1
|
Delaive S, Sylvestre F, Xuereb A, Lecomte L, Boyle B, Otis C, Bernatchez L, Derome N. Population Genetic Structure of Three-Spined Sticklebacks in the St. Lawrence: A Gradient of Change. Ecol Evol 2025; 15:e71153. [PMID: 40270791 PMCID: PMC12015749 DOI: 10.1002/ece3.71153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 04/25/2025] Open
Abstract
Understanding how environmental gradients shape population genetic structure is critical for elucidating evolutionary dynamics in heterogeneous landscapes. The St. Lawrence Estuary, spanning fluvial, middle, and marine zones, presents a steep salinity gradient that serves as an ideal setting to study such a question. Three-spined sticklebacks (Gasterosteus aculeatus) thrive across these zones, offering an ideal model system to investigate the interplay of gene flow and natural selection in shaping population structure. Using whole-genome resequencing of sticklebacks from 12 sites, this study aimed to resolve fine-scale population structure and investigate how genetic diversity and differentiation are influenced by selection and gene flow. By integrating single nucleotide polymorphisms (SNPs) and structural variants (SVs), we assessed differentiation patterns, examined clinal variation, and evaluated the relative roles of gene flow and selection in shaping population dynamics. Our findings reveal clear genetic differentiation between fluvial and saltwater populations, with Baie-Saint-Paul forming a potential third group. Salinity emerged as a key driver of genetic structure, with clinal variation in allele frequencies suggesting ongoing adaptation along the gradient. Demographic modeling indicated a history of secondary contact with recent and weak gene flow. Structural variants, particularly indels, complemented SNP-based analyses, underscoring their importance in detecting fine-scale population structure. These results highlight the complex interplay of evolutionary forces shaping biodiversity in transitional environments, providing a basis for exploring local adaptation in connected populations and contributing to broader efforts in conservation genomics.
Collapse
Affiliation(s)
- Sann Delaive
- Département de Biologie, Institut de Biologie Intégrative et Des Systèmes (IBIS)Université LavalQuébecQuebecCanada
| | - Florent Sylvestre
- Département de Biologie, Institut de Biologie Intégrative et Des Systèmes (IBIS)Université LavalQuébecQuebecCanada
| | - Amanda Xuereb
- Département de Biologie, Institut de Biologie Intégrative et Des Systèmes (IBIS)Université LavalQuébecQuebecCanada
| | - Laurie Lecomte
- Département de Biologie, Institut de Biologie Intégrative et Des Systèmes (IBIS)Université LavalQuébecQuebecCanada
| | - Brian Boyle
- Institut de Biologie Intégrative et Des SystèmesUniversité LavalQuébecQuebecCanada
| | - Christian Otis
- Institut de Biologie Intégrative et Des SystèmesUniversité LavalQuébecQuebecCanada
| | | | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et Des Systèmes (IBIS)Université LavalQuébecQuebecCanada
| |
Collapse
|
2
|
St. John CA, Timm LE, Gruenthal KM, Larson WA. Whole Genome Sequencing Reveals Substantial Genetic Structure and Evidence of Local Adaptation in Alaskan Red King Crab. Evol Appl 2025; 18:e70049. [PMID: 39742389 PMCID: PMC11686092 DOI: 10.1111/eva.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/06/2024] [Accepted: 10/25/2024] [Indexed: 01/03/2025] Open
Abstract
High-latitude ocean basins are the most productive on earth, supporting high diversity and biomass of economically and socially important species. A long tradition of responsible fisheries management has sustained these species for generations, but modern threats from climate change, habitat loss, and new fishing technologies threaten their ecosystems and the human communities that depend on them. Among these species, Alaska's most charismatic megafaunal invertebrate, the red king crab, faces all three of these threats and has declined substantially in many parts of its distribution. Managers have identified stock structure and local adaptation as crucial information to help understand biomass declines and how to potentially reverse them, with regulation and possible stock enhancement. We generated low-coverage whole genome sequencing (lcWGS) data on red king crabs from five regions: The Aleutian Islands, eastern Bering Sea, northern Bering Sea, Gulf of Alaska, and Southeast Alaska. We used data from millions of genetic markers generated from lcWGS to build on previous studies of population structure in Alaska that used < 100 markers and to investigate local adaptation. We found each of the regions formed their own distinct genetic clusters, some containing subpopulation structure. Most notably, we found that the Gulf of Alaska and eastern Bering Sea were significantly differentiated, something that had not been previously documented. Inbreeding in each region was low and not a concern for fisheries management. We found genetic patterns consistent with local adaptation on several chromosomes and one particularly strong signal on chromosome 100. At this locus, the Gulf of Alaska harbors distinct genetic variation that could facilitate local adaptation to their environment. Our findings support the current practice of managing red king crab at a regional scale, and they strongly favor sourcing broodstock from the target population if stock enhancement is considered to avoid genetic mismatch.
Collapse
Affiliation(s)
- Carl A. St. John
- Department of Natural Resources and the EnvironmentCornell UniversityIthacaNew YorkUSA
| | - Laura E. Timm
- National Oceanographic and Atmospheric Administration, National Marine Fisheries ServiceAlaska Fisheries Science Center, Auke Bay LaboratoriesJuneauAlaskaUSA
- College of Fisheries and Ocean Sciences, University of Alaska FairbanksFairbanksAlaskaUSA
| | - Kristen M. Gruenthal
- Alaska Department of Fish and Game, Division of Commercial Fisheries, Gene Conservation LaboratoryJuneauAlaskaUSA
| | - Wesley A. Larson
- National Oceanographic and Atmospheric Administration, National Marine Fisheries ServiceAlaska Fisheries Science Center, Auke Bay LaboratoriesJuneauAlaskaUSA
| |
Collapse
|
3
|
Lee A, Daniels BN, Hemstrom W, López C, Kagaya Y, Kihara D, Davidson JM, Toonen RJ, White C, Christie MR. Genetic adaptation despite high gene flow in a range-expanding population. Mol Ecol 2024:e17511. [PMID: 39215560 DOI: 10.1111/mec.17511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Signals of natural selection can be quickly eroded in high gene flow systems, curtailing efforts to understand how and when genetic adaptation occurs in the ocean. This long-standing, unresolved topic in ecology and evolution has renewed importance because changing environmental conditions are driving range expansions that may necessitate rapid evolutionary responses. One example occurs in Kellet's whelk (Kelletia kelletii), a common subtidal gastropod with an ~40- to 60-day pelagic larval duration that expanded their biogeographic range northwards in the 1970s by over 300 km. To test for genetic adaptation, we performed a series of experimental crosses with Kellet's whelk adults collected from their historical (HxH) and recently expanded range (ExE), and conducted RNA-Seq on offspring that we reared in a common garden environment. We identified 2770 differentially expressed genes (DEGs) between 54 offspring samples with either only historical range (HxH offspring) or expanded range (ExE offspring) ancestry. Using SNPs called directly from the DEGs, we assigned samples of known origin back to their range of origin with unprecedented accuracy for a marine species (92.6% and 94.5% for HxH and ExE offspring, respectively). The SNP with the highest predictive importance occurred on triosephosphate isomerase (TPI), an essential metabolic enzyme involved in cold stress response. TPI was significantly upregulated and contained a non-synonymous mutation in the expanded range. Our findings pave the way for accurately identifying patterns of dispersal, gene flow and population connectivity in the ocean by demonstrating that experimental transcriptomics can reveal mechanisms for how marine organisms respond to changing environmental conditions.
Collapse
Affiliation(s)
- Andy Lee
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Benjamin N Daniels
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| | - William Hemstrom
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Cataixa López
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawaii, USA
| | - Yuki Kagaya
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Jean M Davidson
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawaii, USA
| | - Crow White
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| | - Mark R Christie
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
4
|
Bourret A, Leung C, Puncher GN, Le Corre N, Deslauriers D, Skanes K, Bourdages H, Cassista-Da Ros M, Walkusz W, Jeffery NW, Stanley RRE, Parent GJ. Diving into broad-scale and high-resolution population genomics to decipher drivers of structure and climatic vulnerability in a marine invertebrate. Mol Ecol 2024; 33:e17448. [PMID: 38946210 DOI: 10.1111/mec.17448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Species with widespread distributions play a crucial role in our understanding of climate change impacts on population structure. In marine species, population structure is often governed by both high connectivity potential and selection across strong environmental gradients. Despite the complexity of factors influencing marine populations, studying species with broad distribution can provide valuable insights into the relative importance of these factors and the consequences of climate-induced alterations across environmental gradients. We used the northern shrimp Pandalus borealis and its wide latitudinal distribution to identify current drivers of population structure and predict the species' vulnerability to climate change. A total of 1514 individuals sampled across 24° latitude were genotyped at high geographic (54 stations) and genetic (14,331 SNPs) resolutions to assess genetic variation and environmental correlations. Four populations were identified in addition to finer substructure associated with local adaptation. Geographic patterns of neutral population structure reflected predominant oceanographic currents, while a significant proportion of the genetic variation was associated with gradients in salinity and temperature. Adaptive landscapes generated using climate projections suggest a larger genomic offset in the southern extent of the P. borealis range, where shrimp had the largest adaptive standing genetic variation. Our genomic results combined with recent observations point to further deterioration in southern regions and an impending vulnerable status in the regions at higher latitudes for P. borealis. They also provide rare insights into the drivers of population structure and climatic vulnerability of a widespread meroplanktonic species, which is crucial to understanding future challenges associated with invertebrates essential to ecosystem functioning.
Collapse
Affiliation(s)
- Audrey Bourret
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Quebec, Canada
| | - Christelle Leung
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Quebec, Canada
| | - Gregory N Puncher
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada
| | - Nicolas Le Corre
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| | - David Deslauriers
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Katherine Skanes
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| | - Hugo Bourdages
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Quebec, Canada
| | - Manon Cassista-Da Ros
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada
| | - Wojciech Walkusz
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | - Nicholas W Jeffery
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada
| | - Ryan R E Stanley
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada
| | - Geneviève J Parent
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Quebec, Canada
| |
Collapse
|
5
|
Lecomte L, Árnyasi M, Ferchaud A, Kent M, Lien S, Stenløkk K, Sylvestre F, Bernatchez L, Mérot C. Investigating structural variant, indel and single nucleotide polymorphism differentiation between locally adapted Atlantic salmon populations. Evol Appl 2024; 17:e13653. [PMID: 38495945 PMCID: PMC10940791 DOI: 10.1111/eva.13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/14/2023] [Accepted: 01/13/2024] [Indexed: 03/19/2024] Open
Abstract
Genomic structural variants (SVs) are now recognized as an integral component of intraspecific polymorphism and are known to contribute to evolutionary processes in various organisms. However, they are inherently difficult to detect and genotype from readily available short-read sequencing data, and therefore remain poorly documented in wild populations. Salmonid species displaying strong interpopulation variability in both life history traits and habitat characteristics, such as Atlantic salmon (Salmo salar), offer a prime context for studying adaptive polymorphism, but the contribution of SVs to fine-scale local adaptation has yet to be explored. Here, we performed a comparative analysis of SVs, single nucleotide polymorphisms (SNPs) and small indels (<50 bp) segregating in the Romaine and Puyjalon salmon, two putatively locally adapted populations inhabiting neighboring rivers (Québec, Canada) and showing pronounced variation in life history traits, namely growth, fecundity, and age at maturity and smoltification. We first catalogued polymorphism using a hybrid SV characterization approach pairing both short- (16X) and long-read sequencing (20X) for variant discovery with graph-based genotyping of SVs across 60 salmon genomes, along with characterization of SNPs and small indels from short reads. We thus identified 115,907 SVs, 8,777,832 SNPs and 1,089,321 short indels, with SVs covering 4.8 times more base pairs than SNPs. All three variant types revealed a highly congruent population structure and similar patterns of F ST and density variation along the genome. Finally, we performed outlier detection and redundancy analysis (RDA) to identify variants of interest in the putative local adaptation of Romaine and Puyjalon salmon. Genes located near these variants were enriched for biological processes related to nervous system function, suggesting that observed variation in traits such as age at smoltification could arise from differences in neural development. This study therefore demonstrates the feasibility of large-scale SV characterization and highlights its relevance for salmonid population genomics.
Collapse
Affiliation(s)
- Laurie Lecomte
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
- Département de BiologieUniversité LavalQuébecCanada
| | - Mariann Árnyasi
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE)Norwegian University of Life Sciences (NMBU)ÅsNorway
| | - Anne‐Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
- Département de BiologieUniversité LavalQuébecCanada
- Present address:
Parks Canada, Office of the Chief Ecosystem ScientistQuébecQCCanada
| | - Matthew Kent
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE)Norwegian University of Life Sciences (NMBU)ÅsNorway
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE)Norwegian University of Life Sciences (NMBU)ÅsNorway
| | - Kristina Stenløkk
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE)Norwegian University of Life Sciences (NMBU)ÅsNorway
| | - Florent Sylvestre
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
- Département de BiologieUniversité LavalQuébecCanada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
- Département de BiologieUniversité LavalQuébecCanada
| | - Claire Mérot
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
- Département de BiologieUniversité LavalQuébecCanada
- Present address:
UMR 6553 Ecobio, OSUR, CNRSUniversité de RennesRennesFrance
| |
Collapse
|
6
|
Fuentes‐Pardo AP, Stanley R, Bourne C, Singh R, Emond K, Pinkham L, McDermid JL, Andersson L, Ruzzante DE. Adaptation to seasonal reproduction and environment-associated factors drive temporal and spatial differentiation in northwest Atlantic herring despite gene flow. Evol Appl 2024; 17:e13675. [PMID: 38495946 PMCID: PMC10940790 DOI: 10.1111/eva.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Understanding how marine organisms adapt to local environments is crucial for predicting how populations will respond to global climate change. The genomic basis, environmental factors and evolutionary processes involved in local adaptation are however not well understood. Here we use Atlantic herring, an abundant, migratory and widely distributed marine fish with substantial genomic resources, as a model organism to evaluate local adaptation. We examined genomic variation and its correlation with environmental variables across a broad environmental gradient, for 15 spawning aggregations in Atlantic Canada and the United States. We then compared our results with available genomic data of northeast Atlantic populations. We confirmed that population structure lies in a fraction of the genome including likely adaptive genetic variants of functional importance. We discovered 10 highly differentiated genomic regions distributed across four chromosomes. Nine regions show strong association with seasonal reproduction. One region, corresponding to a known inversion on chromosome 12, underlies a latitudinal pattern discriminating populations north and south of a biogeographic transition zone on the Scotian Shelf. Genome-environment associations indicate that winter seawater temperature best correlates with the latitudinal pattern of this inversion. The variation at two so-called 'islands of divergence' related to seasonal reproduction appear to be private to the northwest Atlantic. Populations in the northwest and northeast Atlantic share variation at four of these divergent regions, simultaneously displaying significant diversity in haplotype composition at another four regions, which includes an undescribed structural variant approximately 7.7 Mb long on chromosome 8. Our results suggest that the timing and geographic location of spawning and early development may be under diverse selective pressures related to allelic fitness across environments. Our study highlights the role of genomic architecture, ancestral haplotypes and selection in maintaining adaptive divergence in species with large population sizes and presumably high gene flow.
