1
|
Marfurt SM, Chabanne DBH, Wittwer S, Bizzozzero MR, Allen SJ, Gerber L, Nicholson K, Krützen M. Demographic History and Adaptive Evolution of Indo-Pacific Bottlenose Dolphins (Tursiops aduncus) in Western Australia. Mol Ecol 2024; 33:e17555. [PMID: 39435496 DOI: 10.1111/mec.17555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
Demographic processes can substantially affect a species' response to changing ecological conditions, necessitating the combined consideration of genetic responses to environmental variables and neutral genetic variation. Using a seascape genomics approach combined with population demographic modelling, we explored the interplay of demographic and environmental factors that shaped the current population structure in Indo-Pacific bottlenose dolphins (Tursiops aduncus) along the Western Australian coastline. We combined large-scale environmental data gathered via remote sensing with RADseq genomic data from 133 individuals at 19 sampling sites. Using population genetic and outlier detection analyses, we identified three distinct genetic clusters, coinciding with tropical, subtropical and temperate provincial bioregions. In contrast to previous studies, our demographic models indicated that populations occupying the paleo-shoreline split into two demographically independent lineages before the last glacial maximum (LGM). A subsequent split after the LGM 12-15 kya gave rise to the Shark Bay population, thereby creating the three currently observed clusters. Although multi-locus heterozygosity declined from north to south, dolphins from the southernmost cluster inhabiting temperate waters had higher heterozygosity in potentially adaptive loci compared to dolphins from subtropical and tropical waters. These findings suggest ongoing adaptation to cold-temperate waters in the southernmost cluster, possibly linked to distinct selective pressures between the different bioregions. Our study demonstrated that in the marine realm, without apparent physical boundaries, only a combined approach can fully elucidate the intricate environmental and genetic interactions shaping the evolutionary trajectory of marine mammals.
Collapse
Affiliation(s)
- Svenja M Marfurt
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Delphine B H Chabanne
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Samuel Wittwer
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Manuela R Bizzozzero
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Simon J Allen
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Livia Gerber
- Australian National Wildlife Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
| | - Krista Nicholson
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Michael Krützen
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Huang JP, Wu SP, Chen WY, Pham GJ, Kuan YH. Genomic data revealed inbreeding despite a geographically connected stable effective population size since the Holocene in the protected Formosan Long-Arm Scarab beetle, Cheirotonus formosanus. J Hered 2024; 115:292-301. [PMID: 38364316 DOI: 10.1093/jhered/esae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Biodiversity conservation is a top priority in the face of global environmental change, and the practical restoration of biodiversity has emerged as a key objective. Nevertheless, the question of how to effectively contribute to biodiversity restoration and identify suitable systems for such efforts continues to present major challenges. By using genome-wide SNP data, our study revealed that populations from different mountain ranges of the Formosan Long-Arm Scarab beetle, a flagship species that receives strict protection, exhibited a single genetic cluster with no subdivision. Additionally, our result implied an association between the demographic history and historical fluctuations in climate and environmental conditions. Furthermore, we showed that, despite a stable and moderately sized effective population over recent history, all the individuals we studied exhibited signs of genetic inbreeding. We argued that the current practice of protecting the species as one evolutionarily significant unit remains the best conservation plan and that recent habitat change may have led to the pattern of significant inbreeding. We closed by emphasizing the importance of conservation genetic studies in guiding policy decisions and highlighting the potential of genomic data for identifying ideal empirical systems for genetic rescue, or assisted gene flow studies.
