1
|
Braglia C, Rudelli C, Tinti A, Bocquet M, Isani G, Bulet P, Giacomelli A, Di Gioia D, Alberoni D. Unravelling pollen diet and microbiome influence on honey bee health. Sci Rep 2025; 15:13474. [PMID: 40251206 PMCID: PMC12008280 DOI: 10.1038/s41598-025-96649-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/31/2025] [Indexed: 04/20/2025] Open
Abstract
In the last decade, drought has been identified as one of the most relevant climate change factors affecting ecosystem integrity across countries. It can severely affect plant growth in agroecosystems, leading to changes in the trophic potential of nectar and pollen. As a cascade effect, a deficit in the nutritional composition of pollen can weaken pollinators, triggering additional threats to ecosystem stability. In this scenario, understanding the impact of trophic sources on honey bee health remains a significant gap that needs to be addressed. This study aims to correlate pollen of different botanical and geographical origins, and therefore of different trophic potential, with selected honey bee markers: the abundance of core microbial taxa and proteins involved in the immune response detectable in the haemolymph. A comprehensive proteomic approach based on MALDI BeeTyping® and SDS-PAGE profiles, together with qPCR for the quantification of target microorganisms, was used to elucidate these interactions in bees fed with pollen deriving from 8 botanical families. Our results show that different pollens do not significantly affect the concentration and the total amount of small and large haemolymph proteins but do significantly affect the core gut microbiome composition. Furthermore, the effect of different diets on the microbiome suggests an indirect effect on the immune system response by modulating and influencing the synthesis of some immune-related peptides. This research confirms the importance of the gut microbiome in honey bee health and may also help to understand the honey bee response to climate changes in a scenario of compromised trophic resources.
Collapse
Affiliation(s)
- Chiara Braglia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Viale Fanin 42, Bologna, 40127, Italy
| | - Cecilia Rudelli
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, BO, 40064, Italy
| | - Anna Tinti
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Viale Fanin 42, Bologna, 40127, Italy
| | | | - Gloria Isani
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, BO, 40064, Italy
| | - Philippe Bulet
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309,, Équipe Epigenetics Regulations, Institute for Advanced Biosciences, 38000, Grenoble, France
- Plateforme BioPark d'Archamps, 218 Avenue Marie Curie, 74160, Archamps, France
| | - Alessandra Giacomelli
- Unione Nazionale Associazioni Apicoltori Italiani (UNA API), Via Paolo Boselli, 2, Florence, 50136, Italy
| | - Diana Di Gioia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Viale Fanin 42, Bologna, 40127, Italy
| | - Daniele Alberoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Viale Fanin 42, Bologna, 40127, Italy.
| |
Collapse
|
2
|
Zhou N, Zheng Q, Liu Y, Huang Z, Feng Y, Chen Y, Hu F, Zheng H. Strain diversity and host specificity of the gut symbiont Gilliamella in Apis mellifera, Apis cerana and Bombus terrestris. Microbiol Res 2025; 293:128048. [PMID: 39813751 DOI: 10.1016/j.micres.2025.128048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/15/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025]
Abstract
Social bees, with their specialized gut microbiota and societal transmission between individuals, provide an ideal model for studying host-gut microbiota interactions. While the functional disparities arising from strain-level diversity of gut symbionts and their effects on host health have been studied in Apis mellifera and bumblebees, studies focusing on host-specific investigations of individual strains across different honeybee hosts remain relatively unexplored. In this study, the complete genomic sequences of 17 strains of Gilliamella from A. mellifera, Apis cerana and Bombus terrestris were analyzed. The analysis revealed that the strains of A. mellifera display a more expansive genomic and functional content compared to the strains of A. cerana and B. terrestris. Phylogenetic analysis showed a deep divergence among the Gilliamella strains from different hosts. Additionally, biochemistry tests and antibiotic susceptibility tests revealed that gut strains from A. mellifera exhibited a more extensive pathway for carbohydrate metabolism and a greater resistance to antibiotics than gut strains from A. cerana and B. terrestris. Strains from A. mellifera and A. cerana showed higher colonization efficiency and competitive ability whithin their respective host species, indicating a higher degree of host-specific adaptation of local gut microbiota. In addition, colonization by A. mellifera-derived strain triggers a stronger transcriptional response in the host than A. cerana-derived strain. The variation in the number of differentially expressed genes and the involvement of distinct signaling pathways across these two host species suggest species-specific adaptations to Gilliamella strains. These findings suggest that despite occupying similar niches in the bee gut, strain-level variations can influence microbial functions, and their impact on host physiological functions may vary across different strains.
Collapse
Affiliation(s)
- Nihong Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiulan Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yao Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhichu Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ye Feng
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yanping Chen
- Bee Research Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Mazel F, Prasad A, Engel P. Host specificity of gut microbiota associated with social bees: patterns and processes. Microbiol Mol Biol Rev 2025:e0008023. [PMID: 40111037 DOI: 10.1128/mmbr.00080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
SUMMARYGut microbes provide benefits to some animals, but their distribution and effects across diverse hosts are still poorly described. There is accumulating evidence for host specificity (i.e., a pattern where different microbes tend to associate with distinct host lineages), but the causes and consequences of this pattern are unclear. Combining experimental tests in the laboratory with broad surveys in the wild is a promising approach to gaining a comprehensive and mechanistic understanding of host specificity prevalence, origin, and importance. Social bees represent an ideal testbed for this endeavor because they are phylogenetically and functionally diverse, with host-specific, stable, and tractable gut microbiota. Furthermore, the western honeybee (Apis mellifera) is an emerging experimental model system for studying microbiota-host interactions. In this review, we summarize data on the prevalence and strength of host specificity of the social bee gut microbiota (bumblebees, stingless bees, and honeybees), as well as the potential and proven ecological and molecular mechanisms that maintain host specificity. Overall, we found that host specificity in bees is relatively strong and likely results from several processes, including host filtering mediated by the immune system and priority effects. However, more research is needed across multiple social bee species to confirm these findings. To help future research, we summarize emerging hypotheses in the field and propose several experimental and comparative tests. Finally, we conclude this review by highlighting the need to understand how host specificity can influence host health.
Collapse
Affiliation(s)
- Florent Mazel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- NCCR Microbiomes, Lausanne, Switzerland
| | - Aiswarya Prasad
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- NCCR Microbiomes, Lausanne, Switzerland
| |
Collapse
|
4
|
Hotchkiss MZ, Poulain AJ, Forrest JRK. Bumble bee gut microbial community structure differs between species and commercial suppliers, but metabolic potential remains largely consistent. Appl Environ Microbiol 2025; 91:e0203624. [PMID: 39912643 PMCID: PMC11921327 DOI: 10.1128/aem.02036-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Bumble bees are key pollinators for natural and agricultural plant communities. Their health and performance are supported by a core gut microbiota composed of a few bacterial taxa. However, the taxonomic composition and community structure of bumble bee gut microbiotas can vary with bee species, environment, and origin (i.e., whether colonies come from the wild or a commercial rearing facility), and it is unclear whether metabolic capabilities therefore vary as well. Here we used metagenomic sequencing to examine gut microbiota community composition, structure, and metabolic potential across bumble bees from two different commercial Bombus impatiens suppliers, wild B. impatiens, and three other wild bumble bee species sampled from sites within the native range of all four species. We found that the community structure of gut microbiotas varied between bumble bee species, between populations from different origins within species, and between commercial suppliers. Notably, we found that Apibacter is consistently present in some wild bumble bee species-suggesting it may be a previously unrecognized core phylotype of bumble bees-and that commercial B. impatiens colonies can lack core phylotypes consistently found in wild populations. However, despite variation in community structure, the high-level metabolic potential of gut microbiotas was largely consistent across all hosts, including for metabolic capabilities related to host performance, though metabolic activity remains to be investigated.IMPORTANCEOur study is the first to compare genome-level taxonomic structure and metabolic potential of whole bumble bee gut microbiotas between commercial suppliers and between commercial and wild populations. In addition, we profiled the full gut microbiotas of three wild bumble bee species for the first time. Overall, our results provide new insight into bumble bee gut microbiota community structure and function and will help researchers evaluate how well studies conducted in one bumble bee population will translate to other populations and species. Research on taxonomic and metabolic variation in bumble bee gut microbiotas across species and origins is of increasing relevance as we continue to discover new ways that social bee gut microbiotas influence host health, and as some bumble bee species decline in range and abundance.
Collapse
|
5
|
Yang C, Hu J, Su Q, Zhang Z, Du Y, Wang J, Sun H, Han B, Tang J, Guo L, Li H, Cai W, Zheng H, Zhou X, Zhang X. A review on recent taxonomic updates of gut bacteria associated with social bees, with a curated genomic reference database. INSECT SCIENCE 2025; 32:2-23. [PMID: 38594229 DOI: 10.1111/1744-7917.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/13/2024] [Accepted: 03/09/2024] [Indexed: 04/11/2024]
Abstract
Honeybees and bumblebees play a crucial role as essential pollinators. The special gut microbiome of social bees is a key factor in determining the overall fitness and health of the host. Although bees harbor relatively simple microbial communities at the genus level, recent studies have unveiled significant genetic divergence and variations in gene content within each bacterial genus. However, a comprehensive and refined genomics-based taxonomic database specific to social bee gut microbiomes remains lacking. Here, we first provided an overview of the current knowledge on the distribution and function of social bee gut bacteria, as well as the factors that influence the gut population dynamics. We then consolidated all available genomes of the gut bacteria of social bees and refined the species-level taxonomy, by constructing a maximum-likelihood core genome phylogeny and calculating genome-wide pairwise average nucleotide identity. On the basis of the refined species taxonomy, we constructed a curated genomic reference database, named the bee gut microbe genome sequence database (BGM-GDb). To evaluate the species-profiling performance of the curated BGM-GDb, we retrieved a series of bee gut metagenomic data and inferred the species-level composition using metagenomic intra-species diversity analysis system (MIDAS), and then compared the results with those obtained from a prebuilt MIDAS database. We found that compared with the default database, the BGM-GDb excelled in aligned read counts and bacterial richness. Overall, this high-resolution and precise genomic reference database will facilitate research in understanding the gut community structure of social bees.
Collapse
Affiliation(s)
- Chengfeng Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Hainan Province, China
| | - Jiawei Hu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qinzhi Su
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zijing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yating Du
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jieni Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huihui Sun
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Hainan Province, China
| | - Benfeng Han
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junbo Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lizhen Guo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Hainan Province, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Hotchkiss MZ, Forrest JRK, Poulain AJ. Changes in bumblebee queen gut microbiotas during and after overwintering diapause. INSECT MOLECULAR BIOLOGY 2025; 34:136-150. [PMID: 39175129 PMCID: PMC11705525 DOI: 10.1111/imb.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
Bumblebees are key pollinators with gut microbiotas that support host health. After bumblebee queens undergo winter diapause, which occurs before spring colony establishment, their gut microbiotas are disturbed, but little is known about community dynamics during diapause itself. Queen gut microbiotas also help seed worker microbiotas, so it is important that they recover post-diapause to a typical community structure, a process that may be impeded by pesticide exposure. We examined how bumblebee queen gut microbiota community structure and metabolic potential shift during and after winter diapause, and whether post-diapause recovery is affected by pesticide exposure. To do so, we placed commercial Bombus impatiens queens into diapause, euthanizing them at 0, 2 and 4 months of diapause. Additionally, we allowed some queens to recover from diapause for 1 week before euthanasia, exposing half to the common herbicide glyphosate. Using whole-community, shotgun metagenomic sequencing, we found that core bee gut phylotypes dominated queen gut microbiotas before, during and after diapause, but that two phylotypes, Schmidhempelia and Snodgrassella, ceased to be detected during late diapause and recovery. Despite fluctuations in taxonomic community structure, metabolic potential remained constant through diapause and recovery. Also, glyphosate exposure did not affect post-diapause microbiota recovery. However, metagenomic assembly quality and our ability to detect microbial taxa and metabolic pathways declined alongside microbial abundance, which was substantially reduced during diapause. Our study offers new insights into how bumblebee queen gut microbiotas change taxonomically and functionally during a key life stage and provides guidance for future microbiota studies in diapausing bumblebees.