Collapse
Affiliation(s)
- Angela P. Fuentes‐Pardo
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Ryan Stanley
- Fisheries and Oceans CanadaMaritimes RegionDartmouthNova ScotiaCanada
| | - Christina Bourne
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt John'sNewfoundland and LabradorCanada
| | - Rabindra Singh
- Fisheries and Oceans CanadaSt. Andrews Biological StationSt. AndrewsNew BrunswickCanada
| | - Kim Emond
- Fisheries and Oceans CanadaMaurice Lamontagne InstituteMont‐JoliQuebecCanada
| | - Lisa Pinkham
- Department of Marine ResourcesWest Boothbay HarborMaineUSA
| | - Jenni L. McDermid
- Fisheries and Oceans CanadaGulf Fisheries CentreMonctonNew BrunswickCanada
| | - Leif Andersson
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
- Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationTexasUSA
| | | |
Collapse
|
7
|
Dang Z, Li J, Liu Y, Song M, Lockhart PJ, Tian Y, Niu M, Wang Q. RADseq-based population genomic analysis and environmental adaptation of rare and endangered recretohalophyte Reaumuria trigyna. THE PLANT GENOME 2024; 17:e20303. [PMID: 36740755 DOI: 10.1002/tpg2.20303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/30/2022] [Indexed: 06/18/2023]
Abstract
Genetic diversity reflects the survival potential, history, and population dynamics of an organism. It underlies the adaptive potential of populations and their response to environmental change. Reaumuria trigyna is an endemic species in the Eastern Alxa and West Ordos desert regions in China. The species has been considered a good candidate to explore the unique survival strategies of plants that inhabit this area. In this study, we performed population genomic analyses based on restriction-site associated DNA sequencing to understand the genetic diversity, population genetic structure, and differentiation of the species. Analyses of 92,719 high-quality single-nucleotide polymorphisms (SNPs) indicated that overall genetic diversity of R. trigyna was low (HO = 0.249 and HE = 0.208). No significant genetic differentiation was observed among the investigated populations. However, a subtle population genetic structure was detected. We suggest that this might be explained by adaptive diversification reinforced by the geographical isolation of populations. Overall, 3513 outlier SNPs were located in 243 gene-coding sequences in the R. trigyna transcriptome. Potential sites under diversifying selection occurred in genes (e.g., AP2/EREBP, E3 ubiquitin-protein ligase, FLS, and 4CL) related to phytohormone regulation and synthesis of secondary metabolites which have roles in adaptation of species. Our genetic analyses provide scientific criteria for evaluating the evolutionary capacity of R. trigyna and the discovery of unique adaptions. Our findings extend knowledge of refugia, environmental adaption, and evolution of germplasm resources that survive in the Ordos area.
Collapse
Affiliation(s)
- Zhenhua Dang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jiabin Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yanan Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Miaomiao Song
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Peter J Lockhart
- School of Natural Sciences, College of Sciences, Massey University, Palmerston North, New Zealand
| | - Yunyun Tian
- Ministry of Education Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Miaomiao Niu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Qinglang Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
8
|
Sethuraman A, Nunziata SO, Jones A, Obrycki J, Weisrock DW. Go west: Population genomics reveals unexpected population fluctuations and little gene flow in Western hemisphere populations of the predatory lady beetle, Hippodamia convergens. Evol Appl 2024; 17:e13631. [PMID: 38283604 PMCID: PMC10810170 DOI: 10.1111/eva.13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024] Open
Abstract
Hippodamia convergens-the convergent lady beetle, has been used extensively in augmentative biological control of aphids, thrips, and whiteflies across its native range in North America, and was introduced into South America in the 1950s. Overwintering H. convergens populations from its native western range in the United States are commercially collected and released across its current range in the eastern USA, with little knowledge of the effectiveness of its augmentative biological control. Here we use a novel ddRADseq-based SNP/haplotype discovery approach to estimate its range-wide population diversity, differentiation, and recent evolutionary history. Our results indicate (1) significant population differentiation among eastern USA, western USA, and South American populations of H. convergens, with (2) little to no detectable recent admixture between them, despite repeated population augmentation, and (3) continued recent population size expansion across its range. These results contradict previous findings using microsatellite markers. In light of these new findings, the implications for the effectiveness of augmentative biological control using H. convergens are discussed. Additionally, because quantifying the non-target effects of augmentative biological control is a difficult problem in migratory beetles, our results could serve as a cornerstone in improving and predicting the efficacy of future releases of H. convergens across its range.
Collapse
Affiliation(s)
- Arun Sethuraman
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Schyler O. Nunziata
- Department of BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Present address:
United States Department of AgricultureWashingtonDCUSA
| | - Angela Jones
- Department of BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Present address:
Duke UniversityDurhamNorth CarolinaUSA
| | - John Obrycki
- Department of EntomologyUniversity of KentuckyLexingtonKentuckyUSA
| | | |
Collapse
|
9
|
Tourvas N, Ganopoulos I, Koubouris G, Kostelenos G, Manthos I, Bazakos C, Stournaras V, Molassiotis A, Aravanopoulos F. Wild and cultivated olive tree genetic diversity in Greece: a diverse resource in danger of erosion. Front Genet 2023; 14:1298565. [PMID: 38111682 PMCID: PMC10725918 DOI: 10.3389/fgene.2023.1298565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
The genetic relationships between Greek wild olive tree populations and cultivars were investigated. A total of 219 wild genotypes and 67 cultivar genotypes were analyzed by employing 10 SSR markers. Data evidenced that the wild populations exhibited high levels of genetic diversity and exclusively host 40% of the total number of alleles detected. Inbreeding was observed within populations, probably as a consequence of their fragmented spatial distribution. The genetic differentiation between cultivars and wild individuals, as well as within wild populations, was low. Nevertheless, three gene pools of wild trees were detected, corresponding to the geographical areas of Northeastern Greece, Peloponnese-Crete and Epirus. Most cultivars clustered in a separate group, while the rest of them formed a heterogenous group with membership coefficients akin to the three wild olive clusters. Regarding the history of olive cultivation in Greece, bidirectional gene flow was detected between populations of Peloponnese-Crete and the gene pool that composes some of Greece's most important cultivars, such as "Koroneiki" and "Mastoidis", which is inferred as an indication of a minor domestication event in the area. A strategy for the protection of Greek-oriented olive genetic resources is proposed, along with suggestions for the utilization of the genetically diverse wild resources with regard to the introgression of traits of agronomical interest to cultivars.
Collapse
Affiliation(s)
- Nikolaos Tourvas
- Laboratory of Forest Genetics, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO) DIMITRA, Thessaloniki-Thermi, Greece
| | - Georgios Koubouris
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization (ELGO) DIMITRA, Chania, Greece
| | | | - Ioannis Manthos
- Department of Nut Trees, Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO) DIMITRA, Neo Krikello-Lamia, Greece
| | - Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO) DIMITRA, Thessaloniki-Thermi, Greece
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Vasileios Stournaras
- Department of Olive and Horticultural Crops, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization (ELGO) DIMITRA, Kalamata, Greece
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, Greece
| | - Filippos Aravanopoulos
- Laboratory of Forest Genetics, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
DeSaix MG, Anderson EC, Bossu CM, Rayne CE, Schweizer TM, Bayly NJ, Narang DS, Hagelin JC, Gibbs HL, Saracco JF, Sherry TW, Webster MS, Smith TB, Marra PP, Ruegg KC. Low-coverage whole genome sequencing for highly accurate population assignment: Mapping migratory connectivity in the American Redstart (Setophaga ruticilla). Mol Ecol 2023; 32:5528-5540. [PMID: 37706673 DOI: 10.1111/mec.17137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Understanding the geographic linkages among populations across the annual cycle is an essential component for understanding the ecology and evolution of migratory species and for facilitating their effective conservation. While genetic markers have been widely applied to describe migratory connections, the rapid development of new sequencing methods, such as low-coverage whole genome sequencing (lcWGS), provides new opportunities for improved estimates of migratory connectivity. Here, we use lcWGS to identify fine-scale population structure in a widespread songbird, the American Redstart (Setophaga ruticilla), and accurately assign individuals to genetically distinct breeding populations. Assignment of individuals from the nonbreeding range reveals population-specific patterns of varying migratory connectivity. By combining migratory connectivity results with demographic analysis of population abundance and trends, we consider full annual cycle conservation strategies for preserving numbers of individuals and genetic diversity. Notably, we highlight the importance of the Northern Temperate-Greater Antilles migratory population as containing the largest proportion of individuals in the species. Finally, we highlight valuable considerations for other population assignment studies aimed at using lcWGS. Our results have broad implications for improving our understanding of the ecology and evolution of migratory species through conservation genomics approaches.
Collapse
Affiliation(s)
- Matthew G DeSaix
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Eric C Anderson
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Santa Cruz, California, USA
- Department of Fisheries, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Christen M Bossu
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Christine E Rayne
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Teia M Schweizer
- Department of Fisheries, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Nicholas J Bayly
- SELVA Investigación para la conservación en el Neotropico, DG42A #20-37, Bogotá, Colombia
| | - Darshan S Narang
- Trinidad and Tobago Field Naturalists' Club, Port of Spain, Trinidad and Tobago
| | - Julie C Hagelin
- Threatened, Endangered and Diversity Program, Alaska Department of Fish and Game, Fairbanks, Alaska, USA
| | - H Lisle Gibbs
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, Ohio, USA
| | - James F Saracco
- The Institute for Bird Populations, Petaluma, California, USA
| | - Thomas W Sherry
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Michael S Webster
- Cornell Lab of Ornithology, Ithaca, New York, USA
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Thomas B Smith
- Center for Tropical Research, Institute of the Environment & Sustainability, University of California Los Angeles, Los Angeles, California, USA
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Peter P Marra
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
- McCourt School of Public Policy, Georgetown University, Washington, District of Columbia, USA
| | - Kristen C Ruegg
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
11
|
Langille BL, Kess T, Brachmann M, Nugent CM, Messmer A, Duffy SJ, Holborn MK, Van Wyngaarden M, Knutsen TM, Kent M, Boyce D, Gregory RS, Gauthier J, Fairchild EA, Pietrak M, Eddy S, de Leaniz CG, Consuegra S, Whittaker B, Bentzen P, Bradbury IR. Fine-scale environmentally associated spatial structure of lumpfish ( Cyclopterus lumpus) across the Northwest Atlantic. Evol Appl 2023; 16:1619-1636. [PMID: 37752959 PMCID: PMC10519416 DOI: 10.1111/eva.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/10/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
Lumpfish, Cyclopterus lumpus, have historically been harvested throughout Atlantic Canada and are increasingly in demand as a solution to controlling sea lice in Atlantic salmon farms-a process which involves both the domestication and the transfer of lumpfish between geographic regions. At present, little is known regarding population structure and diversity of wild lumpfish in Atlantic Canada, limiting attempts to assess the potential impacts of escaped lumpfish individuals from salmon pens on currently at-risk wild populations. Here, we characterize the spatial population structure and genomic-environmental associations of wild populations of lumpfish throughout the Northwest Atlantic using both 70K SNP array data and whole-genome re-sequencing data (WGS). At broad spatial scales, our results reveal a large environmentally associated genetic break between the southern populations (Gulf of Maine and Bay of Fundy) and northern populations (Newfoundland and the Gulf of St. Lawrence), linked to variation in ocean temperature and ice cover. At finer spatial scales, evidence of population structure was also evident in a distinct coastal group in Newfoundland and significant isolation by distance across the northern region. Both evidence of consistent environmental associations and elevated genome-wide variation in F ST values among these three regional groups supports their biological relevance. This study represents the first extensive description of population structure of lumpfish in Atlantic Canada, revealing evidence of broad and fine geographic scale environmentally associated genomic diversity. Our results will facilitate the commercial use of lumpfish as a cleaner fish in Atlantic salmon aquaculture, the identification of lumpfish escapees, and the delineation of conservation units of this at-risk species throughout Atlantic Canada.