Collapse
Affiliation(s)
- Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Ping Wu
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan
| | - Wei-Yun Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Guan Jie Pham
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsiu Kuan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Judson BJ, Kristjánsson BK, Leblanc CA, Ferguson MM. The role of neutral and adaptive evolutionary processes on patterns of genetic diversity across small cave-dwelling populations of Icelandic Arctic charr ( Salvelinus alpinus). Ecol Evol 2024; 14:e11363. [PMID: 38770124 PMCID: PMC11103641 DOI: 10.1002/ece3.11363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
Understanding the adaptability of small populations in the face of environmental change is a central problem in evolutionary biology. Solving this problem is challenging because neutral evolutionary processes that operate on historical and contemporary timescales can override the effects of selection in small populations. We assessed the effects of isolation by colonization (IBC), isolation by dispersal limitation (IBDL) as reflected by a pattern of isolation by distance (IBD), and isolation by adaptation (IBA) and the roles of genetic drift and gene flow on patterns of genetic differentiation among 19 cave-dwelling populations of Icelandic Arctic charr (Salvelinus alpinus). We detected evidence of IBC based on the genetic affinity of nearby cave populations and the genetic relationships between the cave populations and the presumed ancestral population in the lake. A pattern of IBD was evident regardless of whether high-level genetic structuring (IBC) was taken into account. Genetic signatures of bottlenecks and lower genetic diversity in smaller populations indicate the effect of drift. Estimates of gene flow and fish movement suggest that gene flow is limited to nearby populations. In contrast, we found little evidence of IBA as patterns of local ecological and phenotypic variation showed little association with genetic differentiation among populations. Thus, patterns of genetic variation in these small populations likely reflect localized gene flow and genetic drift superimposed onto a larger-scale structure that is largely a result of colonization history. Our simultaneous assessment of the effects of neutral and adaptive processes in a tractable and replicated system has yielded novel insights into the evolution of small populations on both historical and contemporary timescales and over a smaller spatial scale than is typically studied.
Collapse
Affiliation(s)
- Braden J. Judson
- Department of Integrative BiologyUniversity of GuelphGuelphOntarioCanada
| | | | | | - Moira M. Ferguson
- Department of Integrative BiologyUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
4
|
Sethuraman A, Nunziata SO, Jones A, Obrycki J, Weisrock DW. Go west: Population genomics reveals unexpected population fluctuations and little gene flow in Western hemisphere populations of the predatory lady beetle, Hippodamia convergens. Evol Appl 2024; 17:e13631. [PMID: 38283604 PMCID: PMC10810170 DOI: 10.1111/eva.13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024] Open
Abstract
Hippodamia convergens-the convergent lady beetle, has been used extensively in augmentative biological control of aphids, thrips, and whiteflies across its native range in North America, and was introduced into South America in the 1950s. Overwintering H. convergens populations from its native western range in the United States are commercially collected and released across its current range in the eastern USA, with little knowledge of the effectiveness of its augmentative biological control. Here we use a novel ddRADseq-based SNP/haplotype discovery approach to estimate its range-wide population diversity, differentiation, and recent evolutionary history. Our results indicate (1) significant population differentiation among eastern USA, western USA, and South American populations of H. convergens, with (2) little to no detectable recent admixture between them, despite repeated population augmentation, and (3) continued recent population size expansion across its range. These results contradict previous findings using microsatellite markers. In light of these new findings, the implications for the effectiveness of augmentative biological control using H. convergens are discussed. Additionally, because quantifying the non-target effects of augmentative biological control is a difficult problem in migratory beetles, our results could serve as a cornerstone in improving and predicting the efficacy of future releases of H. convergens across its range.