Collapse
|
7
|
Yu W, Yang J, Teng LW, Zhao XL, Zhu ZY, Cui S, Du WG, Liu ZS, Zeng ZG. Reciprocal translocation experiments reveal gut microbiome plasticity and host specificity in a Qinghai-Xizang Plateau lizard. Zool Res 2025; 46:139-151. [PMID: 39846192 PMCID: PMC11891006 DOI: 10.24272/j.issn.2095-8137.2024.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/20/2025] [Indexed: 01/24/2025] Open
Abstract
Animal adaptation to environmental challenges is a complex process involving intricate interactions between the host genotype and gut microbiome composition. The gut microbiome, highly responsive to external environmental factors, plays a crucial role in host adaptability and may facilitate local adaptation within species. Concurrently, the genetic background of host populations influences gut microbiome composition, highlighting the bidirectional relationship between host and microbiome. Despite this, our understanding of gut microbiome plasticity and its role in host adaptability remains limited, particularly in reptiles. To clarify this issue, we conducted a reciprocal translocation experiment with gravid females of the Qinghai toad-headed lizards ( Phrynocephalus vlangalii) between high-altitude (2 600 m a.s.l.) and superhigh-altitude (3 600 m a.s.l.) environments on Dangjin Mountain of the Qinghai-Xizang Plateau, China. One year later, we assessed the phenotypes and gut microbiomes of their offspring. Results revealed significant plasticity in gut microbiome diversity and structure in response to contrasting elevations. High-altitude conditions increased diversity, and maternal effects appeared to enable high-altitude lizards to maintain elevated diversity when exposed to superhigh-altitude environments. Additionally, superhigh-altitude lizards displayed distinct gut microbiome structures with notable host specificity, potentially linked to their lower growth rates. Overall, these findings underscore the importance of the gut microbiome in facilitating reptilian adaptation to rapid environmental changes across altitudinal gradients. Furthermore, this study provides critical insights into microbial mechanisms underpinning local adaptation and adaptative plasticity, offering a foundation for future research on host-microbiome interactions in evolutionary and ecological contexts.
Collapse
Affiliation(s)
- Wei Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Wei Teng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, Heilongjiang 150040, China
| | - Xiao-Long Zhao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Shanghai Institute of Wildlife Epidemics, East China Normal University, Shanghai 200241, China
| | - Ze-Yu Zhu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Cui
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen-Sheng Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, Heilongjiang 150040, China. E-mail:
| | - Zhi-Gao Zeng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. E-mail:
| |
Collapse
|
8
|
Kim J, Cui Y, Nam KH, Lee JW, Kim JG, Chun SJ. Microbial generalists as keystone species: constructing core network modules in the anthosphere of twelve diverse wild plant species. ENVIRONMENTAL MICROBIOME 2025; 20:6. [PMID: 39810271 PMCID: PMC11730483 DOI: 10.1186/s40793-025-00666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND The anthosphere, also known as the floral microbiome, is a crucial component of the plant reproductive system. Therefore, understanding the anthospheric microbiome is essential to explore the diversity, interactions, and functions of wildflowers that coexist in natural habitats. We aimed to explore microbial interaction mechanisms and key drivers of microbial community structures using 144 flower samples from 12 different wild plant species inhabiting the same natural environment in South Korea. RESULTS The microbial diversity of the anthosphere showed plant dependence, with the highest diversity observed in Forsythia koreana, indicating microbial dynamics in relation to plant species. Caulobacter, Sphingomonas, Achromobacter, Epicoccum, Cladosporium, and Alternaria were anthosphere generalists, suggesting that the local plant anthosphere had a similar microbial composition. Ecological network analysis revealed that anthosphere generalists were tightly coupled to each other and constructed core modules in the anthosphere. Functions associated with parasites and pathogens were commonly observed in the anthosphere, particularly in Capsella bursa-pastoris and Brassica juncea. CONCLUSION Overall, the anthosphere depends on the plant species and microbial generalists function as keystone species to support and connect the anthospheric microbiome in natural habitats.
Collapse
Affiliation(s)
- Jihoon Kim
- LMO Team, National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon, Republic of Korea
- Department of Biological Science, Wonkwang University, 460 Iksan-daero, Iksan, Republic of Korea
| | - Yingshun Cui
- Jeonbuk Institute for Food-Bioindustry, 111-18 Wonjangdong-gil, Deokjin-gu, Jeonju, Republic of Korea
| | - Kyong-Hee Nam
- LMO Team, National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon, Republic of Korea
| | - Jun-Woo Lee
- LMO Team, National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon, Republic of Korea
| | - Jong-Geol Kim
- Department of Biological Science, Wonkwang University, 460 Iksan-daero, Iksan, Republic of Korea
| | - Seong-Jun Chun
- LMO Team, National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon, Republic of Korea.
| |
Collapse
|
9
|
Stott C, Diop A, Raymann K, Bobay LM. Co-evolution and Gene Transfers Drive Speciation Patterns in Host-Associated Bacteria. Mol Biol Evol 2024; 41:msae256. [PMID: 39686544 DOI: 10.1093/molbev/msae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 11/12/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Microbial communities that maintain symbiotic relationships with animals evolve by adapting to the specific environmental niche provided by their host, yet understanding their patterns of speciation remains challenging. Whether bacterial speciation occurs primarily through allopatric or sympatric processes remains an open question. In addition, patterns of DNA transfers, which are pervasive in bacteria, are more constrained in a closed host-gut system. Eusocial bees have co-evolved with their specialized microbiota for over 85 million years, constituting a simple and valuable system to study the complex dynamics of host-associated microbial interactions. Here, we studied the patterns of speciation and evolution of seven specialized gut bacteria from three clades of eusocial bee species: western honey bees, eastern honey bees, and bumblebees. We conducted genomic analyses to infer species delineation relative to the patterns of homologous recombination (HR), and horizontal gene transfer (HGT). The studied bacteria presented various modes of evolution and speciation relative to their hosts, but some trends were consistent across all of them. We observed a clear interruption of HR between bacteria inhabiting different bee hosts, which is consistent with a mechanism of allopatric speciation, but we also identified interruptions of HR within hosts, suggesting recent or ongoing sympatric speciation. In contrast to HR, we observed that HGT events were not constrained by species borders. Overall, our findings show that in host-associated bacterial populations, patterns of HR and HGT have different impacts on speciation patterns, which are driven by both allopatric and sympatric speciation processes.
Collapse
Affiliation(s)
- Caroline Stott
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Awa Diop
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Kasie Raymann
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Louis-Marie Bobay
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| |
Collapse
|
10
|
Luo S, Zhang X, Zhou X. Temporospatial dynamics and host specificity of honeybee gut bacteria. Cell Rep 2024; 43:114408. [PMID: 38935504 DOI: 10.1016/j.celrep.2024.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
Honeybees are important pollinators worldwide, with their gut microbiota playing a crucial role in maintaining their health. The gut bacteria of honeybees consist of primarily five core lineages that are spread through social interactions. Previous studies have provided a basic understanding of the composition and function of the honeybee gut microbiota, with recent advancements focusing on analyzing diversity at the strain level and changes in bacterial functional genes. Research on honeybee gut microbiota across different regions globally has provided insights into microbial ecology. Additionally, recent findings have shed light on the mechanisms of host specificity of honeybee gut bacteria. This review explores the temporospatial dynamics in honeybee gut microbiota, discussing the reasons and mechanisms behind these fluctuations. This synopsis provides insights into host-microbe interactions and is invaluable for honeybee health.
Collapse
Affiliation(s)
- Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Kline O, Joshi NK. Microbial Symbiont-Based Detoxification of Different Phytotoxins and Synthetic Toxic Chemicals in Insect Pests and Pollinators. J Xenobiot 2024; 14:753-771. [PMID: 38921652 PMCID: PMC11204611 DOI: 10.3390/jox14020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Insects are the most diverse form of life, and as such, they interact closely with humans, impacting our health, economy, and agriculture. Beneficial insect species contribute to pollination, biological control of pests, decomposition, and nutrient cycling. Pest species can cause damage to agricultural crops and vector diseases to humans and livestock. Insects are often exposed to toxic xenobiotics in the environment, both naturally occurring toxins like plant secondary metabolites and synthetic chemicals like herbicides, fungicides, and insecticides. Because of this, insects have evolved several mechanisms of resistance to toxic xenobiotics, including sequestration, behavioral avoidance, and enzymatic degradation, and in many cases had developed symbiotic relationships with microbes that can aid in this detoxification. As research progresses, the important roles of these microbes in insect health and function have become more apparent. Bacterial symbionts that degrade plant phytotoxins allow host insects to feed on otherwise chemically defended plants. They can also confer pesticide resistance to their hosts, especially in frequently treated agricultural fields. It is important to study these interactions between insects and the toxic chemicals they are exposed to in order to further the understanding of pest insect resistance and to mitigate the negative effect of pesticides on nontarget insect species like Hymenopteran pollinators.
Collapse
Affiliation(s)
| | - Neelendra K. Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
12
|
Botero J, Peeters C, De Canck E, Laureys D, Wieme AD, Cleenwerck I, Depoorter E, Praet J, Michez D, Smagghe G, Vandamme P. A comparative genomic analysis of Fructobacillus evanidus sp. nov. from bumble bees. Syst Appl Microbiol 2024; 47:126505. [PMID: 38564984 DOI: 10.1016/j.syapm.2024.126505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
The increase in studies on bee microbiomes is prompted by concerns over global pollinator declines. Bumble bees host core and non-core microbiota which may contribute to increased lifetime fitness. The presence of Fructobacillus in the gut microbiomes of bumble bee workers, or the replacement of core symbionts with Fructobacillus bacteria, has been considered a marker of dysbiosis. A phylogenomic analysis and functional genomic characterization of the genomes of 21 Fructobacillus isolates from bumble bees demonstrated that they represented four species, i.e. Fructobacillus cardui, Fructobacillus fructosus, Fructobacillus tropaeoli, and the novel species Fructobacillus evanidus sp. nov. Our results confirmed and substantiated the presence of two phylogenetically and functionally distinct Fructobacillus species clades that differ in genome size, percentage G + C content, the number of coding DNA sequences and metabolic characteristics. Clade 1 and clade 2 species differed in amino acid and, to a lesser extent, in carbohydrate metabolism, with F. evanidus and F. tropaeoli genomes featuring a higher number of complete metabolic pathways. While Fructobacillus genomes encoded genes that allow adhesion, biofilm formation, antibacterial activity and detoxification, other bacteria isolated from the bumble bee gut appeared better equipped to co-exist with the bumble bee host. The isolation and identification of multiple Fructobacillus species from several bumble bee gut samples in the present study also argued against a specific partnership between Fructobacillus species and their bumble bee hosts.
