1
|
Anthoons B, Veltman MA, Tsiftsis S, Gravendeel B, Drouzas AD, de Boer H, Madesis P. Exploring the potential of Angiosperms353 markers for species identification of Eastern Mediterranean orchids. Mol Phylogenet Evol 2025; 209:108360. [PMID: 40288704 DOI: 10.1016/j.ympev.2025.108360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Tuberous orchids are ecologically vulnerable species, threatened by a range of environmental pressures such as overharvesting, grazing and land use change. Conservation efforts require accurate species identification, but are impeded by limited phylogenetic resolution of traditional genetic markers, which is exacerbated by widespread taxonomic conflict regarding the classification of orchids. Target enrichment holds promise to resolve both these challenges by offering a large set of nuclear loci with which to increase phylogenetic resolution and evaluate competing species models. Here, we evaluate the effectiveness of the Angiosperms353 markers for distinguishing over 50 tuberous orchid species native to Greece and we explore the possibility of narrowing these markers to a smaller set that could function as a minimal probe set. Our methodology consists of a three-tiered approach: 1) generating a species-level phylogeny using all Angiosperms353 loci with sufficient target recovery, 2) evaluating competing species models based on "splitter" and "lumper" classifications through Bayes Factor species delimitation, and 3) ranking the potential of Angiosperms353 loci to discriminate representatives of lineages with different divergence times based on their phylogenetic informativeness. While the inferred multi-species coalescent phylogeny had overall high support, Bayes Factor delimitation revealed mixed outcomes, favouring splitting in Serapias, while favouring splitting in basal clades and lumping in more recently diverged clades in Ophrys. A molecular clock analysis of Ophrys confirms rapid and recent radiation in clades marked by phylogenetic uncertainty, suggesting the need for additional loci to fully resolve this genus. Finally, we found 30 loci to be highly phylogenetically informative across four epochs of Orchidinae evolution; we suggest these are promising candidates for future marker development. Our findings enhance the Plant Tree of Life (PAFTOL) by contributing additional phylogenomic data for species that were previously underrepresented in trees built with these markers, while shedding light on the ongoing "splitter"-vs-"lumper" debate and offering new directions for species identification of tuberous orchids, a group with distinct taxonomic and conservation challenges.
Collapse
Affiliation(s)
- Bastien Anthoons
- Lab. of Systematic Botany and Phytogeography, School of Biology, P.O. Box: 104, Aristotle University of Thessaloniki GR-54124 Thessaloniki, Greece; Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, Thermi, GR-57001 Thessaloniki, Greece
| | - Margaretha A Veltman
- Natural History Museum, University of Oslo, Postboks 1172, Blindern, 0318 Oslo, Norway; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands
| | - Spyros Tsiftsis
- Department of Forest and Natural Environment Sciences, Democritus University of Thrace, Drama GR-66132, Greece
| | - Barbara Gravendeel
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; Radboud Institute of Environmental and Biological Sciences, Heyendaalseweg 135, 6500 GL Nijmegen, the Netherlands
| | - Andreas D Drouzas
- Lab. of Systematic Botany and Phytogeography, School of Biology, P.O. Box: 104, Aristotle University of Thessaloniki GR-54124 Thessaloniki, Greece.
| | - Hugo de Boer
- Natural History Museum, University of Oslo, Postboks 1172, Blindern, 0318 Oslo, Norway.
| | - Panagiotis Madesis
- Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, Thermi, GR-57001 Thessaloniki, Greece; Laboratory of Molecular Biology of Plants, School of Agricultural Sciences, University of Thessaly GR-38446 Thessaly, Greece.
| |
Collapse
|
2
|
Martin NH, Zalmat AS, Ellis BS, McGarvey S, Simmons-Frazier K, Mancusi K, Sotola VA. Does Asymmetric Reproductive Isolation Predict the Direction of Introgression in Plants? Genes (Basel) 2025; 16:124. [PMID: 40004453 PMCID: PMC11855407 DOI: 10.3390/genes16020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
The evolution of reproductive isolation (RI) results in the reduction of interspecific hybridization and the maintenance of species boundaries. Asymmetries in RI, where one species more frequently serves as the maternal or paternal parent in initial F1 hybrid formation, are commonly observed in plants. Asymmetric introgression, the predominantly unidirectional transfer of genetic material through hybridization and backcrossing, has also been frequently documented in hybridizing plant taxa as well. This study investigates whether asymmetries in total RI measured between species can predict the direction of introgression in naturally hybridizing plant taxa. A meta-analysis was conducted on 19 plant species pairs with published data on both asymmetric total RI, and asymmetric introgression. Species pairs that met these criteria were identified through a comprehensive literature review. A two-tailed binomial test was performed to evaluate whether asymmetric RI was associated with asymmetries in introgression. No significant relationship was found between asymmetries in total RI and the direction of introgression (p = 0.3593). Asymmetric RI largely does not predict the direction of introgression. Rather, introgression patterns may be better understood by examining F1 and later-generation hybrids in natural settings, focusing on their fitness, mating behaviors, and the ecological and demographic factors that shape hybrid zones.
Collapse
Affiliation(s)
- Noland H. Martin
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | | | - Bailey S. Ellis
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Sophia McGarvey
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | | | - Katelin Mancusi
- Biology Department, SUNY Oneonta, Oneonta, NY 13820, USA (V.A.S.)
| | - V. Alex Sotola
- Biology Department, SUNY Oneonta, Oneonta, NY 13820, USA (V.A.S.)
| |
Collapse
|
3
|
Gibert A, Schatz B, Buscail R, Nguyen D, Baguette M, Barthes N, Bertrand JAM. Floral phenotypic divergence and genomic insights in an Ophrys orchid: unraveling early speciation processes. THE NEW PHYTOLOGIST 2025; 245:849-868. [PMID: 39557060 DOI: 10.1111/nph.20190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/22/2024] [Indexed: 11/20/2024]
Abstract
Adaptive radiation in Ophrys orchids leads to complex floral phenotypes that vary in scent, color and shape. Using a novel pipeline to quantify these phenotypes, we investigated trait divergence at early stages of speciation in six populations of Ophrys aveyronensis experiencing recent allopatry. By integrating different genetic/genomic techniques, we investigated: variation and integration of floral components (scent, color and shape); phenotypes and genomic regions under divergent selection; and the genomic bases of trait variation. We identified a large genomic island of divergence, likely associated with phenotypic variation in particular in floral odor. We detected potential divergent selection on macular color, while stabilizing selection was suspected on floral morphology and for several volatile olfactive compounds. We also identified candidate genes involved in anthocyanin and in steroid biosynthesis pathways associated with standing genetic variation in color and odor. This study sheds light on early differentiation in Ophrys, revealing patterns that often become invisible over time, that is the geographic mosaic of traits under selection and the early appearance of strong genomic divergence. It also supports a crucial genomic region for future investigation and highlights the value of a multifaceted approach in unraveling speciation within taxa with large genomes.
Collapse
Affiliation(s)
- Anaïs Gibert
- Laboratoire Génome et Développement des Plantes (LGDP) UMR 5096, Université de Perpignan Via Domitia (UPVD) - Centre National de la Recherche Scientifique (CNRS) - Institut de Recherche pour le Développement (IRD), EMR 269 MANGO, Perpignan, F-66860, France
| | - Bertrand Schatz
- Centre d'Etude d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS, Université Montpellier - EPHE - IRD, Montpellier, 34090, France
| | - Roselyne Buscail
- Centre de Formation et de Recherche sur les Environnements Méditerranéens (CEFREM), UMR 5110, Université de Perpignan Via Domitia - CNRS, Perpignan, F-66860, France
| | - Dominique Nguyen
- Laboratoire Génome et Développement des Plantes (LGDP) UMR 5096, Université de Perpignan Via Domitia (UPVD) - Centre National de la Recherche Scientifique (CNRS) - Institut de Recherche pour le Développement (IRD), EMR 269 MANGO, Perpignan, F-66860, France
| | - Michel Baguette
- Institut Systématique, Évolution, Biodiversité (ISEB), UMR 7205, Museum National d'Histoire Naturelle (MNHN) - Centre National de la Recherche Scientifique (CNRS) - Sorbonne Université - École Pratique des Hautes Études (EPHE), Université des Antilles, Paris, F-75005, France
- Station d'Écologie Théorique et Expérimentale (SETE), UMR 5321, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Moulis, F-09200, France
| | - Nicolas Barthes
- Station d'Écologie Théorique et Expérimentale (SETE), UMR 5321, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Moulis, F-09200, France
| | - Joris A M Bertrand
- Laboratoire Génome et Développement des Plantes (LGDP) UMR 5096, Université de Perpignan Via Domitia (UPVD) - Centre National de la Recherche Scientifique (CNRS) - Institut de Recherche pour le Développement (IRD), EMR 269 MANGO, Perpignan, F-66860, France
| |
Collapse
|
4
|
Garlovsky MD, Whittington E, Albrecht T, Arenas-Castro H, Castillo DM, Keais GL, Larson EL, Moyle LC, Plakke M, Reifová R, Snook RR, Ålund M, Weber AAT. Synthesis and Scope of the Role of Postmating Prezygotic Isolation in Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041429. [PMID: 38151330 PMCID: PMC11444258 DOI: 10.1101/cshperspect.a041429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
How barriers to gene flow arise and are maintained are key questions in evolutionary biology. Speciation research has mainly focused on barriers that occur either before mating or after zygote formation. In comparison, postmating prezygotic (PMPZ) isolation-a barrier that acts after gamete release but before zygote formation-is less frequently investigated but may hold a unique role in generating biodiversity. Here we discuss the distinctive features of PMPZ isolation, including the primary drivers and molecular mechanisms underpinning PMPZ isolation. We then present the first comprehensive survey of PMPZ isolation research, revealing that it is a widespread form of prezygotic isolation across eukaryotes. The survey also exposes obstacles in studying PMPZ isolation, in part attributable to the challenges involved in directly measuring PMPZ isolation and uncovering its causal mechanisms. Finally, we identify outstanding knowledge gaps and provide recommendations for improving future research on PMPZ isolation. This will allow us to better understand the nature of this often-neglected reproductive barrier and its contribution to speciation.
