1
|
Dudley EG. The E. coli CRISPR-Cas conundrum: are they functional immune systems or genomic singularities? EcoSal Plus 2025:eesp00402020. [PMID: 40202350 DOI: 10.1128/ecosalplus.esp-0040-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 03/13/2025] [Indexed: 04/10/2025]
Abstract
The discovery and subsequent characterization and applications of CRISPR-Cas is one of the most fascinating scientific stories from the past two decades. While first identified in Escherichia coli, this microbial workhorse often took a back seat to other bacteria during the early race to detail CRISPR-Cas function as an adaptive immune system. This was not a deliberate slight, but the result of early observations that the CRISPR-Cas systems found in E. coli were not robust phage defense systems as first described in Streptococcus thermophilus. This apparent lack of activity was discovered to result from transcriptional repression by the nucleoid protein H-NS. Despite extensive evidence arguing against such roles, some studies still present E. coli CRISPR-Cas systems in the context of anti-phage and/or anti-plasmid activities. Here, the studies that led to our understanding of its cryptic nature are highlighted, along with ongoing research to uncover potential alternative functions in E. coli.
Collapse
Affiliation(s)
- Edward G Dudley
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Penn State E. coli Reference Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Muzyukina P, Soutourina O. CRISPR genotyping methods: Tracing the evolution from spoligotyping to machine learning. Biochimie 2024; 217:66-73. [PMID: 37506757 DOI: 10.1016/j.biochi.2023.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems provide prokaryotes with adaptive immunity defenses against foreign genetic invaders. The identification of CRISPR-Cas function is among the most impactful discoveries of recent decades that have shaped the development of genome editing in various organisms paving the way for a plethora of promising applications in biotechnology and health. Even before the discovery of CRISPR-Cas biological role, the particular structure of CRISPR loci has been explored for epidemiological genotyping of bacterial pathogens. CRISPR-Cas loci are arranged in CRISPR arrays of mostly identical direct repeats intercalated with invader-derived spacers and an operon of cas genes encoding the Cas protein components. Each small CRISPR RNA (crRNA) encoded within the CRISPR array constitutes a key functional unit of this RNA-based CRISPR-Cas defense system guiding the Cas effector proteins toward the foreign nucleic acids for their destruction. The information acquired from prior invader encounters and stored within CRISPR arrays turns out to be extremely valuable in tracing the microevolution and epidemiology of major bacterial pathogens. We review here the history of CRISPR-based typing strategies highlighting the first PCR-based methods that have set the stage for recent developments of high-throughput sequencing and machine learning-based approaches. A great amount of whole genome sequencing and metagenomic data accumulated in recent years opens up new avenues for combining experimental and computational approaches of high-resolution CRISPR-based typing.
Collapse
Affiliation(s)
- P Muzyukina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - O Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
3
|
Dion MB, Shah SA, Deng L, Thorsen J, Stokholm J, Krogfelt KA, Schjørring S, Horvath P, Allard A, Nielsen DS, Petit MA, Moineau S. Escherichia coli CRISPR arrays from early life fecal samples preferentially target prophages. THE ISME JOURNAL 2024; 18:wrae005. [PMID: 38366192 PMCID: PMC10910852 DOI: 10.1093/ismejo/wrae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/18/2024]
Abstract
CRISPR-Cas systems are defense mechanisms against phages and other nucleic acids that invade bacteria and archaea. In Escherichia coli, it is generally accepted that CRISPR-Cas systems are inactive in laboratory conditions due to a transcriptional repressor. In natural isolates, it has been shown that CRISPR arrays remain stable over the years and that most spacer targets (protospacers) remain unknown. Here, we re-examine CRISPR arrays in natural E. coli isolates and investigate viral and bacterial genomes for spacer targets using a bioinformatics approach coupled to a unique biological dataset. We first sequenced the CRISPR1 array of 1769 E. coli isolates from the fecal samples of 639 children obtained during their first year of life. We built a network with edges between isolates that reflect the number of shared spacers. The isolates grouped into 34 modules. A search for matching spacers in bacterial genomes showed that E. coli spacers almost exclusively target prophages. While we found instances of self-targeting spacers, those involving a prophage and a spacer within the same bacterial genome were rare. The extensive search for matching spacers also expanded the library of known E. coli protospacers to 60%. Altogether, these results favor the concept that E. coli's CRISPR-Cas is an antiprophage system and highlight the importance of reconsidering the criteria use to deem CRISPR-Cas systems active.
Collapse
Affiliation(s)
- Moïra B Dion
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Ling Deng
- Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
- Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Karen A Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300S Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Susanne Schjørring
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300S Copenhagen, Denmark
| | - Philippe Horvath
- IFF Danisco, Health & Biosciences, Dangé-Saint-Romain 86220, France
| | - Antoine Allard
- Département de physique, de génie physique et d’optique, Université Laval, Québec, QC G1V 0A6, Canada
- Centre interdisciplinaire en modélisation mathématique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Dennis S Nielsen
- Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Micalis, Jouy-en-Josas 78350, France
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC G1V 0A6, Canada
- Félix d’Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Liu C, Wang R, Li J, Cheng F, Shu X, Zhao H, Xue Q, Yu H, Wu A, Wang L, Hu S, Zhang Y, Yang J, Xiang H, Li M. Widespread RNA-based cas regulation monitors crRNA abundance and anti-CRISPR proteins. Cell Host Microbe 2023; 31:1481-1493.e6. [PMID: 37659410 DOI: 10.1016/j.chom.2023.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 09/04/2023]
Abstract
CRISPR RNAs (crRNAs) and Cas proteins work together to provide prokaryotes with adaptive immunity against genetic invaders like bacteriophages and plasmids. However, the coordination of crRNA production and cas expression remains poorly understood. Here, we demonstrate that widespread modulatory mini-CRISPRs encode cas-regulating RNAs (CreRs) that mediate autorepression of type I-B, I-E, and V-A Cas proteins, based on their limited complementarity to cas promoters. This autorepression not only reduces autoimmune risks but also responds to changes in the abundance of canonical crRNAs that compete with CreR for Cas proteins. Furthermore, the CreR-guided autorepression of Cas proteins can be alleviated or even subverted by diverse bacteriophage anti-CRISPR (Acr) proteins that inhibit Cas effectors, which, in turn, promotes the generation of new Cas proteins. Our findings reveal a general RNA-guided autorepression paradigm for diverse Cas effectors, shedding light on the intricate self-coordination of CRISPR-Cas and its transcriptional counterstrategy against Acr proteins.