Collapse
Affiliation(s)
- Arun Sethuraman
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Schyler O. Nunziata
- Department of BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Present address:
United States Department of AgricultureWashingtonDCUSA
| | - Angela Jones
- Department of BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Present address:
Duke UniversityDurhamNorth CarolinaUSA
| | - John Obrycki
- Department of EntomologyUniversity of KentuckyLexingtonKentuckyUSA
| | | |
Collapse
|
5
|
Segovia‐Ramírez MG, Ramírez‐Sánchez O, Decena Segarra LP, Rios‐Carlos H, Rovito SM. Determinants of genetic diversity in Neotropical salamanders (Plethodontidae: Bolitoglossini). Ecol Evol 2023; 13:e10707. [PMID: 38020701 PMCID: PMC10654480 DOI: 10.1002/ece3.10707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Genetic diversity is the raw material of evolution, yet the reasons why it varies among species remain poorly understood. While studies at deeper phylogenetic scales point to the influence of life history traits on genetic diversity, it appears to be more affected by population size but less predictable at shallower scales. We used proxies for population size, mutation rate, direct selection, and linked selection to test factors affecting genetic diversity within a diverse assemblage of Neotropical salamanders, which vary widely for these traits. We estimated genetic diversity of noncoding loci using ddRADseq and coding loci using RNAseq for an assemblage of Neotropical salamanders distributed from northern Mexico to Costa Rica. Using ddRADseq loci, we found no significant association with genetic diversity, while for RNAseq data we found that environmental heterogeneity and proxies of population size predict a substantial portion of the variance in genetic diversity across species. Our results indicate that diversity of coding loci may be more predictable than that of noncoding loci, which appears to be mostly unpredictable at shallower phylogenetic scales. Our results suggest that coding loci may be more appropriate for genetic diversity estimates used in conservation planning because of the lack of any association between the variables we used and genetic diversity of noncoding loci.
Collapse
Affiliation(s)
| | - Obed Ramírez‐Sánchez
- Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoMexico
| | - Louis Paul Decena Segarra
- Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoMexico
| | - Hairo Rios‐Carlos
- Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoMexico
| | - Sean M. Rovito
- Unidad de Genómica AvanzadaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuatoMexico
| |
Collapse
|
6
|
Brooks GC, Wendt A, Haas CA, Roberts JH. Comparing estimates of census and effective population size in an endangered amphibian. Anim Conserv 2023. [DOI: 10.1111/acv.12871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Hoey JA, Able KW, Pinsky ML. Genetic decline and recovery of a demographically rebuilt fishery species. Mol Ecol 2022; 31:5684-5698. [PMID: 36114805 PMCID: PMC9828022 DOI: 10.1111/mec.16697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 01/13/2023]
Abstract
The demographic history of a population is important for conservation and evolution, but this history is unknown for many populations. Methods that use genomic data have been developed to infer demography, but they can be challenging to implement and interpret, particularly for large populations. Thus, understanding if and when genetic estimates of demography correspond to true population history is important for assessing the performance of these genetic methods. Here, we used double-digest restriction-site associated DNA (ddRAD) sequencing data from archived collections of larval summer flounder (Paralichthys dentatus, n = 279) from three cohorts (1994-1995, 1997-1998 and 2008-2009) along the U.S. East coast to examine how contemporary effective population size and genetic diversity responded to changes in abundance in a natural population. Despite little to no detectable change in genetic diversity, coalescent-based demographic modelling from site frequency spectra revealed that summer flounder effective population size declined dramatically in the early 1980s. The timing and direction of change corresponded well with the observed decline in spawning stock census abundance in the late 1980s from independent fish surveys. Census abundance subsequently recovered and achieved the prebottleneck size. Effective population size also grew following the bottleneck. Our results for summer flounder demonstrate that genetic sampling and site frequency spectra can be useful for detecting population dynamics, even in species with large effective sizes.