Collapse
Affiliation(s)
- Juliana Botero
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Evelien De Canck
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - David Laureys
- Innovation Centre for Brewing & Fermentation, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anneleen D Wieme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Ilse Cleenwerck
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Eliza Depoorter
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Jessy Praet
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du parc 20, 7000 Mons, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| |
Collapse
|
13
|
Weinhold A, Grüner E, Keller A. Bumble bee microbiota shows temporal succession and increase of lactic acid bacteria when exposed to outdoor environments. Front Cell Infect Microbiol 2024; 14:1342781. [PMID: 38500505 PMCID: PMC10945022 DOI: 10.3389/fcimb.2024.1342781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Question The large earth bumble bee (Bombus terrestris) maintains a social core gut-microbiota, similar as known from the honey bee, which plays an important role for host health and resistance. Experiments under laboratory conditions with commercial hives are limited to vertically transmitted microbes and neglect influences of environmental factors or external acquisition of microbes. Various environmental and landscape-level factors may have an impact on the gut-microbiota of pollinating insects, with consequences for pollinator health and fitness in agroecosystems. Still, it is not fully clear whether access to different flower diversities will have a significant influence on the bumble bee microbiota. Here, we tested in a semi-field experiment if the bumble bee microbiota changes over time when exposed to different flower diversities within outdoor flight cages. We used commercial hives to distinguish between vertically and horizontally transmitted bacteria, respectively from the nest environment or the exposed outside environment. Result The sequential sampling of foraging workers over a period of 35 days indicated a temporal progression of the bumble bee microbiota when placed outside. The microbiota increased in diversity and changed in composition and variability over time. We observed a major increase in relative abundance of the families Lactobacillaceae, Bifidobacteriaceae and Weeksellaceae. In contrast, major core-taxa like Snodgrassella and Gilliamella declined in their relative abundance over time. The genus Lactobacillus showed a high diversity and strain specific turnover, so that only specific ASVs showed an increase over time, while others had a more erratic occurrence pattern. Exposure to different flower diversities had no significant influence on the progression of the bumble bee microbiota. Conclusion The bumble bee microbiota showed a dynamic temporal succession with distinct compositional changes and diversification over time when placed outdoor. The exposure of bumble bees to environmental conditions, or environmental microbes, increases dissimilarity and changes the gut-community composition. This shows the importance of environmental influences on the temporal dynamic and progression of the bumble bee microbiota.
Collapse
Affiliation(s)
- Arne Weinhold
- Cellular and Organismic Networks, Faculty of Biology, Center for Organismic Adaptation, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | |
Collapse
|
14
|
Villabona N, Moran N, Hammer T, Reyes A. Conserved, yet disruption-prone, gut microbiomes in neotropical bumblebees. mSphere 2023; 8:e0013923. [PMID: 37855643 PMCID: PMC10732019 DOI: 10.1128/msphere.00139-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Social bees are an important model for the ecology and evolution of gut microbiomes. These bees harbor ancient, specific, and beneficial gut microbiomes and are crucial pollinators. However, most of the research has concentrated on managed honeybees and bumblebees in the temperate zone. Here we used 16S rRNA gene sequencing to characterize gut microbiomes in wild neotropical bumblebee communities from Colombia. We also analyzed drivers of microbiome structure across our data and previously published data from temperate bumblebees. Our results show that lineages of neotropical bumblebees not only retained their ancient gut bacterial symbionts during dispersal from North America but also are prone to major disruption, a shift that is strongly associated with parasite infection. Finally, we also found that microbiomes are much more strongly structured by host phylogeny than by geography, despite the very different environmental conditions and plant communities in the two regions.
Collapse
Affiliation(s)
- Nickole Villabona
- Research Group on Computational Biology and Microbial Ecology, Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Nancy Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Tobin Hammer
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Alejandro Reyes
- Research Group on Computational Biology and Microbial Ecology, Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Young MG, Just J, Lee YJ, McMahon T, Gonzalez J, Noh S, Angelini DR. Seasonally increasing parasite load is associated with microbiome dysbiosis in wild bumblebees. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569473. [PMID: 38077090 PMCID: PMC10705496 DOI: 10.1101/2023.11.30.569473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The microbiome is increasingly recognized for its complex relationship with host fitness. Bumblebees are host to a characteristic gut microbiome community that is derived and reinforced through social contact between individuals. The bumblebee microbiome is species-poor, and primarily composed from a small number of core taxa that are associated with the greater tribe of corbiculate bees. Experimental findings support a role for the core bumblebee microbiome in resistance to severe infections by a common trypanosomal parasite, Crithidia bombi. However, most studies have been small in scale, often considering just one or two bumblebee species, or making use of commercially-reared bees. To better understand the microbiome diversity of wild populations, we have deeply sampled field populations of ten sympatric species found throughout central and down east Maine in a three-year microbiome field survey. We have used 16S amplicon sequencing to produce microbiome community profiles, and qPCR to screen samples for infections by Crithidia bombi. The breadth of our dataset has enabled us to test for seasonal and interspecific trends in the microbiome community. Controlling for these external sources of variation, we have identified microbial factors associated with infection and parasite load that support the role of the core microbiome in resistance to severe infection.
Collapse
Affiliation(s)
- Mark G. Young
- Colby College, Department of Biology, 5700 Mayflower Hill, Waterville, ME 04901, USA
| | - Josefine Just
- Colby College, Department of Biology, 5700 Mayflower Hill, Waterville, ME 04901, USA
| | - Ye Jin Lee
- Colby College, Department of Biology, 5700 Mayflower Hill, Waterville, ME 04901, USA
| | - Thomas McMahon
- Colby College, Department of Biology, 5700 Mayflower Hill, Waterville, ME 04901, USA
| | - James Gonzalez
- Colby College, Department of Biology, 5700 Mayflower Hill, Waterville, ME 04901, USA
| | - Suegene Noh
- Colby College, Department of Biology, 5700 Mayflower Hill, Waterville, ME 04901, USA
| | - David R. Angelini
- Colby College, Department of Biology, 5700 Mayflower Hill, Waterville, ME 04901, USA
| |
Collapse
|
16
|
Moeller AH, Sanders JG, Sprockett DD, Landers A. Assessing co-diversification in host-associated microbiomes. J Evol Biol 2023; 36:1659-1668. [PMID: 37750599 PMCID: PMC10843161 DOI: 10.1111/jeb.14221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023]
Abstract
When lineages of hosts and microbial symbionts engage in intimate interactions over evolutionary timescales, they can diversify in parallel (i.e., co-diversify), producing associations between the lineages' phylogenetic histories. Tests for co-diversification of individual microbial lineages and their hosts have been developed previously, and these have been applied to discover ancient symbioses in diverse branches of the tree of life. However, most host-microbe relationships are not binary but multipartite, in that a single host-associated microbiota can contain many microbial lineages, generating challenges for assessing co-diversification. Here, we review recent evidence for co-diversification in complex microbiota, highlight the limitations of prior studies, and outline a hypothesis testing approach designed to overcome some of these limitations. We advocate for the use of microbiota-wide scans for co-diversifying symbiont lineages and discuss tools developed for this purpose. Tests for co-diversification for simple host symbiont systems can be extended to entire phylogenies of microbial lineages (e.g., metagenome-assembled or isolate genomes, amplicon sequence variants) sampled from host clades, thereby providing a means for identifying co-diversifying symbionts present within complex microbiota. The relative ages of symbiont clades can corroborate co-diversification, and multi-level permutation tests can account for multiple comparisons and phylogenetic non-independence introduced by repeated sampling of host species. Discovering co-diversifying lineages will generate powerful opportunities for interrogating the molecular evolution and lineage turnover of ancestral, host-species specific symbionts within host-associated microbiota.
Collapse
Affiliation(s)
- Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Jon G. Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Daniel D. Sprockett
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Abigail Landers
- Department of Microbiology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
17
|
Sun H, Li H, Zhang X, Liu Y, Chen H, Zheng L, Zhai Y, Zheng H. The honeybee gut resistome and its role in antibiotic resistance dissemination. Integr Zool 2023; 18:1014-1026. [PMID: 36892101 DOI: 10.1111/1749-4877.12714] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
There is now general concern about widespread antibiotic resistance, and growing evidence indicates that gut microbiota is critical in providing antibiotic resistance. Honeybee is an important pollinator; the incidence of antibiotic resistance genes in honeybee gut causes potential risks to not only its own health but also to public and animal health, for its potential disseminator role, thus receiving more attention from the public. Recent analysis results reveal that the gut of honeybee serves as a reservoir of antibiotic resistance genes, probably due to antibiotics application history in beekeeping and horizontal gene transfer from the highly polluted environment. These antibiotic resistance genes accumulate in the honeybee gut and could be transferred to the pathogen, even having the potential to spread during pollination, tending, social interactions, etc. Newly acquired resistance traits may cause fitness reduction in bacteria whereas facilitating adaptive evolution as well. This review outlines the current knowledge about the resistome in honeybee gut and emphasizes its role in antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Huihui Sun
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| |
Collapse
|
18
|
Seidenath D, Weig AR, Mittereder A, Hillenbrand T, Brüggemann D, Opel T, Langhof N, Riedl M, Feldhaar H, Otti O. Diesel exhaust particles alter gut microbiome and gene expression in the bumblebee Bombus terrestris. Ecol Evol 2023; 13:e10180. [PMID: 37351478 PMCID: PMC10283033 DOI: 10.1002/ece3.10180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/13/2023] [Accepted: 05/29/2023] [Indexed: 06/24/2023] Open
Abstract
Insect decline is a major threat to ecosystems around the world as they provide many important functions, such as pollination or pest control. Pollution is one of the main reasons for the decline, alongside changes in land use, global warming, and invasive species. While negative impacts of pesticides are well-studied, there is still a lack of knowledge about the effects of other anthropogenic pollutants, such as airborne particulate matter, on insects. To address this, we exposed workers of the bumblebee Bombus terrestris to sublethal doses of diesel exhaust particles (DEPs) and brake dust, orally or via air. After 7 days, we looked at the composition of the gut microbiome and tracked changes in gene expression. While there were no changes in the other treatments, oral DEP exposure significantly altered the structure of the gut microbiome. In particular, the core bacterium Snodgrassella had a decreased abundance in the DEP treatment. Similarly, transcriptome analysis revealed changes in gene expression after oral DEP exposure, but not in the other treatments. The changes are related to metabolism and signal transduction, which indicates a general stress response. Taken together, our results suggest potential health effects of DEP exposure on insects, here shown in bumblebees, as gut dysbiosis may increase the susceptibility of bumblebees to pathogens, while a general stress response may lower available energy resources. Those effects may exacerbate under natural conditions where insects face a multiple-stressor environment.
Collapse
Affiliation(s)
- Dimitri Seidenath
- Animal Ecology I, Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - Alfons R. Weig
- Keylab Genomics and Bioinformatics, Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - Andreas Mittereder
- Department of Engineering Thermodynamics and Transport ProcessesUniversity of BayreuthBayreuthGermany
| | - Thomas Hillenbrand
- Department of Engineering Thermodynamics and Transport ProcessesUniversity of BayreuthBayreuthGermany
| | - Dieter Brüggemann
- Department of Engineering Thermodynamics and Transport ProcessesUniversity of BayreuthBayreuthGermany
| | - Thorsten Opel
- Department of Ceramic Materials EngineeringUniversity of BayreuthBayreuthGermany
| | - Nico Langhof
- Department of Ceramic Materials EngineeringUniversity of BayreuthBayreuthGermany
| | - Marcel Riedl
- Animal Ecology I, Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - Heike Feldhaar
- Animal Ecology I, Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - Oliver Otti
- Animal Ecology I, Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
- Applied ZoologyTU DresdenDresdenGermany
| |
Collapse
|
19
|
Suenami S, Koto A, Miyazaki R. Basic Structures of Gut Bacterial Communities in Eusocial Insects. INSECTS 2023; 14:insects14050444. [PMID: 37233072 DOI: 10.3390/insects14050444] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
Gut bacterial communities assist host animals with numerous functions such as food digestion, nutritional provision, or immunity. Some social mammals and insects are unique in that their gut microbial communities are stable among individuals. In this review, we focus on the gut bacterial communities of eusocial insects, including bees, ants, and termites, to provide an overview of their community structures and to gain insights into any general aspects of their structural basis. Pseudomonadota and Bacillota are prevalent bacterial phyla commonly detected in those three insect groups, but their compositions are distinct at lower taxonomic levels. Eusocial insects harbor unique gut bacterial communities that are shared within host species, while their stability varies depending on host physiology and ecology. Species with narrow dietary habits, such as eusocial bees, harbor highly stable and intraspecific microbial communities, while generalists, such as most ant species, exhibit relatively diverse community structures. Caste differences could influence the relative abundance of community members without significantly altering the taxonomic composition.