Collapse
Affiliation(s)
- Chao Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feiyue Cheng
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xian Shu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Huiwei Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qiong Xue
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Aici Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lingyun Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China
| | - Sushu Hu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yihan Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Jun Yang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Ming Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Song S, Semenova E, Severinov K, Fernández-García L, Benedik MJ, Maeda T, Wood TK. CRISPR-Cas Controls Cryptic Prophages. Int J Mol Sci 2022; 23:16195. [PMID: 36555835 PMCID: PMC9782134 DOI: 10.3390/ijms232416195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The bacterial archetypal adaptive immune system, CRISPR-Cas, is thought to be repressed in the best-studied bacterium, Escherichia coli K-12. We show here that the E. coli CRISPR-Cas system is active and serves to inhibit its nine defective (i.e., cryptic) prophages. Specifically, compared to the wild-type strain, reducing the amounts of specific interfering RNAs (crRNA) decreases growth by 40%, increases cell death by 700%, and prevents persister cell resuscitation. Similar results were obtained by inactivating CRISPR-Cas by deleting the entire 13 spacer region (CRISPR array); hence, CRISPR-Cas serves to inhibit the remaining deleterious effects of these cryptic prophages, most likely through CRISPR array-derived crRNA binding to cryptic prophage mRNA rather than through cleavage of cryptic prophage DNA, i.e., self-targeting. Consistently, four of the 13 E. coli spacers contain complementary regions to the mRNA sequences of seven cryptic prophages, and inactivation of CRISPR-Cas increases the level of mRNA for lysis protein YdfD of cryptic prophage Qin and lysis protein RzoD of cryptic prophage DLP-12. In addition, lysis is clearly seen via transmission electron microscopy when the whole CRISPR-Cas array is deleted, and eliminating spacer #12, which encodes crRNA with complementary regions for DLP-12 (including rzoD), Rac, Qin (including ydfD), and CP4-57 cryptic prophages, also results in growth inhibition and cell lysis. Therefore, we report the novel results that (i) CRISPR-Cas is active in E. coli and (ii) CRISPR-Cas is used to tame cryptic prophages, likely through RNAi, i.e., unlike with active lysogens, active CRISPR-Cas and cryptic prophages may stably co-exist.
Collapse
Affiliation(s)
- Sooyeon Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Animal Science, Jeonbuk National University, Jeonju-Si 54896, Republic of Korea
- Agricultural Convergence Technology, Jeonbuk National University, Jeonju-Si 54896, Republic of Korea
| | - Ekaterina Semenova
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Laura Fernández-García
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael J. Benedik
- Office of the Provost, Hamad bin Khalifa University, Education City, Doha P.O. Box 34110, Qatar
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Kang HJ, Lim SK, Lee YJ. Genetic characterization of third- or fourth-generation cephalosporin-resistant avian pathogenic Escherichia coli isolated from broilers. Front Vet Sci 2022; 9:1055320. [PMID: 36504870 PMCID: PMC9732669 DOI: 10.3389/fvets.2022.1055320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022] Open
Abstract
The third- or fourth-generation cephalosporins (3GC or 4 GC) are classified as "critically important antimicrobials for human medicine" by WHO, but resistance to these drugs is increasing rapidly in avian pathogenic E. coli (APEC). This study investigated the distribution and genetic characteristics of 3GC- or 4 GC-resistant APEC isolates from five major integrated broiler operations in Korea. The prevalence of 3GC- or 4GC-resistant APEC isolates in 1-week-old broilers was the highest in farms of operation C (53.3%); however, the highest prevalence of these isolates in 4-week-old broilers was the highest on the farms of operation A (60.0%), followed by operations E (50.0%) and C (35.7%). All 49 3GC- or 4GC-resistant APEC isolates had at least one β-lactamase-encoding gene. The most common β-lactamase-encoding genes was extended-spectrum β-lactamase gene, bla CTX-M-15, detected in 24 isolates (49.0%), followed by bla TEM-1 (32.7%). Sixteen isolates (32.7%) harbored class 1 integrons, and four isolates (8.2%) showed different gene cassette-arrangements. However, only 1 of 26 isolates harboring class 2 integrons carried a gene cassette. Furthermore, both CRISPR 1 and 2 arrays were detected in most isolates (36 isolates; 73.5%), followed by CRISPR 2 (18.4%) and CRISPR 1 (4.1%). Interestingly, CRISPR 2 was significantly more prevalent in multidrug resistant (MDR)-APEC isolates than in non-MDR APEC isolates, whereas CRISPR 3 and 4 were significantly more prevalent in non-MDR APEC isolates (each 11.1%; p < 0.05). None of the protospacers of CRISPR arrays were directly associated with antimicrobial resistance. Our findings indicate that the distribution and characteristics of 3GC or 4GC-resistant APEC isolates differed among the integrated broiler operations; moreover, improved management protocols are needed to control the horizontal transmission of 3GC or 4GC-resistant APEC isolates.