Collapse
Affiliation(s)
- Barbara L. Langille
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Tony Kess
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Matthew Brachmann
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Cameron M. Nugent
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Amber Messmer
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Steven J. Duffy
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Melissa K. Holborn
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Mallory Van Wyngaarden
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | | | - Matthew Kent
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre for Integrative GeneticsNorwegian University of Life SciencesÅsNorway
| | - Danny Boyce
- Department of Ocean Sciences, Ocean Sciences CentreMemorial University of NewfoundlandSt John'sNewfoundland and LabradorCanada
| | - Robert S. Gregory
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Johanne Gauthier
- Maurice Lamontagne Institute, Fisheries and Oceans CanadaQuebecCanada
| | | | - Michael Pietrak
- USDA, Agricultural Research ServiceNational Cold Water Marine Aquaculture CenterFranklinMaineUSA
| | - Stephen Eddy
- University of Maine Center for Cooperative Aquaculture ResearchFranklinMaineUSA
| | | | - Sofia Consuegra
- Centre for Sustainable Aquatic Research, Swansea UniversitySwanseaUK
| | - Ben Whittaker
- Centre for Sustainable Aquatic Research, Swansea UniversitySwanseaUK
| | - Paul Bentzen
- Marine Gene Probe Laboratory, Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Ian R. Bradbury
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
- Marine Gene Probe Laboratory, Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
12
|
Ropp AJ, Reece KS, Snyder RA, Song J, Biesack EE, McDowell JR. Fine-scale population structure of the northern hard clam ( Mercenaria mercenaria) revealed by genome-wide SNP markers. Evol Appl 2023; 16:1422-1437. [PMID: 37622097 PMCID: PMC10445094 DOI: 10.1111/eva.13577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 08/26/2023] Open
Abstract
Aquaculture is growing rapidly worldwide, and sustainability is dependent on an understanding of current genetic variation and levels of connectivity among populations. Genetic data are essential to mitigate the genetic and ecological impacts of aquaculture on wild populations and guard against unintended human-induced loss of intraspecific diversity in aquacultured lines. Impacts of disregarding genetics can include loss of diversity within and between populations and disruption of local adaptation patterns, which can lead to a decrease in fitness. The northern hard clam, Mercenaria mercenaria (Linnaeus, 1758), is an economically valuable aquaculture species along the North American Atlantic and Gulf coasts. Hard clams have a pelagic larval phase that allows for dispersal, but the level of genetic connectivity among geographic areas is not well understood. To better inform the establishment of site-appropriate aquaculture brood stocks, this study used DArTseq™ genotyping by sequencing to characterize the genetic stock structure of wild clams sampled along the east coast of North America and document genetic diversity within populations. Samples were collected from 15 locations from Prince Edward Island, Canada, to South Carolina, USA. Stringent data filtering resulted in 4960 single nucleotide polymorphisms from 448 individuals. Five genetic breaks separating six genetically distinct populations were identified: Canada, Maine, Massachusetts, Mid-Atlantic, Chesapeake Bay, and the Carolinas (F ST 0.003-0.046; p < 0.0001). This is the first study to assess population genetic structure of this economically important hard clam along a large portion of its native range with high-resolution genomic markers, enabling identification of previously unrecognized population structure. Results of this study not only broaden insight into the factors shaping the current distribution of M. mercenaria but also reveal the genetic population dynamics of a species with a long pelagic larval dispersal period along the North American Atlantic and Gulf coasts.
Collapse
Affiliation(s)
- Ann J. Ropp
- Virginia Institute of Marine Science, William & MaryGloucester PointVirginiaUSA
| | - Kimberly S. Reece
- Virginia Institute of Marine Science, William & MaryGloucester PointVirginiaUSA
| | - Richard A. Snyder
- Virginia Institute of Marine Science, William & MaryGloucester PointVirginiaUSA
| | - Jingwei Song
- Virginia Institute of Marine Science, William & MaryGloucester PointVirginiaUSA
| | - Ellen E. Biesack
- Virginia Institute of Marine Science, William & MaryGloucester PointVirginiaUSA
| | - Jan R. McDowell
- Virginia Institute of Marine Science, William & MaryGloucester PointVirginiaUSA
| |
Collapse
|
13
|
Mendoza-Portillo V, García-De León FJ, von der Heyden S. Responses of population structure and genomic diversity to climate change and fishing pressure in a pelagic fish. GLOBAL CHANGE BIOLOGY 2023; 29:4107-4125. [PMID: 37078996 DOI: 10.1111/gcb.16732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/28/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
The responses of marine species to environmental changes and anthropogenic pressures (e.g., fishing) interact with ecological and evolutionary processes that are not well understood. Knowledge of changes in the distribution range and genetic diversity of species and their populations into the future is essential for the conservation and sustainable management of resources. Almaco jack (Seriola rivoliana) is a pelagic fish with high importance to fisheries and aquaculture in the Pacific Ocean. In this study, we assessed contemporary genomic diversity and structure in loci that are putatively under selection (outlier loci) and determined their potential functions. Using a combination of genotype-environment association, spatial distribution models, and demogenetic simulations, we modeled the effects of climate change (under three different RCP scenarios) and fishing pressure on the species' geographic distribution and genomic diversity and structure to 2050 and 2100. Our results show that most of the outlier loci identified were related to biological and metabolic processes that may be associated with temperature and salinity. The contemporary genomic structure showed three populations-two in the Eastern Pacific (Cabo San Lucas and Eastern Pacific) and one in the Central Pacific (Hawaii). Future projections suggest a loss of suitable habitat and potential range contractions for most scenarios, while fishing pressure decreased population connectivity. Our results suggest that future climate change scenarios and fishing pressure will affect the genomic structure and genotypic composition of S. rivoliana and lead to loss of genomic diversity in populations distributed in the eastern-central Pacific Ocean, which could have profound effects on fisheries that depend on this resource.
Collapse
Affiliation(s)
- Verónica Mendoza-Portillo
- Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| | - Francisco J García-De León
- Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| | - Sophie von der Heyden
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
- School of Climate Studies, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
14
|
Turbek SP, Funk WC, Ruegg KC. Where to draw the line? Expanding the delineation of conservation units to highly mobile taxa. J Hered 2023; 114:300-311. [PMID: 36815497 DOI: 10.1093/jhered/esad011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Conservation units (CUs) are an essential tool for maximizing evolutionary potential and prioritizing areas across a species' range for protection when implementing conservation and management measures. However, current workflows for identifying CUs on the basis of neutral and adaptive genomic variation largely ignore information contained in patterns of isolation by distance (IBD), frequently the primary signal of population structure in highly mobile taxa, such as birds, bats, and marine organisms with pelagic larval stages. While individuals located on either end of a species' distribution may exhibit clear genetic, phenotypic, and ecological differences, IBD produces subtle changes in allele frequencies across space, making it difficult to draw clear boundaries for conservation purposes in the absence of discrete population structure. Here, we highlight potential pitfalls that arise when applying common methods for delineating CUs to continuously distributed organisms and review existing methods for detecting subtle breakpoints in patterns of IBD that can indicate barriers to gene flow in highly mobile taxa. In addition, we propose a new framework for identifying CUs in all organisms, including those characterized by continuous genomic differentiation, and suggest several possible ways to harness the information contained in patterns of IBD to guide conservation and management decisions.
Collapse
Affiliation(s)
- Sheela P Turbek
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - W Chris Funk
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Kristen C Ruegg
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
15
|
Judkins ME, Roemer GW, Millsap BA, Barnes JG, Bedrosian BE, Clarke SL, Domenech R, Herring G, Lamont M, Smith BW, Stahlecker DW, Stuber MJ, Warren WC, Van Den Bussche RA. A 37 K SNP array for the management and conservation of Golden Eagles (Aquila chrysaetos). CONSERV GENET 2023. [DOI: 10.1007/s10592-023-01508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
16
|
Contrasting Phylogeographic Patterns of Mitochondrial and Genome-Wide Variation in the Groundwater Amphipod Crangonyx islandicus That Survived the Ice Age in Iceland. DIVERSITY 2023. [DOI: 10.3390/d15010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The analysis of phylogeographic patterns has often been based on mitochondrial DNA variation, but recent analyses dealing with nuclear DNA have in some instances revealed mito-nuclear discordances and complex evolutionary histories. These enigmatic scenarios, which may involve stochastic lineage sorting, ancestral hybridization, past dispersal and secondary contacts, are increasingly scrutinized with a new generation of genomic tools such as RADseq, which also poses additional analytical challenges. Here, we revisited the previously inconclusive phylogeographic history, showing the mito-nuclear discordance of an endemic groundwater amphipod from Iceland, Crangonyx islandicus, which is the only metazoan known to have survived the Pleistocene beneath the glaciers. Previous studies based on three DNA markers documented a mitochondrial scenario with the main divergence occurring between populations in northern Iceland and an ITS scenario with the main divergence between the south and north. We used double digest restriction-site-associated DNA sequencing (ddRADseq) to clarify this mito-nuclear discordance by applying several statistical methods while estimating the sensitivity to different analytical approaches (data-type, differentiation indices and base call uncertainty). A majority of nuclear markers and methods support the ITS divergence. Nevertheless, a more complex scenario emerges, possibly involving introgression led by male-biased dispersal among northern locations or mitochondrial capture, which may have been further strengthened by natural selection.
Collapse
|
17
|
Xuereb A, Rougemont Q, Dallaire X, Moore J, Normandeau E, Bougas B, Perreault‐Payette A, Koop BF, Withler R, Beacham T, Bernatchez L. Re-evaluating Coho salmon ( Oncorhynchus kisutch) conservation units in Canada using genomic data. Evol Appl 2022; 15:1925-1944. [PMID: 36426130 PMCID: PMC9679250 DOI: 10.1111/eva.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022] Open
Abstract
Conservation units (CUs) are important tools for supporting the implementation of standardized management practices for exploited species. Following the adoption of the Wild Salmon Policy in Canada, CUs were defined for Pacific salmon based on characteristics related to ecotype, life history and genetic variation using microsatellite markers as indirect measures of local adaptation. Genomic data sets have the potential to improve the definition of CUs by reducing variance around estimates of population genetic parameters, thereby increasing the power to detect more subtle patterns of population genetic structure and by providing an opportunity to incorporate adaptive information more directly with the identification of variants putatively under selection. We used one of the largest genomic data sets recently published for a nonmodel species, comprising 5662 individual Coho salmon (Oncorhynchus kisutch) from 149 sampling locations and a total of 24,542 high-quality SNPs obtained using genotyping-by-sequencing and mapped to the Coho salmon reference genome to (1) evaluate the current delineation of CUs for Coho in Canada and (2) compare patterns of population structure observed using neutral and outlier loci from genotype-environment association analyses to determine whether separate CUs that capture adaptive diversity are needed. Our results reflected CU boundaries on the whole, with the majority of sampling locations managed in the same CU clustering together within genetic groups. However, additional groups that are not currently represented by CUs were also uncovered. We observed considerable overlap in the genetic clusters identified using neutral or candidate loci, indicating a general congruence in patterns of genetic variation driven by local adaptation and gene flow in this species. Consequently, we suggest that the current CU boundaries for Coho salmon are largely well-suited for meeting the Canadian Wild Salmon Policy's objective of defining biologically distinct groups, but we highlight specific areas where CU boundaries may be refined.
Collapse
Affiliation(s)
- Amanda Xuereb
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Quentin Rougemont
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
- CEFE, Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, Univ Montpellier, CNRS, EPHE, IRDUniv Paul Valéry MontpellierMontpellierFrance
| | - Xavier Dallaire
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Jean‐Sébastien Moore
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Eric Normandeau
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Bérénice Bougas
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Alysse Perreault‐Payette
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Ben F. Koop
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Ruth Withler
- Department of Fisheries and OceanPacific Biological StationNanaimoBritish ColumbiaCanada
| | - Terry Beacham
- Department of Fisheries and OceanPacific Biological StationNanaimoBritish ColumbiaCanada
| | - Louis Bernatchez
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| |
Collapse
|
18
|
Dorant Y, Laporte M, Rougemont Q, Cayuela H, Rochette R, Bernatchez L. Landscape genomics of the American lobster (Homarus americanus). Mol Ecol 2022; 31:5182-5200. [PMID: 35960266 DOI: 10.1111/mec.16653] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 01/07/2023]
Abstract
In marine species experiencing intense fishing pressures, knowledge of genetic structure and local adaptation represent a critical information to assist sustainable management. In this study, we performed a landscape genomics analysis in the American lobster to investigate the issues pertaining to the consequences of making use of putative adaptive loci to reliably infer population structure and thus more rigorously delineating biological management units in marine exploited species. Toward this end, we genotyped 14,893 single nucleotide polymorphism (SNPs) in 4190 lobsters sampled across 96 sampling sites distributed along 1000 km in the northwest Atlantic in both Canada and the USA. As typical for most marine species, we observed a weak, albeit highly significant genetic structure. We also found that adaptive genetic variation allows detecting fine-scale population structure not resolved by neutral genetic variation alone. Using the recent genome assembly of the American lobster, we were able to map and annotate several SNPs located in functional genes potentially implicated in adaptive processes such as thermal stress response, salinity tolerance and growth metabolism pathways. Taken together, our study indicates that weak population structure in high gene flow systems can be resolved at various spatial scales, and that putatively adaptive genetic variation can substantially enhance the delineation of biological management units of marine exploited species.
