactive oxygen species (ROS), so oxidative stress is also crucial for the progression of NASH. Moreover, NASH is in strong connection with metabolic disorders, and supporting evidence shows that insulin resistance (IR) is in a close relation to NAFLD, as it is involved in the progression to NASH and further progression to hepatic fibrosis. The major issue is that, at the moment, NASH treatment is based on lifestyle changes only due to the fact that no approved therapeutic options are available. The development of new therapeutic strategies should be conducted towards the potential NAFLD and NASH treatment by the modulation of IR but also by dietary antioxidants. As it seems, NASH is going to be the leading indication for liver transplantation as a consequence of increased disease prevalence and the lack of approved treatment; thus, an effective solution is needed as soon as possible.
Collapse
Affiliation(s)
- Marija Branković
- University Hospital Medical Center Bežanijska kosa, Dr Žorža Matea bb, 11000 Belgrade, Serbia; (I.J.); (M.D.); (T.R.); (S.O.); (S.K.); (M.Z.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence:
| | - Igor Jovanović
- University Hospital Medical Center Bežanijska kosa, Dr Žorža Matea bb, 11000 Belgrade, Serbia; (I.J.); (M.D.); (T.R.); (S.O.); (S.K.); (M.Z.)
| | - Marija Dukić
- University Hospital Medical Center Bežanijska kosa, Dr Žorža Matea bb, 11000 Belgrade, Serbia; (I.J.); (M.D.); (T.R.); (S.O.); (S.K.); (M.Z.)
| | - Tijana Radonjić
- University Hospital Medical Center Bežanijska kosa, Dr Žorža Matea bb, 11000 Belgrade, Serbia; (I.J.); (M.D.); (T.R.); (S.O.); (S.K.); (M.Z.)
| | - Svetlana Oprić
- University Hospital Medical Center Bežanijska kosa, Dr Žorža Matea bb, 11000 Belgrade, Serbia; (I.J.); (M.D.); (T.R.); (S.O.); (S.K.); (M.Z.)
| | - Slobodan Klašnja
- University Hospital Medical Center Bežanijska kosa, Dr Žorža Matea bb, 11000 Belgrade, Serbia; (I.J.); (M.D.); (T.R.); (S.O.); (S.K.); (M.Z.)
| | - Marija Zdravković
- University Hospital Medical Center Bežanijska kosa, Dr Žorža Matea bb, 11000 Belgrade, Serbia; (I.J.); (M.D.); (T.R.); (S.O.); (S.K.); (M.Z.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
30
|
Balkrishna A, Gohel V, Kumari P, Manik M, Bhattacharya K, Dev R, Varshney A. Livogrit Prevents Methionine-Cystine Deficiency Induced Nonalcoholic Steatohepatitis by Modulation of Steatosis and Oxidative Stress in Human Hepatocyte-Derived Spheroid and in Primary Rat Hepatocytes. Bioengineered 2022; 13:10811-10826. [PMID: 35485140 PMCID: PMC9208489 DOI: 10.1080/21655979.2022.2065789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The prevalence of nonalcoholic steatohepatitis (NASH), characterized by fatty liver, oxidative injury, and inflammation, has considerably increased in the recent years. Due to the complexity of NASH pathogenesis, compounds which can target different mechanisms and stages of NASH development are required. A robust screening model with translational capability is also required to develop therapies targeting NASH. In this study, we used HepG2 spheroids and rat primary hepatocytes to evaluate the potency of Livogrit, a tri-herbal Ayurvedic prescription medicine, as a hepatoprotective agent. NASH was developed in the cells via methionine and cystine-deficient cell culture media. Livogrit at concentration of 30 µg/mL was able to prevent NASH development by decreasing lipid accumulation, ROS production, AST release, NFκB activation and increasing lipolysis, GSH (reduced glutathione), and mitochondrial membrane potential. This study suggests that Livogrit might reduce the lipotoxicity-mediated ROS generation and subsequent production of inflammatory mediators as evident from the increased gene expression of FXR, FGF21, CHOP, CXCL5, and their normalization due to Livogrit treatment. Taken together, Livogrit showed the potential as a multimodal therapeutic formulation capable of attenuating the development of NASH. Our study highlights the potential of Livogrit as a hepatoprotective agent with translational possibilities.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, India.,Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar, India.,Patanjali Yog Peeth (UK) Trust, Glasgow, UK
| | - Vivek Gohel
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, India
| | - Priya Kumari
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, India
| | - Moumita Manik
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, India
| | - Kunal Bhattacharya
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, India.,Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar, India.,Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
31
|