Collapse
Affiliation(s)
- Shota Suenami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Akiko Koto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo 169-8555, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo 169-8555, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
20
|
Botero J, Sombolestani AS, Cnockaert M, Peeters C, Borremans W, De Vuyst L, Vereecken NJ, Michez D, Smagghe G, Bonilla-Rosso G, Engel P, Vandamme P. A phylogenomic and comparative genomic analysis of Commensalibacter, a versatile insect symbiont. Anim Microbiome 2023; 5:25. [PMID: 37120592 PMCID: PMC10149009 DOI: 10.1186/s42523-023-00248-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND To understand mechanisms of adaptation and plasticity of pollinators and other insects a better understanding of diversity and function of their key symbionts is required. Commensalibacter is a genus of acetic acid bacterial symbionts in the gut of honey bees and other insect species, yet little information is available on the diversity and function of Commensalibacter bacteria. In the present study, whole-genome sequences of 12 Commensalibacter isolates from bumble bees, butterflies, Asian hornets and rowan berries were determined, and publicly available genome assemblies of 14 Commensalibacter strains were used in a phylogenomic and comparative genomic analysis. RESULTS The phylogenomic analysis revealed that the 26 Commensalibacter isolates represented four species, i.e. Commensalibacter intestini and three novel species for which we propose the names Commensalibacter melissae sp. nov., Commensalibacter communis sp. nov. and Commensalibacter papalotli sp. nov. Comparative genomic analysis revealed that the four Commensalibacter species had similar genetic pathways for central metabolism characterized by a complete tricarboxylic acid cycle and pentose phosphate pathway, but their genomes differed in size, G + C content, amino acid metabolism and carbohydrate-utilizing enzymes. The reduced genome size, the large number of species-specific gene clusters, and the small number of gene clusters shared between C. melissae and other Commensalibacter species suggested a unique evolutionary process in C. melissae, the Western honey bee symbiont. CONCLUSION The genus Commensalibacter is a widely distributed insect symbiont that consists of multiple species, each contributing in a species specific manner to the physiology of the holobiont host.
Collapse
Affiliation(s)
- Juliana Botero
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Atena Sadat Sombolestani
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Wim Borremans
- Research Group of Industrial Microbiology and Food Biotechnology, Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Nicolas J Vereecken
- Agroecology Lab, Université libre de Bruxelles, Boulevard du Triomphe CP 264/02, 1050, Brussels, Belgium
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du parc 20, 7000, Mons, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - German Bonilla-Rosso
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
21
|
Sarton-Lohéac G, Nunes da Silva CG, Mazel F, Baud G, de Bakker V, Das S, El Chazli Y, Ellegaard K, Garcia-Garcera M, Glover N, Liberti J, Nacif Marçal L, Prasad A, Somerville V, Bonilla-Rosso G, Engel P. Deep Divergence and Genomic Diversification of Gut Symbionts of Neotropical Stingless Bees. mBio 2023; 14:e0353822. [PMID: 36939321 PMCID: PMC10128065 DOI: 10.1128/mbio.03538-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Social bees harbor conserved gut microbiotas that may have been acquired in a common ancestor of social bees and subsequently codiversified with their hosts. However, most of this knowledge is based on studies on the gut microbiotas of honey bees and bumblebees. Much less is known about the gut microbiotas of the third and most diverse group of social bees, the stingless bees. Specifically, the absence of genomic data from their microbiotas presents an important knowledge gap in understanding the evolution and functional diversity of the social bee microbiota. Here, we combined community profiling with culturing and genome sequencing of gut bacteria from six neotropical stingless bee species from Brazil. Phylogenomic analyses show that most stingless bee gut isolates form deep-branching sister clades of core members of the honey bee and bumblebee gut microbiota with conserved functional capabilities, confirming the common ancestry and ecology of their microbiota. However, our bacterial phylogenies were not congruent with those of the host, indicating that the evolution of the social bee gut microbiota was not driven by strict codiversification but included host switches and independent symbiont gain and losses. Finally, as reported for the honey bee and bumblebee microbiotas, we found substantial genomic divergence among strains of stingless bee gut bacteria, suggesting adaptation to different host species and glycan niches. Our study offers first insights into the genomic diversity of the stingless bee microbiota and highlights the need for broader samplings to understand the evolution of the social bee gut microbiota. IMPORTANCE Stingless bees are the most diverse group of the corbiculate bees and represent important pollinator species throughout the tropics and subtropics. They harbor specialized microbial communities in their gut that are related to those found in honey bees and bumblebees and that are likely important for bee health. Few bacteria have been cultured from the gut of stingless bees, which has prevented characterization of their genomic diversity and functional potential. Here, we established cultures of major members of the gut microbiotas of six stingless bee species and sequenced their genomes. We found that most stingless bee isolates belong to novel bacterial species distantly related to those found in honey bees and bumblebees and encoding similar functional capabilities. Our study offers a new perspective on the evolution of the social bee gut microbiota and presents a basis for characterizing the symbiotic relationships between gut bacteria and stingless bees.
Collapse
Affiliation(s)
- Garance Sarton-Lohéac
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Florent Mazel
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Gilles Baud
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Vincent de Bakker
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sudip Das
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Yassine El Chazli
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Kirsten Ellegaard
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Natasha Glover
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joanito Liberti
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Lorena Nacif Marçal
- Department of Morphology, Instituto de Ciências Biológicas, Federal University of Amazonas, Manaus, Brazil
| | - Aiswarya Prasad
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Vincent Somerville
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Germán Bonilla-Rosso
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Gaggìa F, Jakobsen RR, Alberoni D, Baffoni L, Cutajar S, Mifsud D, Nielsen DS, Di Gioia D. Environment or genetic isolation? An atypical intestinal microbiota in the Maltese honey bee Apis mellifera spp. ruttneri. Front Microbiol 2023; 14:1127717. [PMID: 36910174 PMCID: PMC9995969 DOI: 10.3389/fmicb.2023.1127717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Apis mellifera evolved mainly in African, Asian, and European continents over thousands of years, leading to the selection of a considerable number of honey bees subspecies that have adapted to various environments such as hot semi-desert zones and cold temperate zones. With the evolution of honey bee subspecies, it is possible that environmental conditions, food sources, and microbial communities typical of the colonized areas have shaped the honey bee gut microbiota. Methods In this study the microbiota of two distinct lineages (mitochondrial haplotypes) of bees Apis mellifera ruttneri (lineage A) and Apis mellifera ligustica and carnica (both lineage C) were compared. Honey bee guts were collected in a dry period in the respective breeding areas (the island of Malta and the regions of Emilia-Romagna and South Tyrol in Italy). Microbial DNA from the honey bee gut was extracted and amplified for the V3-V4 regions of the 16S rRNA gene for bacteria and for ITS2 for fungi. Results The analyses carried out show that the Maltese lineage A honey bees have a distinctive microbiota when compared to Italian lineage C honey bees, with the most abundant genera being Bartonellaceae and Lactobacillaceae, respectively. Lactobacillaceae in Maltese Lineage A honey bees consist mainly of Apilactobacillus instead of Lactobacillus and Bombilactobacillus in the lineage C. Lineage A honey bee gut microbiota also harbors higher proportions of Arsenophonus, Bombella, Commensalibacter, and Pseudomonas when compared to lineage C. Discussion The environment seems to be the main driver in the acquisition of these marked differences in the gut microbiota. However, the influence of other factors such as host genetics, seasonality or geography may still play a significant role in the microbiome shaping, in synergy with the environmental aspects.
Collapse
Affiliation(s)
- Francesca Gaggìa
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Rasmus Riemer Jakobsen
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Daniele Alberoni
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Loredana Baffoni
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Simone Cutajar
- Institute of Earth Systems, L-Università tà Malta, Msida, Malta
| | - David Mifsud
- Institute of Earth Systems, L-Università tà Malta, Msida, Malta
| | - Dennis Sandris Nielsen
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Zhang ZJ, Zheng H. Bumblebees with the socially transmitted microbiome: A novel model organism for gut microbiota research. INSECT SCIENCE 2022; 29:958-976. [PMID: 35567381 DOI: 10.1111/1744-7917.13040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Eusocial bumble and honey bees are important pollinators for global ecology and the agricultural economy. Although both the bumble and honey bees possess similar and host-restricted gut microbiota, they differ in aspects of morphology, autonomy, physiology, behavior, and life cycle. The social bee gut bacteria exhibit host specificity that is likely a result of long-term co-evolution. The unique life cycle of bumblebees is key for the acquisition and development of their gut microbiota, and affects the strain-level diversity of the core bacterial species. Studies on bumblebee gut bacteria show that they retain less functional capacity for carbohydrate metabolism compared with that of the honeybee. We discuss the potential roles of the bumblebee gut microbiota against pathogenic threats and the application of host-specific probiotics for bumblebees. Given the advantages of the bumblebee microbiome, including the simple structure and host specificity, and the ease of manipulating bumblebee colonies, we propose that bumblebees may provide a valuable system for understanding the general principles of host-microbe interactions, gut-brain axis, and vertical transmission.
Collapse
Affiliation(s)
- Zi-Jing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Phylogenomic Analyses of
Snodgrassella
Isolates from Honeybees and Bumblebees Reveal Taxonomic and Functional Diversity. mSystems 2022; 7:e0150021. [PMID: 35604118 PMCID: PMC9239279 DOI: 10.1128/msystems.01500-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Snodgrassella is a genus of Betaproteobacteria that lives in the gut of honeybees (Apis spp.) and bumblebees (Bombus spp). It is part of a conserved microbiome that is composed of a few core phylotypes and is essential for bee health and metabolism. Phylogenomic analyses using whole-genome sequences of 75 Snodgrassella strains from 4 species of honeybees and 14 species of bumblebees showed that these strains formed a monophyletic lineage within the Neisseriaceae family, that Snodgrassella isolates from Asian honeybees diverged early from the other species in their evolution, that isolates from honeybees and bumblebees were well separated, and that this genus consists of at least seven species. We propose to formally name two new Snodgrassella species that were isolated from bumblebees: i.e., Snodgrassella gandavensis sp. nov. and Snodgrassella communis sp. nov. Possible evolutionary scenarios for 107 species- or group-specific genes revealed very limited evidence for horizontal gene transfer. Functional analyses revealed the importance of small proteins, defense mechanisms, amino acid transport and metabolism, inorganic ion transport and metabolism and carbohydrate transport and metabolism among these 107 specific genes. IMPORTANCE The microbiome of honeybees (Apis spp.) and bumblebees (Bombus spp.) is highly conserved and represented by few phylotypes. This simplicity in taxon composition makes the bee’s microbiome an emergent model organism for the study of gut microbial communities. Since the description of the Snodgrassella genus, which was isolated from the gut of honeybees and bumblebees in 2013, a single species (i.e., Snodgrassella alvi), has been named. Here, we demonstrate that this genus is actually composed of at least seven species, two of which (Snodgrassella gandavensis sp. nov. and Snodgrassella communis sp. nov.) are formally described and named in the present publication. We also report the presence of 107 genes specific to Snodgrassella species, showing notably the importance of small proteins and defense mechanisms in this genus.
Collapse
|
25
|
Li Y, Leonard SP, Powell JE, Moran NA. Species divergence in gut-restricted bacteria of social bees. Proc Natl Acad Sci U S A 2022; 119:e2115013119. [PMID: 35467987 PMCID: PMC9170019 DOI: 10.1073/pnas.2115013119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/16/2022] [Indexed: 01/07/2023] Open
Abstract
Host-associated microbiomes, particularly gut microbiomes, often harbor related but distinct microbial lineages, but how this diversity arises and is maintained is not well understood. A prerequisite for lineage diversification is reproductive isolation imposed by barriers to gene flow. In host-associated microbes, genetic recombination can be disrupted by confinement to different hosts, for example following host speciation, or by niche partitioning within the same host. Taking advantage of the simple gut microbiome of social bees, we explore the diversification of two groups of gut-associated bacteria, Gilliamella and Snodgrassella, which have evolved for 80 million y with honey bees and bumble bees. Our analyses of sequenced genomes show that these lineages have diversified into discrete populations with limited gene flow. Divergence has occurred between symbionts of different host species and, in some cases, between symbiont lineages within a single host individual. Populations have acquired genes to adapt to specific hosts and ecological niches; for example, Gilliamella lineages differ markedly in abilities to degrade dietary polysaccharides and to use the resulting sugar components. Using engineered fluorescent bacteria in vivo, we show that Gilliamella lineages localize to different hindgut regions, corresponding to differences in their abilities to use spatially concentrated nitrogenous wastes of hosts. Our findings show that bee gut bacteria can diversify due to isolation in different host species and also due to spatial niche partitioning within individual hosts, leading to barriers to gene flow.