Collapse
Affiliation(s)
- Martin D Garlovsky
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden 01062, Germany
| | | | - Tomas Albrecht
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno 60365, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Henry Arenas-Castro
- School of Biological Sciences, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Dean M Castillo
- Department of Biological Sciences, Miami University, Hamilton, Ohio 45011, USA
| | - Graeme L Keais
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208, USA
| | - Leonie C Moyle
- Department of Biology, Indiana University Bloomington, Indiana 47405, USA
| | - Melissa Plakke
- Division of Science, Mathematics, and Technology, Governors State University, University Park, Illinois 60484, USA
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm 109 61, Sweden
| | - Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Alexandra A-T Weber
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Zürich, Switzerland
| |
Collapse
|
5
|
Bohman B, Bersch AJ, Flematti GR, Schlüter PM. Practical preparation of unsaturated very-long-chain fatty acids (VLCFAs) and very-long-chain alkene pollinator attractants. Sci Rep 2024; 14:19694. [PMID: 39181972 PMCID: PMC11344852 DOI: 10.1038/s41598-024-70598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
To prepare very-long-chain fatty acids and alkenes (VLCFAs and VLC alkenes) that are known pollinator attractants for sexually deceptive orchids, and biosynthetic precursors thereof, we applied a methodology allowing us to prepare monounsaturated VLCFAs with chain lengths up to 28 carbons and VLC alkenes up to 31 carbons. We implemented a coupling reaction between commercially available terminal alkynes and bromoalkanoic acids to prepare VLCFAs, allowing the products to be formed in two steps. For VLC alkenes, with many alkyltriphenylphosphonium bromides commercially available, we applied a Wittig reaction approach to prepare (Z)-configured monoenes in a single step. Using practical methods not requiring special reagents or equipment, we obtained 11 VLCFAs in > 90% isomeric purity, and 17 VLC alkenes in > 97% isomeric purity. Such general and accessible synthetic methods are essential for chemical ecology and biochemistry research to aid researchers in unambiguously identifying isolated semiochemicals and their precursors.
Collapse
Affiliation(s)
- Björn Bohman
- School of Molecular Sciences, University of Western Australia, Perth, Australia.
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden.
| | - Aylin J Bersch
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Gavin R Flematti
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Philipp M Schlüter
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
6
|
Russo A, Alessandrini M, El Baidouri M, Frei D, Galise TR, Gaidusch L, Oertel HF, Garcia Morales SE, Potente G, Tian Q, Smetanin D, Bertrand JAM, Onstein RE, Panaud O, Frey JE, Cozzolino S, Wicker T, Xu S, Grossniklaus U, Schlüter PM. Genome of the early spider-orchid Ophrys sphegodes provides insights into sexual deception and pollinator adaptation. Nat Commun 2024; 15:6308. [PMID: 39060266 PMCID: PMC11282089 DOI: 10.1038/s41467-024-50622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Pollinator-driven evolution of floral traits is thought to be a major driver of angiosperm speciation and diversification. Ophrys orchids mimic female insects to lure male pollinators into pseudocopulation. This strategy, called sexual deception, is species-specific, thereby providing strong premating reproductive isolation. Identifying the genomic architecture underlying pollinator adaptation and speciation may shed light on the mechanisms of angiosperm diversification. Here, we report the 5.2 Gb chromosome-scale genome sequence of Ophrys sphegodes. We find evidence for transposable element expansion that preceded the radiation of the O. sphegodes group, and for gene duplication having contributed to the evolution of chemical mimicry. We report a highly differentiated genomic candidate region for pollinator-mediated evolution on chromosome 2. The Ophrys genome will prove useful for investigations into the repeated evolution of sexual deception, pollinator adaptation and the genomic architectures that facilitate evolutionary radiations.
Collapse
Affiliation(s)
- Alessia Russo
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland.
- Department of Systematic and Evolutionary Botany and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland.
| | - Mattia Alessandrini
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Moaine El Baidouri
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- EMR269 MANGO, Institut de Recherche pour le Développement, Perpignan, France
| | - Daniel Frei
- Department of Methods Development and Analytics, Agroscope, Wädenswil, Switzerland
| | | | - Lara Gaidusch
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Hannah F Oertel
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Sara E Garcia Morales
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Giacomo Potente
- Department of Systematic and Evolutionary Botany and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | - Qin Tian
- Naturalis Biodiversity Centre, Leiden, The Netherlands
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Dmitry Smetanin
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | - Joris A M Bertrand
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- EMR269 MANGO, Institut de Recherche pour le Développement, Perpignan, France
| | - Renske E Onstein
- Naturalis Biodiversity Centre, Leiden, The Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena - Leipzig, Leipzig, Germany
| | - Olivier Panaud
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- EMR269 MANGO, Institut de Recherche pour le Développement, Perpignan, France
| | - Jürg E Frey
- Department of Methods Development and Analytics, Agroscope, Wädenswil, Switzerland
| | | | - Thomas Wicker
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | - Shuqing Xu
- Institute of Organismic and Molecular Evolution, University of Mainz, Mainz, Germany
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | - Philipp M Schlüter
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
- Department of Systematic and Evolutionary Botany and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland.
| |
Collapse
|
7
|
Francisco A, Ascensão L. Osmophore Structure and Labellum Micromorphology in Ophrys speculum (Orchidaceae): New Interpretations of Floral Features and Implications for a Specific Sexually Deceptive Pollination Interaction. PLANTS (BASEL, SWITZERLAND) 2024; 13:1413. [PMID: 38794483 PMCID: PMC11125028 DOI: 10.3390/plants13101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Pollination by sexual deception specifically attracts male insects, through the floral scent and particular morphological features of the flower that serve as visual and tactile stimuli. The unique bond between the Ophrys speculum orchid and the male Dasyscolia ciliata wasp primarily stems from a few distinctive semiochemicals that mimic the female wasp's sex pheromone, although the floral scent comprises a variety of compounds. An osmophore producing highly volatile compounds has been documented in four close relatives of O. speculum and is now being also investigated in this species. Given the existing debates regarding the structure of the labellum and stigmatic cavity in O. speculum, this study details their micromorphology. Additionally, comparisons of O. speculum flowers and female D. ciliata wasps under stereomicroscopy and scanning electron microscopy are conducted to seek new evidence of visual and tactile mimicry. The findings confirm that (i) an osmophore is present at the apical margin of the labellum in O. speculum flowers; (ii) the labellum features a distinct basal field homologous to those found in other Ophrys species; and (iii) the basal labellum region closely mimics the female wasp's thorax and wings. The implications of these novel floral features are discussed within an evolutionary context.
Collapse
Affiliation(s)
- Ana Francisco
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências da Universidade de Lisboa (FCUL), C2, Campo Grande, 1749-016 Lisboa, Portugal
| | - Lia Ascensão
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências da Universidade de Lisboa (FCUL), C2, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
8
|
Bateman RM, Rudall PJ. Morphological Continua Make Poor Species: Genus-Wide Morphometric Survey of the European Bee Orchids ( Ophrys L.). BIOLOGY 2023; 12:136. [PMID: 36671828 PMCID: PMC9855528 DOI: 10.3390/biology12010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/17/2023]
Abstract
Despite (or perhaps because of) intensive multidisciplinary research, opinions on the optimal number of species recognised within the Eurasian orchid genus Ophrys range from nine to at least 400. The lower figure of nine macrospecies is based primarily on seeking small but reliable discontinuities in DNA 'barcode' regions, an approach subsequently reinforced and finessed via high-throughput sequencing studies. The upper figure of ca. 400 microspecies reflects the morphological authoritarianism of traditional taxonomy combined with belief in extreme pollinator specificity caused by reliance on pollination through pseudo-copulation, enacted by bees and wasps. Groupings of microspecies that are less inclusive than macrospecies are termed mesospecies. Herein, we present multivariate morphometric analyses based on 51 characters scored for 457 individual plants that together span the full morphological and molecular diversity within the genus Ophrys, encompassing 113 named microspecies that collectively represent all 29 mesospecies and all nine macrospecies. We critique our preferred morphometric approach of accumulating heterogeneous data and analysing them primarily using principal coordinates, noting that our conclusions would have been strengthened by even greater sampling and the inclusion of data describing pseudo-pheromone cocktails. Morphological variation within Ophrys proved to be exceptionally multidimensional, lacking strong directional trends. Multivariate clustering of plants according to prior taxonomy was typically weak, irrespective of whether it was assessed at the level of macrospecies, mesospecies or microspecies; considerable morphological overlap was evident even between subsets of the molecularly differentiable macrospecies. Characters supporting genuine taxonomic distinctions were often sufficiently subtle that they were masked by greater and more positively correlated variation that reflected strong contrasts in flower size, tepal colour or, less often, plant size. Individual macrospecies appear to represent morphological continua, within which taxonomic divisions are likely to prove arbitrary if based exclusively on morphological criteria and adequately sampled across their geographic range. It remains unclear how much of the mosaic of subtle character variation among the microspecies reflects genetic versus epigenetic or non-genetic influences and what proportion of any contrasts observed in gene frequencies can be attributed to the adaptive microevolution that is widely considered to dictate speciation in the genus. Moreover, supplementing weak morphological criteria with extrinsic criteria, typically by imposing constraints on geographic location and/or supposed pollinator preference, assumes rather than demonstrates the presence of even the weakest of species boundaries. Overall, it is clear that entities in Ophrys below the level of macrospecies have insufficiently structured variation, either phenotypic or genotypic, to be resolved into discrete, self-circumscribing ("natural") entities that can legitimately be equated with species as delimited within other less specialised plant genera. Our search for a non-arbitrary (meso)species concept competent to circumscribe an intermediate number of species has so far proven unsuccessful.
Collapse
Affiliation(s)
- Richard M. Bateman
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey TW9 3DS, UK
| | | |
Collapse
|
9
|
Joffard N, Buatois B, Arnal V, Véla E, Montgelard C, Schatz B. Delimiting species in the taxonomically challenging orchid section Pseudophrys: Bayesian analyses of genetic and phenotypic data. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1058550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Accurate species delimitation is critical for biodiversity conservation. Integrative taxonomy has been advocated for a long time, yet tools allowing true integration of genetic and phenotypic data have been developed quite recently and applied to few models, especially in plants. In this study, we investigated species boundaries within a group of twelve Pseudophrys taxa from France by analyzing genetic, morphometric and chemical (i.e., floral scents) data in a Bayesian framework using the program integrated Bayesian Phylogenetics and Phylogeography (iBPP). We found that these twelve taxa were merged into four species when only genetic data were used, while most formally described species were recognized as such when only phenotypic (either morphometric or chemical) data were used. The result of the iBPP analysis performed on both genetic and phenotypic data supports the proposal to merge Ophrys bilunulata and O. marmorata on the one hand, and O. funerea and O. zonata on the other hand. Our results show that phenotypic data are particularly informative in the section Pseudophrys and that their integration in a model-based method significantly improves the accuracy of species delimitation. We are convinced that the integrative taxonomic approach proposed in this study holds great promise to conduct taxonomic revisions in other orchid groups.