Rojas Á, García-Lozano MR, Gil-Gómez A, Romero-Gómez M, Ampuero J. Glutaminolysis-ammonia-urea Cycle Axis, Non-alcoholic Fatty Liver Disease Progression and Development of Novel Therapies. J Clin Transl Hepatol 2022; 10:356-362. [PMID: 35528989 PMCID: PMC9039703 DOI: 10.14218/jcth.2021.00247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/29/2021] [Accepted: 10/14/2021] [Indexed: 12/04/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide, reflecting the current epidemics of obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome. NAFLD is characterized by the accumulation of fat in the liver, and is known to be a cause of cirrhosis. Although many pathways have been proposed, the cause of NAFLD-linked fibrosis progression is still unclear, which posed challenges for the development of new therapies to prevent NASH-related cirrhosis and hepatocellular carcinoma. Cirrhosis is associated with activation of hepatic stellate cells (HSC) and accumulation of excess extracellular matrix proteins, and inhibiting the activation of HSCs would be expected to slow the progression of NAFLD-cirrhosis. Multiple molecular signals and pathways such as oxidative stress and glutaminolysis have been reported to promote HSC activation. Both mechanisms are plausible antifibrotic targets in NASH, as the activation of HSCs the proliferation of myofibroblasts depend on those processes. This review summarizes the role of the glutaminolysis-ammonia-urea cycle axis in the context of NAFLD progression, and shows how the axis could be a novel therapeutic target.
Collapse
Affiliation(s)
- Ángela Rojas
- Department of Unit of Digestive Diseases, Virgen del Rocío University Hospital, Seville, Spain
- SeLiver group at the Institute of Biomedicine of Seville (IBIS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - María Rosario García-Lozano
- Department of Unit of Digestive Diseases, Virgen del Rocío University Hospital, Seville, Spain
- SeLiver group at the Institute of Biomedicine of Seville (IBIS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071, Seville, Spain
| | - Antonio Gil-Gómez
- Department of Unit of Digestive Diseases, Virgen del Rocío University Hospital, Seville, Spain
- SeLiver group at the Institute of Biomedicine of Seville (IBIS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Manuel Romero-Gómez
- Department of Unit of Digestive Diseases, Virgen del Rocío University Hospital, Seville, Spain
- SeLiver group at the Institute of Biomedicine of Seville (IBIS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Javier Ampuero
- Department of Unit of Digestive Diseases, Virgen del Rocío University Hospital, Seville, Spain
- SeLiver group at the Institute of Biomedicine of Seville (IBIS), Virgen del Rocío University Hospital/CSIC/ University of Seville, Seville, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Correspondence to: Javier Ampuero, Digestive Disease Department and CIBERehd, Virgen del Rocio University Hospital, Avenida Manuel Siurot s/n, Sevilla 41013, Spain. ORCID: https://orcid.org/0000-0002-8332-2122. Tel: +34-955-015761, Fax: +34-955-015899, E-mail:
| |
Collapse
|
32
|
Wang G, Duan J, Pu G, Ye C, Li Y, Xiu W, Xu J, Liu B, Zhu Y, Wang C. The Annexin A2-Notch regulatory loop in hepatocytes promotes liver fibrosis in NAFLD by increasing osteopontin expression. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166413. [PMID: 35413401 DOI: 10.1016/j.bbadis.2022.166413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND The mechanisms underlying the progression of liver disease from simple hepatic steatosis to advanced nonalcoholic steatohepatitis (NASH) and liver fibrosis warrant further investigation. Increased mRNA levels of Annexin A2 protein (Anxa2) have been observed in patients with NASH. However, the role of Anxa2 in NASH remains unclear. METHODS The protein levels of Anxa2 were analyzed in the livers of mice and patients with NASH. Anxa2-knockout and -knockdown mice were generated, and NASH was induced through a high fructose, palmitate, and cholesterol (FPC) diet or methionine- and choline-deficient (MCD) diet. FINDINGS We found elevated expression of Anxa2 in the livers of patients and mice with NASH. Anxa2 knockdown but not knockout ameliorated liver fibrosis in both FPC and MCD diet-fed mice. Liver-specific Anxa2 overexpression increased collagen deposition in mice fed a normal diet. Mechanistically, Anxa2 overexpression in hepatocytes promoted hepatic stellate cell activation in a paracrine manner by increasing osteopontin expression. Notch inhibition suppressed the exogenous overexpression of Anxa2-induced osteopontin and endogenous Anxa2 expression. Additionally, Anxa2 overexpression accelerated the progression of nonalcoholic fatty liver disease (NAFLD) in mice fed a high-fat diet. Moreover, Anxa2 levels were higher in NAFLD patients with advanced liver fibrosis than in those with mild liver fibrosis, as determined using the Gene Expression Omnibus database. INTERPRETATION In conclusion, we found increased Anxa2 expression in hepatocytes promoted liver fibrosis in NASH mice by increasing osteopontin expression. The Anxa2-Notch positive regulatory loop contributes to this process and represents a novel target for the treatment of NASH-related liver fibrosis.