Collapse
Affiliation(s)
- Jennifer A. Hoey
- Ecology, Evolution, & Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA,Institute for Biodiversity Science and SustainabilityCalifornia Academy of SciencesSan FranciscoCaliforniaUSA
| | - Kenneth W. Able
- Marine Field Station, Department of Marine and Coastal Sciences, Rutgers UniversityTuckertonNew JerseyUSA
| | - Malin L. Pinsky
- Ecology, Evolution, & Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
| |
Collapse
|
8
|
Genetic structure and diversity of amphidromous sculpin in Shiretoko, a mountainous peninsula in Japan. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Reid BN, Pinsky ML. Simulation-Based Evaluation of Methods, Data Types, and Temporal Sampling Schemes for Detecting Recent Population Declines. Integr Comp Biol 2022; 62:1849-1863. [PMID: 36104155 PMCID: PMC9801984 DOI: 10.1093/icb/icac144] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 01/05/2023] Open
Abstract
Understanding recent population trends is critical to quantifying species vulnerability and implementing effective management strategies. To evaluate the accuracy of genomic methods for quantifying recent declines (beginning <120 generations ago), we simulated genomic data using forward-time methods (SLiM) coupled with coalescent simulations (msprime) under a number of demographic scenarios. We evaluated both site frequency spectrum (SFS)-based methods (momi2, Stairway Plot) and methods that employ linkage disequilibrium information (NeEstimator, GONE) with a range of sampling schemes (contemporary-only samples, sampling two time points, and serial sampling) and data types (RAD-like data and whole-genome sequencing). GONE and momi2 performed best overall, with >80% power to detect severe declines with large sample sizes. Two-sample and serial sampling schemes could accurately reconstruct changes in population size, and serial sampling was particularly valuable for making accurate inferences when genotyping errors or minor allele frequency cutoffs distort the SFS or under model mis-specification. However, sampling only contemporary individuals provided reliable inferences about contemporary size and size change using either site frequency or linkage-based methods, especially when large sample sizes or whole genomes from contemporary populations were available. These findings provide a guide for researchers designing genomics studies to evaluate recent demographic declines.
Collapse
Affiliation(s)
| | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
10
|
Hubbs NW, Hurt CR, Niedzwiecki J, Leckie B, Withers D. Conservation genomics of urban populations of Streamside Salamander (Ambystoma barbouri). PLoS One 2022; 17:e0260178. [PMID: 35771804 PMCID: PMC9246143 DOI: 10.1371/journal.pone.0260178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
In Tennessee, populations of the state endangered Streamside Salamander (Ambystoma barbouri) are in decline as their distribution lies mostly within rapidly developing areas in the Nashville Basin. Information regarding the partitioning of genetic variation among populations of A. barbouri and the taxonomic status of these populations relative to northern populations and their congener, the Small-mouthed Salamander (A. texanum), have important implications for management and conservation of this species. Here we combined mitochondrial sequencing and genome-wide single nucleotide polymorphism (SNP) data generated using Genotyping-by-Sequencing (GBS) to investigate patterns of genetic variation within Tennessee populations of A. barbouri, to assess their relationship to populations in Kentucky, and to examine their phylogenetic relationship to the closely related A. texanum. Results from phylogenetic reconstructions reveal a complex history of Tennessee A. barbouri populations with regards to northern populations, unisexual A. barbouri, and A. texanum. Patterns of mitochondrial sequence variation suggest that A. barbouri may have originated within Tennessee and expanded north multiple times into Kentucky, Ohio, Indiana, and West Virginia. Phylogenetic reconstructions based on genome-wide SNP data contradict results based on mitochondrial DNA and correspond to geographic and taxonomic boundaries. Variation in allele frequencies at SNP genotypes, as identified by multivariate analyses and Bayesian assignment tests, identified three evolutionary significant units (ESUs) for A. barbouri within Tennessee. Collectively, these results emphasize the need for prioritizing conservation needs for Tennessee populations of A. barbouri to ensure the long-term persistence of this species.