Collapse
|
10
|
Zhang D, Zhao XW, Li YY, Ke SJ, Yin WL, Lan S, Liu ZJ. Advances and prospects of orchid research and industrialization. HORTICULTURE RESEARCH 2022; 9:uhac220. [PMID: 36479582 PMCID: PMC9720451 DOI: 10.1093/hr/uhac220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
Orchidaceae is one of the largest, most diverse families in angiosperms with significant ecological and economical values. Orchids have long fascinated scientists by their complex life histories, exquisite floral morphology and pollination syndromes that exhibit exclusive specializations, more than any other plants on Earth. These intrinsic factors together with human influences also make it a keystone group in biodiversity conservation. The advent of sequencing technologies and transgenic techniques represents a quantum leap in orchid research, enabling molecular approaches to be employed to resolve the historically interesting puzzles in orchid basic and applied biology. To date, 16 different orchid genomes covering four subfamilies (Apostasioideae, Vanilloideae, Epidendroideae, and Orchidoideae) have been released. These genome projects have given rise to massive data that greatly empowers the studies pertaining to key innovations and evolutionary mechanisms for the breadth of orchid species. The extensive exploration of transcriptomics, comparative genomics, and recent advances in gene engineering have linked important traits of orchids with a multiplicity of gene families and their regulating networks, providing great potential for genetic enhancement and improvement. In this review, we summarize the progress and achievement in fundamental research and industrialized application of orchids with a particular focus on molecular tools, and make future prospects of orchid molecular breeding and post-genomic research, providing a comprehensive assemblage of state of the art knowledge in orchid research and industrialization.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xue-Wei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Yuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shi-Jie Ke
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei-Lun Yin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
11
|
Tavares MM, Ferro M, Leal BSS, Palma‐Silva C. Speciation with gene flow between two Neotropical sympatric species (
Pitcairnia
spp.: Bromeliaceae). Ecol Evol 2022; 12:e8834. [PMID: 35509614 PMCID: PMC9055293 DOI: 10.1002/ece3.8834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Marília Manuppella Tavares
- Departamento de Biologia Vegetal Instituto de Biologia Universidade Estadual de Campinas Campinas Brazil
| | - Milene Ferro
- Departamento de Biologia Geral e Aplicada Universidade Estadual Paulista Rio Claro Brazil
| | - Bárbara Simões Santos Leal
- Departamento de Biologia Vegetal Instituto de Biologia Universidade Estadual de Campinas Campinas Brazil
| | - Clarisse Palma‐Silva
- Departamento de Biologia Vegetal Instituto de Biologia Universidade Estadual de Campinas Campinas Brazil
| |
Collapse
|
12
|
Pretz C, Smith SD. Intraspecific breakdown of self-incompatibility in Physalis acutifolia (Solanaceae). AOB PLANTS 2022; 14:plab080. [PMID: 35079331 PMCID: PMC8783618 DOI: 10.1093/aobpla/plab080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/21/2021] [Indexed: 05/13/2023]
Abstract
Variation in mating systems is prevalent throughout angiosperms, with many transitions between outcrossing and selfing above and below the species level. This study documents a new case of an intraspecific breakdown of self-incompatibility in a wild relative of tomatillo, Physalis acutifolia. We used controlled greenhouse crosses to identify self-incompatible (SI) and self-compatible (SC) individuals grown from seed sampled across seven sites across Arizona and New Mexico. We measured 14 flower and fruit traits to test for trait variation associated with mating system. We also quantified pollen tube growth in vivo and tested for the presence of the S-RNase proteins in SI and SC styles. We found that seed from six of the seven sites produced SI individuals that terminated self-pollen tubes in the style and showed detectable S-RNase expression. By contrast, seed from one Arizona site produced SC individuals with no S-RNase expression. These SC individuals displayed typical selfing-syndrome traits such as smaller corollas, reduced stigma-anther distances, and a smaller pollen-ovule ratio. We also found plasticity in self-incompatibility as most of the SI individuals became SC and lost S-RNase expression roughly after 6 months in the greenhouse. While fixed differences in mating systems are known among the SI wild species and the often SC domesticated tomatillos, our study is the first to demonstrate intraspecific variation in natural populations as well as variation in SI over an individual's lifespan.
Collapse
Affiliation(s)
- Chelsea Pretz
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street, Boulder, CO 80309, USA
- Corresponding author’s e-mail address:
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street, Boulder, CO 80309, USA
| |
Collapse
|
13
|
Drakolide Structure-activity Relationships for Sexual Attraction of Zeleboria Wasp Pollinator. J Chem Ecol 2022; 48:323-336. [DOI: 10.1007/s10886-021-01324-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 11/26/2022]
|
14
|
Wood ZT, Wiegardt AK, Barton KL, Clark JD, Homola JJ, Olsen BJ, King BL, Kovach AI, Kinnison MT. Meta-analysis: Congruence of genomic and phenotypic differentiation across diverse natural study systems. Evol Appl 2021; 14:2189-2205. [PMID: 34603492 PMCID: PMC8477602 DOI: 10.1111/eva.13264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 01/17/2023] Open
Abstract
Linking genotype to phenotype is a primary goal for understanding the genomic underpinnings of evolution. However, little work has explored whether patterns of linked genomic and phenotypic differentiation are congruent across natural study systems and traits. Here, we investigate such patterns with a meta-analysis of studies examining population-level differentiation at subsets of loci and traits putatively responding to divergent selection. We show that across the 31 studies (88 natural population-level comparisons) we examined, there was a moderate (R 2 = 0.39) relationship between genomic differentiation (F ST ) and phenotypic differentiation (P ST ) for loci and traits putatively under selection. This quantitative relationship between P ST and F ST for loci under selection in diverse taxa provides broad context and cross-system predictions for genomic and phenotypic adaptation by natural selection in natural populations. This context may eventually allow for more precise ideas of what constitutes "strong" differentiation, predictions about the effect size of loci, comparisons of taxa evolving in nonparallel ways, and more. On the other hand, links between P ST and F ST within studies were very weak, suggesting that much work remains in linking genomic differentiation to phenotypic differentiation at specific phenotypes. We suggest that linking genotypes to specific phenotypes can be improved by correlating genomic and phenotypic differentiation across a spectrum of diverging populations within a taxon and including wide coverage of both genomes and phenomes.
Collapse
Affiliation(s)
- Zachary T. Wood
- School of Biology and EcologyUniversity of MaineOronoMEUSA
- Maine Center for Genetics in the EnvironmentOronoMEUSA
| | - Andrew K. Wiegardt
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| | - Kayla L. Barton
- Department of Molecular & Biomedical SciencesUniversity of MaineOronoMEUSA
| | - Jonathan D. Clark
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| | - Jared J. Homola
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMIUSA
| | - Brian J. Olsen
- Maine Center for Genetics in the EnvironmentOronoMEUSA
- Department of Wildlife, Fisheries, and Conservation BiologyUniversity of MaineOronoMEUSA
| | - Benjamin L. King
- Department of Molecular & Biomedical SciencesUniversity of MaineOronoMEUSA
| | - Adrienne I. Kovach
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| | - Michael T. Kinnison
- School of Biology and EcologyUniversity of MaineOronoMEUSA
- Maine Center for Genetics in the EnvironmentOronoMEUSA
| |
Collapse
|
15
|
Bateman RM. Phenotypic versus genotypic disparity in the Eurasian orchid genus Gymnadenia: exploring the limits of phylogeny reconstruction. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1877845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Richard M. Bateman
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond TW9 3DS, Surrey, UK
| |
Collapse
|
16
|
Bateman RM, Rudall PJ, Murphy ARM, Cowan RS, Devey DS, Peréz-Escobar OA. Whole plastomes are not enough: phylogenomic and morphometric exploration at multiple demographic levels of the bee orchid clade Ophrys sect. Sphegodes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:654-681. [PMID: 33449086 DOI: 10.1093/jxb/eraa467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/15/2020] [Indexed: 05/21/2023]
Abstract
Plastid sequences have long dominated phylogeny reconstruction at all time depths, predicated on a usually untested assumption that they accurately represent the evolutionary histories of phenotypically circumscribed species. We combined detailed in situ morphometrics (124 plants) and whole-plastome sequencing through genome skimming (71 plants) in order to better understand species-level diversity and speciation in arguably the most challenging monophyletic group within the taxonomically controversial, pseudo-copulatory bee orchid genus Ophrys. Using trees and ordinations, we interpreted the data at four nested demographic levels-macrospecies, mesospecies, microspecies, and local population-seeking the optimal level for bona fide species. Neither morphological nor molecular discontinuities are evident at any level below macrospecies, the observed overlap among taxa suggesting that both mesospecies and microspecies reflect arbitrary division of a continuum of variation. Plastomes represent geographic location more strongly than taxonomic assignment and correlate poorly with morphology, suggesting widespread plastid capture and possibly post-glacial expansion from multiple southern refugia. As they are rarely directly involved in the speciation process, plastomes depend on extinction of intermediate lineages to provide phylogenetic signal and so cannot adequately document evolutionary radiations. The popular 'ethological' evolutionary model recognizes as numerous 'ecological species' (microspecies) lineages perceived as actively diverging as a result of density-dependent selection on very few features that immediately dictate extreme pollinator specificity. However, it is assumed rather than demonstrated that the many microspecies are genuinely diverging. We conversely envisage a complex four-dimensional reticulate network of lineages, generated locally and transiently through a wide spectrum of mechanisms, but each unlikely to maintain an independent evolutionary trajectory long enough to genuinely speciate by escaping ongoing gene flow. The frequent but localized microevolution that characterizes the Ophrys sphegodes complex is often convergent and rarely leads to macroevolution. Choosing between the contrasting 'discontinuity' and 'ethology' models will require next-generation sequencing of nuclear genomes plus ordination of corresponding morphometric matrices, seeking the crucial distinction between retained ancestral polymorphism-consistent with lineage divergence-and polymorphisms reflecting gene flow through 'hybridization'-more consistent with lineage convergence.
Collapse
|
17
|
Dellinger AS. Pollination syndromes in the 21 st century: where do we stand and where may we go? THE NEW PHYTOLOGIST 2020; 228:1193-1213. [PMID: 33460152 DOI: 10.1111/nph.16793] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/31/2020] [Indexed: 06/12/2023]
Abstract
Pollination syndromes, recurring suites of floral traits appearing in connection with specific functional pollinator groups, have served for decades to organise floral diversity under a functional-ecological perspective. Some potential caveats, such as over-simplification of complex plant-animal interactions or lack of empirical observations, have been identified and discussed in recent years. Which of these caveats do indeed cause problems, which have been solved and where do future possibilities lie? I address these questions in a review of the pollination-syndrome literature of 2010 to 2019. I show that the majority of studies was based on detailed empirical pollinator observations and could reliably predict pollinators based on a few floral traits such as colour, shape or reward. Some traits (i.e. colour) were less reliable in predicting pollinators than others (i.e. reward, corolla width), however. I stress that future studies should consider floral traits beyond those traditionally recorded to expand our understanding of mechanisms of floral evolution. I discuss statistical methods suitable for objectively analysing the interplay of system-specific evolutionary constraints, pollinator-mediated selection and adaptive trade-offs at microecological and macroecological scales. I exemplify my arguments on an empirical dataset of floral traits of a neotropical plant radiation in the family Melastomataceae.