Collapse
Affiliation(s)
- Guangyan Wang
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Jinjie Duan
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Guangyin Pu
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Chenji Ye
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yue Li
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wenjing Xiu
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Jingwen Xu
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Ben Liu
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yi Zhu
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Chunjiong Wang
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China; School of Nursing, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
33
|
Rahman SR, Roper JA, Grove JI, Aithal GP, Pun KT, Bennett AJ. Integrins as a drug target in liver fibrosis. Liver Int 2022; 42:507-521. [PMID: 35048542 DOI: 10.1111/liv.15157] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023]
Abstract
As the worldwide prevalence of chronic liver diseases is high and continuing to increase, there is an urgent need for treatment to prevent cirrhosis-related morbidity and mortality. Integrins are heterodimeric cell-surface proteins that are promising targets for therapeutic intervention. αv integrins are central in the development of fibrosis as they activate latent TGFβ, a known profibrogenic cytokine. The αv subunit can form heterodimers with β1, β3, β5, β6 or β8 subunits and one or more of these integrins are central to the development of liver fibrosis, however, their relative importance is not understood. This review summarises the current knowledge of αv integrins and their respective β subunits in different organs, with a focus on liver fibrosis and the emerging preclinical and clinical data with regards to αv integrin inhibitors.
Collapse
Affiliation(s)
- Syedia R Rahman
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK.,FRAME Alternatives Laboratory, Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK.,Nottingham Digestive Diseases Centre, Translational Medical Sciences, Medicine, University of Nottingham, Nottingham, UK
| | - James A Roper
- Novel Human Genetics Research Unit, GlaxoSmithKline, Stevenage, UK
| | - Jane I Grove
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK.,Nottingham Digestive Diseases Centre, Translational Medical Sciences, Medicine, University of Nottingham, Nottingham, UK
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK.,Nottingham Digestive Diseases Centre, Translational Medical Sciences, Medicine, University of Nottingham, Nottingham, UK
| | - K Tao Pun
- Novel Human Genetics Research Unit, GlaxoSmithKline, Stevenage, UK
| | - Andrew J Bennett
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK.,FRAME Alternatives Laboratory, Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK.,Nottingham Digestive Diseases Centre, Translational Medical Sciences, Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
34
|
Møllerhøj MB, Veidal SS, Thrane KT, Oró D, Overgaard A, Salinas CG, Madsen MR, Pfisterer L, Vyberg M, Simon E, Broermann A, Vrang N, Jelsing J, Feigh M, Hansen HH. Hepatoprotective effects of semaglutide, lanifibranor and dietary intervention in the GAN diet‐induced obese and biopsy‐confirmed mouse model of NASH. Clin Transl Sci 2022; 15:1167-1186. [PMID: 35143711 PMCID: PMC9099137 DOI: 10.1111/cts.13235] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/23/2021] [Accepted: 01/18/2022] [Indexed: 11/30/2022] Open
Abstract
Non‐alcoholic steatohepatitis (NASH) has emerged as a major challenge for public health because of high global prevalence and lack of evidence‐based therapies. Most animal models of NASH lack sufficient validation regarding disease progression and pharmacological treatment. The Gubra‐Amylin NASH (GAN) diet‐induced obese (DIO) mouse demonstrate clinical translatability with respect to disease etiology and hallmarks of NASH. This study aimed to evaluate disease progression and responsiveness to clinically effective interventions in GAN DIO‐NASH mice. Disease phenotyping was performed in male C57BL/6J mice fed the GAN diet high in fat, fructose, and cholesterol for 28–88 weeks. GAN DIO‐NASH mice with biopsy‐confirmed NASH and fibrosis received low‐caloric dietary intervention, semaglutide (30 nmol/kg/day, s.c.) or lanifibranor (30 mg/kg/day, p.o.) for 8 and 12 weeks, respectively. Within‐subject change in nonalcoholic fatty liver