Collapse
Affiliation(s)
- Hyo Jung Kang
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, South Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Young Ju Lee
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
7
|
Kushwaha SK, Narasimhan LP, Chithananthan C, Marathe SA. Clustered regularly interspaced short palindromic repeats-Cas system: diversity and regulation in Enterobacteriaceae. Future Microbiol 2022; 17:1249-1267. [PMID: 36006039 DOI: 10.2217/fmb-2022-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Insights into the arms race between bacteria and invading mobile genetic elements have revealed the intricacies of the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system and the counter-defenses of bacteriophages. Incredible spacer diversity but significant spacer conservation among species/subspecies dictates the specificity of the CRISPR-Cas system. Researchers have exploited this feature to type/subtype the bacterial strains, devise targeted antimicrobials and regulate gene expression. This review focuses on the nuances of the CRISPR-Cas systems in Enterobacteriaceae that predominantly harbor type I-E and I-F CRISPR systems. We discuss the systems' regulation by the global regulators, H-NS, LeuO, LRP, cAMP receptor protein and other regulators in response to environmental stress. We further discuss the regulation of noncanonical functions like DNA repair pathways, biofilm formation, quorum sensing and virulence by the CRISPR-Cas system. The review comprehends multiple facets of the CRISPR-Cas system in Enterobacteriaceae including its diverse attributes, association with genetic features, regulation and gene regulatory mechanisms.
Collapse
Affiliation(s)
- Simran K Kushwaha
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, 333031, India
| | - Lakshmi P Narasimhan
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, 333031, India
| | - Chandrananthi Chithananthan
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, 333031, India
| | - Sandhya A Marathe
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, 333031, India
| |
Collapse
|
8
|
Kang HJ, Lee YJ. Distribution of CRISPR in Escherichia coli Isolated from Bulk Tank Milk and Its Potential Relationship with Virulence. Animals (Basel) 2022; 12:503. [PMID: 35203211 PMCID: PMC8868466 DOI: 10.3390/ani12040503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Escherichia coli is one of the most common causes of mastitis on dairy farms around the world, but its clinical severity is determined by a combination of virulence factors. Recently, clustered regularly interspaced short palindromic repeat (CRISPR) arrays have been reported as a novel typing method because of their usefulness in discriminating pathogenic bacterial isolates. Therefore, this study aimed to investigate the virulence potential of E. coli isolated from bulk tank milk, not from mastitis, and to analyze its pathogenic characterization using the CRISPR typing method. In total, 164 (89.6%) out of 183 E. coli isolated from the bulk tank milk of 290 farms carried one or more of eighteen virulence genes. The most prevalent virulence gene was fimH (80.9%), followed by iss (38.3%), traT (26.8%), ompT (25.7%), afa/draBC (24.0%), and univcnf (21.9%). Moreover, the phylogenetic group with the highest prevalence was B1 (64.0%), followed by A (20.1%), D (8.5%), and C (7.3%) (p < 0.05). Among the four CRISPR loci, only two, CRISPR 1 and CRISPR 2, were found. Interestingly, the distribution of CRISPR 1 was significantly higher in groups A and B1 compared to that of CRISPR 2 (p < 0.05), but there were no significant differences in groups C and D. The prevalence of CRISPR 1 by virulence gene ranged from 91.8% to 100%, whereas that of CRISPR 2 ranged from 57.5% to 93.9%. The distribution of CRISPR 1 was significantly higher in fimH, ompT, afa/draBC, and univcnf genes than that of CRISPR 2 (p < 0.05). The most prevalent E. coli sequence types (EST) among 26 ESTs was EST 22 (45.1%), followed by EST 4 (23.2%), EST 16 (20.1%), EST 25 (19.5%), and EST 24 (18.3%). Interestingly, four genes, fimH, ompT, afa/draBC, and univcnf, had a significantly higher prevalence in both EST 4 and EST 22 (p < 0.05). Among the seven protospacers derived from CRISPR 1, protospacer 163 had the highest prevalence (20.4%), and it only existed in EST 4 and EST 22. This study suggests that the CRISPR sequence-typing approach can help to clarify and trace virulence potential, although the E. coli isolates were from normal bulk tank milk and not from mastitis.