Collapse
Affiliation(s)
- Yann Dorant
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- IHPE, CNRS, Ifremer, Université de Montpellier, Université de Perpignan Via Domitia, Montpellier, France
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Ministère des Forêts de la Faune et des Parcs du Québec, Québec, Québec, Canada
| | - Quentin Rougemont
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- CEFE, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Hugo Cayuela
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Laboratoire de Biométrie et Biologie Évolutive, CNRS, Université Lyon 1, Villeurbanne, France
| | - Rémy Rochette
- Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
19
|
Jiménez‐Mena B, Flávio H, Henriques R, Manuzzi A, Ramos M, Meldrup D, Edson J, Pálsson S, Ásta Ólafsdóttir G, Ovenden JR, Nielsen EE. Fishing for DNA? Designing baits for population genetics in target enrichment experiments: Guidelines, considerations and the new tool supeRbaits. Mol Ecol Resour 2022; 22:2105-2119. [PMID: 35178874 PMCID: PMC9313901 DOI: 10.1111/1755-0998.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
Abstract
Targeted sequencing is an increasingly popular next-generation sequencing (NGS) approach for studying populations that involves focusing sequencing efforts on specific parts of the genome of a species of interest. Methodologies and tools for designing targeted baits are scarce but in high demand. Here, we present specific guidelines and considerations for designing capture sequencing experiments for population genetics for both neutral genomic regions and regions subject to selection. We describe the bait design process for three diverse fish species: Atlantic salmon, Atlantic cod and tiger shark, which was carried out in our research group, and provide an evaluation of the performance of our approach across both historical and modern samples. The workflow used for designing these three bait sets has been implemented in the R-package supeRbaits, which encompasses our considerations and guidelines for bait design for the benefit of researchers and practitioners. The supeRbaits R-package is user-friendly and versatile. It is written in C++ and implemented in R. supeRbaits and its manual are available from Github: https://github.com/BelenJM/supeRbaits.
Collapse
Affiliation(s)
- Belén Jiménez‐Mena
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Hugo Flávio
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Romina Henriques
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Alice Manuzzi
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | | - Dorte Meldrup
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Janette Edson
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Snæbjörn Pálsson
- Faculty of Life and Environmental SciencesUniversity of IcelandReykjavíkIceland
| | | | - Jennifer R. Ovenden
- Molecular Fisheries Laboratory, School of Biomedical SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Einar Eg Nielsen
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| |
Collapse
|
20
|
Wirgin I, Maceda L, Stabile J, Waldman J. Genetic Population Structure of Summer Flounder Paralichthys dentatus using Microsatellite DNA Analysis. FISHERIES RESEARCH 2022; 250:106270. [PMID: 35342212 PMCID: PMC8950463 DOI: 10.1016/j.fishres.2022.106270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Summer flounder Paralichthys dentatus supports one of the most valuable commercial and recreational fisheries along the Atlantic Coast of the U.S. However, in recent decades the management of this species has proven to be one of the most contentious for any exploited marine resource in the region. A coastwide catch quota is imposed annually for summer flounder of which 60% is allocated to the commercial fishery and 40% to the recreational fishery. The allocation is further divided among the individual coastal states from North Carolina to Massachusetts based on their landings in the 1980s. This process, based on political jurisdictions, does not consider the species' biological stock structure. Previous genetic studies (allozyme, mtDNA, and SNPs) provided contradictory results regarding the possible population structure of summer. To address this issue, we used DNA microsatellite analysis at 9 loci to define the coastwide population structure of summer flounder. In total, 1,182 specimens were analyzed from 18 collection sites. Most collections were from the continental shelf during the fall-winter spawning season. These were supplemented with additional samples from inshore waters from North Carolina to Florida, and inshore sites which support significant recreational fisheries at Nantucket Shoals, Massachusetts and Fire Island, New York. The overall level of genetic differentiation in pairwise comparison between collections was very low, mean F ST = 0.001. There was no evidence of genetic differentiation between collections from north and south of Cape Hatteras. Our microsatellite results are consistent with an earlier SNP study which failed to find significant allelic heterogeneity among coastwide collections of summer flounder. However, a subset of pairwise F ST comparisons between some collections proved statistically significant. Furthermore, in STRUCTURE analysis we found evidence of two genetic clusters within the species' northern landings area, however, this finding was not supported by DPAC analysis. We conclude that summer flounder most likely constitute a single population along their entire Atlantic Coast distribution.
Collapse
Affiliation(s)
- Isaac Wirgin
- Department of Environmental Medicine, NYU School of Medicine, 341 East 25 Street, New York, New York 10010
| | - Lorraine Maceda
- Department of Environmental Medicine, NYU School of Medicine, 341 East 25 Street, New York, New York 10010
| | - Joseph Stabile
- Department of Biology, Iona College, 715 North Avenue, New Rochelle, New York 10801
| | - John Waldman
- Biology Department, Queens College of the City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367-1597
| |
Collapse
|
21
|
Papa Y, Morrison MA, Wellenreuther M, Ritchie PA. Genomic Stock Structure of the Marine Teleost Tarakihi (Nemadactylus macropterus) Provides Evidence of Potential Fine-Scale Adaptation and a Temperature-Associated Cline Amid Panmixia. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.862930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tarakihi (Nemadactylus macropterus) is an important fishery species with widespread distribution around New Zealand and off the southern coasts of Australia. However, little is known about whether the populations are locally adapted or genetically structured. To address this, we conducted whole-genome resequencing of 175 tarakihi from around New Zealand and Tasmania (Australia) to obtain a dataset of 7.5 million genome-wide and high-quality single nucleotide polymorphisms (SNPs). Variant filtering, FST-outlier analysis, and redundancy analysis (RDA) were used to evaluate population structure, adaptive structure, and locus-environment associations. A weak but significant level of neutral genetic differentiation was found between tarakihi from New Zealand and Tasmania (FST = 0.0054–0.0073, P ≤ 0.05), supporting the existence of at least two separate reproductive stocks. No clustering was detected among the New Zealand populations (ΦST < 0.001, P = 0.77). Outlier-based, presumably adaptive variation suggests fine-scale adaptive structure between locations around central New Zealand off the east (Wairarapa, Cape Campbell, and Hawke’s Bay) and the west coast (Tasman Bay/Golden Bay and Upper West Coast of South Island). Allele frequencies from 55 loci were associated with at least one of six environmental variables, of which 47 correlated strongly with yearly mean water temperature. Although genes associated with these loci are linked to various functions, the most common functions were integral components of membrane and cilium assembly. Projection of the RDA indicates the existence of a latitudinal temperature cline. Our work provides the first genomic insights supporting panmixia of tarakihi in New Zealand and evidence of a genomic cline that appears to be driven by the temperature gradients, together providing crucial information to inform the stock assessment of this species, and to widen the insights of the ecological drivers of adaptive variation in a marine species.
Collapse
|
22
|
Tietjen M, Pérez de León AA, Sagel A, Skoda SR, Phillips PL, Mitchell RD, Caruth J, Durán U, Musai L, Tortosa S, Arp AP. Geographic Population Genetic Structure of the New World Screwworm, Cochliomyia hominivorax (Diptera: Calliphoridae), Using SNPs. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:874-882. [PMID: 35323976 DOI: 10.1093/jme/tjac024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 06/14/2023]
Abstract
The New World screwworm, Cochliomyia hominivorax (Coquerel 1858) (Diptera: Calliphoridae), is a serious parasite of livestock, humans, and other warm-blooded animals. It has been eradicated from the northern parts of its historical range down to the Panama-Colombian border where a permanent barrier zone is maintained. This eradication was accomplished through using the sterile insect technique (SIT). In 2016 there was an outbreak of C. hominivorax in the Florida Keys. In only six months, this pest was successfully re-eradicated using SIT, but the geographic origin of the invasion has yet to be resolved. It was previously determined that the Florida flies most likely represented a single invasion, and it was recommended that a finer-scale genetic assessment should be completed. Thus, this current proof-of-concept study aimed to develop a population genetic database using single nucleotide polymorphisms (SNPs) to reference outbreaks and potentially identify the origin of the Florida outbreak. This initial database consists of wild-caught samples from 4 geographic locations as well as laboratory colony samples that originated from 7 additional locations using a genotyping by sequencing (GBS) approach. Geographic population structuring was identified for twelve populations that clustered according to geographic location. The Florida outbreak samples appeared similar to samples from the outer Caribbean cluster which included samples from Dominican Republic and Trinidad and Tobago, however, these results will be further clarified with the replacement of laboratory colony samples with future wild-caught samples.
Collapse
Affiliation(s)
- Mackenzie Tietjen
- United States Department of Agriculture, Agricultural Research Service, Knipling-Bushland U.S. Livestock Insects Research Laboratory, 2700 Fredericksburg Road, Kerrville, TX, 78028, USA
| | - Adalberto A Pérez de León
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center: Parlier, CA, 93648, USA
| | - Agustin Sagel
- United States Department of Agriculture, Agricultural Research Service, Screwworm Research Unit, Pacora, Panama
| | - Steve R Skoda
- United States Department of Agriculture, Agricultural Research Service, Knipling-Bushland U.S. Livestock Insects Research Laboratory, 2700 Fredericksburg Road, Kerrville, TX, 78028, USA
| | - Pamela L Phillips
- United States Department of Agriculture, Animal and Plant Health Inspection Service, International Services, International Services, Pacora, Panama
| | - Robert D Mitchell
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, 20460, USA
| | - Joanne Caruth
- Animal Health Unit, Division of Food Production Forestry and Fisheries, Tobago House of Assembly. Hope Farm, Trinidad and Tobago
| | - Uziel Durán
- Direccion General de Ganaderia (DIGEGA), Ministry of Agriculture of the Dominican Republic, Santo Domingo, Dominican Republic
| | - Lisa Musai
- Animal Production and Health Division, Ministry of Agriculture, Land and Fisheries, Port of Spain, Trinidad and Tobago
| | - Silvia Tortosa
- Direccion General de Ganaderia (DIGEGA), Ministry of Agriculture of the Dominican Republic, Santo Domingo, Dominican Republic
| | - Alex P Arp
- United States Department of Agriculture, Agricultural Research Service, Screwworm Research Unit, Pacora, Panama
| |
Collapse
|
23
|
Wang X, Lu B, Shao L, Li Z, Ali A, Yu F, Fu Z, Sun F. Genome-wide SNPs reveal the fine-scale population structure of Laodelphax striatellus in China using double-digest restriction site-associated DNA sequencing. Genomics 2022; 114:110329. [PMID: 35278617 DOI: 10.1016/j.ygeno.2022.110329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 01/14/2023]
Abstract
The small brown planthopper (SBPH), Laodelphax striatellus (Fallén) is one of the most destructive rice pests and has caused serious economic losses in China. To clarify the genetic differentiation and population genetic structure of this insect pest, we investigated the genomic polymorphisms, genetic differentiation, and phylogeography of 31 SBPH populations from 28 sampling sites from three climatic zones of China using double-digest restriction site-associated DNA sequencing (ddRADseq). In total, 2,813,221,369 high-quality paired-end reads from 306 individuals and 1925 single nucleotide polymorphisms (SNPs) were obtained. Low levels of genetic diversity and significant genetic differentiation were observed among the SBPH populations, and three genetic clusters were detected in China. Neutrality tests and bottleneck analysis provided strong evidence for recent rapid expansion with a severe bottleneck in most populations. Our work provides new insights into the genetics of the SBPH and will contribute to the development of effective management strategies for this pest.
Collapse
Affiliation(s)
- Xingya Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, PR China
| | - Lingyun Shao
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, PR China
| | - Zhiqiang Li
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, PR China
| | - Abid Ali
- Department of Entomology, University of Agriculture, Faisalabad, Punjab 38040, Pakistan
| | - Fengquan Yu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, PR China
| | - Zhanyu Fu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Fuyu Sun
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, PR China.
| |
Collapse
|
24
|
Poyarkov NA, Nguyen TV, Pawangkhanant P, Yushchenko PV, Brakels P, Nguyen LH, Nguyen HN, Suwannapoom C, Orlov N, Vogel G. An integrative taxonomic revision of slug-eating snakes (Squamata: Pareidae: Pareineae) reveals unprecedented diversity in Indochina. PeerJ 2022; 10:e12713. [PMID: 35047234 PMCID: PMC8757378 DOI: 10.7717/peerj.12713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/09/2021] [Indexed: 01/07/2023] Open
Abstract
Slug-eating snakes of the subfamily Pareinae are an insufficiently studied group of snakes specialized in feeding on terrestrial mollusks. Currently Pareinae encompass three genera with 34 species distributed across the Oriental biogeographic region. Despite the recent significant progress in understanding of Pareinae diversity, the subfamily remains taxonomically challenging. Here we present an updated phylogeny of the subfamily with a comprehensive taxon sampling including 30 currently recognized Pareinae species and several previously unknown candidate species and lineages. Phylogenetic analyses of mtDNA and nuDNA data supported the monophyly of the three genera Asthenodipsas, Aplopeltura, and Pareas. Within both Asthenodipsas and Pareas our analyses recovered deep differentiation with each genus being represented by two morphologically diagnosable clades, which we treat as subgenera. We further apply an integrative taxonomic approach, including analyses of molecular and morphological data, along with examination of available type materials, to address the longstanding taxonomic questions of the subgenus Pareas, and reveal the high level of hidden diversity of these snakes in Indochina. We restrict the distribution of P. carinatus to southern Southeast Asia, and recognize two subspecies within it, including one new subspecies proposed for the populations from Thailand and Myanmar. We further revalidate P. berdmorei, synonymize P. menglaensis with P. berdmorei, and recognize three subspecies within this taxon, including the new subspecies erected for the populations from Laos and Vietnam. Furthermore, we describe two new species of Pareas from Vietnam: one belonging to the P. carinatus group from southern Vietnam, and a new member of the P. nuchalis group from the central Vietnam. We provide new data on P. temporalis, and report on a significant range extension for P. nuchalis. Our phylogeny, along with molecular clock and ancestral area analyses, reveal a complex diversification pattern of Pareinae involving a high degree of sympatry of widespread and endemic species. Our analyses support the "upstream" colonization hypothesis and, thus, the Pareinae appears to have originated in Sundaland during the middle Eocene and then colonized mainland Asia in early Oligocene. Sundaland and Eastern Indochina appear to have played the key roles as the centers of Pareinae diversification. Our results reveal that both vicariance and dispersal are responsible for current distribution patterns of Pareinae, with tectonic movements, orogeny and paleoclimatic shifts being the probable drivers of diversification. Our study brings the total number of Pareidae species to 41 and further highlights the importance of comprehensive taxonomic revisions not only for the better understanding of biodiversity and its evolution, but also for the elaboration of adequate conservation actions.