disease (NAFLD) Activity Score (NAS) and fibrosis stage was evaluated using automated deep learning‐based image analysis. GAN DIO‐NASH mice showed clear and reproducible progression in NASH, fibrosis stage, and tumor burden with high incidence of hepatocellular carcinoma. Consistent with clinical trial outcomes, semaglutide and lanifibranor improved NAS, whereas only lanifibranor induced regression in the fibrosis stage. Dietary intervention also demonstrated substantial benefits on metabolic outcomes and liver histology. Differential therapeutic efficacy of semaglutide, lanifibranor, and dietary intervention was supported by quantitative histology, RNA sequencing, and blood/liver biochemistry. In conclusion, the GAN DIO‐NASH mouse model recapitulates various histological stages of NASH and faithfully reproduces histological efficacy profiles of compounds in advanced clinical development for NASH. Collectively, these features highlight the utility of GAN DIO‐NASH mice in preclinical drug development.
Collapse
Affiliation(s)
| | | | | | - Denise Oró
- Gubra, Hørsholm Kongevej 11B, DK‐2970 Hørsholm Denmark
| | | | | | | | - Larissa Pfisterer
- Boehringer‐Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss Germany
| | - Mogens Vyberg
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University Copenhagen Denmark
| | - Eric Simon
- Boehringer‐Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss Germany
| | - Andre Broermann
- Boehringer‐Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss Germany
| | - Niels Vrang
- Gubra, Hørsholm Kongevej 11B, DK‐2970 Hørsholm Denmark
| | - Jacob Jelsing
- Gubra, Hørsholm Kongevej 11B, DK‐2970 Hørsholm Denmark
| | - Michael Feigh
- Gubra, Hørsholm Kongevej 11B, DK‐2970 Hørsholm Denmark
| | | |
Collapse
|
35
|
Mantovani A, Byrne CD, Targher G. Efficacy of peroxisome proliferator-activated receptor agonists, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors for treatment of non-alcoholic fatty liver disease: a systematic review. Lancet Gastroenterol Hepatol 2022; 7:367-378. [PMID: 35030323 DOI: 10.1016/s2468-1253(21)00261-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022]
|
36
|
Systematic review and meta-analysis: analysis of variables influencing the interpretation of clinical trial results in NAFLD. J Gastroenterol 2022; 57:357-371. [PMID: 35325295 PMCID: PMC9016009 DOI: 10.1007/s00535-022-01860-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND NAFLD clinical trials have shown suboptimal results, particularly for liver fibrosis, despite the robust preclinical drug development. We aimed to assess the histological response after the experimental treatment versus placebo by carrying out a meta-analysis of NAFLD clinical trials. METHODS After a systematic review of NAFLD clinical trials to May 2021, applying strict selection criteria, the following primary outcomes were observed: (a) NASH resolution, with no worsening of fibrosis when available; (b) fibrosis improvement ≥ 1 stage, with no worsening of NAS when available; (c) worsening of NAS; (d) worsening of liver fibrosis ≥ 1 stage, including the progression to cirrhosis on histopathology. Other histological, clinical, and biochemical outcomes were considered secondary endpoints. Heterogeneity was explored by subgroup and sensitivity analyses, and univariable meta-regression. RESULTS Twenty-seven randomized clinical trials were included. The pooled efficacy for NASH resolution receiving experimental therapy was 19% (95%CI 15-23; I2 96.2%) compared with placebo 10% (95%CI 7-12; I2 85.8%) (OR 1.66 (95%CI 1.24-2.21); I2 57.8%), while it was 26% (95%CI 22-29); I2 90%)) versus 18% (95%CI 15-21; I2 59%)) for fibrosis improvement (OR 1.34 (95%CI 1.13-1.58); I2 25.4%). For these outcomes, the therapy showed higher efficacy in trials longer than 48 weeks, with < 60% of diabetic population, and when it targeted FXR, PPAR, and antidiabetic mechanisms, and with a NAS < 5 for NASH resolution. Also, NASH (OR 0.57 (95%CI 0.39-0.84); I2 67%) and fibrosis worsening (OR 0.65 (95%CI 0.46-0.92); I2 61.9%) were prevented with the therapy. CONCLUSION This meta-analysis provides information about the efficacy of the therapy versus placebo by comparing different and combined trial outcomes such as NASH resolution, fibrosis improvement, and NAS and fibrosis worsening. Changes in the experimental design and selection criteria of the clinical trials might be suitable to increase the efficacy.