Collapse
Affiliation(s)
| | - Young-Ju Lee
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Korea;
| |
Collapse
|
9
|
Kim K, Lee YJ. Relationship between CRISPR sequence type and antimicrobial resistance in avian pathogenic Escherichia coli. Vet Microbiol 2022; 266:109338. [PMID: 35051827 DOI: 10.1016/j.vetmic.2022.109338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/09/2021] [Accepted: 01/08/2022] [Indexed: 12/24/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) is a primary cause of extraintestinal disease and respiratory infections in chickens; therefore, various antimicrobials applied via mass medication in farms to control APEC in Korea. In this study, we analyzed the relationship between CRISPR sequence type and antimicrobial resistance (AMR) in APEC isolates. Based on spacer distribution, a total of 103 CRISPR-positive APEC isolates were classified into 25 E. coli sequence types (ESTs), largely into two clusters that were correlated with phylogenetic groups: isolates appearing to have CRISPR 1 and/or 2 (93.2 %) and those having CRISPR 3 and 4 (6.8 %). Moreover, ESTs were divided into three AMR pattern-based groups: cephems-resistant group, non-cephems-resistant group, and antimicrobial sensitive group. There were significant differences among the groups (p < 0.05). Sixteen of the 25 ESTs had a significantly higher distribution of multidrug-resistant (MDR) isolates than the other ESTs (p < 0.05), and the ratio of MDR isolates was significantly higher than that of non-MDR isolates in the CRISPR 1 and 2 arrays (p < 0.05). A total of 9 protospacers were identified with protospacer, with protospacer 1 in CRISPR 1 being the most prevalent among the isolates (41.7 %). The protospacers of CRISPR 1 and 2 loci were associated with protection against external invaders such as bacteriophage or endogenous gene regulation. However, each protospacer of the CRISPR 3 and 4 loci originated from genes associated with AMR plasmids. These results indicate that CRISPR sequence type can improve AMR bacteria and enhance strategies for tackling the complexity of AMR in bacterial pathogens.
Collapse
Affiliation(s)
- Koeun Kim
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
10
|
Rykachevsky A, Stepakov A, Muzyukina P, Medvedeva S, Dobrovolski M, Burnaev E, Severinov K, Savitskaya E. SCRAMBLER: A Tool for De Novo CRISPR Array Reconstruction and Its Application for Analysis of the Structure of Prokaryotic Populations. CRISPR J 2021; 4:673-685. [PMID: 34661428 DOI: 10.1089/crispr.2021.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
CRISPR arrays are prokaryotic genomic loci consisting of repeat sequences alternating with unique spacers acquired from foreign nucleic acids. As one of the fastest-evolving parts of the genome, CRISPR arrays can be used to differentiate closely related prokaryotic lineages and track individual strains in prokaryotic communities. However, the assembly of full-length CRISPR arrays sequences remains a problem. Here, we developed SCRAMBLER, a tool that includes several pipelines for assembling CRISPR arrays from high-throughput short-read sequencing data. We assessed its performance with model data sets (Escherichia coli strains containing different CRISPR arrays and imitating prokaryotic communities of different complexities) and intestinal microbiomes of extant and extinct pachyderms. Evaluation of SCRAMBLER's performance using model data sets demonstrated its ability to assemble CRISPR arrays correctly from reads containing pairs of spacers, yielding a precision rate of >80% and a recall rate of 60-85% when checked against ground-truth data. Likewise, SCRAMBLER successfully assembled CRISPR arrays from the environmental samples, as attested by their matching with database entries. SCRAMBLER, an open-source software (github.com/biolab-tools/SCRAMBLER), can facilitate analysis of the composition and dynamics of CRISPR arrays in complex communities.
Collapse
Affiliation(s)
- Anton Rykachevsky
- Center for Computational and Data-Intensive Science and Engineering and Rutgers, State University of New Jersey, Piscataway, USA
| | - Alexander Stepakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Rutgers, State University of New Jersey, Piscataway, USA
| | - Polina Muzyukina
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Rutgers, State University of New Jersey, Piscataway, USA
| | - Sofia Medvedeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Rutgers, State University of New Jersey, Piscataway, USA
| | - Mark Dobrovolski
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Rutgers, State University of New Jersey, Piscataway, USA
| | - Evgeny Burnaev
- Center for Computational and Data-Intensive Science and Engineering and Rutgers, State University of New Jersey, Piscataway, USA
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Rutgers, State University of New Jersey, Piscataway, USA.,Laboratory of Genetic Regulation of Prokaryotic Mobile Genetic Elements, Institute of Molecular Genetics of National Research Center "Kurchatov Institute," Moscow, Russia; and Rutgers, State University of New Jersey, Piscataway, USA.,Waksman Institute, Rutgers, State University of New Jersey, Piscataway, USA
| | - Ekaterina Savitskaya
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Rutgers, State University of New Jersey, Piscataway, USA
| |
Collapse
|
11
|
Cheng F, Wang R, Yu H, Liu C, Yang J, Xiang H, Li M. Divergent degeneration of creA antitoxin genes from minimal CRISPRs and the convergent strategy of tRNA-sequestering CreT toxins. Nucleic Acids Res 2021; 49:10677-10688. [PMID: 34551428 PMCID: PMC8501985 DOI: 10.1093/nar/gkab821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Aside from providing adaptive immunity, type I CRISPR-Cas was recently unearthed to employ a noncanonical RNA guide (CreA) to transcriptionally repress an RNA toxin (CreT). Here, we report that, for most archaeal and bacterial CreTA modules, the creA gene actually carries two flanking 'CRISPR repeats', which are, however, highly divergent and degenerated. By deep sequencing, we show that the two repeats give rise to an 8-nt 5' handle and a 22-nt 3' handle, respectively, i.e., the conserved elements of a canonical CRISPR RNA, indicating they both retained critical nucleotides for Cas6 processing during divergent degeneration. We also uncovered a minimal CreT toxin that sequesters the rare transfer RNA for isoleucine, tRNAIleCAU, with a six-codon open reading frame containing two consecutive AUA codons. To fully relieve its toxicity, both tRNAIleCAU overexpression and supply of extra agmatine (modifies the wobble base of tRNAIleCAU to decipher AUA codons) are required. By replacing AUA to AGA/AGG codons, we reprogrammed this toxin to sequester rare arginine tRNAs. These data provide essential information on CreTA origin and for future CreTA prediction, and enrich the knowledge of tRNA-sequestering small RNAs that are employed by CRISPR-Cas to get addictive to the host.