Collapse
Affiliation(s)
- Nikolay A. Poyarkov
- Laboratory of Tropical Ecology, Joint Russian-Vietnamese Tropical Research and Technological Center, Hanoi, Vietnam,Faculty of Biology, Department of Vertebrate Zoology, Moscow State University, Moscow, Russia
| | - Tan Van Nguyen
- Department of Species Conservation, Save Vietnam’s Wildlife, Ninh Binh, Vietnam
| | - Parinya Pawangkhanant
- Division of Fishery, School of Agriculture and Natural Resources, University of Phayao, Phayao, Thailand
| | - Platon V. Yushchenko
- Faculty of Biology, Department of Vertebrate Zoology, Moscow State University, Moscow, Russia
| | | | - Linh Hoang Nguyen
- Department of Zoology, Southern Institute of Ecology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Hung Ngoc Nguyen
- Department of Zoology, Southern Institute of Ecology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Chatmongkon Suwannapoom
- Division of Fishery, School of Agriculture and Natural Resources, University of Phayao, Phayao, Thailand
| | - Nikolai Orlov
- Department of Herpetology, Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Gernot Vogel
- Society for Southeast Asian Herpetology, Heidelberg, Germany
| |
Collapse
|
25
|
Abstract
Restriction enzymes have been one of the primary tools in the population genetics toolkit for 50 years, being coupled with each new generation of technology to provide a more detailed view into the genetics of natural populations. Restriction site-Associated DNA protocols, which joined enzymes with short-read sequencing technology, have democratized the field of population genomics, providing a means to assay the underlying alleles in scores of populations. More than 10 years on, the technique has been widely applied across the tree of life and served as the basis for many different analysis techniques. Here, we provide a detailed protocol to conduct a RAD analysis from experimental design to de novo analysis-including parameter optimization-as well as reference-based analysis, all in Stacks version 2, which is designed to work with paired-end reads to assemble RAD loci up to 1000 nucleotides in length. The protocol focuses on major points of friction in the molecular approaches and downstream analysis, with special attention given to validating experimental analyses. Finally, the protocol provides several points of departure for further analysis.
Collapse
Affiliation(s)
- Angel G Rivera-Colón
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Julian Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
26
|
Fisher MC, Helser TE, Kang S, Gwak W, Canino MF, Hauser L. Genetic structure and dispersal in peripheral populations of a marine fish (Pacific cod, Gadus macrocephalus) and their importance for adaptation to climate change. Ecol Evol 2022; 12:e8474. [PMID: 35127016 PMCID: PMC8794718 DOI: 10.1002/ece3.8474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Small and isolated peripheral populations, which are often remnants of glacial refugia, offer an opportunity to determine the magnitude and direction of fine-scale connectivity in high gene flow marine species. When located at the equatorial edge of a species' range, these populations may also harbor genetic diversity related to survival and reproduction at higher temperatures, a critical resource for marine species facing warming ocean temperatures. Pacific cod (Gadus macrocephalus), a marine fish in the North Pacific, has already experienced major shifts in biomass and distribution linked to climate change. We estimated the magnitude and direction of connectivity between peripheral populations of Pacific cod at the southern edge of the species' range, by conducting restriction site-associated DNA (RAD) sequencing and individual assignment on fish collected around the Korean Peninsula during the spawning season. Three populations on the western, eastern, and southern Korean coasts were highly differentiated (FST = 0.025-0.042) and relatively small (Ne = 433-1,777). Ten putative dispersers and estimates of contemporary migration rates revealed asymmetrical, west-to-east movement around the Korean Peninsula, at a higher rate than predicted by indirect estimates of connectivity (FST ). Allele frequencies at 87 RAD loci were decisively correlated with strong marine temperature gradients between the warmer southern coast and the cooler waters of the eastern and western coasts. Despite relatively small sample sizes, our data suggest asymmetrical dispersal and gene flow, potentially involving adaptive alleles, between peripheral populations inhabiting markedly different thermal regimes. Our study emphasizes the conservation value of peripheral populations in high gene flow marine fish species.
Collapse
Affiliation(s)
- Mary C. Fisher
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
- Present address:
School of Environmental and Forest SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Thomas E. Helser
- Resource Ecology and Fisheries Management DivisionAlaska Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWashingtonUSA
| | - Sukyung Kang
- Fisheries Resources Management DivisionNational Institute of Fisheries ScienceBusanKorea
| | - Wooseok Gwak
- The Institute of Marine IndustryGyeongsang National UniversityTongyeongKorea
| | - Michael F. Canino
- Alaska Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWashingtonUSA
| | - Lorenz Hauser
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
27
|
Qin X, Lock TR, Kallenbach RL. DA: Population structure inference using discriminant analysis. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinghu Qin
- Beijing Institute of Genomics Chinese Academy of Sciences Beijing China
| | - Thomas Ryan Lock
- Division of Plant Sciences University of Missouri Columbia MO USA
| | | |
Collapse
|
28
|
Torres L, Pante E, González‐Solís J, Viricel A, Ribout C, Zino F, MacKin W, Precheur C, Tourmetz J, Calabrese L, Militão T, Zango L, Shirihai H, Bretagnolle V. Sea surface temperature, rather than land mass or geographic distance, may drive genetic differentiation in a species complex of highly dispersive seabirds. Ecol Evol 2021; 11:14960-14976. [PMID: 34765153 PMCID: PMC8571584 DOI: 10.1002/ece3.8180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 06/27/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022] Open
Abstract
Seabirds, particularly Procellariiformes, are highly mobile organisms with a great capacity for long dispersal, though simultaneously showing high philopatry, two conflicting life-history traits that may lead to contrasted patterns of genetic population structure. Landmasses were suggested to explain differentiation patterns observed in seabirds, but philopatry, isolation by distance, segregation between breeding and nonbreeding zones, and oceanographic conditions (sea surface temperatures) may also contribute to differentiation patterns. To our knowledge, no study has simultaneously contrasted the multiple factors contributing to the diversification of seabird species, especially in the gray zone of speciation. We conducted a multilocus phylogeographic study on a widespread seabird species complex, the little shearwater complex, showing highly homogeneous morphology, which led to considerable taxonomic debate. We sequenced three mitochondrial and six nuclear markers on all extant populations from the Atlantic (lherminieri) and Indian Oceans (bailloni), that is, five nominal lineages from 13 populations, along with one population from the eastern Pacific Ocean (representing the dichrous lineage). We found sharp differentiation among populations separated by the African continent with both mitochondrial and nuclear markers, while only mitochondrial markers allowed characterizing the five nominal lineages. No differentiation could be detected within these five lineages, questioning the strong level of philopatry showed by these shearwaters. Finally, we propose that Atlantic populations likely originated from the Indian Ocean. Within the Atlantic, a stepping-stone process accounts for the current distribution. Based on our divergence time estimates, we suggest that the observed pattern of differentiation mostly resulted from historical and current variation in sea surface temperatures.
Collapse
Affiliation(s)
- Lucas Torres
- Centre d'Etudes Biologiques de ChizéUMR 7372CNRS ‐ La Rochelle UniversitéBeauvoir sur NiortFrance
- Laboratoire LIENSsUMR 7266CNRS ‐ La Rochelle UniversitéLa RochelleFrance
| | - Eric Pante
- Laboratoire LIENSsUMR 7266CNRS ‐ La Rochelle UniversitéLa RochelleFrance
| | - Jacob González‐Solís
- Department de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA)Institut de Recerca de la Biodiversitat (IRBio)Universitat de BarcelonaBarcelonaSpain
| | - Amélia Viricel
- Laboratoire LIENSsUMR 7266CNRS ‐ La Rochelle UniversitéLa RochelleFrance
| | - Cécile Ribout
- Centre d'Etudes Biologiques de ChizéUMR 7372CNRS ‐ La Rochelle UniversitéBeauvoir sur NiortFrance
| | | | - Will MacKin
- 3913 Sterling Ridge LnDurhamNorth CarolinaUSA
| | | | - Julie Tourmetz
- Société d'Etudes Ornithologiques de La RéunionSaint AndréFrance
| | - Licia Calabrese
- Island Conservation SocietyMahéSeychelles
- Faculty of Business & Sustainable DevelopmentIsland Biodiversity & Conservation CenterUniversity of SeychellesMahéSeychelles
| | - Teresa Militão
- Department de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA)Institut de Recerca de la Biodiversitat (IRBio)Universitat de BarcelonaBarcelonaSpain
| | - Laura Zango
- Department de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA)Institut de Recerca de la Biodiversitat (IRBio)Universitat de BarcelonaBarcelonaSpain
| | | | - Vincent Bretagnolle
- Centre d'Etudes Biologiques de ChizéUMR 7372CNRS ‐ La Rochelle UniversitéBeauvoir sur NiortFrance
| |
Collapse
|
29
|
Unmack PJ, Adams M, Hammer MP, Johnson JB, Gruber B, Gilles A, Young M, Georges A. Plotting for change: an analytical framework to aid decisions on which lineages are candidate species in phylogenomic species discovery. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
A recent study argued that coalescent-based models of species delimitation mostly delineate population structure, not species, and called for the validation of candidate species using biological information additional to the genetic information, such as phenotypic or ecological data. Here, we introduce a framework to interrogate genomic datasets and coalescent-based species trees for the presence of candidate species in situations where additional biological data are unavailable, unobtainable or uninformative. For de novo genomic studies of species boundaries, we propose six steps: (1) visualize genetic affinities among individuals to identify both discrete and admixed genetic groups from first principles and to hold aside individuals involved in contemporary admixture for independent consideration; (2) apply phylogenetic techniques to identify lineages; (3) assess diagnosability of those lineages as potential candidate species; (4) interpret the diagnosable lineages in a geographical context (sympatry, parapatry, allopatry); (5) assess significance of difference or trends in the context of sampling intensity; and (6) adopt a holistic approach to available evidence to inform decisions on species status in the difficult cases of allopatry. We adopt this approach to distinguish candidate species from within-species lineages for a widespread species complex of Australian freshwater fishes (Retropinna spp.). Our framework addresses two cornerstone issues in systematics that are often not discussed explicitly in genomic species discovery: diagnosability and how to determine it, and what criteria should be used to decide whether diagnosable lineages are conspecific or represent different species.
Collapse
Affiliation(s)
- Peter J Unmack
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Mark Adams
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- Department of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Michael P Hammer
- Museum & Art Gallery of the Northern Territory, Darwin, NT, Australia
| | - Jerald B Johnson
- Department of Biology, Brigham Young University, Provo, UT, USA
- Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT, USA
| | - Bernd Gruber
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - André Gilles
- UMR 1467 RECOVER, Aix Marseille Univ, INRAE, Centre St Charles, 3 place Victor Hugo, Marseille, France
| | - Matthew Young
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| |
Collapse
|
30
|
Maes SM, Christiansen H, Mark FC, Lucassen M, Van de Putte A, Volckaert FAM, Flores H. High gene flow in polar cod (Boreogadus saida) from West-Svalbard and the Eurasian Basin. JOURNAL OF FISH BIOLOGY 2021; 99:49-60. [PMID: 33559136 DOI: 10.1111/jfb.14697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/24/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The current and projected environmental change of the Arctic Ocean contrasts sharply with the limited knowledge of its genetic biodiversity. Polar cod Boreogadus saida (Lepechin, 1774) is an abundant circumpolar marine fish and ecological key species. The central role of polar cod in the Arctic marine food web warrants a better understanding of its population structure and connectivity. In this study, the genetic population structure of 171 juveniles, collected from several fjords off West-Svalbard (Billefjorden, Hornsund and Kongsfjorden), the northern Sophia Basin and the Eurasian Basin of the Arctic Ocean, was analysed using nine DNA microsatellite loci. Genetic analyses indicated moderate to high genetic diversity, but absence of spatial population structure and isolation-by-distance, suggesting ongoing gene flow between the studied sampling regions. High levels of connectivity may be key for polar cod to maintain populations across wide spatial scales. The adaptive capacity of the species will be increasingly important to face challenges such as habitat fragmentation, ocean warming and changes in prey composition. In view of a limited understanding of the population dynamics and evolution of polar cod, a valuable next step to predict future developments should be an integrated biological evaluation, including population genomics, a life-history approach, and habitat and biophysical dispersal modelling.