Collapse
|
37
|
Lin LC, Quon T, Engberg S, Mackenzie AE, Tobin AB, Milligan G. G Protein-Coupled Receptor GPR35 Suppresses Lipid Accumulation in Hepatocytes. ACS Pharmacol Transl Sci 2021; 4:1835-1848. [PMID: 34927014 DOI: 10.1021/acsptsci.1c00224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 02/07/2023]
Abstract
Although prevalent, nonalcoholic fatty liver disease is not currently treated effectively with medicines. Initially, using wild-type and genome-edited clones of the human hepatocyte cell line HepG2, we show that activation of the orphan G protein-coupled receptor GPR35 is both able and sufficient to block liver X-receptor-mediated lipid accumulation. Studies on hepatocytes isolated from both wild-type and GPR35 knock-out mice were consistent with a similar effect of GPR35 agonists in these cells, but because of marked differences in the pharmacology of GPR35 agonists and antagonists at the mouse and human orthologues, as well as elevated basal lipid levels in hepatocytes from the GPR35 knock-out mice, no definitive conclusion could be reached. To overcome this, we generated and characterized a transgenic knock-in mouse line in which the corresponding human GPR35 splice variant replaced the mouse orthologue. In hepatocytes from these humanized GPR35 mice, activation of this receptor was shown conclusively to prevent, and also reverse, lipid accumulation induced by liver X-receptor stimulation. These studies highlight the potential to target GPR35 in the context of fatty liver diseases.
Collapse
Affiliation(s)
- Li-Chiung Lin
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Tezz Quon
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Susanna Engberg
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Amanda E Mackenzie
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Andrew B Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Graeme Milligan
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
38
|
Torre P, Motta BM, Sciorio R, Masarone M, Persico M. Inflammation and Fibrogenesis in MAFLD: Role of the Hepatic Immune System. Front Med (Lausanne) 2021; 8:781567. [PMID: 34957156 PMCID: PMC8695879 DOI: 10.3389/fmed.2021.781567] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) is the definition recently proposed to better circumscribe the spectrum of conditions long known as non-alcoholic fatty liver disease (NAFLD) that range from simple steatosis without inflammation to more advanced liver diseases. The progression of MAFLD, as well as other chronic liver diseases, toward cirrhosis, is driven by hepatic inflammation and fibrogenesis. The latter, result of a "chronic wound healing reaction," is a dynamic process, and the understanding of its underlying pathophysiological events has increased in recent years. Fibrosis progresses in a microenvironment where it takes part an interplay between fibrogenic cells and many other elements, including some cells of the immune system with an underexplored or still unclear role in liver diseases. Some therapeutic approaches, also acting on the immune system, have been probed over time to evaluate their ability to improve inflammation and fibrosis in NAFLD, but to date no drug has been approved to treat this condition. In this review, we will focus on the contribution of the liver immune system in the progression of NAFLD, and on therapies under study that aim to counter the immune substrate of the disease.
Collapse
Affiliation(s)
- Pietro Torre
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| | - Benedetta Maria Motta
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Roberta Sciorio
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| | - Mario Masarone
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| | - Marcello Persico
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| |
Collapse
|