Collapse
Affiliation(s)
- N. Wade Hubbs
- Department of Biology, Tennessee Technological University, Cookeville, TN, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Carla R. Hurt
- Department of Biology, Tennessee Technological University, Cookeville, TN, United States of America
- * E-mail:
| | | | - Brian Leckie
- Department of Biology, Tennessee Technological University, Cookeville, TN, United States of America
| | - David Withers
- Tennessee Department of Environment and Conservation, Nashville, TN, United States of America
| |
Collapse
|
11
|
Hoffman JI, Chen RS, Vendrami DLJ, Paijmans AJ, Dasmahapatra KK, Forcada J. Demographic Reconstruction of Antarctic Fur Seals Supports the Krill Surplus Hypothesis. Genes (Basel) 2022; 13:541. [PMID: 35328094 PMCID: PMC8954904 DOI: 10.3390/genes13030541] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Much debate surrounds the importance of top-down and bottom-up effects in the Southern Ocean, where the harvesting of over two million whales in the mid twentieth century is thought to have produced a massive surplus of Antarctic krill. This excess of krill may have allowed populations of other predators, such as seals and penguins, to increase, a top-down hypothesis known as the 'krill surplus hypothesis'. However, a lack of pre-whaling population baselines has made it challenging to investigate historical changes in the abundance of the major krill predators in relation to whaling. Therefore, we used reduced representation sequencing and a coalescent-based maximum composite likelihood approach to reconstruct the recent demographic history of the Antarctic fur seal, a pinniped that was hunted to the brink of extinction by 18th and 19th century sealers. In line with the known history of this species, we found support for a demographic model that included a substantial reduction in population size around the time period of sealing. Furthermore, maximum likelihood estimates from this model suggest that the recovered, post-sealing population at South Georgia may have been around two times larger than the pre-sealing population. Our findings lend support to the krill surplus hypothesis and illustrate the potential of genomic approaches to shed light on long-standing questions in population biology.
Collapse
Affiliation(s)
- Joseph I. Hoffman
- Department of Animal Behavior, University of Bielefeld, P.O. BOX 100131, 33615 Bielefeld, Germany; (R.S.C.); (D.L.J.V.); (A.J.P.)
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK;
| | - Rebecca S. Chen
- Department of Animal Behavior, University of Bielefeld, P.O. BOX 100131, 33615 Bielefeld, Germany; (R.S.C.); (D.L.J.V.); (A.J.P.)
| | - David L. J. Vendrami
- Department of Animal Behavior, University of Bielefeld, P.O. BOX 100131, 33615 Bielefeld, Germany; (R.S.C.); (D.L.J.V.); (A.J.P.)
| | - Anna J. Paijmans
- Department of Animal Behavior, University of Bielefeld, P.O. BOX 100131, 33615 Bielefeld, Germany; (R.S.C.); (D.L.J.V.); (A.J.P.)
| | | | - Jaume Forcada
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK;
| |
Collapse
|
12
|
Recknagel H, Trontelj P. From Cave Dragons to Genomics: Advancements in the Study of Subterranean Tetrapods. Bioscience 2022; 72:254-266. [PMID: 35241972 PMCID: PMC8888124 DOI: 10.1093/biosci/biab117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Throughout most of the kingdom Animalia, evolutionary transitions from surface life to a life permanently bound to caves and other subterranean habitats have occurred innumerous times. Not so in tetrapods, where a mere 14 cave-obligate species-all plethodontid and proteid salamanders-are known. We discuss why cave tetrapods are so exceptional and why only salamanders have made the transition. Their evolution follows predictable and convergent, albeit independent pathways. Among the many known changes associated with transitions to subterranean life, eye degeneration, starvation resistance, and longevity are especially relevant to human biomedical research. Recently, sequences of salamander genomes have become available opening up genomic research for cave tetrapods. We discuss new genomic methods that can spur our understanding of the evolutionary mechanisms behind convergent phenotypic change, the relative roles of selective and neutral evolution, cryptic species diversity, and data relevant for conservation such as effective population size and demography.