Collapse
Affiliation(s)
- Sarah M Maes
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Henrik Christiansen
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Felix C Mark
- Alfred-Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Magnus Lucassen
- Alfred-Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Anton Van de Putte
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Filip A M Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Hauke Flores
- Alfred-Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
31
|
Galaska MP, Wethey DS, Arias A, Dubois SF, Halanych KM, Woodin SA. The impact of aquaculture on the genetics and distribution of the onuphid annelid Diopatra biscayensis. Ecol Evol 2021; 11:6184-6194. [PMID: 34141211 PMCID: PMC8207402 DOI: 10.1002/ece3.7447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/30/2023] Open
Abstract
AIM Evolutionary history of natural populations can be confounded by human intervention such as the case of decorator worm species Diopatra (Onuphidae), which have a history of being transported through anthropogenic activities. Because they build tubes and act as ecosystem engineers, they can have a large impact on the overall ecosystem in which they occur. One conspicuous member, Diopatra biscayensis, which was only described in 2012, has a fragmented distribution that includes the Bay of Biscay and the Normanno-Breton Gulf in the English Channel. This study explores the origin of these worms in the Normanno-Breton region, which has been debated to either be the result of a historic range contraction from a relic continuous population or a more recent introduction. LOCATION Northeastern Atlantic, the Bay of Biscay, and the Normanno-Breton Gulf. METHODS We utilized a RAD-tag-based SNP approach to create a reduced genomic data set to recover fine-scale population structure and infer which hypothesis best describes the D. biscayensis biogeographic distribution. The reduced genomic data set was used to calculate standard genetic diversities and genetic differentiation statistics, and utilized various clustering analyses, including PCAs, DAPC, and admixture. RESULTS Clustering analyses were consistent with D. biscayensis as a single population spanning the Bay of Biscay to the Normanno-Breton Gulf in the English Channel, although unexpected genetic substructure was recovered from Arcachon Bay, in the middle of its geographic range. Consistent with a hypothesized introduction, the isolated Sainte-Anne locality in the Normanno-Breton Gulf was recovered to be a subset of the diversity found in the rest of the Bay of Biscay. MAIN CONCLUSIONS These results are congruent with previous simulations that did not support connectivity from the Bay of Biscay to the Normanno-Breton Gulf by natural dispersal. These genomic findings, with support from previous climatic studies, further support the hypothesis that D. biscayensis phylogeographic connectivity is the result of introductions, likely through the regions' rich shellfish aquaculture, and not of a historically held range contraction.
Collapse
Affiliation(s)
- Matthew P. Galaska
- Cooperative Institute for Climate, Ocean, & Ecosystem StudiesNOAA Pacific Marine Environmental LabUniversity of WashingtonSeattleWashingtonUSA
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - David S. Wethey
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Andrés Arias
- Departamento de Biología de Organismos y Sistemas (Zoología)Universidad de OviedoOviedoSpain
| | | | | | - Sarah A. Woodin
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| |
Collapse
|
32
|
Polinski JM, Zimin AV, Clark KF, Kohn AB, Sadowski N, Timp W, Ptitsyn A, Khanna P, Romanova DY, Williams P, Greenwood SJ, Moroz LL, Walt DR, Bodnar AG. The American lobster genome reveals insights on longevity, neural, and immune adaptations. SCIENCE ADVANCES 2021; 7:7/26/eabe8290. [PMID: 34162536 PMCID: PMC8221624 DOI: 10.1126/sciadv.abe8290] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/07/2021] [Indexed: 05/30/2023]
Abstract
The American lobster, Homarus americanus, is integral to marine ecosystems and supports an important commercial fishery. This iconic species also serves as a valuable model for deciphering neural networks controlling rhythmic motor patterns and olfaction. Here, we report a high-quality draft assembly of the H. americanus genome with 25,284 predicted gene models. Analysis of the neural gene complement revealed extraordinary development of the chemosensory machinery, including a profound diversification of ligand-gated ion channels and secretory molecules. The discovery of a novel class of chimeric receptors coupling pattern recognition and neurotransmitter binding suggests a deep integration between the neural and immune systems. A robust repertoire of genes involved in innate immunity, genome stability, cell survival, chemical defense, and cuticle formation represents a diversity of defense mechanisms essential to thrive in the benthic marine environment. Together, these unique evolutionary adaptations contribute to the longevity and ecological success of this long-lived benthic predator.
Collapse
Affiliation(s)
| | - Aleksey V Zimin
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - K Fraser Clark
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada
| | - Andrea B Kohn
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience, University of Florida, Gainesville and St. Augustine, FL 32080-8623, USA
| | - Norah Sadowski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Winston Timp
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Andrey Ptitsyn
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA
| | - Prarthana Khanna
- Genetics Program, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow 117485, Russia
| | - Peter Williams
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience, University of Florida, Gainesville and St. Augustine, FL 32080-8623, USA
| | - Spencer J Greenwood
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Leonid L Moroz
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience, University of Florida, Gainesville and St. Augustine, FL 32080-8623, USA
| | - David R Walt
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Andrea G Bodnar
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA.
| |
Collapse
|
33
|
Stahlke A, Bell D, Dhendup T, Kern B, Pannoni S, Robinson Z, Strait J, Smith S, Hand BK, Hohenlohe PA, Luikart G. Population Genomics Training for the Next Generation of Conservation Geneticists: ConGen 2018 Workshop. J Hered 2021; 111:227-236. [PMID: 32037446 PMCID: PMC7117792 DOI: 10.1093/jhered/esaa001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022] Open
Abstract
The increasing availability and complexity of next-generation sequencing (NGS) data sets make ongoing training an essential component of conservation and population genetics research. A workshop entitled “ConGen 2018” was recently held to train researchers in conceptual and practical aspects of NGS data production and analysis for conservation and ecological applications. Sixteen instructors provided helpful lectures, discussions, and hands-on exercises regarding how to plan, produce, and analyze data for many important research questions. Lecture topics ranged from understanding probabilistic (e.g., Bayesian) genotype calling to the detection of local adaptation signatures from genomic, transcriptomic, and epigenomic data. We report on progress in addressing central questions of conservation genomics, advances in NGS data analysis, the potential for genomic tools to assess adaptive capacity, and strategies for training the next generation of conservation genomicists.
Collapse
Affiliation(s)
- Amanda Stahlke
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID
| | - Donavan Bell
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT
| | - Tashi Dhendup
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT.,Department of Forest and Park Services, Ugyen Wangchuck Institute for Conservation and Environmental Research, Bumthang, Bhutan
| | - Brooke Kern
- Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT.,Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN
| | - Samuel Pannoni
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT.,Flathead Lake Biological Station, Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT
| | - Zachary Robinson
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT
| | - Jeffrey Strait
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT
| | - Seth Smith
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT.,Flathead Lake Biological Station, Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT.,Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI
| | - Brian K Hand
- Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT.,Flathead Lake Biological Station, Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT
| | - Paul A Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID
| | - Gordon Luikart
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT.,Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT.,Flathead Lake Biological Station, Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT
| |
Collapse
|
34
|
Hashemzadeh Segherloo I, Freyhof J, Berrebi P, Ferchaud AL, Geiger M, Laroche J, Levin BA, Normandeau E, Bernatchez L. A genomic perspective on an old question: Salmo trouts or Salmo trutta (Teleostei: Salmonidae)? Mol Phylogenet Evol 2021; 162:107204. [PMID: 34015446 DOI: 10.1016/j.ympev.2021.107204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
There are particular challenges in defining the taxonomic status of recently radiated groups due to the low level of phylogenetic signal. Members of the Salmo trutta species-complex, which mostly evolved during and following the Pleistocene, show high morphological and ecological diversity that, along with their very wide geographic distribution, have led to morphological description of 47 extant nominal species. However, many of these species have not been supported by previous phylogenetic studies, which could be partly due to lack of significant genetic differences among them, the limited resolution offered by molecular methods previously used, as well as the often local scale of these studies. The development of next-generation sequencing (NGS) and related analytical tools have enhanced our ability to address such challenging questions. In this study, Genotyping-by-Sequencing (GBS) of 15,169 filtered SNPs and mitochondrial DNA (mtDNA) D-loop sequences were combined to assess the phylogenetic relationships among 166 brown trouts representing 21 described species and three undescribed groups collected from 84 localities throughout their natural distribution in Europe, west Asia, and North Africa. The data were analysed using different clustering algorithms (admixture analysis and discriminant analysis of principal components-DAPC), a Bayes Factor Delimitation (BFD) test, species tree reconstruction, gene flow tests (three- and four-population tests), and Rogue taxa identification tests. Genomic contributions of the Atlantic lineage brown trout were found in all major sea basins excluding the North African and Aral Sea basins, suggesting introgressive hybridization of native brown trouts driven by stocking using strains of the Atlantic lineage. After removing the phylogenetic noise caused by the Atlantic brown trout, admixture clusters and DAPC clustering based on GBS data, respectively, resolved 11 and 13 clusters among the previously described brown trout species, which were also supported by BFD test results. Our results suggest that natural hybridization between different brown trout lineages has probably played an important role in the origin of several of the putative species, including S. marmoratus, S. carpio, S. farioides, S. pellegrini, S. caspius (in the Kura River drainage) and Salmo sp. in the Danube River basin. Overall, our results support a multi-species taxonomy for brown trouts. They also resolve some species in the Adriatic-Mediterranean and Black Sea drainages as members of very closely related genomic clusters that may need taxonomic revision. However, any final conclusions pertaining to the taxonomy of the brown trout complex should be based on an integrative approach combining genomic, morphological, and ecological data. To avoid challenges in taxonomy and conservation of species complexes like brown trouts, it is suggested to describe species based on genomic clusters of populations instead of describing species based only on morphologically differentiated single type populations.
Collapse
Affiliation(s)
- Iraj Hashemzadeh Segherloo
- Department of Fisheries and Environmental Sciences, Faculty of Natural Resources and Earth Sciences, Shahr-e-Kord University, Shahr-e-Kord, Iran; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada.
| | - Jörg Freyhof
- Museum für Naturkunde Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, 10115 Berlin, Germany
| | - Patrick Berrebi
- Genome - Research & Diagnostic, 697 avenue de Lunel, 34400 Saint-Just, France
| | - Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Matthias Geiger
- Zoologisches Forschungsmuseum Museum Alexander Koenig, Leibniz Institute for Animal Biodiversity, 53133 Bonn, Germany
| | - Jérôme Laroche
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Boris A Levin
- Papanin Institute of Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia & Cherepovets State University, Cherepovets, Vologda Region, Russia
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
35
|
Euclide PT, MacDougall T, Robinson JM, Faust MD, Wilson CC, Chen K, Marschall EA, Larson W, Ludsin S. Mixed-stock analysis using Rapture genotyping to evaluate stock-specific exploitation of a walleye population despite weak genetic structure. Evol Appl 2021; 14:1403-1420. [PMID: 34025775 PMCID: PMC8127713 DOI: 10.1111/eva.13209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/31/2022] Open
Abstract
Mixed-stock analyses using genetic markers have informed fisheries management in cases where strong genetic differentiation occurs among local spawning populations, yet many fisheries are supported by multiple, weakly differentiated stocks. Freshwater fisheries exemplify this problem, with many populations supported by multiple stocks of young evolutionary age and isolated across small spatial scales. Consequently, attempts to conduct genetic mixed-stock analyses of inland fisheries have often been unsuccessful. Advances in genomic sequencing offer the ability to discriminate among populations with weak population structure, providing the necessary resolution to conduct mixed-stock assignment among previously indistinguishable stocks. We used genomic data to conduct a mixed-stock analysis of eastern Lake Erie's commercial and recreational walleye (Sander vitreus) fisheries and estimate the relative harvest of weakly differentiated stocks (pairwise F ST < 0.01). Using RAD-capture (Rapture), we sequenced and genotyped individuals from western and eastern basin local spawning stocks at 12,081 loci with 95% reassignment accuracy, which was not possible in the past using microsatellite markers. A baseline assessment of 395 walleye from 11 spawning stocks identified three reporting groups and refined previous assessments of gene flow among walleye stocks. Genetic assignment of 1,075 walleye harvested in eastern Lake Erie's recreational and commercial fisheries indicated that western basin stocks constituted the majority of harvest during the peak walleye fishing season (July-September), whereas eastern basin individuals comprised much of the early season harvest (May-June). Clear spatial structure in harvest composition existed; catches in more easterly sites contained more individuals of eastern basin origin than did more westerly sites. Our study provides important stock contribution estimates for Lake Erie fishery management and demonstrates the utility of genomic data to facilitate mixed-stock analysis in exploited fish populations having weak population structure or limited existing genetic resources.
Collapse
Affiliation(s)
- Peter T. Euclide
- Wisconsin Cooperative Fishery Research Unit, College of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
| | - Tom MacDougall
- Lake Erie Management UnitOntario Ministry of Natural Resources and ForestryPort DoverONCanada
| | - Jason M. Robinson
- Lake Erie Fisheries Research UnitNew York State Department of Environmental ConservationDunkirkNYUSA
| | - Matthew D. Faust
- Division of Wildlife, Sandusky Fisheries Research StationOhio Department of Natural ResourcesSanduskyOHUSA
| | - Chris C. Wilson
- Aquatic Research and Monitoring SectionOntario Ministry of Natural Resources and ForestryPeterboroughONCanada
| | - Kuan‐Yu Chen
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal BiologyThe Ohio State UniversityColumbusOHUSA
| | - Elizabeth A. Marschall
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal BiologyThe Ohio State UniversityColumbusOHUSA
| | - Wesley Larson
- U.S. Geological Survey, Wisconsin Cooperative Fishery Research Unit, College of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
- Present address:
National Oceanic and Atmospheric AdministrationTed Stevens Marine Research InstituteJuneauAKUSA
| | - Stuart Ludsin
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal BiologyThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
36
|
Graham CF, Eberts RL, Goncin U, Somers CM. Spontaneous hybridization and introgression between walleye ( Sander vitreus) and sauger ( Sander canadensis) in two large reservoirs: Insights from genotyping by sequencing. Evol Appl 2021; 14:965-982. [PMID: 33897814 PMCID: PMC8061268 DOI: 10.1111/eva.13174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
Anthropogenic activities may facilitate undesirable hybridization and genomic introgression between fish species. Walleye (Sander vitreus) and sauger (Sander canadensis) are economically valuable freshwater species that can spontaneously hybridize in areas of sympatry. Levels of genomic introgression between walleye and sauger may be increased by modifications to waterbodies (e.g., reservoir development) and inadvertent propagation of hybrids in stocking programs. We used genotyping by sequencing (GBS) to examine 217 fish from two large reservoirs with mixed populations of walleye and sauger in Saskatchewan, Canada (Lake Diefenbaker, Tobin Lake). Analyses with 20,038 (r90) and 478 (r100) single nucleotide polymorphisms clearly resolved walleye and sauger, and classified hybrids with high confidence. F1, F2, and multigeneration hybrids were detected in Lake Diefenbaker, indicating potentially high levels of genomic introgression. In contrast, only F1 hybrids were detected in Tobin Lake. Field classification of fish was unreliable; 7% of fish were misidentified based on broad species categories. Important for activities such as brood stock selection, 12 of 173 (7%) fish field identified as pure walleye, and one of 24 (4%) identified as pure sauger were actually hybrids. In addition, two of 15 (13%) field-identified hybrids were actually pure walleye or sauger. We conclude that hybridization and introgression are occurring in Saskatchewan reservoirs and that caution is warranted when using these populations in stocking programs. GBS offers a powerful and flexible tool for examining hybridization without preidentification of informative loci, eliminating some of the key challenges associated with other marker types.