Collapse
Affiliation(s)
- Yiyuan Li
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712
| | - Sean P. Leonard
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712
| | - J. Elijah Powell
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
26
|
Yang C, Su Q, Tang M, Luo S, Zheng H, Zhang X, Zhou X. Amplicon Sequencing of Single-Copy Protein-Coding Genes Reveals Accurate Diversity for Sequence-Discrete Microbiome Populations. Microbiol Spectr 2022; 10:e0210521. [PMID: 35416715 PMCID: PMC9045262 DOI: 10.1128/spectrum.02105-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/19/2022] [Indexed: 11/26/2022] Open
Abstract
An in-depth understanding of microbial function and the division of ecological niches requires accurate delineation and identification of microbes at a fine taxonomic resolution. Microbial phylotypes are typically defined using a 97% small subunit (16S) rRNA threshold. However, increasing evidence has demonstrated the ubiquitous presence of taxonomic units of distinct functions within phylotypes. These so-called sequence-discrete populations (SDPs) have used to be mainly delineated by disjunct sequence similarity at the whole-genome level. However, gene markers that could accurately identify and quantify SDPs are lacking in microbial community studies. Here, we developed a pipeline to screen single-copy protein-coding genes that could accurately characterize SDP diversity via amplicon sequencing of microbial communities. Fifteen candidate marker genes were evaluated using three criteria (extent of sequence divergence, phylogenetic accuracy, and conservation of primer regions) and the selected genes were subject to test the efficiency in differentiating SDPs within Gilliamella, a core honeybee gut microbial phylotype, as a proof-of-concept. The results showed that the 16S V4 region failed to report accurate SDP diversities due to low taxonomic resolution and changing copy numbers. In contrast, the single-copy genes recommended by our pipeline were able to successfully quantify Gilliamella SDPs for both mock samples and honeybee guts, with results highly consistent with those of metagenomics. The pipeline developed in this study is expected to identify single-copy protein coding genes capable of accurately quantifying diverse bacterial communities at the SDP level. IMPORTANCE Microbial communities can be distinguished by discrete genetic and ecological characteristics. These sequence-discrete populations are foundational for investigating the composition and functional structures of microbial communities at high resolution. In this study, we screened for reliable single-copy protein-coding marker genes to identify sequence-discrete populations through our pipeline. Using marker gene amplicon sequencing, we could accurately and efficiently delineate the population diversity in microbial communities. These results suggest that single copy protein-coding genes can be an accurate, quantitative, and economical alternative for characterizing population diversity. Moreover, the feasibility of a gene as marker for any bacterial population identification can be quickly evaluated by the pipeline proposed here.
Collapse
Affiliation(s)
- Chengfeng Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qinzhi Su
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Min Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Yuan L, Zhang X, Luo B, Li X, Tian F, Yan W, Ni Y. Ethnic Specificity of Species and Strain Composition of Lactobacillus Populations From Mother–Infant Pairs, Uncovered by Multilocus Sequence Typing. Front Microbiol 2022; 13:814284. [PMID: 35387090 PMCID: PMC8979337 DOI: 10.3389/fmicb.2022.814284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
The maternal gut is thought to be the principal source of potential probiotic bacteria in the infant gut during the lactation stage. It is not clear whether facultative symbiont lactobacilli strictly follow vertical transmission from mother to infant and display the ethnic specificity in terms of species and strain composition in mother–infant cohorts. In the present study, a total of 16 former Lactobacillus species (365 strains) and 11 species (280 strains) were retrieved from 31 healthy mother–infant pairs of two ethnic groups, which have never intermarried, respectively. The result showed that the composition and number of Lactobacillus species between the two ethnic groups varied. Among 106 Lacticaseibacillus paracasei strains isolated, 64 representative strains were classified into 27 sequence types (ST) by means of multilocus sequence typing (MLST), of which 20 STs derived from 33 Uighur strains and 7 STs from 31 Li strains, and no homologous recombination event of genes was detected between strains of different ethnic groups. A go-EBURST analysis revealed that except for a few mother–infant pairs in which more than one STs were detected, L. paracasei isolates from the same mother–infant pair were found to be monophyletic in most cases, confirming vertical transfer of Lactobacillus at the strain level. More notably, L. paracasei isolates from the same ethnic group were more likely than strains from another to be incorporated into a specific phylogenetic clade or clonal complex (CC) with similar metabolic profile of glycan, supporting the hypothesis of ethnic specificity to a large degree. Our study provides evidence for the development of personalized probiotic tailored to very homogenous localized populations from the perspective of maternal and child health.
Collapse
Affiliation(s)
- Lixia Yuan
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Xueling Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Baolong Luo
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Xu Li
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Fengwei Tian
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenli Yan
- School of Food Science and Technology, Shihezi University, Shihezi, China
- *Correspondence: Wenli Yan,
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Yongqing Ni,
| |
Collapse
|
28
|
Hotchkiss MZ, Poulain AJ, Forrest JRK. Pesticide-induced disturbances of bee gut microbiotas. FEMS Microbiol Rev 2022; 46:6517452. [PMID: 35107129 DOI: 10.1093/femsre/fuab056] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
Social bee gut microbiotas play key roles in host health and performance. Worryingly, a growing body of literature shows that pesticide exposure can disturb these microbiotas. Most studies examine changes in taxonomic composition in Western honey bee (Apis mellifera) gut microbiotas caused by insecticide exposure. Core bee gut microbiota taxa shift in abundance after exposure but are rarely eliminated, with declines in Bifidobacteriales and Lactobacillus near melliventris abundance being the most common shifts. Pesticide concentration, exposure duration, season and concurrent stressors all influence whether and how bee gut microbiotas are disturbed. Also, the mechanism of disturbance-i.e. whether a pesticide directly affects microbial growth or indirectly affects the microbiota by altering host health-likely affects disturbance consistency. Despite growing interest in this topic, important questions remain unanswered. Specifically, metabolic shifts in bee gut microbiotas remain largely uninvestigated, as do effects of pesticide-disturbed gut microbiotas on bee host performance. Furthermore, few bee species have been studied other than A. mellifera, and few herbicides and fungicides have been examined. We call for these knowledge gaps to be addressed so that we may obtain a comprehensive picture of how pesticides alter bee gut microbiotas, and of the functional consequences of these changes.
Collapse
|
29
|
Wu J, Lang H, Mu X, Zhang Z, Su Q, Hu X, Zheng H. Honey bee genetics shape the strain-level structure of gut microbiota in social transmission. MICROBIOME 2021; 9:225. [PMID: 34784973 PMCID: PMC8597283 DOI: 10.1186/s40168-021-01174-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/14/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Honey bee gut microbiota transmitted via social interactions are beneficial to the host health. Although the microbial community is relatively stable, individual variations and high strain-level diversity have been detected across honey bees. Although the bee gut microbiota structure is influenced by environmental factors, the heritability of the gut members and the contribution of the host genetics remains elusive. Considering bees within a colony are not readily genetically identical due to the polyandry of the queen, we hypothesize that the microbiota structure can be shaped by host genetics. RESULTS We used shotgun metagenomics to simultaneously profile the microbiota and host genotypes of bees from hives of four different subspecies. Gut composition is more distant between genetically different bees at both phylotype- and "sequence-discrete population" levels. We then performed a successive passaging experiment within colonies of hybrid bees generated by artificial insemination, which revealed that the microbial composition dramatically shifts across batches of bees during the social transmission. Specifically, different strains from the phylotype of Snodgrassella alvi are preferentially selected by genetically varied hosts, and strains from different hosts show a remarkably biased distribution of single-nucleotide polymorphism in the Type IV pili loci. Genome-wide association analysis identified that the relative abundance of a cluster of Bifidobacterium strains is associated with the host glutamate receptor gene specifically expressed in the bee brain. Finally, mono-colonization of Bifidobacterium with a specific polysaccharide utilization locus impacts the alternative splicing of the gluR-B gene, which is associated with an increased GABA level in the brain. CONCLUSIONS Our results indicated that host genetics influence the bee gut composition and suggest a gut-brain connection implicated in the gut bacterial strain preference. Honey bees have been used extensively as a model organism for social behaviors, genetics, and the gut microbiome. Further identification of host genetic function as a shaping force of microbial structure will advance our understanding of the host-microbe interactions. Video abstract.
Collapse
Affiliation(s)
- Jiaqiang Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaohuan Mu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zijing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qinzhi Su
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
30
|
Su Q, Wang Q, Mu X, Chen H, Meng Y, Zhang X, Zheng L, Hu X, Zhai Y, Zheng H. Strain-level analysis reveals the vertical microbial transmission during the life cycle of bumblebee. MICROBIOME 2021; 9:216. [PMID: 34732245 PMCID: PMC8567698 DOI: 10.1186/s40168-021-01163-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/14/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Microbial acquisition and development of the gut microbiota impact the establishment of a healthy host-microbes symbiosis. Compared with other animals, the eusocial bumblebees and honeybees possess a simple, recurring, and similar set of gut microbiota. However, all bee gut phylotypes have high strain-level diversity. Gut communities of different bee species are composed of host-specific groups of strains. The variable genomic regions among strains of the same species often confer critical functional differences, such as carbon source utilization, essential for the natural selection of specific strains. The annual bumblebee colony founded by solitary queens enables tracking the transmission routes of gut bacteria during development stages. RESULTS Here, we first showed the changes in the microbiome of individual bumblebees across their holometabolous life cycle. Some core gut bacteria persist throughout different stages of development. Gut microbiota of newly emerged workers always resembles those of their queens, suggesting a vertical transmission of strains from queens to the newborn workers. We then follow the dynamic changes in the gut community by comparing strain-level metagenomic profiles of queen-worker pairs longitudinally collected across different stages of the nest development. Species composition of both queen and worker shifts with the colony's growth, and the queen-to-worker vertical inheritance of specific strains was identified. Finally, comparative metagenome analysis showed clear host-specificity for microbes across different bee hosts. Species from honeybees often possess a higher level of strain variation, and they also exhibited more complex gene repertoires linked to polysaccharide digestion. Our results demonstrate bacterial transmission events in bumblebee, highlighting the role of social interactions in driving the microbiota composition. CONCLUSIONS By the community-wide metagenomic analysis based on the custom genomic database of bee gut bacteria, we reveal strain transmission events at high resolution and the dynamic changes in community structure along with the colony development. The social annual life cycle of bumblebees is key for the acquisition and development of the gut microbiota. Further studies using the bumblebee model will advance our understanding of the microbiome transmission and the underlying mechanisms, such as strain competition and niche selection. Video Abstract.