Collapse
Affiliation(s)
- Hans Recknagel
- University of Ljubljana, Slovenia, working, Biotechnical Faculty, Dept. of Biology, Subterranean Biology Lab
| | - Peter Trontelj
- University of Ljubljana, Slovenia, working, Biotechnical Faculty, Dept. of Biology, Subterranean Biology Lab
| |
Collapse
|
13
|
Christiansen H, Heindler FM, Hellemans B, Jossart Q, Pasotti F, Robert H, Verheye M, Danis B, Kochzius M, Leliaert F, Moreau C, Patel T, Van de Putte AP, Vanreusel A, Volckaert FAM, Schön I. Facilitating population genomics of non-model organisms through optimized experimental design for reduced representation sequencing. BMC Genomics 2021; 22:625. [PMID: 34418978 PMCID: PMC8380342 DOI: 10.1186/s12864-021-07917-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Genome-wide data are invaluable to characterize differentiation and adaptation of natural populations. Reduced representation sequencing (RRS) subsamples a genome repeatedly across many individuals. However, RRS requires careful optimization and fine-tuning to deliver high marker density while being cost-efficient. The number of genomic fragments created through restriction enzyme digestion and the sequencing library setup must match to achieve sufficient sequencing coverage per locus. Here, we present a workflow based on published information and computational and experimental procedures to investigate and streamline the applicability of RRS. RESULTS In an iterative process genome size estimates, restriction enzymes and size selection windows were tested and scaled in six classes of Antarctic animals (Ostracoda, Malacostraca, Bivalvia, Asteroidea, Actinopterygii, Aves). Achieving high marker density would be expensive in amphipods, the malacostracan target taxon, due to the large genome size. We propose alternative approaches such as mitogenome or target capture sequencing for this group. Pilot libraries were sequenced for all other target taxa. Ostracods, bivalves, sea stars, and fish showed overall good coverage and marker numbers for downstream population genomic analyses. In contrast, the bird test library produced low coverage and few polymorphic loci, likely due to degraded DNA. CONCLUSIONS Prior testing and optimization are important to identify which groups are amenable for RRS and where alternative methods may currently offer better cost-benefit ratios. The steps outlined here are easy to follow for other non-model taxa with little genomic resources, thus stimulating efficient resource use for the many pressing research questions in molecular ecology.
Collapse
Affiliation(s)
- Henrik Christiansen
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium.
| | - Franz M Heindler
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Bart Hellemans
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Quentin Jossart
- Marine Biology Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Henri Robert
- OD Nature, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Marie Verheye
- OD Nature, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Bruno Danis
- Marine Biology Laboratory, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Kochzius
- Marine Biology Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Frederik Leliaert
- Marine Biology Research Group, Ghent University, Ghent, Belgium.,Meise Botanic Garden, Meise, Belgium
| | - Camille Moreau
- Marine Biology Laboratory, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Université de Bourgogne Franche-Comté (UBFC) UMR CNRS 6282 Biogéosciences, Dijon, France
| | - Tasnim Patel
- OD Nature, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Anton P Van de Putte
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium.,OD Nature, Royal Belgian Institute of Natural Sciences, Brussels, Belgium.,Marine Biology Laboratory, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ann Vanreusel
- Marine Biology Research Group, Ghent University, Ghent, Belgium
| | - Filip A M Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Isa Schön
- OD Nature, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| |
Collapse
|
14
|
Double-digest RAD-sequencing: do pre- and post-sequencing protocol parameters impact biological results? Mol Genet Genomics 2021; 296:457-471. [PMID: 33469716 DOI: 10.1007/s00438-020-01756-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing technologies have opened a new era of research in population genetics. Following these new sequencing opportunities, the use of restriction enzyme-based genotyping techniques, such as restriction site-associated DNA sequencing (RAD-seq) or double-digest RAD-sequencing (ddRAD-seq), has dramatically increased in the last decade. From DNA sampling to SNP calling, the laboratory and bioinformatic parameters of enzyme-based techniques have been investigated in the literature. However, the impact of those parameters on downstream analyses and biological results remains less documented. In this study, we investigated the effects of sevral pre- and post-sequencing settings on ddRAD-seq results for two biological systems: a complex of butterfly species (Coenonympha sp.) and several populations of common beech (Fagus sylvatica). Our results suggest that pre-sequencing parameters (i.e., DNA quantity, number of PCR cycles during library preparation) have a significant impact on the number of recovered reads and SNPs, on the number of unique alleles and on individual heterozygosity. In the same way, we found that post-sequencing settings (i.e., clustering and minimum coverage thresholds) influenced loci reconstruction (e.g., number of loci, mean coverage) and SNP calling (e.g., number of SNPs; heterozygosity) but had only a marginal impact on downstream analyses (e.g., measure of genetic differentiation, estimation of individual admixture, and demographic inferences). In addition, replication analyses confirmed the reproducibility of the ddRAD-seq procedure. Overall, this study assesses the degree of sensitivity of ddRAD-seq data to pre- and post-sequencing protocols, and illustrates its robustness when studying population genetics.