Collapse
Affiliation(s)
- Feiyue Cheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jun Yang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Perez M, Angers B, Young CR, Juniper SK. Shining light on a deep-sea bacterial symbiont population structure with CRISPR. Microb Genom 2021; 7:000625. [PMID: 34448690 PMCID: PMC8549365 DOI: 10.1099/mgen.0.000625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
Many foundation species in chemosynthesis-based ecosystems rely on environmentally acquired symbiotic bacteria for their survival. Hence, understanding the biogeographic distributions of these symbionts at regional scales is key to understanding patterns of connectivity and predicting resilience of their host populations (and thus whole communities). However, such assessments are challenging because they necessitate measuring bacterial genetic diversity at fine resolutions. For this purpose, the recently discovered clustered regularly interspaced short palindromic repeats (CRISPR) constitutes a promising new genetic marker. These DNA sequences harboured by about half of bacteria hold their viral immune memory, and as such, might allow discrimination of different lineages or strains of otherwise indistinguishable bacteria. In this study, we assessed the potential of CRISPR as a hypervariable phylogenetic marker in the context of a population genetic study of an uncultured bacterial species. We used high-throughput CRISPR-based typing along with multi-locus sequence analysis (MLSA) to characterize the regional population structure of the obligate but environmentally acquired symbiont species Candidatus Endoriftia persephone on the Juan de Fuca Ridge. Mixed symbiont populations of Ca. Endoriftia persephone were sampled across individual Ridgeia piscesae hosts from contrasting habitats in order to determine if environmental conditions rather than barriers to connectivity are more important drivers of symbiont diversity. We showed that CRISPR revealed a much higher symbiont genetic diversity than the other housekeeping genes. Several lines of evidence imply this diversity is indicative of environmental strains. Finally, we found with both CRISPR and gene markers that local symbiont populations are strongly differentiated across sites known to be isolated by deep-sea circulation patterns. This research showed the high power of CRISPR to resolve the genetic structure of uncultured bacterial populations and represents a step towards making keystone microbial species an integral part of conservation policies for upcoming mining operations on the seafloor.
Collapse
|
13
|
Garrett SC. Pruning and Tending Immune Memories: Spacer Dynamics in the CRISPR Array. Front Microbiol 2021; 12:664299. [PMID: 33868219 PMCID: PMC8047081 DOI: 10.3389/fmicb.2021.664299] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/12/2021] [Indexed: 01/22/2023] Open
Abstract
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated genes) is a type of prokaryotic immune system that is unique in its ability to provide sequence-specific adaptive protection, which can be updated in response to new threats. CRISPR-Cas does this by storing fragments of DNA from invading genetic elements in an array interspersed with short repeats. The CRISPR array can be continuously updated through integration of new DNA fragments (termed spacers) at one end, but over time existing spacers become obsolete. To optimize immunity, spacer uptake, residency, and loss must be regulated. This mini-review summarizes what is known about how spacers are organized, maintained, and lost from CRISPR arrays.
Collapse
Affiliation(s)
- Sandra C Garrett
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT, United States
| |
Collapse
|
14
|
Shmakov SA, Wolf YI, Savitskaya E, Severinov KV, Koonin EV. Mapping CRISPR spaceromes reveals vast host-specific viromes of prokaryotes. Commun Biol 2020; 3:321. [PMID: 32572116 PMCID: PMC7308287 DOI: 10.1038/s42003-020-1014-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/15/2020] [Indexed: 12/04/2022] Open
Abstract
CRISPR arrays contain spacers, some of which are homologous to genome segments of viruses and other parasitic genetic elements and are employed as portion of guide RNAs to recognize and specifically inactivate the target genomes. However, the fraction of the spacers in sequenced CRISPR arrays that reliably match protospacer sequences in genomic databases is small, leaving the question of the origin(s) open for the great majority of the spacers. Here, we extend the spacer analysis by examining the distribution of partial matches (matching k-mers) between spacers and genomes of viruses infecting the given host as well as the host genomes themselves. The results indicate that most of the spacers originate from the host-specific viromes, whereas self-targeting is strongly selected against. However, we present evidence that the vast majority of the viruses comprising the viromes currently remain unknown although they are likely to be related to identified viruses.
Collapse
Affiliation(s)
- Sergey A Shmakov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | | | - Konstantin V Severinov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
- Waksman Institute of Microbiology, Rutgers, State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA.
| |
Collapse
|
15
|
Medvedeva S, Liu Y, Koonin EV, Severinov K, Prangishvili D, Krupovic M. Virus-borne mini-CRISPR arrays are involved in interviral conflicts. Nat Commun 2019; 10:5204. [PMID: 31729390 PMCID: PMC6858448 DOI: 10.1038/s41467-019-13205-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/23/2019] [Indexed: 01/21/2023] Open
Abstract
CRISPR-Cas immunity is at the forefront of antivirus defense in bacteria and archaea and specifically targets viruses carrying protospacers matching the spacers catalogued in the CRISPR arrays. Here, we perform deep sequencing of the CRISPRome-all spacers contained in a microbiome-associated with hyperthermophilic archaea of the order Sulfolobales recovered directly from an environmental sample and from enrichment cultures established in the laboratory. The 25 million CRISPR spacers sequenced from a single sampling site dwarf the diversity of spacers from all available Sulfolobales isolates and display complex temporal dynamics. Comparison of closely related virus strains shows that CRISPR targeting drives virus genome evolution. Furthermore, we show that some archaeal viruses carry mini-CRISPR arrays with 1-2 spacers and preceded by leader sequences but devoid of cas genes. Closely related viruses present in the same population carry spacers against each other. Targeting by these virus-borne spacers represents a distinct mechanism of heterotypic superinfection exclusion and appears to promote archaeal virus speciation.