Collapse
|
18
|
Baguette M, Bertrand JAM, Stevens VM, Schatz B. Why are there so many bee-orchid species? Adaptive radiation by intra-specific competition for mnesic pollinators. Biol Rev Camb Philos Soc 2020; 95:1630-1663. [PMID: 32954662 DOI: 10.1111/brv.12633] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023]
Abstract
Adaptive radiations occur mostly in response to environmental variation through the evolution of key innovations that allow emerging species to occupy new ecological niches. Such biological innovations may play a major role in niche divergence when emerging species are engaged in reciprocal ecological interactions. To demonstrate coevolution is a difficult task; only a few studies have confirmed coevolution as driver of speciation and diversification. Herein we review current knowledge about bee orchid (Ophrys spp.) reproductive biology. We propose that the adaptive radiation of the Mediterranean orchid genus Ophrys, comprising several hundred species, is due to coevolutionary dynamics between these plants and their pollinators. We suggest that pollination by sexual swindling used by Ophrys orchids is the main driver of this coevolution. Flowers of each Ophrys species mimic a sexually receptive female of one particular insect species, mainly bees. Male bees are first attracted by pseudo-pheromones emitted by Ophrys flowers that are similar to the sexual pheromones of their females. Males then are lured by the flower shape, colour and hairiness, and attempt to copulate with the flower, which glues pollen onto their bodies. Pollen is later transferred to the stigma of another flower of the same Ophrys species during similar copulation attempts. In contrast to rewarding pollination strategies, Ophrys pollinators appear to be parasitized. Here we propose that this apparent parasitism is in fact a coevolutionary relationship between Ophrys and their pollinators. For plants, pollination by sexual swindling could ensure pollination efficiency and specificity, and gene flow among populations. For pollinators, pollination by sexual swindling could allow habitat matching and inbreeding avoidance. Pollinators might use the pseudo-pheromones emitted by Ophrys to locate suitable habitats from a distance within complex landscapes. In small populations, male pollinators would disperse once they have memorized the local diversity of sexual pseudo-pheromone bouquets or if all Ophrys flowers are fertilized and thus repel pollinators via production of repulsive pheromones that mimic those produced by fertilized female bees. We propose the following evolutionary scenario: Ophrys radiation is driven by strong intra-specific competition among Ophrys individuals for the attraction of species-specific pollinators, which is a consequence of the high cognitive abilities of pollinators. Male bees record the pheromone signatures of kin or of previously courted partners to avoid further copulation attempts, thereby inducing strong selection on Ophrys for variation in odour bouquets emitted by individual flowers. The resulting odour bouquets could by chance correspond to pseudo-pheromones of the females of another bee species, and thus attract a new pollinator. If such pollinator shifts occur simultaneously in several indivuals, pollen exchanges might occur and initiate speciation. To reinforce the attraction of the new pollinator and secure prezygotic isolation, the following step is directional selection on flower phenotypes (shape, colour and hairiness) towards a better match with the body of the pollinator's female. Pollinator shift and the resulting prezygotic isolation is adaptive for new Ophrys species because they may benefit from competitor-free space for limited pollinators. We end our review by proritizing several critical research avenues.
Collapse
Affiliation(s)
- Michel Baguette
- Institut Systématique, Evolution, Biodiversité (ISYEB), UMR 7205 Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, F-75005, Paris, France.,Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, F-09200, Moulis, France
| | - Joris A M Bertrand
- LGDP (Laboratoire Génome et Développement des Plantes) UMR5096, Université de Perpignan Via Domitia -CNRS, F-66860, Perpignan, France
| | - Virginie M Stevens
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, F-09200, Moulis, France
| | - Bertrand Schatz
- CEFE (Centre d'Ecologie Fonctionnelle et Evolutive) UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry - EPHE, 1919 Route de Mende, 34293, Montpellier, France
| |
Collapse
|
19
|
Joffard N, Arnal V, Buatois B, Schatz B, Montgelard C. Floral scent evolution in the section Pseudophrys: pollinator-mediated selection or phylogenetic constraints? PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:881-889. [PMID: 32130747 DOI: 10.1111/plb.13104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Sexually deceptive orchid species from the Mediterranean genus Ophrys usually interact with one or a few pollinator species by means of specific floral scents. In this study, we investigated the respective role of pollinator-mediated selection and phylogenetic constraints in the evolution of floral scents in the section Pseudophrys. We built a phylogenetic tree of 19 Pseudophrys species based on three nuclear loci; we gathered a dataset on their pollination interactions from the literature and from our own field data; and we extracted and analysed their floral scents using solid phase microextraction and gas chromatography-mass spectrometry. We then quantified the phylogenetic signal carried by floral scents and investigated the link between plant-pollinator interactions and floral scent composition using phylogenetic comparative methods. We confirmed the monophyly of the section Pseudophrys and demonstrated the existence of three main clades within this section. We found that floral scent composition is affected by both phylogenetic relationships among Ophrys species and pollination interactions, with some compounds (especially fatty acid esters) carrying a significant phylogenetic signal and some (especially alkenes and alkadienes) generating dissimilarities between closely related Pseudophrys pollinated by different insects. Our results show that in the section Pseudophrys, floral scents are shaped both by pollinator-mediated selection and by phylogenetic constraints, but that the relative importance of these two evolutionary forces differ among compound classes, probably reflecting distinct selective pressures imposed upon behaviourally active and non-active compounds.
Collapse
Affiliation(s)
- N Joffard
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| | - V Arnal
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| | - B Buatois
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| | - B Schatz
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| | - C Montgelard
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| |
Collapse
|
20
|
Scopece G, Palma-Silva C, Cafasso D, Lexer C, Cozzolino S. Phenotypic expression of floral traits in hybrid zones provides insights into their genetic architecture. THE NEW PHYTOLOGIST 2020; 227:967-975. [PMID: 32237254 DOI: 10.1111/nph.16566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
Information on the genetic architecture of phenotypic traits is helpful for constructing and testing models of the ecoevolutionary dynamics of natural populations. For plant groups with long life cycles there is a lack of line cross experiments that can unravel the genetic architecture of loci underlying quantitative traits. To fill this gap, we propose the use of variation for phenotypic traits expressed in natural hybrid zones as an alternative approach. We used data from orchid hybrid zones and compared expected and observed patterns of phenotypic trait expression in different early-generation hybrid classes identified by molecular genetic markers. We found evidence of additivity, dominance, and epistatic interactions for different phenotypic traits. We discuss the potential of this approach along with its limitations and suggest that it may represent a realistic way to gain an initial insight into the heritability and genomic architecture of traits in organismal groups with complex life history, such as orchids and many others.
Collapse
Affiliation(s)
- Giovanni Scopece
- Department of Biology, University of Naples 'Federico II', Complesso Universitario MSA, I-80126, Naples, Italy
| | - Clarisse Palma-Silva
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, 13083-862, Campinas, Brazil
| | - Donata Cafasso
- Department of Biology, University of Naples 'Federico II', Complesso Universitario MSA, I-80126, Naples, Italy
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Wien, Austria
| | - Salvatore Cozzolino
- Department of Biology, University of Naples 'Federico II', Complesso Universitario MSA, I-80126, Naples, Italy
| |
Collapse
|
21
|
Nürk NM, Linder HP, Onstein RE, Larcombe MJ, Hughes CE, Piñeiro Fernández L, Schlüter PM, Valente L, Beierkuhnlein C, Cutts V, Donoghue MJ, Edwards EJ, Field R, Flantua SGA, Higgins SI, Jentsch A, Liede‐Schumann S, Pirie MD. Diversification in evolutionary arenas-Assessment and synthesis. Ecol Evol 2020; 10:6163-6182. [PMID: 32607221 PMCID: PMC7319112 DOI: 10.1002/ece3.6313] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022] Open
Abstract
Understanding how and why rates of evolutionary diversification vary is a key issue in evolutionary biology, ecology, and biogeography. Evolutionary rates are the net result of interacting processes summarized under concepts such as adaptive radiation and evolutionary stasis. Here, we review the central concepts in the evolutionary diversification literature and synthesize these into a simple, general framework for studying rates of diversification and quantifying their underlying dynamics, which can be applied across clades and regions, and across spatial and temporal scales. Our framework describes the diversification rate (d) as a function of the abiotic environment (a), the biotic environment (b), and clade-specific phenotypes or traits (c); thus, d ~ a,b,c. We refer to the four components (a-d) and their interactions collectively as the "Evolutionary Arena." We outline analytical approaches to this framework and present a case study on conifers, for which we parameterize the general model. We also discuss three conceptual examples: the Lupinus radiation in the Andes in the context of emerging ecological opportunity and fluctuating connectivity due to climatic oscillations; oceanic island radiations in the context of island formation and erosion; and biotically driven radiations of the Mediterranean orchid genus Ophrys. The results of the conifer case study are consistent with the long-standing scenario that low competition and high rates of niche evolution promote diversification. The conceptual examples illustrate how using the synthetic Evolutionary Arena framework helps to identify and structure future directions for research on evolutionary radiations. In this way, the Evolutionary Arena framework promotes a more general understanding of variation in evolutionary rates by making quantitative results comparable between case studies, thereby allowing new syntheses of evolutionary and ecological processes to emerge.