Collapse
Affiliation(s)
- Qinzhi Su
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qinglin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaohuan Mu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hao Chen
- Shandong Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yujie Meng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100083, China
| | - Li Zheng
- Shandong Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yifan Zhai
- Shandong Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
31
|
Abstract
Bumblebees (Bombus) are charismatic and important pollinators. They are one of the best studied insect groups, especially in terms of ecology, behavior, and social structure. As many species are declining, there is a clear need to understand more about them. Microbial symbionts, which can influence many dimensions of animal life, likely have an outsized role in bumblebee biology. Recent research has shown that a conserved set of beneficial gut bacterial symbionts is ubiquitous across bumblebees. These bacteria are related to gut symbionts of honeybees, but have not been studied as intensively. Here we synthesize studies of bumblebee gut microbiota, highlight major knowledge gaps, and suggest future directions. Several patterns emerge, such as symbiont-host specificity maintained by sociality, frequent symbiont loss from individual bees, symbiont-conferred protection from trypanosomatid parasites, and divergence between bumblebee and honeybee microbiota in several key traits. For many facets of bumblebee-microbe interactions, however, underlying mechanisms and ecological functions remain unclear. Such information is important if we are to understand how bumblebees shape, and are shaped by, their gut microbiota. Bumblebees may provide a useful system for microbiome scientists, providing insights into general principles of host-microbe interactions. We also note how microbiota could influence bumblebee traits and responses to stressors. Finally, we propose that tinkering with the microbiota could be one way to aid bumblebee resilience in the face of global change.
Collapse
Affiliation(s)
- Tobin J. Hammer
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703
- Corresponding author:
| | - Eli Le
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703
| | - Alexia N. Martin
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703
| |
Collapse
|
32
|
Powell JE, Carver Z, Leonard SP, Moran NA. Field-Realistic Tylosin Exposure Impacts Honey Bee Microbiota and Pathogen Susceptibility, Which Is Ameliorated by Native Gut Probiotics. Microbiol Spectr 2021; 9:e0010321. [PMID: 34160267 PMCID: PMC8552731 DOI: 10.1128/spectrum.00103-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
Antibiotics have been applied to honey bee (Apis mellifera) hives for decades to treat Paenibacillus larvae, which causes American foulbrood disease and kills honey bee larvae. One of the few antibiotics approved in apiculture is tylosin tartrate. This study examined how a realistic hive treatment regimen of tylosin affected the gut microbiota of bees and susceptibility to a bacterial pathogen. Tylosin treatment reduced bacterial species richness and phylogenetic diversity and reduced the absolute abundances and strain diversity of the beneficial core gut bacteria Snodgrassella alvi and Bifidobacterium spp. Bees from hives treated with tylosin died more quickly after being fed a bacterial pathogen (Serratia marcescens) in the laboratory. We then tested whether a probiotic cocktail of core bee gut species could bolster pathogen resistance. Probiotic exposure increased survival of bees from both control and tylosin-treated hives. Finally, we measured tylosin tolerance of core bee gut bacteria by plating cultured isolates on media with different tylosin concentrations. We observed highly variable responses, including large differences among strains of both S. alvi and Gilliamella spp. Thus, probiotic treatments using cultured bee gut bacteria may ameliorate harmful perturbations of the gut microbiota caused by antibiotics or other factors. IMPORTANCE The antibiotic tylosin tartrate is used to treat honey bee hives to control Paenibacillus larvae, the bacterium that causes American foulbrood. We found that bees from tylosin-treated hives had gut microbiomes with depleted overall diversity as well as reduced absolute abundances and strain diversity of the beneficial bee gut bacteria Snodgrassella alvi and Bifidobacterium spp. Furthermore, bees from treated hives suffered higher mortality when challenged with an opportunistic pathogen. Bees receiving a probiotic treatment, consisting of a cocktail of cultured isolates of native bee gut bacteria, had increased survival following pathogen challenge. Thus, probiotic treatment with native gut bacteria may ameliorate negative effects of antibiotic exposure.
Collapse
Affiliation(s)
- J. Elijah Powell
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| | - Zac Carver
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| | - Sean P. Leonard
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| |
Collapse
|
33
|
Beigel K, Matthews AE, Kellner K, Pawlik CV, Greenwold M, Seal JN. Cophylogenetic analyses of Trachymyrmex ant-fungal specificity: "One to one with some exceptions". Mol Ecol 2021; 30:5605-5620. [PMID: 34424571 DOI: 10.1111/mec.16140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023]
Abstract
Over the past few decades, large-scale phylogenetic analyses of fungus-gardening ants and their symbiotic fungi have depicted strong concordance among major clades of ants and their symbiotic fungi, yet within clades, fungus sharing is widespread among unrelated ant lineages. Sharing has been explained using a diffuse coevolution model within major clades. Understanding horizontal exchange within clades has been limited by conventional genetic markers that lack both interspecific and geographic variation. To examine whether reports of horizontal exchange were indeed due to symbiont sharing or the result of employing relatively uninformative molecular markers, samples of Trachymyrmex arizonensis and Trachymyrmex pomonae and their fungi were collected from native populations in Arizona and genotyped using conventional marker genes and genome-wide single nucleotide polymorphisms (SNPs). Conventional markers of the fungal symbionts generally exhibited cophylogenetic patterns that were consistent with some symbiont sharing, but most fungal clades had low support. SNP analysis, in contrast, indicated that each ant species exhibited fidelity to its own fungal subclade with only one instance of a colony growing a fungus that was otherwise associated with a different ant species. This evidence supports a pattern of codivergence between Trachymyrmex species and their fungi, and thus a diffuse coevolutionary model may not accurately predict symbiont exchange. These results suggest that fungal sharing across host species in these symbioses may be less extensive than previously thought.
Collapse
Affiliation(s)
- Katherine Beigel
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Alix E Matthews
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA.,College of Sciences and Mathematics and Molecular Biosciences Program, Arkansas State University, Jonesboro, Arkansas, USA
| | - Katrin Kellner
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Christine V Pawlik
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Matthew Greenwold
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Jon N Seal
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| |
Collapse
|
34
|
Wu Y, Zheng Y, Wang S, Chen Y, Tao J, Chen Y, Chen G, Zhao H, Wang K, Dong K, Hu F, Feng Y, Zheng H. Genetic divergence and functional convergence of gut bacteria between the Eastern honey bee Apis cerana and the Western honey bee Apis mellifera. J Adv Res 2021; 37:19-31. [PMID: 35499050 PMCID: PMC9039653 DOI: 10.1016/j.jare.2021.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/07/2021] [Accepted: 08/03/2021] [Indexed: 01/21/2023] Open
Abstract
The inter-species diversity of A. cerana and A. mellifera core gut bacteria was revealed. Core bacterial species of A. cerana and A. mellifera are distinctive in function. Functional profile of overall gut community of A. cerana and A. mellifera are similar. Metabolome showed that A. cerana and A. mellifera gut bacteria have similar metabolic capability. A. cerana and A. mellifera core gut bacteria have no strict host specificity.
Introduction The functional relevance of intra-species diversity in natural microbial communities remains largely unexplored. The guts of two closely related honey bee species, Apis cerana and A. mellifera, are colonised by a similar set of core bacterial species composed of host-specific strains, thereby providing a good model for an intra-species diversity study. Objectives We aim to assess the functional relevance of intra-species diversity of A. cerana and A. mellifera gut microbiota. Methods Honey bee workers were collected from four regions of China. Their gut microbiomes were investigated by shotgun metagenomic sequencing, and the bacterial compositions were compared at the species level. A cross-species colonisation assay was conducted, with the gut metabolomes being characterised by LC-MS/MS. Results Comparative analysis showed that the strain composition of the core bacterial species was host-specific. These core bacterial species presented distinctive functional profiles between the hosts. However, the overall functional profiles of the A. cerana and A. mellifera gut microbiomes were similar; this was further supported by the consistency of the honey bees’ gut metabolome, as the gut microbiota of different honey bee species showed rather similar metabolic profiles in the cross-species colonisation assay. Moreover, this experiment also demonstrated that the gut microbiota of A. cerana and A. mellifera could cross colonise between the two honey bee species. Conclusion Our findings revealed functional differences in most core gut bacteria between the guts of A. cerana and A. mellifera, which may be associated with their inter-species diversity. However, the functional profiles of the overall gut microbiomes between the two honey bee species converge, probably as a result of the overlapping ecological niches of the two species. Our findings provide critical insights into the evolution and functional roles of the mutualistic microbiota of honey bees and reveal that functional redundancy could stabilise the gene content diversity at the strain-level within the gut community.
Collapse
Affiliation(s)
- Yuqi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yufei Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - Junyi Tao
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yanan Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Gongwen Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kun Dong
- Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Corresponding authors.
| | - Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute for Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Corresponding authors.
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Corresponding authors.
| |
Collapse
|
35
|
Evolution of Interbacterial Antagonism in Bee Gut Microbiota Reflects Host and Symbiont Diversification. mSystems 2021; 6:6/3/e00063-21. [PMID: 33975963 PMCID: PMC8125069 DOI: 10.1128/msystems.00063-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antagonistic interactions between bacteria affect diversity and dynamics of host-associated communities, including gut communities that are linked to host health. In many bacterial communities, including human and honey bee gut microbiotas, antagonism is mediated by type VI secretion systems (T6SSs) that deliver lethal toxins to competing strains. Gram-negative bacteria frequently possess type VI secretion systems (T6SSs), protein complexes that are able to inject toxic proteins into nearby cells. Many aspects of T6SS structure and function have been characterized for model species, but less is known about the evolutionary processes that shape T6SS and effector (toxin) diversity in host-associated microbial communities. The bee gut microbiota is a simple community that has codiversified with bees for >80 million years. This study investigated how complements of T6SSs and effectors within the bee microbiota changed as bacteria and their hosts diversified into isolated species. We used protein homology to survey 198 isolate genomes of 9 Gram-negative species for genes encoding T6SS structural components; Rhs toxins, which are common T6SS effectors; and VgrG proteins, which are structural components associated with specific toxins. T6SS loci were present in 5 species clusters found only in bees, namely Apibacter spp., Gilliamella spp., Frischella perrara, “Candidatus Schmidhempelia bombi,” and Snodgrassella alvi. The distribution of T6SS loci suggests that at least 3 were present in the microbiota of the common ancestor of social bees and that loss of these genes in some bacterial lineages was linked to both host and bacterial speciation. Isolates differed enormously in repertoires of Rhs and VgrG proteins. We found that bacterial species employ different mechanisms for toxin acquisition and diversification and that species and strains sometimes lose the T6SS entirely, likely causing shifts in competitive dynamics within these communities. IMPORTANCE Antagonistic interactions between bacteria affect diversity and dynamics of host-associated communities, including gut communities that are linked to host health. In many bacterial communities, including human and honey bee gut microbiotas, antagonism is mediated by type VI secretion systems (T6SSs) that deliver lethal toxins to competing strains. In this study, we explored how T6SSs and associated toxins have evolved in the simple, host-specific gut microbiota of honey bees and bumble bees. Using comparative genomics, we explored the conservation, recombination, horizontal transfer, and loss of T6SSs and effectors during 80 million years of evolution of this bee-associated community. We find that that patterns of T6SS loss and retention are linked to differences in biology across host species, while trends in effector diversification are mostly specific to bacterial lineages.
Collapse
|
36
|
Alberoni D, Baffoni L, Braglia C, Gaggìa F, Di Gioia D. Honeybees Exposure to Natural Feed Additives: How Is the Gut Microbiota Affected? Microorganisms 2021; 9:microorganisms9051009. [PMID: 34067140 PMCID: PMC8151652 DOI: 10.3390/microorganisms9051009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 01/28/2023] Open
Abstract
The role of a balanced gut microbiota to maintain health and prevent diseases is largely established in humans and livestock. Conversely, in honeybees, studies on gut microbiota perturbations by external factors have started only recently. Natural methods alternative to chemical products to preserve honeybee health have been proposed, but their effect on the gut microbiota has not been examined in detail. This study aims to investigate the effect of the administration of a bacterial mixture of bifidobacteria and Lactobacillaceae and a commercial product HiveAliveTM on honeybee gut microbiota. The study was developed in 18 hives of about 2500 bees, with six replicates for each experimental condition for a total of three experimental groups. The absolute abundance of main microbial taxa was studied using qPCR and NGS. The results showed that the majority of the administered strains were detected in the gut. On the whole, great perturbations upon the administration of the bacterial mixture and the plant-based commercial product were not observed in the gut microbiota. Significant variations with respect to the untreated control were only observed for Snodgrassella sp. for the bacterial mixture, Bartonella sp. in HiveAliveTM and Bombilactobacillus sp. for both. Therefore, the studied approaches are respectful of the honeybee microbiota composition, conceivably without compromising the bee nutritional, social and ecological functions.