Collapse
Affiliation(s)
- Sofia Medvedeva
- Institut Pasteur, Department of Microbiology, 75015, Paris, France
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
- Sorbonne Université, Collège doctoral, 75005, Paris, France
| | - Ying Liu
- Institut Pasteur, Department of Microbiology, 75015, Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
- Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA
- Institute of Molecular Genetics, Moscow, 123182, Russia
| | - David Prangishvili
- Institut Pasteur, Department of Microbiology, 75015, Paris, France
- Ivane Javakhishvili Tbilisi State University, Tbilisi, 0179, Georgia
| | - Mart Krupovic
- Institut Pasteur, Department of Microbiology, 75015, Paris, France.
| |
Collapse
|
16
|
Milicevic O, Repac J, Bozic B, Djordjevic M, Djordjevic M. A Simple Criterion for Inferring CRISPR Array Direction. Front Microbiol 2019; 10:2054. [PMID: 31551987 PMCID: PMC6737040 DOI: 10.3389/fmicb.2019.02054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022] Open
Abstract
Inferring transcriptional direction (orientation) of the CRISPR array is essential for many applications, including systematically investigating non-canonical CRISPR/Cas functions. The standard method, CRISPRDirection (embedded within CRISPRCasFinder), fails to predict the orientation (ND predictions) for ∼37% of the classified CRISPR arrays (>2200 loci); this goes up to >70% for the II-B subtype where non-canonical functions were first experimentally discovered. Alternatively, Potential Orientation (also embedded within CRISPRCasFinder), has a much smaller frequency of ND predictions but might have significantly lower accuracy. We propose a novel simple criterion, where the CRISPR array direction is assigned according to the direction of its associated cas genes (Cas Orientation). We systematically assess the performance of the three methods (Cas Orientation, CRISPRDirection, and Potential Orientation) across all CRISPR/Cas subtypes, by a mutual crosscheck of their predictions, and by comparing them to the experimental dataset. Interestingly, CRISPRDirection agrees much better with Cas Orientation than with Potential Orientation, despite CRISPRDirection and Potential Orientation being mutually related – Potential Orientation corresponding to one of six (heterogeneous) predictors employed by CRISPRDirection – and being unrelated to Cas Orientation. We find that Cas Orientation has much higher accuracy compared to Potential Orientation and comparable accuracy to CRISPRDirection – while accurately assigning an orientation to ∼95% of the CRISPR arrays that are non-determined by CRISPRDirection. Cas Orientation is, at the same time, simple to employ, requiring only (routine for prokaryotes) the prediction of the associated protein coding gene direction.
Collapse
Affiliation(s)
- Ognjen Milicevic
- School of Medicine, University of Belgrade, Belgrade, Serbia.,Multidisciplinary Ph.D. Program in Biophysics, University of Belgrade, Belgrade, Serbia
| | - Jelena Repac
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Bojan Bozic
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | | | - Marko Djordjevic
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
17
|
Lam TJ, Ye Y. Long reads reveal the diversification and dynamics of CRISPR reservoir in microbiomes. BMC Genomics 2019; 20:567. [PMID: 31288753 PMCID: PMC6617893 DOI: 10.1186/s12864-019-5922-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sequencing of microbiomes has accelerated the characterization of the diversity of CRISPR-Cas immune systems. However, the utilization of next generation short read sequences for the characterization of CRISPR-Cas dynamics remains limited due to the repetitive nature of CRISPR arrays. CRISPR arrays are comprised of short spacer segments (derived from invaders' genomes) interspaced between flanking repeat sequences. The repetitive structure of CRISPR arrays poses a computational challenge for the accurate assembly of CRISPR arrays from short reads. In this paper we evaluate the use of long read sequences for the analysis of CRISPR-Cas system dynamics in microbiomes. RESULTS We analyzed a dataset of Illumina's TruSeq Synthetic Long-Reads (SLR) derived from a gut microbiome. We showed that long reads captured CRISPR spacers at a high degree of redundancy, which highlights the spacer conservation of spacer sharing CRISPR variants, enabling the study of CRISPR array dynamics in ways difficult to achieve though short read sequences. We introduce compressed spacer graphs, a visual abstraction of spacer sharing CRISPR arrays, to provide a simplified view of complex organizational structures present within CRISPR array dynamics. Utilizing compressed spacer graphs, several key defining characteristics of CRISPR-Cas system dynamics were observed including spacer acquisition and loss events, conservation of the trailer end spacers, and CRISPR arrays' directionality (transcription orientation). Other result highlights include the observation of intense array contraction and expansion events, and reconstruction of a full-length genome for a potential invader (Faecalibacterium phage) based on identified spacers. CONCLUSION We demonstrate in an in silico system that long reads provide the necessary context for characterizing the organization of CRISPR arrays in a microbiome, and reveal dynamic and evolutionary features of CRISPR-Cas systems in a microbial population.