Collapse
Affiliation(s)
- Nicolai M. Nürk
- Department of Plant SystematicsBayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - H. Peter Linder
- Department of Systematic & Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Renske E. Onstein
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | | | - Colin E. Hughes
- Department of Systematic & Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Laura Piñeiro Fernández
- Department of Systematic & Evolutionary BotanyUniversity of ZurichZurichSwitzerland
- Department of BotanyUniversity of HohenheimStuttgartGermany
| | | | - Luis Valente
- Naturalis Biodiversity CenterUnderstanding Evolution GroupLeidenThe Netherlands
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Carl Beierkuhnlein
- Department of BiogeographyBayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - Vanessa Cutts
- School of GeographyUniversity of NottinghamNottinghamUK
| | - Michael J. Donoghue
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| | - Erika J. Edwards
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| | - Richard Field
- School of GeographyUniversity of NottinghamNottinghamUK
| | | | | | - Anke Jentsch
- Department of Disturbance EcologyBayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - Sigrid Liede‐Schumann
- Department of Plant SystematicsBayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - Michael D. Pirie
- Johannes Gutenberg‐UniversitätMainzGermany
- University MuseumUniversity of BergenBergenNorway
| |
Collapse
|
22
|
Gaudinier A, Blackman BK. Evolutionary processes from the perspective of flowering time diversity. THE NEW PHYTOLOGIST 2020; 225:1883-1898. [PMID: 31536639 DOI: 10.1111/nph.16205] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/30/2019] [Indexed: 05/18/2023]
Abstract
Although it is well appreciated that genetic studies of flowering time regulation have led to fundamental advances in the fields of molecular and developmental biology, the ways in which genetic studies of flowering time diversity have enriched the field of evolutionary biology have received less attention despite often being equally profound. Because flowering time is a complex, environmentally responsive trait that has critical impacts on plant fitness, crop yield, and reproductive isolation, research into the genetic architecture and molecular basis of its evolution continues to yield novel insights into our understanding of domestication, adaptation, and speciation. For instance, recent studies of flowering time variation have reconstructed how, when, and where polygenic evolution of phenotypic plasticity proceeded from standing variation and de novo mutations; shown how antagonistic pleiotropy and temporally varying selection maintain polymorphisms in natural populations; and provided important case studies of how assortative mating can evolve and facilitate speciation with gene flow. In addition, functional studies have built detailed regulatory networks for this trait in diverse taxa, leading to new knowledge about how and why developmental pathways are rewired and elaborated through evolutionary time.
Collapse
Affiliation(s)
- Allison Gaudinier
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Benjamin K Blackman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
23
|
Piñeiro Fernández L, Byers KJR.P, Cai J, Sedeek KEM, Kellenberger RT, Russo A, Qi W, Aquino Fournier C, Schlüter PM. A Phylogenomic Analysis of the Floral Transcriptomes of Sexually Deceptive and Rewarding European Orchids, Ophrys and Gymnadenia. FRONTIERS IN PLANT SCIENCE 2019; 10:1553. [PMID: 31850034 PMCID: PMC6895147 DOI: 10.3389/fpls.2019.01553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/07/2019] [Indexed: 05/30/2023]
Abstract
The orchids (Orchidaceae) constitute one of the largest and most diverse families of flowering plants. They have evolved a great variety of adaptations to achieve pollination by a diverse group of pollinators. Many orchids reward their pollinators, typically with nectar, but the family is also well-known for employing deceptive pollination strategies in which there is no reward for the pollinator, in the most extreme case by mimicking sexual signals of pollinators. In the European flora, two examples of these different pollination strategies are the sexually deceptive genus Ophrys and the rewarding genus Gymnadenia, which differ in their level of pollinator specialization; Ophrys is typically pollinated by pseudo-copulation of males of a single insect species, whilst Gymnadenia attracts a broad range of floral visitors. Here, we present and describe the annotated floral transcriptome of Ophrys iricolor, an Andrena-pollinated representative of the genus Ophrys that is widespread throughout the Aegean. Furthermore, we present additional floral transcriptomes of both sexually deceptive and rewarding orchids, specifically the deceptive Ophrys insectifera, Ophrys aymoninii, and an updated floral transcriptome of Ophrys sphegodes, as well as the floral transcriptomes of the rewarding orchids Gymnadenia conopsea, Gymnadenia densiflora, Gymnadenia odoratissima, and Gymnadenia rhellicani (syn. Nigritella rhellicani). Comparisons of these novel floral transcriptomes reveal few annotation differences between deceptive and rewarding orchids. Since together, these transcriptomes provide a representative sample of the genus-wide taxonomic diversity within Ophrys and Gymnadenia (Orchidoideae: Orchidinae), we employ a phylogenomic approach to address open questions of phylogenetic relationships within the genera. Specifically, this includes the controversial placement of O. insectifera within the Ophrys phylogeny and the placement of "Nigritella"-type morphologies within the phylogeny of Gymnadenia. Whereas in Gymnadenia, several conflicting topologies are supported by a similar number of gene trees, a majority of Ophrys gene topologies clearly supports a placement of O. insectifera as sister to a clade containing O. sphegodes.
Collapse
Affiliation(s)
- Laura Piñeiro Fernández
- Institute of Botany, University of Hohenheim, Stuttgart, Germany
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Kelsey J. R .P. Byers
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Jing Cai
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Khalid E. M. Sedeek
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Centre, Giza, Egypt
| | - Roman T. Kellenberger
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alessia Russo
- Institute of Botany, University of Hohenheim, Stuttgart, Germany
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Centre Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
24
|
Paulus HF. Speciation, pattern recognition and the maximization of pollination: general questions and answers given by the reproductive biology of the orchid genus Ophrys. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:285-300. [PMID: 31134328 PMCID: PMC6579770 DOI: 10.1007/s00359-019-01350-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 11/18/2022]
Abstract
Pollination syndromes evolved under the reciprocal selection of pollinators and plants (coevolution). Here, the two main methods are reviewed which are applied to prove such selection. (i) The indirect method is a cross-lineage approach using phylogenetical trees to understand the phylogeny. Thus, features of single origin can be distinguished from those with multiple origins. Nearly all pollination modes originate in multiple evolutionary ways. (ii) The most frequent pollinators cause the strongest selection because they are responsible for the plant's most successful reproduction. The European sexually deceptive orchid genus Ophrys provides an example of a more direct way to prove selection because the attraction of a pollinator is species specific. Most members of the genus have remarkably variable flowers. The variability of the signals given off by the flowers enables the deceived pollinator males to learn individual flower patterns. They thus avoid already visited Ophrys flowers, interpreting them as females rejecting them. As the males will not return to these individually recognizable flowers, the pollinators´ learning behavior causes cross-pollination and prevents the orchid's self-pollination.
Collapse
Affiliation(s)
- Hannes F Paulus
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstr.14, 1090, Vienna, Austria.
| |
Collapse
|
25
|
Emergence of a floral colour polymorphism by pollinator-mediated overdominance. Nat Commun 2019; 10:63. [PMID: 30622247 PMCID: PMC6325131 DOI: 10.1038/s41467-018-07936-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/05/2018] [Indexed: 12/28/2022] Open
Abstract
Maintenance of polymorphism by overdominance (heterozygote advantage) is a fundamental concept in evolutionary biology. In most examples known in nature, overdominance is a result of homozygotes suffering from deleterious effects. Here we show that overdominance maintains a non-deleterious polymorphism with black, red and white floral morphs in the Alpine orchid Gymnadenia rhellicani. Phenotypic, metabolomic and transcriptomic analyses reveal that the morphs differ solely in cyanidin pigments, which are linked to differential expression of an anthocyanidin synthase (ANS) gene. This expression difference is caused by a premature stop codon in an ANS-regulating R2R3-MYB transcription factor, which is heterozygous in the red colour morph. Furthermore, field observations show that bee and fly pollinators have opposite colour preferences; this results in higher fitness (seed set) of the heterozygous morph without deleterious effects in either homozygous morph. Together, these findings demonstrate that genuine overdominance exists in nature. Examples of overdominance are usually explained by deleterious effects in homozygotes. Here, Kellenberger et al. describe a case of overdominance in the floral color of the Alpine orchid Gymnadenia rhellicani apparently maintained by pollinator preferences without deleterious effects in homozygotes.
Collapse
|
26
|
Roma L, Cozzolino S, Schlüter PM, Scopece G, Cafasso D. The complete plastid genomes of Ophrys iricolor and O. sphegodes (Orchidaceae) and comparative analyses with other orchids. PLoS One 2018; 13:e0204174. [PMID: 30226857 PMCID: PMC6143245 DOI: 10.1371/journal.pone.0204174] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/03/2018] [Indexed: 11/30/2022] Open
Abstract
Sexually deceptive orchids of the genus Ophrys may rapidly evolve by adaptation to pollinators. However, understanding of the genetic basis of potential changes and patterns of relationships is hampered by a lack of genomic information. We report the complete plastid genome sequences of Ophrys iricolor and O. sphegodes, representing the two most species-rich lineages of the genus Ophrys. Both plastomes are circular DNA molecules (146754 bp for O. sphegodes and 150177 bp for O. iricolor) with the typical quadripartite structure of plastid genomes and within the average size of photosynthetic orchids. 213 Simple Sequence Repeats (SSRs) (31.5% polymorphic between O. iricolor and O. sphegodes) were identified, with homopolymers and dipolymers as the most common repeat types. SSRs were mainly located in intergenic regions but SSRs located in coding regions were also found, mainly in ycf1 and rpoC2 genes. The Ophrys plastome is predicted to encode 107 distinct genes, 17 of which are completely duplicated in the Inverted Repeat regions. 83 and 87 putative RNA editing sites were detected in 25 plastid genes of the two Ophrys species, all occurring in the first or second codon position. Comparing the rate of nonsynonymous (dN) and synonymous (dS) substitutions, 24 genes (including rbcL and ycf1) display signature consistent with positive selection. When compared with other members of the orchid family, the Ophrys plastome has a complete set of 11 functional ndh plastid genes, with the exception of O. sphegodes that has a truncated ndhF gene. Comparative analysis showed a large co-linearity with other related Orchidinae. However, in contrast to O. iricolor and other Orchidinae, O. sphegodes has a shift of the junction between the Inverted Repeat and Small Single Copy regions associated with the loss of the partial duplicated gene ycf1 and the truncation of the ndhF gene. Data on relative genomic coverage and validation by PCR indicate the presence, with a different ratio, of the two plastome types (i.e. with and without ndhF deletion) in both Ophrys species, with a predominance of the deleted type in O. sphegodes. A search for this deleted plastid region in O. sphegodes nuclear genome shows that the deleted region is inserted in a retrotransposon nuclear sequence. The present study provides useful genomic tools for studying conservation and patterns of relationships of this rapidly radiating orchid genus.