Collapse
Affiliation(s)
| | - Rebecca L. Eberts
- Fish, Wildlife, and Lands Branch, Ministry of EnvironmentGovernment of SaskatchewanPrince AlbertSKCanada
| | - Una Goncin
- Department of BiologyUniversity of ReginaReginaSKCanada
| | | |
Collapse
|
37
|
Goodall J, Westfall KM, Magnúsdóttir H, Pálsson S, Örnólfsdóttir EB, Jónsson ZO. RAD sequencing of common whelk, Buccinum undatum, reveals fine-scale population structuring in Europe and cryptic speciation within the North Atlantic. Ecol Evol 2021; 11:2616-2629. [PMID: 33767824 PMCID: PMC7981227 DOI: 10.1002/ece3.7219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 01/01/2023] Open
Abstract
Buccinum undatum is a subtidal gastropod that exhibits clear spatial variation in several phenotypic shell traits (color, shape, and thickness) across its North Atlantic distribution. Studies of spatial phenotypic variation exist for the species; however, population genetic studies have thus far relied on a limited set of mitochondrial and microsatellite markers. Here, we greatly expand on previous work by characterizing population genetic structure in B. undatum across the North Atlantic from SNP variation obtained by RAD sequencing. There was a high degree of genetic differentiation between Canadian and European populations (Iceland, Faroe Islands, and England) consistent with the divergence of populations in allopatry (F ST > 0.57 for all pairwise comparisons). In addition, B. undatum populations within Iceland, the Faroe Islands, and England are typified by weak but significant genetic structuring following an isolation-by-distance model. Finally, we established a significant correlation between genetic structuring in Iceland and two phenotypic traits: shell shape and color frequency. The works detailed here enhance our understanding of genetic structuring in B. undatum and establish the species as an intriguing model for future genome-wide association studies.
Collapse
Affiliation(s)
- Jake Goodall
- Faculty of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókurIceland
| | - Kristen Marie Westfall
- Vör – Marine Research Center in BreiðafjörðurÓlafsvíkIceland
- Fisheries and Oceans CanadaPacific Biological StationNanaimoBCCanada
| | - Hildur Magnúsdóttir
- Faculty of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókurIceland
| | - Snæbjörn Pálsson
- Faculty of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
| | | | | |
Collapse
|
38
|
Silva CNS, Young EF, Murphy NP, Bell JJ, Green BS, Morley SA, Duhamel G, Cockcroft AC, Strugnell JM. Climatic change drives dynamic source-sink relationships in marine species with high dispersal potential. Ecol Evol 2021; 11:2535-2550. [PMID: 33767820 PMCID: PMC7981208 DOI: 10.1002/ece3.7204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
While there is now strong evidence that many factors can shape dispersal, the mechanisms influencing connectivity patterns are species-specific and remain largely unknown for many species with a high dispersal potential. The rock lobsters Jasus tristani and Jasus paulensis have a long pelagic larval duration (up to 20 months) and inhabit seamounts and islands in the southern Atlantic and Indian Oceans, respectively. We used a multidisciplinary approach to assess the genetic relationships between J. tristani and J. paulensis, investigate historic and contemporary gene flow, and inform fisheries management. Using 17,256 neutral single nucleotide polymorphisms we found low but significant genetic differentiation. We show that patterns of connectivity changed over time in accordance with climatic fluctuations. Historic migration estimates showed stronger connectivity from the Indian to the Atlantic Ocean (influenced by the Agulhas Leakage). In contrast, the individual-based model coupled with contemporary migration estimates inferred from genetic data showed stronger inter-ocean connectivity in the opposite direction from the Atlantic to the Indian Ocean driven by the Subtropical Front. We suggest that the J. tristani and J. paulensis historical distribution might have extended further north (when water temperatures were lower) resulting in larval dispersal between the ocean basis being more influenced by the Agulhas Leakage than the Subtropical Front. As water temperatures in the region increase in accordance with anthropogenic climate change, a southern shift in the distribution range of J. tristani and J. paulensis could further reduce larval transport from the Indian to the Atlantic Ocean, adding complexity to fisheries management.
Collapse
Affiliation(s)
- Catarina N. S. Silva
- Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleQldAustralia
| | | | | | - James J. Bell
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Bridget S. Green
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTASAustralia
| | | | - Guy Duhamel
- Département Adaptations du VivantBOREAMNHNParisFrance
| | - Andrew C. Cockcroft
- Department of Agriculture, Forestry and FisheriesSouth African GovernmentCape TownSouth Africa
| | - Jan M. Strugnell
- Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleQldAustralia
- Department of EcologyLa Trobe UniversityMelbourneVic.Australia
| |
Collapse
|
39
|
Lang AR, Boveng P, Quakenbush L, Robertson K, Lauf M, Rode KD, Ziel H, Taylor BL. Re-examination of population structure in Arctic ringed seals using DArTseq genotyping. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although Arctic ringed seals Phoca hispida hispida are currently abundant and broadly distributed, their numbers are projected to decline substantially by the year 2100 due to climate warming. While understanding population structure could provide insight into the impact of environmental changes on this subspecies, detecting demographically important levels of exchange can be difficult in taxa with high abundance. We used a next-generation sequencing approach (DArTseq) to genotype ~5700 single nucleotide polymorphisms in 79 seals from 4 Pacific Arctic regions. Comparison of the 2 most geographically separated strata (eastern Bering vs. northeastern Chukchi-Beaufort Seas) revealed a statistically significant level of genetic differentiation (FST = 0.001, p = 0.005) that, while small, was 1 to 2 orders of magnitude greater than expected based on divergence estimated for similarly sized populations connected by low (1% yr-1) dispersal. A relatively high proportion (72 to 88%) of individuals within these strata could be genetically assigned to their stratum of origin. These results indicate that demographically important structure may be present among Arctic ringed seals breeding in different areas, increasing the risk that declines in the number of seals breeding in areas most negatively affected by environmental warming could occur.
Collapse
Affiliation(s)
- AR Lang
- Ocean Associates, Inc., Arlington, VA 22207, USA, under contract to the Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, CA 92037, USA
| | - P Boveng
- Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA Fisheries, Seattle, WA 98115, USA
| | - L Quakenbush
- Arctic Marine Mammal Program, Alaska Department of Fish and Game, Fairbanks, AK 99701, USA
| | - K Robertson
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, CA 92037, USA
| | - M Lauf
- Ocean Associates, Inc., Arlington, VA 22207, USA, under contract to the Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, CA 92037, USA
| | - KD Rode
- Alaska Science Center, US Geological Survey, Anchorage, AK 99508, USA
| | - H Ziel
- Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA Fisheries, Seattle, WA 98115, USA
| | - BL Taylor
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, CA 92037, USA
| |
Collapse
|
40
|
Reproduction in Urbanised Coastal Waters: Shallow-Water Sea Anemones (Entacmaea quadricolor and Stichodactyla haddoni) Maintain High Genetic Diversity and Panmixia. DIVERSITY 2020. [DOI: 10.3390/d12120467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sea anemones are sedentary marine animals that tend to disperse via planktonic larvae and are predicted to have high population connectivity in undisturbed habitats. We test whether two sea anemone species living in two different tidal zones of a highly disturbed marine environment can maintain high genetic connectivity. More than 1000 loci with single-nucleotide polymorphisms (SNPs) were obtained with double-digest RADseq for 81 Stichodactyla haddoni and 99 Entacmaea quadricolor individuals to test for population genetic structure. We find evidence that both species predominantly propagate via sexual reproduction, and asexual reproduction is limited. We observe panmixia that indicates the absence of effective dispersal barriers for these species living in a highly anthropogenically disturbed environment. This is positive news for both species that are also found in the aquarium trade. More fundamentally, our results suggest that inhabiting different parts of a shallow reef may not affect a species’ population connectivity nor favour asexual reproduction.
Collapse
|
41
|
Mclean EL, García-Quijano CG, Castro KM. Seeing the whole elephant - How lobstermen's local ecological knowledge can inform fisheries management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111112. [PMID: 32771849 DOI: 10.1016/j.jenvman.2020.111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Lobstermen in Southern New England come from a longstanding intergenerational fishing tradition. Their local ecological knowledge (LEK) on the American lobster, Homarus americanus can be an important source of information for management. This paper examines lobstermen's LEK as it relates to stock assessment and the overlap to science based ecological knowledge (SEK). Although in recent years, using vent-less trap assessments and conducting young of the year surveys, has set the stage for more cooperative research, in our opinion, lobstermen's LEK remains underutilized in fisheries management. There has been a steady decline in the lobster stocks over the years, raising concerns regarding fisheries management. For this reason, we turn to lobstermen's knowledge as an important source that could inform fisheries management. Using a semi-structured approach, the stakeholders' LEK and open discussions were recorded during three meetings where lobstermen participated with managers and scientists. LEK was transcribed and categorized and matched to the corresponding SEK described in the literature. Results generally found that the lobstermen's LEK corresponded with the best available SEK. LEK is compatible with an ecosystem view of the fishery that integrates the complexities of interacting systems. The lobstermen explained that they viewed their fishing grounds as "managed landscapes", areas used productively, maintained and protected by them. These results are a starting point to broaden the base of the knowledge used in fisheries management enabling us to see the whole picture. Topics of LEK and SEK convergence are promising common ground, while topics where lobstermen and managers' views differ, can serve as points of entry to enable research and cooperative management. Both can be the basis for cooperative hypothesis testing.
Collapse
Affiliation(s)
- Elizabeth L Mclean
- Department of Natural Resources, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Carlos G García-Quijano
- Department of Sociology and Anthropology, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Kathleen M Castro
- Department of Fisheries, Animals and Veterinary Sciences, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
42
|
Jansson E, Besnier F, Malde K, André C, Dahle G, Glover KA. Genome wide analysis reveals genetic divergence between Goldsinny wrasse populations. BMC Genet 2020; 21:118. [PMID: 33036553 PMCID: PMC7547435 DOI: 10.1186/s12863-020-00921-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Marine fish populations are often characterized by high levels of gene flow and correspondingly low genetic divergence. This presents a challenge to define management units. Goldsinny wrasse (Ctenolabrus rupestris) is a heavily exploited species due to its importance as a cleaner-fish in commercial salmonid aquaculture. However, at the present, the population genetic structure of this species is still largely unresolved. Here, full-genome sequencing was used to produce the first genomic reference for this species, to study population-genomic divergence among four geographically distinct populations, and, to identify informative SNP markers for future studies. Results After construction of a de novo assembly, the genome was estimated to be highly polymorphic and of ~600Mbp in size. 33,235 SNPs were thereafter selected to assess genomic diversity and differentiation among four populations collected from Scandinavia, Scotland, and Spain. Global FST among these populations was 0.015–0.092. Approximately 4% of the investigated loci were identified as putative global outliers, and ~ 1% within Scandinavia. SNPs showing large divergence (FST > 0.15) were picked as candidate diagnostic markers for population assignment. One hundred seventy-three of the most diagnostic SNPs between the two Scandinavian populations were validated by genotyping 47 individuals from each end of the species’ Scandinavian distribution range. Sixty-nine of these SNPs were significantly (p < 0.05) differentiated (mean FST_173_loci = 0.065, FST_69_loci = 0.140). Using these validated SNPs, individuals were assigned with high probability (≥ 94%) to their populations of origin. Conclusions Goldsinny wrasse displays a highly polymorphic genome, and substantial population genomic structure. Diversifying selection likely affects population structuring globally and within Scandinavia. The diagnostic loci identified now provide a promising and cost-efficient tool to investigate goldsinny wrasse populations further.