Collapse
Affiliation(s)
- Tony J Lam
- School of Informatics, Computing, and Engineering Indiana University, Bloomington, 47408, IN, USA
| | - Yuzhen Ye
- School of Informatics, Computing, and Engineering Indiana University, Bloomington, 47408, IN, USA.
| |
Collapse
|
18
|
Endogenous Gene Regulation as a Predicted Main Function of Type I-E CRISPR/Cas System in E. coli. Molecules 2019; 24:molecules24040784. [PMID: 30795631 PMCID: PMC6413058 DOI: 10.3390/molecules24040784] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 11/16/2022] Open
Abstract
CRISPR/Cas is an adaptive bacterial immune system, whose CRISPR array can actively change in response to viral infections. However, Type I-E CRISPR/Cas in E. coli (an established model system), appears not to exhibit such active adaptation, which suggests that it might have functions other than immune response. Through computational analysis, we address the involvement of the system in non-canonical functions. To assess targets of CRISPR spacers, we align them against both E. coli genome and an exhaustive (~230) set of E. coli viruses. We systematically investigate the obtained alignments, such as hit distribution with respect to genome annotation, propensity to target mRNA, the target functional enrichment, conservation of CRISPR spacers and putative targets in related bacterial genomes. We find that CRISPR spacers have a statistically highly significant tendency to target i) host compared to phage genomes, ii) one of the two DNA strands, iii) genomic dsDNA rather than mRNA, iv) transcriptionally active regions, and v) sequences (cis-regulatory elements) with slower turn-over rate compared to CRISPR spacers (trans-factors). The results suggest that the Type I-E CRISPR/Cas system has a major role in transcription regulation of endogenous genes, with a potential to rapidly rewire these regulatory interactions, with targets being selected through naïve adaptation.
Collapse
|
19
|
Xue C, Sashital DG. Mechanisms of Type I-E and I-F CRISPR-Cas Systems in Enterobacteriaceae. EcoSal Plus 2019; 8:10.1128/ecosalplus.ESP-0008-2018. [PMID: 30724156 PMCID: PMC6368399 DOI: 10.1128/ecosalplus.esp-0008-2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 12/17/2022]
Abstract
CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against invasion by bacteriophages and other mobile genetic elements. Short fragments of invader DNA are stored as immunological memories within CRISPR (clustered regularly interspaced short palindromic repeat) arrays in the host chromosome. These arrays provide a template for RNA molecules that can guide CRISPR-associated (Cas) proteins to specifically neutralize viruses upon subsequent infection. Over the past 10 years, our understanding of CRISPR-Cas systems has benefited greatly from a number of model organisms. In particular, the study of several members of the Gram-negative Enterobacteriaceae family, especially Escherichia coli and Pectobacterium atrosepticum, have provided significant insights into the mechanisms of CRISPR-Cas immunity. In this review, we provide an overview of CRISPR-Cas systems present in members of the Enterobacteriaceae. We also detail the current mechanistic understanding of the type I-E and type I-F CRISPR-Cas systems that are commonly found in enterobacteria. Finally, we discuss how phages can escape or inactivate CRISPR-Cas systems and the measures bacteria can enact to counter these types of events.
Collapse
Affiliation(s)
- Chaoyou Xue
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA
- Present address: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA
| |
Collapse
|
20
|
Chakraborty S, von Mentzer A, Begum YA, Manzur M, Hasan M, Ghosh AN, Hossain MA, Camilli A, Qadri F. Phenotypic and genomic analyses of bacteriophages targeting environmental and clinical CS3-expressing enterotoxigenic Escherichia coli (ETEC) strains. PLoS One 2018; 13:e0209357. [PMID: 30571788 PMCID: PMC6301781 DOI: 10.1371/journal.pone.0209357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/04/2018] [Indexed: 01/21/2023] Open
Abstract
Diarrhea due to infection of enterotoxigenic Escherichia coli (ETEC) is of great concern in several low and middle-income countries. ETEC infection is considered to be the most common cause of diarrhea in Bangladesh and is mainly spread through contaminated water and food. ETEC pathogenesis is mediated by the expression of enterotoxins and colonization factors (CFs) that target the intestinal mucosa. ETEC can survive for extended time periods in water, where they are likely to be attacked by bacteriophages. Antibiotic resistance is common amongst enteric pathogens and therefore is the use of bacteriophages (phage) as a therapeutic tool an interesting approach. This study was designed to identify novel phages that specifically target ETEC virulence factors. In total, 48 phages and 195 ETEC isolates were collected from water sources and stool samples. Amongst the identified ETEC specific phages, an enterobacteria phage T7, designated as IMM-002, showed a significant specificity towards colonization factor CS3-expressing ETEC isolates. Antibody-blocking and phage-neutralization assays revealed that CS3 is used as a host receptor for the IMM-002 phage. The bacterial CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated) defence mechanism can invoke immunity against phages. Genomic analyses coupled with plaque assay experiments indicate that the ETEC CRISPR-Cas system is involved in the resistance against the CS3-specific phage (IMM-002) and the previously identified CS7-specific phage (IMM-001). As environmental water serves as a reservoir for ETEC, it is important to search for new antimicrobial agents such as phages in environmental water as well as the human gut. A better understanding of how the interplay between ETEC-specific phages and ETEC isolates affects the ETEC diversity, both in environmental ecosystems and within the host, is important for the development of new treatments for ETEC infections.