Collapse
Affiliation(s)
- Luca Roma
- Department of Biology, University Federico II of Naples, Complesso Universitario Monte Sant’Angelo, Naples, Italy
| | - Salvatore Cozzolino
- Department of Biology, University Federico II of Naples, Complesso Universitario Monte Sant’Angelo, Naples, Italy
- * E-mail:
| | - Philipp M. Schlüter
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
- Institute of Botany, University of Hohenheim, Garbenstraße 30, Stuttgart, Germany
| | - Giovanni Scopece
- Department of Biology, University Federico II of Naples, Complesso Universitario Monte Sant’Angelo, Naples, Italy
| | - Donata Cafasso
- Department of Biology, University Federico II of Naples, Complesso Universitario Monte Sant’Angelo, Naples, Italy
| |
Collapse
|
27
|
Bateman RM, Guy JJ, Rudall PJ, Leitch IJ, Pellicer J, Leitch AR. Evolutionary and functional potential of ploidy increase within individual plants: somatic ploidy mapping of the complex labellum of sexually deceptive bee orchids. ANNALS OF BOTANY 2018; 122:133-150. [PMID: 29672665 PMCID: PMC6025197 DOI: 10.1093/aob/mcy048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/15/2018] [Indexed: 05/07/2023]
Abstract
Background and Aims Recent tissue-level observations made indirectly via flow cytometry suggest that endoreplication (duplication of the nuclear genome within the nuclear envelope in the absence of subsequent cell division) is widespread within the plant kingdom. Here, we also directly observe ploidy variation among cells within individual petals, relating size of nucleus to cell micromorphology and (more speculatively) to function. Methods We compared the labella (specialized pollinator-attracting petals) of two European orchid genera: Dactylorhiza has a known predisposition to organismal polyploidy, whereas Ophrys exhibits exceptionally complex epidermal patterning that aids pseudocopulatory pollination. Confocal microscopy using multiple staining techniques allowed us to observe directly both the sizes and the internal structures of individual nuclei across each labellum, while flow cytometry was used to test for progressively partial endoreplication. Key Results In Dactylorhiza, endoreplication was comparatively infrequent, reached only low levels, and appeared randomly located across the labellum, whereas in Ophrys endoreplication was commonplace, being most frequent in large peripheral trichomes. Endoreplicated nuclei reflected both endomitosis and endocycling, the latter reaching the third round of genome doubling (16C) to generate polytene nuclei. All Ophrys individuals studied exhibited progressively partial endoreplication. Conclusions Comparison of the two genera failed to demonstrate the hypothesized pattern of frequent polyploid speciation in genera showing extensive endoreplication. Endoreplication in Ophrys appears more strongly positively correlated with cell size/complexity than with cell location or secretory role. Epigenetic control of gene overexpression by localized induction of endoreplication within individual plant organs may represent a significant component of a plant's developmental programme, contributing substantially to organ plasticity.
Collapse
Affiliation(s)
| | - Jessica J Guy
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- School of Biological Sciences, University of Reading, Reading, UK
| | - Paula J Rudall
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, UK
| | - Ilia J Leitch
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, UK
| | - Jaume Pellicer
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, UK
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
28
|
Bateman RM, Sramkó G, Paun O. Integrating restriction site-associated DNA sequencing (RAD-seq) with morphological cladistic analysis clarifies evolutionary relationships among major species groups of bee orchids. ANNALS OF BOTANY 2018; 121:85-105. [PMID: 29325077 PMCID: PMC5786241 DOI: 10.1093/aob/mcx129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 10/02/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Bee orchids (Ophrys) have become the most popular model system for studying reproduction via insect-mediated pseudo-copulation and for exploring the consequent, putatively adaptive, evolutionary radiations. However, despite intensive past research, both the phylogenetic structure and species diversity within the genus remain highly contentious. Here, we integrate next-generation sequencing and morphological cladistic techniques to clarify the phylogeny of the genus. METHODS At least two accessions of each of the ten species groups previously circumscribed from large-scale cloned nuclear ribosomal internal transcibed spacer (nrITS) sequencing were subjected to restriction site-associated sequencing (RAD-seq). The resulting matrix of 4159 single nucleotide polymorphisms (SNPs) for 34 accessions was used to construct an unrooted network and a rooted maximum likelihood phylogeny. A parallel morphological cladistic matrix of 43 characters generated both polymorphic and non-polymorphic sets of parsimony trees before being mapped across the RAD-seq topology. KEY RESULTS RAD-seq data strongly support the monophyly of nine out of ten groups previously circumscribed using nrITS and resolve three major clades; in contrast, supposed microspecies are barely distinguishable. Strong incongruence separated the RAD-seq trees from both the morphological trees and traditional classifications; mapping of the morphological characters across the RAD-seq topology rendered them far more homoplastic. CONCLUSIONS The comparatively high level of morphological homoplasy reflects extensive convergence, whereas the derived placement of the fusca group is attributed to paedomorphic simplification. The phenotype of the most recent common ancestor of the extant lineages is inferred, but it post-dates the majority of the character-state changes that typify the genus. RAD-seq may represent the high-water mark of the contribution of molecular phylogenetics to understanding evolution within Ophrys; further progress will require large-scale population-level studies that integrate phenotypic and genotypic data in a cogent conceptual framework.
Collapse
Affiliation(s)
- Richard M Bateman
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, UK
- For correspondence. E-mail
| | - Gábor Sramkó
- Department of Botany, University of Debrecen, Egyetem, Debrecen, Hungary
- MTA-DE ‘Lendület’ Evolutionary Phylogenomics Research Group, Egyetem, Debrecen, Hungary
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg, Vienna, Austria
| |
Collapse
|
29
|
Tsai WC, Dievart A, Hsu CC, Hsiao YY, Chiou SY, Huang H, Chen HH. Post genomics era for orchid research. BOTANICAL STUDIES 2017; 58:61. [PMID: 29234904 PMCID: PMC5727007 DOI: 10.1186/s40529-017-0213-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/01/2017] [Indexed: 05/05/2023]
Abstract
Among 300,000 species in angiosperms, Orchidaceae containing 30,000 species is one of the largest families. Almost every habitats on earth have orchid plants successfully colonized, and it indicates that orchids are among the plants with significant ecological and evolutionary importance. So far, four orchid genomes have been sequenced, including Phalaenopsis equestris, Dendrobium catenatum, Dendrobium officinale, and Apostaceae shengen. Here, we review the current progress and the direction of orchid research in the post genomics era. These include the orchid genome evolution, genome mapping (genome-wide association analysis, genetic map, physical map), comparative genomics (especially receptor-like kinase and terpene synthase), secondary metabolomics, and genome editing.
Collapse
Affiliation(s)
- Wen-Chieh Tsai
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, 701 Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Anne Dievart
- CIRAD, UMR AGAP, TA A 108/03, Avenue Agropolis, 34398 Montpellier, France
- Present Address: School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Life Sciences Building, Room 3-117, Shanghai, 200240 People’s Republic of China
| | - Chia-Chi Hsu
- Department of Life Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Yu-Yun Hsiao
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Shang-Yi Chiou
- Department of Life Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Hsin Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Hong-Hwa Chen
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, 701 Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| |
Collapse
|
30
|
Rakosy D, Cuervo M, Paulus HF, Ayasse M. Looks matter: changes in flower form affect pollination effectiveness in a sexually deceptive orchid. J Evol Biol 2017; 30:1978-1993. [PMID: 28787530 DOI: 10.1111/jeb.13153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 07/23/2017] [Accepted: 07/29/2017] [Indexed: 01/30/2023]
Abstract
Many species of the sexually deceptive genus Ophrys are characterized by insect-like flowers. Their form has been traditionally considered to play an important role in pollinator attraction and manipulation. Yet, the evolution of the floral form remains insufficiently understood. We hypothesize that pollinator-mediated selection is essential for driving floral form evolution in Ophrys, but that form components are being subjected to varying selection pressures depending on their role in mediating interactions with pollinators. By using the Eucera-pollinated Ophrys leochroma as a model, our aim has been to assess whether and in what manner pollination effectiveness is altered by experimental manipulation of the flower form. Our results show that floral form plays an essential and, so far, underestimated role in ensuring effective pollination by mechanically guiding pollinators towards the reproductive structures of the flower. Pollinators are significantly less effective in interacting with flowers having forms altered to resemble those of species pollinated by different hymenopteran genera. Further, those components used by pollinators as gripping points were found to be more effective in ensuring pollinia transfer than those with which pollinators do not directly interact. Thus, mechanically active and inactive components appear to be under different selection pressures. As a consequence, mechanically active components of the flower form could reflect adaptations to the interaction with particular pollinator groups, whereas mechanically inactive components can vary more freely. Disentangling selection patterns between the functionally different components of flower form may provide valuable insights into the mechanisms driving the morphological diversification of sexually deceptive pollination systems.
Collapse
Affiliation(s)
- D Rakosy
- Integrative Zoology, Faculty of Life Sciences, University Vienna, Vienna, Austria.,Systematic and Evolutionary Botany, Faculty of Life Sciences, University Vienna, Vienna, Austria
| | - M Cuervo
- Institute of Evolutionary Ecology and Conservation Genomics, University Ulm, Ulm, Germany
| | - H F Paulus
- Integrative Zoology, Faculty of Life Sciences, University Vienna, Vienna, Austria
| | - M Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, University Ulm, Ulm, Germany
| |
Collapse
|
31
|
Gervasi DDL, Selosse MA, Sauve M, Francke W, Vereecken NJ, Cozzolino S, Schiestl FP. Floral scent and species divergence in a pair of sexually deceptive orchids. Ecol Evol 2017; 7:6023-6034. [PMID: 28808562 PMCID: PMC5551101 DOI: 10.1002/ece3.3147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/14/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
Speciation is typically accompanied by the formation of isolation barriers between lineages. Commonly, reproductive barriers are separated into pre‐ and post‐zygotic mechanisms that can evolve with different speed. In this study, we measured the strength of different reproductive barriers in two closely related, sympatric orchids of the Ophrys insectifera group, namely Ophrys insectifera and Ophrys aymoninii to infer possible mechanisms of speciation. We quantified pre‐ and post‐pollination barriers through observation of pollen flow, by performing artificial inter‐ and intraspecific crosses and analyzing scent bouquets. Additionally, we investigated differences in mycorrhizal fungi as a potential extrinsic factor of post‐zygotic isolation. Our results show that floral isolation mediated by the attraction of different pollinators acts apparently as the sole reproductive barrier between the two orchid species, with later‐acting intrinsic barriers seemingly absent. Also, the two orchids share most of their fungal mycorrhizal partners in sympatry, suggesting little or no importance of mycorrhizal symbiosis in reproductive isolation. Key traits underlying floral isolation were two alkenes and wax ester, present predominantly in the floral scent of O. aymoninii. These compounds, when applied to flowers of O. insectifera, triggered attraction and a copulation attempt of the bee pollinator of O. aymoninii and thus led to the (partial) breakdown of floral isolation. Based on our results, we suggest that adaptation to different pollinators, mediated by floral scent, underlies species isolation in this plant group. Pollinator switches may be promoted by low pollination success of individuals in dense patches of plants, an assumption that we also confirmed in our study.