Collapse
|
37
|
Mogren CL, Shikano I. Microbiota, pathogens, and parasites as mediators of tritrophic interactions between insect herbivores, plants, and pollinators. J Invertebr Pathol 2021; 186:107589. [PMID: 33865846 DOI: 10.1016/j.jip.2021.107589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/09/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023]
Abstract
Insect-associated microbes, including pathogens, parasites, and symbionts, influence the interactions of herbivorous insects and pollinators with their host plants. Moreover, herbivory-induced changes in plant resource allocation and defensive chemistry can influence pollinator behavior. This suggests that the outcomes of interactions between herbivores, their microbes and host plants could have implications for pollinators. As epizootic diseases occur at high population densities, pathogen and parasite-mediated effects on plants could have landscape-level impacts on foraging pollinators. The goal of this minireview is to highlight the potential for an herbivore's multitrophic interactions to trigger plant-mediated effects on the immunity and health of pollinators. We highlight the importance of plant quality and gut microbiomes in bee health, and how caterpillars as model herbivores interact with pathogens, parasites, and symbionts to affect plant quality, which forms the centerpiece of multitrophic interactions between herbivores and pollinators. We also discuss the impacts of other herbivore-associated factors, such as agricultural inputs aimed at decreasing herbivorous pests, on pollinator microbiomes.
Collapse
Affiliation(s)
- Christina L Mogren
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Mānoa, 3050 Maile Way, Gilmore Hall 310, Honolulu, HI 96822, USA
| | - Ikkei Shikano
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Mānoa, 3050 Maile Way, Gilmore Hall 310, Honolulu, HI 96822, USA.
| |
Collapse
|
38
|
Alberoni D, Favaro R, Baffoni L, Angeli S, Di Gioia D. Neonicotinoids in the agroecosystem: In-field long-term assessment on honeybee colony strength and microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144116. [PMID: 33383302 DOI: 10.1016/j.scitotenv.2020.144116] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/05/2020] [Accepted: 11/21/2020] [Indexed: 05/11/2023]
Abstract
Bees can be severely affected by various plant protection products (PPP). Among these, neonicotinoid insecticides are of concern as they have been shown to be responsible for extensive honeybee colonies death when released into the environment. Also, sublethal neonicotinoid doses contaminating single honeybees and their colonies (e.g. through contaminated pollen) are responsible for honeybees physiological alterations with probable implication also on microbiome functionality. Honeybees show symbiotic interactions with specific gut bacteria that can enhance the adult host performances. Among the known mechanisms, the modulation of the immune system, the degradation of recalcitrant secondary plant metabolites, pollen digestion, and hormonal signaling, are the most important functional benefits for the host honeybee. To date, few research efforts have aimed at revealing the impact of PPP on the gut microbial community of managed and wild honeybees. The majority of the existing literature relays on cage or semifield tests of short duration for research investigating neonicotinoids-gut microbiome interactions. This research wanted to unravel the impact of two neonicotinoids (i.e. imidacloprid and thiacloprid) in natural field conditions up to 5 weeks of exposure. A long-term impact of neonicotinoids on gut microbial community of honeybees was observed. The alterations affected several microbial genera and species such as Frischella spp., lactobacilli and bifidobacteria, whose shifting is implicated in intestinal dysbiosis. Long-term impact leading to dysbiosis was detected in case of exposure to imidacloprid, whereas thiacloprid exposure stimulated temporary dysbiosis. Moreover, the microbial diversity was significantly reduced in neonicotinoid-treated groups. Overall, the reported results support a compromised functionality of the gut microbial community, that might reflect a lower efficiency in the ecosystemic functionality of honeybees.
Collapse
Affiliation(s)
- D Alberoni
- Department of Agriculture and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - R Favaro
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - L Baffoni
- Department of Agriculture and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy.
| | - S Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - D Di Gioia
- Department of Agriculture and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| |
Collapse
|
39
|
Goodrich-Blair H. Interactions of host-associated multispecies bacterial communities. Periodontol 2000 2021; 86:14-31. [PMID: 33690897 DOI: 10.1111/prd.12360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The oral microbiome comprises microbial communities colonizing biotic (epithelia, mucosa) and abiotic (enamel) surfaces. Different communities are associated with health (eg, immune development, pathogen resistance) and disease (eg, tooth loss and periodontal disease). Like any other host-associated microbiome, colonization and persistence of both beneficial and dysbiotic oral microbiomes are dictated by successful utilization of available nutrients and defense against host and competitor assaults. This chapter will explore these general features of microbe-host interactions through the lens of symbiotic (mutualistic and antagonistic/pathogenic) associations with nonmammalian animals. Investigations in such systems across a broad taxonomic range have revealed conserved mechanisms and processes that underlie the complex associations among microbes and between microbes and hosts.
Collapse
Affiliation(s)
- Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
40
|
Hammer TJ, Le E, Moran NA. Thermal niches of specialized gut symbionts: the case of social bees. Proc Biol Sci 2021; 288:20201480. [PMID: 33563119 DOI: 10.1098/rspb.2020.1480] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Responses to climate change are particularly complicated in species that engage in symbioses, as the niche of one partner may be modified by that of the other. We explored thermal traits in gut symbionts of honeybees and bumblebees, which are vulnerable to rising temperatures. In vitro assays of symbiont strains isolated from 16 host species revealed variation in thermal niches. Strains from bumblebees tended to be less heat-tolerant than those from honeybees, possibly due to bumblebees maintaining cooler nests or inhabiting cooler climates. Overall, however, bee symbionts grew at temperatures up to 44°C and withstood temperatures up to 52°C, at or above the upper thermal limits of their hosts. While heat-tolerant, most strains of the symbiont Snodgrassella grew relatively slowly below 35°C, perhaps because of adaptation to the elevated body temperatures that bees maintain through thermoregulation. In a gnotobiotic bumblebee experiment, Snodgrassella was unable to consistently colonize bees reared at 29°C under conditions that limit thermoregulation. Thus, host thermoregulatory behaviour appears important in creating a warm microenvironment for symbiont establishment. Bee-microbiome-temperature interactions could affect host health and pollination services, and inform research on the thermal biology of other specialized gut symbionts.
Collapse
Affiliation(s)
- Tobin J Hammer
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703, USA
| | - Eli Le
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703, USA
| |
Collapse
|
41
|
Geldert C, Abdo Z, Stewart JE, H S A. Dietary supplementation with phytochemicals improves diversity and abundance of honey bee gut microbiota. J Appl Microbiol 2020; 130:1705-1720. [PMID: 33058297 DOI: 10.1111/jam.14897] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/21/2020] [Accepted: 10/10/2020] [Indexed: 12/20/2022]
Abstract
AIM Determine the impact of beneficial phytochemicals on diversity and abundance of the gut microbiome in the honey bee (Apis mellifera). METHODS AND RESULTS Eight-day-old honey bee workers were fed 25 ppm of phytochemical (caffeine, gallic acid, p-coumaric acid or kaempferol) in 20% sucrose. Guts of bees collected at 3 and 6 days were excised and subjected to next-generation sequencing for bacterial 16S and fungal ITS regions. Although phytochemical supplementation fostered gut microbial diversity and abundance, the patterns differed between phytochemicals and there was a temporal stabilization of the bacterial community. While bacterial and fungal communities responded differently, all phytochemical treatments displayed increased abundance of the most represented bacterial genera, Snodgrassella sp. and Lactobacillus sp. CONCLUSIONS Phytochemical supplementation improves gut microbial diversity and abundance, reiterating the need for diverse habitats that provide bees with access to pollen and nectar rich in these micronutrients. Diverse gut microbiota can provide a strong line of defense for bees against biotic stressors while improving worker bee lifespan. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report on the impact of phytochemical supplementation on gut microbiota in honey bees and these findings have implications for strategic hive management through standardization of effective phytochemical and probiotic feed supplements.
Collapse
Affiliation(s)
- C Geldert
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Z Abdo
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - J E Stewart
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Arathi H S
- USDA/ARS, WRRC Invasive Species and Pollinator Health Research Unit, Davis, CA, USA
| |
Collapse
|
42
|
Abstract
The factors driving fine-scale composition and dynamics of gut microbial communities are poorly understood. In this study, we used metagenomic amplicon deep sequencing to decipher the strain dynamics of two key members of the honey bee gut microbiome. Using this high-throughput and cost-effective approach, we were able to confirm results from previous large-scale whole-genome shotgun (WGS) metagenomic sequencing studies while also gaining additional insights into the community dynamics of two core members of the honey bee gut microbiome. Moreover, we were able to show that cryptic strains are not responsible for the observed variations in microbiome composition across bees. Host-associated microbiomes can be critical for the health and proper development of animals and plants. The answers to many fundamental questions regarding the modes of acquisition and microevolution of microbiome communities remain to be established. Deciphering strain-level dynamics is essential to fully understand how microbial communities evolve, but the forces shaping the strain-level dynamics of microbial communities remain largely unexplored, mostly because of methodological issues and cost. Here, we used targeted strain-level deep sequencing to uncover the strain dynamics within a host-associated microbial community using the honey bee gut microbiome as a model system. Our results revealed that amplicon sequencing of conserved protein-coding gene regions using species-specific primers is a cost-effective and accurate method for exploring strain-level diversity. In fact, using this method we were able to confirm strain-level results that have been obtained from whole-genome shotgun sequencing of the honey bee gut microbiome but with a much higher resolution. Importantly, our deep sequencing approach allowed us to explore the impact of low-frequency strains (i.e., cryptic strains) on microbiome dynamics. Results show that cryptic strain diversity is not responsible for the observed variations in microbiome composition across bees. Altogether, the findings revealed new fundamental insights regarding strain dynamics of host-associated microbiomes. IMPORTANCE The factors driving fine-scale composition and dynamics of gut microbial communities are poorly understood. In this study, we used metagenomic amplicon deep sequencing to decipher the strain dynamics of two key members of the honey bee gut microbiome. Using this high-throughput and cost-effective approach, we were able to confirm results from previous large-scale whole-genome shotgun (WGS) metagenomic sequencing studies while also gaining additional insights into the community dynamics of two core members of the honey bee gut microbiome. Moreover, we were able to show that cryptic strains are not responsible for the observed variations in microbiome composition across bees.
Collapse
|
43
|
Ellegaard KM, Suenami S, Miyazaki R, Engel P. Vast Differences in Strain-Level Diversity in the Gut Microbiota of Two Closely Related Honey Bee Species. Curr Biol 2020. [PMID: 32531278 DOI: 10.1101/2020.01.23.916296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Most bacterial species encompass strains with vastly different gene content. Strain diversity in microbial communities is therefore considered to be of functional importance. Yet little is known about the extent to which related microbial communities differ in diversity at this level and which underlying mechanisms may constrain and maintain strain-level diversity. Here, we used shotgun metagenomics to characterize and compare the gut microbiota of two honey bee species, Apis mellifera and Apis cerana, which diverged about 6 mya. Although the host species are colonized largely by the same bacterial 16S rRNA phylotypes, we find that their communities are host specific when analyzed with genomic resolution. Moreover, despite their similar ecology, A. mellifera displayed a much higher diversity of strains and functional gene content in the microbiota compared to A. cerana, both per colony and per individual bee. In particular, the gene repertoire for polysaccharide degradation was massively expanded in the microbiota of A. mellifera relative to A. cerana. Bee management practices, divergent ecological adaptation, or habitat size may have contributed to the observed differences in microbiota genomic diversity of these key pollinator species. Our results illustrate that the gut microbiota of closely related animal hosts can differ vastly in genomic diversity while displaying similar levels of diversity based on the 16S rRNA gene. Such differences are likely to have consequences for gut microbiota functioning and host-symbiont interactions, highlighting the need for metagenomic studies to understand the ecology and evolution of microbial communities.