Collapse
Affiliation(s)
- Sajib Chakraborty
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Mohakhali, Dhaka, Bangladesh
| | - Astrid von Mentzer
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yasmin Ara Begum
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Mohakhali, Dhaka, Bangladesh
| | - Mehnaz Manzur
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Mahmudul Hasan
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Amar N Ghosh
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - M Anwar Hossain
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, and Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, MA, United States of America
| | - Firdausi Qadri
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Mohakhali, Dhaka, Bangladesh
| |
Collapse
|
21
|
Giraud T, Koskella B, Laine AL. Introduction: microbial local adaptation: insights from natural populations, genomics and experimental evolution. Mol Ecol 2018; 26:1703-1710. [PMID: 28409900 DOI: 10.1111/mec.14091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 02/14/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Tatiana Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Anna-Liisa Laine
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland
| |
Collapse
|
22
|
Hidalgo-Cantabrana C, Sanozky-Dawes R, Barrangou R. Insights into the Human Virome Using CRISPR Spacers from Microbiomes. Viruses 2018; 10:v10090479. [PMID: 30205462 PMCID: PMC6165519 DOI: 10.3390/v10090479] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022] Open
Abstract
Due to recent advances in next-generation sequencing over the past decade, our understanding of the human microbiome and its relationship to health and disease has increased dramatically. Yet, our insights into the human virome, and its interplay with important microbes that impact human health, is relatively limited. Prokaryotic and eukaryotic viruses are present throughout the human body, comprising a large and diverse population which influences several niches and impacts our health at various body sites. The presence of prokaryotic viruses like phages, has been documented at many different body sites, with the human gut being the richest ecological niche. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and associated proteins constitute the adaptive immune system of bacteria, which prevents attack by invasive nucleic acid. CRISPR-Cas systems function by uptake and integration of foreign genetic element sequences into the CRISPR array, which constitutes a genomic archive of iterative vaccination events. Consequently, CRISPR spacers can be investigated to reconstruct interplay between viruses and bacteria, and metagenomic sequencing data can be exploited to provide insights into host-phage interactions within a niche. Here, we show how the CRISPR spacer content of commensal and pathogenic bacteria can be used to determine the evidence of their phage exposure. This framework opens new opportunities for investigating host-virus dynamics in metagenomic data, and highlights the need to dedicate more efforts for virome sampling and sequencing.
Collapse
Affiliation(s)
- Claudio Hidalgo-Cantabrana
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Campus BOX 7624, Raleigh, NC 27695, USA.
| | - Rosemary Sanozky-Dawes
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Campus BOX 7624, Raleigh, NC 27695, USA.
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Campus BOX 7624, Raleigh, NC 27695, USA.
| |
Collapse
|
23
|
Abstract
Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR-Cas) systems store the memory of past encounters with foreign DNA in unique spacers that are inserted between direct repeats in CRISPR arrays. For only a small fraction of the spacers, homologous sequences, called protospacers, are detectable in viral, plasmid, and microbial genomes. The rest of the spacers remain the CRISPR “dark matter.” We performed a comprehensive analysis of the spacers from all CRISPR-cas loci identified in bacterial and archaeal genomes, and we found that, depending on the CRISPR-Cas subtype and the prokaryotic phylum, protospacers were detectable for 1% to about 19% of the spacers (~7% global average). Among the detected protospacers, the majority, typically 80 to 90%, originated from viral genomes, including proviruses, and among the rest, the most common source was genes that are integrated into microbial chromosomes but are involved in plasmid conjugation or replication. Thus, almost all spacers with identifiable protospacers target mobile genetic elements (MGE). The GC content, as well as dinucleotide and tetranucleotide compositions, of microbial genomes, their spacer complements, and the cognate viral genomes showed a nearly perfect correlation and were almost identical. Given the near absence of self-targeting spacers, these findings are most compatible with the possibility that the spacers, including the dark matter, are derived almost completely from the species-specific microbial mobilomes. The principal function of CRISPR-Cas systems is thought to be protection of bacteria and archaea against viruses and other parasitic genetic elements. The CRISPR defense function is mediated by sequences from parasitic elements, known as spacers, that are inserted into CRISPR arrays and then transcribed and employed as guides to identify and inactivate the cognate parasitic genomes. However, only a small fraction of the CRISPR spacers match any sequences in the current databases, and of these, only a minority correspond to known parasitic elements. We show that nearly all spacers with matches originate from viral or plasmid genomes that are either free or have been integrated into the host genome. We further demonstrate that spacers with no matches have the same properties as those of identifiable origins, strongly suggesting that all spacers originate from mobile elements.
Collapse
|
24
|
Long-term genomic coevolution of host-parasite interaction in the natural environment. Nat Commun 2017; 8:111. [PMID: 28740072 PMCID: PMC5524643 DOI: 10.1038/s41467-017-00158-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Antagonistic coevolution of parasite infectivity and host resistance may alter the biological functionality of species, yet these dynamics in nature are still poorly understood. Here we show the molecular details of a long-term phage-bacterium arms race in the environment. Bacteria (Flavobacterium columnare) are generally resistant to phages from the past and susceptible to phages isolated in years after bacterial isolation. Bacterial resistance selects for increased phage infectivity and host range, which is also associated with expansion of phage genome size. We identified two CRISPR loci in the bacterial host: a type II-C locus and a type VI-B locus. While maintaining a core set of conserved spacers, phage-matching spacers appear in the variable ends of both loci over time. The spacers mostly target the terminal end of the phage genomes, which also exhibit the most variation across time, resulting in arms-race-like changes in the protospacers of the coevolving phage population.Arms races between phage and bacteria are well known from lab experiments, but insight from field systems is limited. Here, the authors show changes in the resistance and CRISPR loci of bacteria and the infectivity, host range and genome size of phage over multiple years in an aquaculture environment.
Collapse
|