Collapse
Affiliation(s)
- Daniel D L Gervasi
- Department of Systematic and Evolutionary Botany University of Zürich Zürich Switzerland
| | - Marc-Andre Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB)UMR 7205 CNRS MNHN UPMC EPHE Muséum national d'Histoire naturelle Sorbonne Universités Paris France.,Department of Plant Taxonomy and Nature Conservation University of Gdansk Gdańsk Poland
| | - Mathieu Sauve
- Institut de Systématique, Évolution, Biodiversité (ISYEB)UMR 7205 CNRS MNHN UPMC EPHE Muséum national d'Histoire naturelle Sorbonne Universités Paris France
| | - Wittko Francke
- Institute of Organic Chemistry University of Hamburg Hamburg Germany
| | - Nicolas J Vereecken
- Agroecology and Pollination Group Landscape Ecology and Plant Production Systems Université libre de Bruxelles (ULB) Brussels Belgium
| | | | - Florian P Schiestl
- Department of Systematic and Evolutionary Botany University of Zürich Zürich Switzerland
| |
Collapse
|
32
|
Murúa M, Espíndola A, González A, Medel R. Pollinators and crossability as reproductive isolation barriers in two sympatric oil-rewarding Calceolaria (Calceolariaceae) species. Evol Ecol 2017. [DOI: 10.1007/s10682-017-9894-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Anderson BM, Thiele KR, Krauss SL, Barrett MD. Genotyping-by-Sequencing in a Species Complex of Australian Hummock Grasses (Triodia): Methodological Insights and Phylogenetic Resolution. PLoS One 2017; 12:e0171053. [PMID: 28135342 PMCID: PMC5279811 DOI: 10.1371/journal.pone.0171053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
Next-generation sequencing is becoming increasingly accessible to researchers asking biosystematic questions, but current best practice in both choosing a specific approach and effectively analysing the resulting data set is still being explored. We present a case study for the use of genotyping-by-sequencing (GBS) to resolve relationships in a species complex of Australian arid and semi-arid grasses (Triodia R.Br.), highlighting our solutions to methodological challenges in the use of GBS data. We merged overlapping paired-end reads then optimised locus assembly in the program PyRAD to generate GBS data sets for phylogenetic and distance-based analyses. In addition to traditional concatenation analyses in RAxML, we also demonstrate the novel use of summary species tree analyses (taking gene trees as input) with GBS loci. We found that while species tree analyses were relatively robust to variation in PyRAD assembly parameters, our RAxML analyses resulted in well-supported but conflicting topologies under different assembly settings. Despite this conflict, multiple clades in the complex were consistently supported as distinct across analyses. Our GBS data assembly and analyses improve the resolution of taxa and phylogenetic relationships in the Triodia basedowii complex compared to our previous study based on Sanger sequencing of nuclear (ITS/ETS) and chloroplast (rps16-trnK spacer) markers. The genomic results also partly support previous evidence for hybridization between species in the complex. Our methodological insights for analysing GBS data will assist researchers using similar data to resolve phylogenetic relationships within species complexes.
Collapse
Affiliation(s)
- Benjamin M. Anderson
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, Kings Park, Western Australia, Australia
| | - Kevin R. Thiele
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Western Australian Herbarium, Department of Parks and Wildlife, Kensington, Western Australia, Australia
| | - Siegfried L. Krauss
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, Kings Park, Western Australia, Australia
| | - Matthew D. Barrett
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, Kings Park, Western Australia, Australia
| |
Collapse
|
34
|
Keller B, de Vos JM, Schmidt‐Lebuhn AN, Thomson JD, Conti E. Both morph- and species-dependent asymmetries affect reproductive barriers between heterostylous species. Ecol Evol 2016; 6:6223-44. [PMID: 27648239 PMCID: PMC5016645 DOI: 10.1002/ece3.2293] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 12/13/2022] Open
Abstract
The interaction between floral traits and reproductive isolation is crucial to explaining the extraordinary diversity of angiosperms. Heterostyly, a complex floral polymorphism that optimizes outcrossing, evolved repeatedly and has been shown to accelerate diversification in primroses, yet its potential influence on isolating mechanisms remains unexplored. Furthermore, the relative contribution of pre- versus postmating barriers to reproductive isolation is still debated. No experimental study has yet evaluated the possible effects of heterostyly on pre- and postmating reproductive mechanisms. We quantify multiple reproductive barriers between the heterostylous Primula elatior (oxlip) and P. vulgaris (primrose), which readily hybridize when co-occurring, and test whether traits of heterostyly contribute to reproductive barriers in unique ways. We find that premating isolation is key for both species, while postmating isolation is considerable only for P. vulgaris; ecogeographic isolation is crucial for both species, while phenological, seed developmental, and hybrid sterility barriers are also important in P. vulgaris, implicating sympatrically higher gene flow into P. elatior. We document for the first time that, in addition to the aforementioned species-dependent asymmetries, morph-dependent asymmetries affect reproductive barriers between heterostylous species. Indeed, the interspecific decrease of reciprocity between high sexual organs of complementary floral morphs limits interspecific pollen transfer from anthers of short-styled flowers to stigmas of long-styled flowers, while higher reciprocity between low sexual organs favors introgression over isolation from anthers of long-styled flowers to stigmas of short-styled flowers. Finally, intramorph incompatibility persists across species boundaries, but is weakened in long-styled flowers of P. elatior, opening a possible backdoor to gene flow through intramorph pollen transfer between species. Therefore, patterns of gene flow across species boundaries are likely affected by floral morph composition of adjacent populations. To summarize, our study highlights the general importance of premating isolation and newly illustrates that both morph- and species-dependent asymmetries shape boundaries between heterostylous species.
Collapse
Affiliation(s)
- Barbara Keller
- Department of Systematic and Evolutionary BotanyUniversity of ZürichZollikerstrasse 1078008ZürichSwitzerland
| | - Jurriaan M. de Vos
- Department of Ecology and Evolutionary BiologyBrown University80 Waterman StreetBox G‐WProvidenceRhode Island02912USA
- Present address: Comparative Plant and Fungal Biology DepartmentRoyal Botanic GardensKewRichmondSurreyTW9 3AE UK
| | | | - James D. Thomson
- Ecology and Evolutionary Biology DepartmentUniversity of Toronto25 Harbord St.TorontoOntarioM5S 3G5Canada
| | - Elena Conti
- Department of Systematic and Evolutionary BotanyUniversity of ZürichZollikerstrasse 1078008ZürichSwitzerland
| |
Collapse
|
35
|
Bohman B, Flematti GR, Barrow RA, Pichersky E, Peakall R. Pollination by sexual deception-it takes chemistry to work. CURRENT OPINION IN PLANT BIOLOGY 2016; 32:37-46. [PMID: 27368084 DOI: 10.1016/j.pbi.2016.06.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
Semiochemicals are of paramount importance in sexually deceptive plants. These plants sexually lure specific male insects as pollinators by chemical and physical mimicry of the female of the pollinator. The strategy has evolved repeatedly in orchids, with a wide diversity of insect groups exploited. Chemical communication systems confirmed by field bioassays include: alkenes and alkanes in bee pollinated Ophrys species, keto-acid and hydroxy-acids in scoliid wasp pollinated O. speculum, and cyclohexanediones and pyrazines in thynnine wasp pollinated Chiloglottis and Drakaea orchids, respectively. In Ophrys, stearoyl-acyl carrier protein desaturase (SAD) enzymes have been confirmed to control species level variation in alkene double bond position. The production of cyclohexanediones in Chiloglottis unexpectedly depends on UVB light, a phenomenon unknown for other plant specialised metabolites. Potential biosynthetic pathways for other systems are explored, and alternative approaches to further accelerate chemical discovery in sexually deceptive plants are proposed.
Collapse
Affiliation(s)
- Björn Bohman
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia; Research School of Biology, The Australian National University, Acton, ACT 2601, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Gavin R Flematti
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Russell A Barrow
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rod Peakall
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
36
|
Byers KJRP, Xu S, Schlüter PM. Molecular mechanisms of adaptation and speciation: why do we need an integrative approach? Mol Ecol 2016; 26:277-290. [DOI: 10.1111/mec.13678] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Kelsey J. R. P. Byers
- Department of Systematic and Evolutionary Botany; University of Zurich; Zollikerstrasse 107 CH-8008 Zurich Switzerland
| | - Shuqing Xu
- Max Planck Institute for Chemical Ecology; Hans-Knöll-Straße 8 D-07745 Jena Germany
| | - Philipp M. Schlüter
- Department of Systematic and Evolutionary Botany; University of Zurich; Zollikerstrasse 107 CH-8008 Zurich Switzerland
| |
Collapse
|
37
|
Sedeek KEM, Whittle E, Guthörl D, Grossniklaus U, Shanklin J, Schlüter PM. Amino Acid Change in an Orchid Desaturase Enables Mimicry of the Pollinator's Sex Pheromone. Curr Biol 2016; 26:1505-11. [PMID: 27212404 DOI: 10.1016/j.cub.2016.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 12/16/2022]
Abstract
Mimicry illustrates the power of selection to produce phenotypic convergence in biology [1]. A striking example is the imitation of female insects by plants that are pollinated by sexual deception of males of the same insect species [2-4]. This involves mimicry of visual, tactile, and chemical signals of females [2-7], especially their sex pheromones [8-11]. The Mediterranean orchid Ophrys exaltata employs chemical mimicry of cuticular hydrocarbons, particularly the 7-alkenes, in an insect sex pheromone to attract and elicit mating behavior in its pollinators, males of the cellophane bee Colletes cunicularius [11-13]. A difference in alkene double-bond positions is responsible for reproductive isolation between O. exaltata and closely related species, such as O. sphegodes [13-16]. We show that these 7-alkenes are likely determined by the action of the stearoyl-acyl-carrier-protein desaturase (SAD) homolog SAD5. After gene duplication, changes in subcellular localization relative to the ancestral housekeeping desaturase may have allowed proto-SAD5's reaction products to undergo further biosynthesis to both 7- and 9-alkenes. Such ancestral coproduction of two alkene classes may have led to pollinator-mediated deleterious pleiotropy. Despite possible evolutionary intermediates with reduced activity, amino acid changes at the bottom of the substrate-binding cavity have conferred enzyme specificity for 7-alkene biosynthesis by preventing the binding of longer-chained fatty acid (FA) precursors by the enzyme. This change in desaturase function enabled the orchid to perfect its chemical mimicry of pollinator sex pheromones by escape from deleterious pleiotropy, supporting a role of pleiotropy in determining the possible trajectories of adaptive evolution.