Collapse
Affiliation(s)
- Kirsten M Ellegaard
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Shota Suenami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8566 Tsukuba, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8566 Tsukuba, Japan; Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, 169-8555 Tokyo, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 305-8572 Tsukuba, Japan
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
44
|
Ellegaard KM, Suenami S, Miyazaki R, Engel P. Vast Differences in Strain-Level Diversity in the Gut Microbiota of Two Closely Related Honey Bee Species. Curr Biol 2020; 30:2520-2531.e7. [PMID: 32531278 PMCID: PMC7342003 DOI: 10.1016/j.cub.2020.04.070] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/31/2023]
Abstract
Most bacterial species encompass strains with vastly different gene content. Strain diversity in microbial communities is therefore considered to be of functional importance. Yet little is known about the extent to which related microbial communities differ in diversity at this level and which underlying mechanisms may constrain and maintain strain-level diversity. Here, we used shotgun metagenomics to characterize and compare the gut microbiota of two honey bee species, Apis mellifera and Apis cerana, which diverged about 6 mya. Although the host species are colonized largely by the same bacterial 16S rRNA phylotypes, we find that their communities are host specific when analyzed with genomic resolution. Moreover, despite their similar ecology, A. mellifera displayed a much higher diversity of strains and functional gene content in the microbiota compared to A. cerana, both per colony and per individual bee. In particular, the gene repertoire for polysaccharide degradation was massively expanded in the microbiota of A. mellifera relative to A. cerana. Bee management practices, divergent ecological adaptation, or habitat size may have contributed to the observed differences in microbiota genomic diversity of these key pollinator species. Our results illustrate that the gut microbiota of closely related animal hosts can differ vastly in genomic diversity while displaying similar levels of diversity based on the 16S rRNA gene. Such differences are likely to have consequences for gut microbiota functioning and host-symbiont interactions, highlighting the need for metagenomic studies to understand the ecology and evolution of microbial communities. Metagenomics reveals differences in gut microbiota diversity beyond the 16S rRNA gene Apis cerana and Apis mellifera harbor distinct species and strains in their gut Diversity is much higher in A. mellifera per individual bee and within colonies Major differences in functions are related to polysaccharide degradation
Collapse
Affiliation(s)
- Kirsten M Ellegaard
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Shota Suenami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8566 Tsukuba, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8566 Tsukuba, Japan; Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, 169-8555 Tokyo, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 305-8572 Tsukuba, Japan
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
45
|
Dharampal PS, Diaz-Garcia L, Haase MAB, Zalapa J, Currie CR, Hittinger CT, Steffan SA. Microbial Diversity Associated with the Pollen Stores of Captive-Bred Bumble Bee Colonies. INSECTS 2020; 11:insects11040250. [PMID: 32316296 PMCID: PMC7240610 DOI: 10.3390/insects11040250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022]
Abstract
The pollen stores of bumble bees host diverse microbiota that influence overall colony fitness. Yet, the taxonomic identity of these symbiotic microbes is relatively unknown. In this descriptive study, we characterized the microbial community of pollen provisions within captive-bred bumble bee hives obtained from two commercial suppliers located in North America. Findings from 16S rRNA and ITS gene-based analyses revealed that pollen provisions from the captive-bred hives shared several microbial taxa that have been previously detected among wild populations. While diverse microbes across phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Ascomycota were detected in all commercial hives, significant differences were detected at finer-scale taxonomic resolution based on the supplier source. The causative agent of chalkbrood disease in honey bees, Ascosphaera apis, was detected in all hives obtained from one supplier source, although none of the hives showed symptoms of infection. The shared core microbiota across both commercial supplier sources consisted of two ubiquitous bee-associated groups, Lactobacillus and Wickerhamiella/Starmerella clade yeasts that potentially contribute to the beneficial function of the microbiome of bumble bee pollen provisions.
Collapse
Affiliation(s)
- Prarthana S. Dharampal
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Correspondence:
| | - Luis Diaz-Garcia
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA; (L.D.-G.); (J.Z.)
- Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Aguascalientes 20676, Mexico
| | - Max A. B. Haase
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.A.B.H.); (C.T.H.)
| | - Juan Zalapa
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA; (L.D.-G.); (J.Z.)
- USDA-ARS, Vegetable Crop Research Unit, Madison, WI 53706, USA
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.A.B.H.); (C.T.H.)
| | - Shawn A. Steffan
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA;
- USDA-ARS, Vegetable Crop Research Unit, Madison, WI 53706, USA
| |
Collapse
|
46
|
Bonilla-Rosso G, Steiner T, Wichmann F, Bexkens E, Engel P. Honey bees harbor a diverse gut virome engaging in nested strain-level interactions with the microbiota. Proc Natl Acad Sci U S A 2020; 117:7355-7362. [PMID: 32179689 PMCID: PMC7132132 DOI: 10.1073/pnas.2000228117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The honey bee gut microbiota influences bee health and has become an important model to study the ecology and evolution of microbiota-host interactions. Yet, little is known about the phage community associated with the bee gut, despite its potential to modulate bacterial diversity or to govern important symbiotic functions. Here we analyzed two metagenomes derived from virus-like particles, analyzed the prevalence of the identified phages across 73 bacterial metagenomes from individual bees, and tested the host range of isolated phages. Our results show that the honey bee gut virome is composed of at least 118 distinct clusters corresponding to both temperate and lytic phages and representing novel genera with a large repertoire of unknown gene functions. We find that the phage community is prevalent in honey bees across space and time and targets the core members of the bee gut microbiota. The large number and high genetic diversity of the viral clusters seems to mirror the high extent of strain-level diversity in the bee gut microbiota. We isolated eight lytic phages that target the core microbiota member Bifidobacterium asteroides, but that exhibited different host ranges at the strain level, resulting in a nested interaction network of coexisting phages and bacterial strains. Collectively, our results show that the honey bee gut virome consists of a complex and diverse phage community that likely plays an important role in regulating strain-level diversity in the bee gut and that holds promise as an experimental model to study bacteria-phage dynamics in natural microbial communities.
Collapse
Affiliation(s)
- Germán Bonilla-Rosso
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Théodora Steiner
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Fabienne Wichmann
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Evan Bexkens
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
47
|
López-Uribe MM, Ricigliano VA, Simone-Finstrom M. Defining Pollinator Health: A Holistic Approach Based on Ecological, Genetic, and Physiological Factors. Annu Rev Anim Biosci 2019; 8:269-294. [PMID: 31618045 DOI: 10.1146/annurev-animal-020518-115045] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evidence for global bee population declines has catalyzed a rapidly evolving area of research that aims to identify the causal factors and to effectively assess the status of pollinator populations. The term pollinator health emerged through efforts to understand causes of bee decline and colony losses, but it lacks a formal definition. In this review, we propose a definition for pollinator health and synthesize the available literature on the application of standardized biomarkers to assess health at the individual, colony, and population levels. We focus on biomarkers in honey bees, a model species, but extrapolate the potential application of these approaches to monitor the health status of wild bee populations. Biomarker-guided health measures can inform beekeeper management decisions, wild bee conservation efforts, and environmental policies. We conclude by addressing challenges to pollinator health from a One Health perspective that emphasizes the interplay between environmental quality and human, animal, and bee health.
Collapse
Affiliation(s)
- Margarita M López-Uribe
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Vincent A Ricigliano
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana 70820, USA; ,
| | - Michael Simone-Finstrom
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana 70820, USA; ,
| |
Collapse
|
48
|
Sauers LA, Sadd BM. An interaction between host and microbe genotypes determines colonization success of a key bumble bee gut microbiota member. Evolution 2019; 73:2333-2342. [PMID: 31584186 DOI: 10.1111/evo.13853] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
There has been a proliferation of studies demonstrating an organism's health is influenced by its microbiota. However, factors influencing beneficial microbe colonization and the evolution of these relationships remain understudied relative to host-pathogen interactions. Vertically transmitted beneficial microbes are predicted to show high levels of specificity in colonization, including genotype matching, which may transpire through coevolution. We investigate how host and bacterial genotypes influence colonization of a core coevolved microbiota member in bumble bees. The hindgut colonizing Snodgrassella alvi confers direct benefits, but, as an early colonizer, also facilitates the further development of a healthy microbiota. Due to predominantly vertical transmission promoting tight evolution between colonization factors of bacteria and host lineages, we predict that genotype-by-genotype interactions will determine successful colonization. Germ-free adult bees from seven bumble bee colonies (host genotypic units) were inoculated with one of six genetically distinct strains of S. alvi. Subsequent colonization within host and microbe genotypes combinations ranged from 0 to 100%, and an interaction between host and microbe genotypes determined colonization success. This novel finding of a genotype-by-genotype interaction determining colonization in an animal host-beneficial microbe system has implications for the ecological and evolutionary dynamics of host and microbe, including associated host-fitness benefits.
Collapse
Affiliation(s)
- Logan A Sauers
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61761
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61761
| |
Collapse
|
49
|
Rothman JA, Leger L, Graystock P, Russell K, McFrederick QS. The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environ Microbiol 2019; 21:3417-3429. [PMID: 31026366 DOI: 10.1111/1462-2920.14641] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/12/2019] [Accepted: 04/24/2019] [Indexed: 02/02/2023]
Abstract
Bumble bees are important and widespread insect pollinators who face many environmental challenges. For example, bees are exposed to the metalloid selenate when foraging on pollen and nectar from plants growing in contaminated soils. As it has been shown that the microbiome of animals reduces metalloid toxicity, we assayed the ability of the bee microbiome to increase survivorship against selenate challenge. We exposed uninoculated or microbiota-inoculated Bombus impatiens workers to a field-realistic dose of 0.75 mg l-1 selenate and found that microbiota-inoculated bees survive slightly but significantly longer than uninoculated bees. Using 16S rRNA gene sequencing, we found that selenate exposure altered gut microbial community composition and relative abundance of specific core bacteria. We also grew two core bumble bee microbes - Snodgrassella alvi and Lactobacillus bombicola - in selenate-spiked media and found that these bacteria grew in the tested concentrations of 0.001-10 mg l-1 selenate. Furthermore, the genomes of these microbes harbour genes involved in selenate detoxification. The bumble bee microbiome slightly increases survivorship when the host is exposed to selenate, but the specific mechanisms and colony-level benefits under natural settings require further study.
Collapse
Affiliation(s)
- Jason A Rothman
- Graduate Program in Microbiology, University of California, Riverside, CA, 92521, USA.,Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Laura Leger
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Peter Graystock
- Department of Entomology, University of California, Riverside, CA, 92521, USA.,Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Kaleigh Russell
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Quinn S McFrederick
- Graduate Program in Microbiology, University of California, Riverside, CA, 92521, USA.,Department of Entomology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
50
|
Romero S, Nastasa A, Chapman A, Kwong WK, Foster LJ. The honey bee gut microbiota: strategies for study and characterization. INSECT MOLECULAR BIOLOGY 2019; 28:455-472. [PMID: 30652367 DOI: 10.1111/imb.12567] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gut microbiota research is an emerging field that improves our understanding of the ecological and functional dynamics of gut environments. The honey bee gut microbiota is a highly rewarding community to study, as honey bees are critical pollinators of many crops for human consumption and produce valuable commodities such as honey and wax. Most significantly, unique characteristics of the Apis mellifera gut habitat make it a valuable model system. This review discusses methods and pipelines used in the study of the gut microbiota of Ap. mellifera and closely related species for four main purposes: identifying microbiota taxonomy, characterizing microbiota genomes (microbiome), characterizing microbiota-microbiota interactions and identifying functions of the microbial community in the gut. The purpose of this contribution is to increase understanding of honey bee gut microbiota, to facilitate bee microbiota and microbiome research in general and to aid design of future experiments in this growing field.
Collapse
Affiliation(s)
- S Romero
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - A Nastasa
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - A Chapman
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - W K Kwong
- Biodiversity Research Centre, Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - L J Foster
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|