Collapse
Affiliation(s)
- Eeva Jansson
- Institute of Marine Research, P. O. Box 1870, Nordnes, 5817, Bergen, Norway.
| | - Francois Besnier
- Institute of Marine Research, P. O. Box 1870, Nordnes, 5817, Bergen, Norway
| | - Ketil Malde
- Institute of Marine Research, P. O. Box 1870, Nordnes, 5817, Bergen, Norway
| | - Carl André
- Department of Marine Sciences-Tjärnö, University of Gothenburg, 45296, Strömstad, Sweden
| | - Geir Dahle
- Institute of Marine Research, P. O. Box 1870, Nordnes, 5817, Bergen, Norway
| | - Kevin A Glover
- Institute of Marine Research, P. O. Box 1870, Nordnes, 5817, Bergen, Norway.,Institute of Biology, University of Bergen, P. O. Box 7803, 5020, Bergen, Norway
| |
Collapse
|
43
|
Carrier E, Ferchaud AL, Normandeau E, Sirois P, Bernatchez L. Estimating the contribution of Greenland Halibut ( Reinhardtius hippoglossoides) stocks to nurseries by means of genotyping-by-sequencing: Sex and time matter. Evol Appl 2020; 13:2155-2167. [PMID: 33005216 PMCID: PMC7513701 DOI: 10.1111/eva.12979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
Identification of stocks and quantification of their relative contribution to recruitment are major objectives toward improving the management and conservation of marine exploited species. Next-generation sequencing allows for thousands of genomic markers to be analyzed, which provides the resolution needed to address these questions in marine species with weakly differentiated populations. Greenland Halibut (Reinhardtius hippoglossoides) is one of the most important exploited demersal species throughout the North Atlantic, in particular in the Gulf of St. Lawrence, Canada. There, two nurseries are known, the St. Lawrence Estuary and the northern Anticosti Island, but their contribution to the renewal of stocks remains unknown. The goals of this study were (a) to document the genetic structure and (b) to estimate the contribution of the different identified breeding stocks to nurseries. We sampled 100 juveniles per nursery and 50 adults from seven sites ranging from Saguenay Fjord to offshore Newfoundland, with some sites sampled over two consecutive years in order to evaluate the temporal stability of the contribution. Our results show that after removing sex-linked markers, the Estuary/Gulf of St. Lawrence represents a single stock which is genetically distinct from the Atlantic around Newfoundland (F ST = 0.00146, p-value = .001). Population assignment showed that recruitment in both nurseries is predominantly associated with the St. Lawrence stock. However, we found that the relative contribution of both stocks to the nurseries is temporally variable with 1% contribution of the Newfoundland stock one year but up to 33% for the second year, which may be caused by year-to-year variation in larval transport into the Gulf of St. Lawrence. This study serves as a model for the identification of stocks for fisheries resources in a context where few barriers to dispersal occur, in addition to demonstrating the importance of considering sex-linked markers and temporal replicates in studies of population genomics.
Collapse
Affiliation(s)
- Emilie Carrier
- Institut de biologie intégrative et des systèmes (IBIS) Université Laval Québec City QC Canada
| | - Anne-Laure Ferchaud
- Institut de biologie intégrative et des systèmes (IBIS) Université Laval Québec City QC Canada
| | - Eric Normandeau
- Institut de biologie intégrative et des systèmes (IBIS) Université Laval Québec City QC Canada
| | - Pascal Sirois
- Département des sciences fondamentales Université du Québec à Chicoutimi Chicoutimi QC Canada
| | - Louis Bernatchez
- Institut de biologie intégrative et des systèmes (IBIS) Université Laval Québec City QC Canada
| |
Collapse
|
44
|
Stuart KC, Cardilini APA, Cassey P, Richardson MF, Sherwin WB, Rollins LA, Sherman CDH. Signatures of selection in a recent invasion reveal adaptive divergence in a highly vagile invasive species. Mol Ecol 2020; 30:1419-1434. [PMID: 33463838 DOI: 10.1111/mec.15601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022]
Abstract
A detailed understanding of population genetics in invasive populations helps us to identify drivers of successful alien introductions. Here, we investigate putative signals of selection in Australian populations of invasive common starlings, Sturnus vulgaris, and seek to understand how these have been influenced by introduction history. We used reduced representation sequencing to determine population structure, and identify Single Nucleotide Polymorphisms (SNPs) that are putatively under selection. We found that since their introduction into Australia, starling populations have become genetically differentiated despite the potential for high levels of dispersal, and that starlings have responded to selective pressures imposed by a wide range of environmental conditions across their geographic range. Isolation by distance appears to have played a strong role in determining genetic substructure across the starling's Australian range. Analyses of candidate SNPs that are putatively under selection indicated that aridity, precipitation and temperature may be important factors driving adaptive variation across the starling's invasive range in Australia. However, we also noted that the historic introduction regime may leave footprints on sites flagged as being under adaptive selection, and encourage critical interpretation of selection analyses in non-native populations.
Collapse
Affiliation(s)
- Katarina C Stuart
- Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Adam P A Cardilini
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Phillip Cassey
- Centre for Applied Conservation Science and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Mark F Richardson
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.,Genomics Centre, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - William B Sherwin
- Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Lee A Rollins
- Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Craig D H Sherman
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
45
|
Chan KO, Hutter CR, Wood PL, Grismer LL, Das I, Brown RM. Gene flow creates a mirage of cryptic species in a Southeast Asian spotted stream frog complex. Mol Ecol 2020; 29:3970-3987. [PMID: 32808335 DOI: 10.1111/mec.15603] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 07/29/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Most new cryptic species are described using conventional tree- and distance-based species delimitation methods (SDMs), which rely on phylogenetic arrangements and measures of genetic divergence. However, although numerous factors such as population structure and gene flow are known to confound phylogenetic inference and species delimitation, the influence of these processes is not frequently evaluated. Using large numbers of exons, introns, and ultraconserved elements obtained using the FrogCap sequence-capture protocol, we compared conventional SDMs with more robust genomic analyses that assess population structure and gene flow to characterize species boundaries in a Southeast Asian frog complex (Pulchrana picturata). Our results showed that gene flow and introgression can produce phylogenetic patterns and levels of divergence that resemble distinct species (up to 10% divergence in mitochondrial DNA). Hybrid populations were inferred as independent (singleton) clades that were highly divergent from adjacent populations (7%-10%) and unusually similar (<3%) to allopatric populations. Such anomalous patterns are not uncommon in Southeast Asian amphibians, which brings into question whether the high levels of cryptic diversity observed in other amphibian groups reflect distinct cryptic species-or, instead, highly admixed and structured metapopulation lineages. Our results also provide an alternative explanation to the conundrum of divergent (sometimes nonsister) sympatric lineages-a pattern that has been celebrated as indicative of true cryptic speciation. Based on these findings, we recommend that species delimitation of continuously distributed "cryptic" groups should not rely solely on conventional SDMs, but should necessarily examine population structure and gene flow to avoid taxonomic inflation.
Collapse
Affiliation(s)
- Kin O Chan
- Lee Kong Chian National History Museum, Faculty of Science, National University of Singapore, Singapore
| | - Carl R Hutter
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA.,Museum of Natural Sciences and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Perry L Wood
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA.,Department of Biological Sciences & Museum of Natural History, Auburn University, Auburn, AL, USA
| | - L L Grismer
- Herpetology Laboratory, Department of Biology, La Sierra University, Riverside, CA, USA
| | - Indraneil Das
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Rafe M Brown
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
46
|
Coscia I, Wilmes SB, Ironside JE, Goward-Brown A, O'Dea E, Malham SK, McDevitt AD, Robins PE. Fine-scale seascape genomics of an exploited marine species, the common cockle Cerastoderma edule, using a multimodelling approach. Evol Appl 2020; 13:1854-1867. [PMID: 32908590 PMCID: PMC7463313 DOI: 10.1111/eva.12932] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Population dynamics of marine species that are sessile as adults are driven by oceanographic dispersal of larvae from spawning to nursery grounds. This is mediated by life-history traits such as the timing and frequency of spawning, larval behaviour and duration, and settlement success. Here, we use 1725 single nucleotide polymorphisms (SNPs) to study the fine-scale spatial genetic structure in the commercially important cockle species Cerastoderma edule and compare it to environmental variables and current-mediated larval dispersal within a modelling framework. Hydrodynamic modelling employing the NEMO Atlantic Margin Model (AMM15) was used to simulate larval transport and estimate connectivity between populations during spawning months (April-September), factoring in larval duration and interannual variability of ocean currents. Results at neutral loci reveal the existence of three separate genetic clusters (mean F ST = 0.021) within a relatively fine spatial scale in the north-west Atlantic. Environmental association analysis indicates that oceanographic currents and geographic proximity explain over 20% of the variance observed at neutral loci, while genetic variance (71%) at outlier loci was explained by sea surface temperature extremes. These results fill an important knowledge gap in the management of a commercially important and overexploited species, bringing us closer to understanding the role of larval dispersal in connecting populations at a fine geographic scale.
Collapse
Affiliation(s)
- Ilaria Coscia
- Ecosystems and Environment Research Centre School of Science, Engineering and Environment University of Salford Salford UK
| | - Sophie B Wilmes
- School of Ocean Sciences Marine Centre Wales Bangor University Menai Bridge UK
| | - Joseph E Ironside
- Institute of Biological, Environmental and Rural Sciences Aberystwyth University, Penglais Aberystwyth UK
| | - Alice Goward-Brown
- School of Ocean Sciences Marine Centre Wales Bangor University Menai Bridge UK
| | | | - Shelagh K Malham
- School of Ocean Sciences Marine Centre Wales Bangor University Menai Bridge UK
| | - Allan D McDevitt
- Ecosystems and Environment Research Centre School of Science, Engineering and Environment University of Salford Salford UK
| | - Peter E Robins
- School of Ocean Sciences Marine Centre Wales Bangor University Menai Bridge UK
| |
Collapse
|
47
|
Colston-Nepali L, Provencher JF, Mallory ML, Franckowiak RP, Sun Z, Robertson GJ, Friesen VL. Using genomic tools to inform management of the Atlantic northern fulmar. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01309-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Dorant Y, Cayuela H, Wellband K, Laporte M, Rougemont Q, Mérot C, Normandeau E, Rochette R, Bernatchez L. Copy number variants outperform SNPs to reveal genotype–temperature association in a marine species. Mol Ecol 2020; 29:4765-4782. [PMID: 32803780 DOI: 10.1111/mec.15565] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yann Dorant
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Hugo Cayuela
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Kyle Wellband
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Martin Laporte
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Quentin Rougemont
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Claire Mérot
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Eric Normandeau
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Rémy Rochette
- Department of Biology University of New Brunswick Saint John NB Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| |
Collapse
|
49
|
Muir AP, Dubois SF, Ross RE, Firth LB, Knights AM, Lima FP, Seabra R, Corre E, Le Corguillé G, Nunes FLD. Seascape genomics reveals population isolation in the reef-building honeycomb worm, Sabellaria alveolata (L.). BMC Evol Biol 2020; 20:100. [PMID: 32778052 PMCID: PMC7418442 DOI: 10.1186/s12862-020-01658-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Under the threat of climate change populations can disperse, acclimatise or evolve in order to avoid fitness loss. In light of this, it is important to understand neutral gene flow patterns as a measure of dispersal potential, but also adaptive genetic variation as a measure of evolutionary potential. In order to assess genetic variation and how this relates to environment in the honeycomb worm (Sabellaria alveolata (L.)), a reef-building polychaete that supports high biodiversity, we carried out RAD sequencing using individuals from along its complete latitudinal range. Patterns of neutral population genetic structure were compared to larval dispersal as predicted by ocean circulation modelling, and outlier analyses and genotype-environment association tests were used to attempt to identify loci under selection in relation to local temperature data. RESULTS We genotyped 482 filtered SNPs, from 68 individuals across nine sites, 27 of which were identified as outliers using BAYESCAN and ARLEQUIN. All outlier loci were potentially under balancing selection, despite previous evidence of local adaptation in the system. Limited gene flow was observed among reef-sites (FST = 0.28 ± 0.10), in line with the low dispersal potential identified by the larval dispersal models. The North Atlantic reef emerged as a distinct population and this was linked to high local larval retention and the effect of the North Atlantic Current on dispersal. CONCLUSIONS As an isolated population, with limited potential for natural genetic or demographic augmentation from other reefs, the North Atlantic site warrants conservation attention in order to preserve not only this species, but above all the crucial functional ecological roles that are associated with their bioconstructions. Our study highlights the utility of using seascape genomics to identify populations of conservation concern.
Collapse
Affiliation(s)
- Anna P Muir
- Conservation Biology Research Group, Department of Biological Sciences, University of Chester, Parkgate Road, Chester, CH1 4BJ, UK.
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Université Européenne de Bretagne (UEB), Institut Universitaire Européen de la Mer (IUEM), 29280, Plouzané, France.
| | - Stanislas F Dubois
- Ifremer, DYNECO, Laboratory of Coastal Benthic Ecology, F-29280, Plouzané, France
| | - Rebecca E Ross
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
- Institute of Marine Research, 1870 Nordnes, 5817, Bergen, Norway
| | - Louise B Firth
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Antony M Knights
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Fernando P Lima
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Rui Seabra
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Gildas Le Corguillé
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Flavia L D Nunes
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Université Européenne de Bretagne (UEB), Institut Universitaire Européen de la Mer (IUEM), 29280, Plouzané, France
- Ifremer, DYNECO, Laboratory of Coastal Benthic Ecology, F-29280, Plouzané, France
| |
Collapse
|
50
|
The influence of a priori grouping on inference of genetic clusters: simulation study and literature review of the DAPC method. Heredity (Edinb) 2020; 125:269-280. [PMID: 32753664 PMCID: PMC7553915 DOI: 10.1038/s41437-020-0348-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 11/20/2022] Open
Abstract
Inference of genetic clusters is a key aim of population genetics, sparking development of numerous analytical methods. Within these, there is a conceptual divide between finding de novo structure versus assessment of a priori groups. Recently developed, Discriminant Analysis of Principal Components (DAPC), combines discriminant analysis (DA) with principal component (PC) analysis. When applying DAPC, the groups used in the DA (specified a priori or described de novo) need to be carefully assessed. While DAPC has rapidly become a core technique, the sensitivity of the method to misspecification of groups and how it is being empirically applied, are unknown. To address this, we conducted a simulation study examining the influence of a priori versus de novo group designations, and a literature review of how DAPC is being applied. We found that with a priori groupings, distance between genetic clusters reflected underlying FST. However, when migration rates were high and groups were described de novo there was considerable inaccuracy, both in terms of the number of genetic clusters suggested and placement of individuals into those clusters. Nearly all (90.1%) of 224 studies surveyed used DAPC to find de novo clusters, and for the majority (62.5%) the stated goal matched the results. However, most studies (52.3%) omit key run parameters, preventing repeatability and transparency. Therefore, we present recommendations for standard reporting of parameters used in DAPC analyses. The influence of groupings in genetic clustering is not unique to DAPC, and researchers need to consider their goal and which methods will be most appropriate.
Collapse
|