Collapse
Affiliation(s)
- Khalid E M Sedeek
- Department of Systematic and Evolutionary Botany and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Edward Whittle
- Department of Biology, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973, USA
| | - Daniela Guthörl
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - John Shanklin
- Department of Biology, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973, USA
| | - Philipp M Schlüter
- Department of Systematic and Evolutionary Botany and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| |
Collapse
|
38
|
Endress PK. Development and evolution of extreme synorganization in angiosperm flowers and diversity: a comparison of Apocynaceae and Orchidaceae. ANNALS OF BOTANY 2016; 117:749-67. [PMID: 26292994 PMCID: PMC4845794 DOI: 10.1093/aob/mcv119] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/22/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Apocynaceae and Orchidaceae are two angiosperm families with extreme flower synorganization. They are unrelated, the former in eudicots, the latter in monocots, but they converge in the formation of pollinia and pollinaria, which do not occur in any other angiosperm family, and for which extreme synorganization of floral organs is a precondition. In each family extensive studies on flower development and evolution have been performed; however, newer comparative studies focusing on flower synorganization and involving both families together are lacking. SCOPE For this study an extensive search through the morphological literature has been conducted. Based on this and my own studies on flowers in various Apocynaceae and Orchidaceae and complex flowers in other angiosperms with scanning electron microscopy and with microtome section series, a review on convergent floral traits in flower development and architecture in the two families is presented. KEY FINDINGS There is a tendency of protracted development of synorganized parts in Apocynaceae and Orchidaceae (development of synorganization of two or more organs begins earlier the more accentuated it is at anthesis). Synorganization (or complexity) also paves the way for novel structures. One of the most conspicuous such novel structures in Apocynaceae is the corona, which is not the product of synorganization of existing organs; however, it is probably enhanced by synorganization of other, existing, floral parts. In contrast to synorganized parts, the corona appears developmentally late. CONCLUSIONS Synorganization of floral organs may lead to a large number of convergences in clades that are only very distantly related. The convergences that have been highlighted in this comparative study should be developmentally investigated directly in parallel in future studies.
Collapse
Affiliation(s)
- Peter K Endress
- Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| |
Collapse
|
39
|
Diversification of Bromelioideae (Bromeliaceae) in the Brazilian Atlantic rainforest: A case study in Aechmea subgenus Ortgiesia. Mol Phylogenet Evol 2016; 98:346-57. [PMID: 26957015 DOI: 10.1016/j.ympev.2016.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 12/26/2015] [Accepted: 03/01/2016] [Indexed: 11/21/2022]
Abstract
Aechmea subgenus Ortgiesia comprises ca. 20 species distributed in Brazil, Argentina, Paraguay, and Uruguay, with a center of diversity in the Brazilian Atlantic rainforest. We examined interspecific relationships of Ortgiesia based on Amplified Fragment Length Polymorphisms (AFLP). Ninety-six accessions belonging to 14 species of Ortgiesia were sampled, and genotyped with 11 AFLP primer combinations. The neighbor joining (NJ) tree depicted two main genetic groups within Aechmea subgenus Ortgiesia, and four subgroups. The NJ tree showed short internal branches, indicating an overall shallow genetic divergence among Ortgiesia species as expected for the recently radiated subfamily Bromelioideae. Our results suggest that hybridization and/or incomplete lineage sorting may have hampered the reconstruction of interspecific relationships in Aechmea subgenus Ortgiesia. The mapping of petal color (yellow, blue, pink, or white), inflorescence type (simple or compound), and inflorescence shape (ellipsoid, subcylindric, cylindric, or pyramidal) against the NJ tree indicated that these characters are of limited taxonomic use in Aechmea subgenus Ortgiesia due to homoplasy. An analysis of the current distribution of Ortgiesia identified the southern region of the Brazilian Atlantic rainforest, between latitudes of 26° and 27°S, as the center of diversity for the subgenus.
Collapse
|
40
|
Stejskal K, Streinzer M, Dyer A, Paulus HF, Spaethe J. Functional Significance of Labellum Pattern Variation in a Sexually Deceptive Orchid (Ophrys heldreichii): Evidence of Individual Signature Learning Effects. PLoS One 2015; 10:e0142971. [PMID: 26571020 PMCID: PMC4646623 DOI: 10.1371/journal.pone.0142971] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/29/2015] [Indexed: 11/19/2022] Open
Abstract
Mimicking female insects to attract male pollinators is an important strategy in sexually deceptive orchids of the genus Ophrys, and some species possess flowers with conspicuous labellum patterns. The function of the variation of the patterns remains unresolved, with suggestions that these enhance pollinator communication. We investigated the possible function of the labellum pattern in Ophrys heldreichii, an orchid species in which the conspicuous and complex labellum pattern contrasts with a dark background. The orchid is pollinated exclusively by males of the solitary bee, Eucera berlandi. Comparisons of labellum patterns revealed that patterns within inflorescences are more similar than those of other conspecific plants. Field observations showed that the males approach at a great speed and directly land on flowers, but after an unsuccessful copulation attempt, bees hover close and visually scan the labellum pattern for up to a minute. Learning experiments conducted with honeybees as an accessible model of bee vision demonstrated that labellum patterns of different plants can be reliably learnt; in contrast, patterns of flowers from the same inflorescence could not be discriminated. These results support the hypothesis that variable labellum patterns in O. heldreichii are involved in flower-pollinator communication which would likely help these plants to avoid geitonogamy.
Collapse
Affiliation(s)
- Kerstin Stejskal
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- * E-mail:
| | - Martin Streinzer
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Wuerzburg, Würzburg, Germany
- current address: Department of Neurobiology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Adrian Dyer
- Department of Physiology, Monash University, Clayton, Australia
- School of Media and Communication, RMIT University, Melbourne, Australia
| | - Hannes F. Paulus
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Wuerzburg, Würzburg, Germany
| |
Collapse
|
41
|
Breitkopf H, Onstein RE, Cafasso D, Schlüter PM, Cozzolino S. Multiple shifts to different pollinators fuelled rapid diversification in sexually deceptive Ophrys orchids. THE NEW PHYTOLOGIST 2015; 207:377-389. [PMID: 25521237 DOI: 10.1111/nph.13219] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/31/2014] [Indexed: 05/03/2023]
Abstract
Episodes of rapid speciation provide unique insights into evolutionary processes underlying species radiations and patterns of biodiversity. Here we investigated the radiation of sexually deceptive bee orchids (Ophrys). Based on a time-calibrated phylogeny and by means of ancestral character reconstruction and divergence time estimation, we estimated the tempo and mode of this radiation within a state-dependent evolutionary framework. It appears that, in the Pleistocene, the evolution of Ophrys was marked by episodes of rapid diversification coinciding with shifts to different pollinator types: from wasps to Eucera bees to Andrena and other bees. An abrupt increase in net diversification rate was detected in three clades. Among these, two phylogenetically distant lineages switched from Eucera to Andrena and other bees in a parallel fashion and at about the same time in their evolutionary history. Lack of early radiation associated with the evolution of the key innovation of sexual deception suggests that Ophrys diversification was mainly driven by subsequent ecological opportunities provided by the exploitation of novel pollinator groups, encompassing many bee species slightly differing in their sex pheromone communication systems, and by spatiotemporal fluctuations in the pollinator mosaic.
Collapse
Affiliation(s)
- Hendrik Breitkopf
- Department of Biology, University of Naples Federico II, Naples, Italy
- Institute of Biochemistry and Biology, Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Renske E Onstein
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland
| | - Donata Cafasso
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Philipp M Schlüter
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
42
|
Smouse PE, Whitehead MR, Peakall R. An informational diversity framework, illustrated with sexually deceptive orchids in early stages of speciation. Mol Ecol Resour 2015; 15:1375-84. [PMID: 25916981 DOI: 10.1111/1755-0998.12422] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 11/30/2022]
Abstract
Reconstructing evolutionary history for emerging species complexes is notoriously difficult, with newly isolated taxa often morphologically cryptic and the signature of reproductive isolation often restricted to a few genes. Evidence from multiple loci and genomes is highly desirable, but multiple inputs require 'common currency' translation. Here we deploy a Shannon information framework, converting into diversity analogue, which provides a common currency analysis for maternally inherited haploid and bi-parentally inherited diploid nuclear markers, and then extend that analysis to construction of minimum-spanning networks for both genomes. The new approach is illustrated with a quartet of cryptic congeners from the sexually deceptive Australian orchid genus Chiloglottis, still in the early stages of speciation. Divergence is more rapid for haploid plastids than for nuclear markers, consistent with the effective population size differential (N(ep) < (N(en)), but divergence patterns are broadly correlated for the two genomes. There are nevertheless intriguing discrepancies between the emerging plastid and nuclear signals of early phylogenetic radiation of these taxa, and neither pattern is entirely consistent with the available information on the sexual cues used by the orchids to lure the pollinators enforcing reproductive isolation. We describe possible extensions of this methodology to multiple ploidy levels and other types of markers, which should increase the range of application to any taxonomic assemblage in the very early stages of reproductive isolation and speciation.
Collapse
Affiliation(s)
- Peter E Smouse
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901-8551, USA
| | - Michael R Whitehead
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| | - Rod Peakall
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| |
Collapse
|
43
|
Xu S, Schlüter PM. Modeling the two-locus architecture of divergent pollinator adaptation: how variation in SAD paralogs affects fitness and evolutionary divergence in sexually deceptive orchids. Ecol Evol 2015; 5:493-502. [PMID: 25691974 PMCID: PMC4314279 DOI: 10.1002/ece3.1378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 01/26/2023] Open
Abstract
Divergent selection by pollinators can bring about strong reproductive isolation via changes at few genes of large effect. This has recently been demonstrated in sexually deceptive orchids, where studies (1) quantified the strength of reproductive isolation in the field; (2) identified genes that appear to be causal for reproductive isolation; and (3) demonstrated selection by analysis of natural variation in gene sequence and expression. In a group of closely related Ophrys orchids, specific floral scent components, namely n-alkenes, are the key floral traits that control specific pollinator attraction by chemical mimicry of insect sex pheromones. The genetic basis of species-specific differences in alkene production mainly lies in two biosynthetic genes encoding stearoyl–acyl carrier protein desaturases (SAD) that are associated with floral scent variation and reproductive isolation between closely related species, and evolve under pollinator-mediated selection. However, the implications of this genetic architecture of key floral traits on the evolutionary processes of pollinator adaptation and speciation in this plant group remain unclear. Here, we expand on these recent findings to model scenarios of adaptive evolutionary change at SAD2 and SAD5, their effects on plant fitness (i.e., offspring number), and the dynamics of speciation. Our model suggests that the two-locus architecture of reproductive isolation allows for rapid sympatric speciation by pollinator shift; however, the likelihood of such pollinator-mediated speciation is asymmetric between the two orchid species O. sphegodes and O. exaltata due to different fitness effects of their predominant SAD2 and SAD5 alleles. Our study not only provides insight into pollinator adaptation and speciation mechanisms of sexually deceptive orchids but also demonstrates the power of applying a modeling approach to the study of pollinator-driven ecological speciation.
Collapse
Affiliation(s)
- Shuqing Xu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Philipp M Schlüter
- Institute of Systematic Botany, University of Zurich Zollikerstrasse 107, CH-8008, Zürich, Switzerland
| |
Collapse
|