Collapse
|
15
|
Gargiulo R, Kull T, Fay MF. Effective double-digest RAD sequencing and genotyping despite large genome size. Mol Ecol Resour 2021; 21:1037-1055. [PMID: 33351289 DOI: 10.1111/1755-0998.13314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022]
Abstract
Obtaining informative data is the ambition of any genomic project, but in nonmodel species with very large genomes, pursuing such a goal requires surmounting a series of analytical challenges. Double-digest RAD sequencing is routinely used in nonmodel organisms and offers some control over the volume of data obtained. However, the volume of data recovered is not always an indication of the reliability of data sets, and quality checks are necessary to ensure that true and artefactual information is set apart. In the present study, we aim to fill the gap existing between the known applicability of RAD sequencing methods in plants with large genomes and the use of the retrieved loci for population genetic inference. By analysing two populations of Cypripedium calceolus, a nonmodel orchid species with a large genome size (1C ~ 31.6 Gbp), we provide a complete workflow from library preparation to bioinformatic filtering and inference of genetic diversity and differentiation. We show how filtering strategies to dismiss potentially misleading data need to be explored and adapted to data set-specific features. Moreover, we suggest that the occurrence of organellar sequences in libraries should not be neglected when planning the experiment and analysing the results. Finally, we explain how, in the absence of prior information about the genome of the species, seeking high standards of quality during library preparation and sequencing can provide an insurance against unpredicted technical or biological constraints.
Collapse
Affiliation(s)
| | - Tiiu Kull
- Estonian University of Life Sciences, Tartu, Estonia
| | - Michael F Fay
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK.,School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
16
|
Hohenlohe PA, Funk WC, Rajora OP. Population genomics for wildlife conservation and management. Mol Ecol 2020; 30:62-82. [PMID: 33145846 PMCID: PMC7894518 DOI: 10.1111/mec.15720] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/02/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022]
Abstract
Biodiversity is under threat worldwide. Over the past decade, the field of population genomics has developed across nonmodel organisms, and the results of this research have begun to be applied in conservation and management of wildlife species. Genomics tools can provide precise estimates of basic features of wildlife populations, such as effective population size, inbreeding, demographic history and population structure, that are critical for conservation efforts. Moreover, population genomics studies can identify particular genetic loci and variants responsible for inbreeding depression or adaptation to changing environments, allowing for conservation efforts to estimate the capacity of populations to evolve and adapt in response to environmental change and to manage for adaptive variation. While connections from basic research to applied wildlife conservation have been slow to develop, these connections are increasingly strengthening. Here we review the primary areas in which population genomics approaches can be applied to wildlife conservation and management, highlight examples of how they have been used, and provide recommendations for building on the progress that has been made in this field.
Collapse
Affiliation(s)
- Paul A Hohenlohe
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Om P Rajora
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
17
|
Genetic Structure and Population Demography of White-Spotted Charr in the Upstream Watershed of a Large Dam. WATER 2020. [DOI: 10.3390/w12092406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
White-spotted charr (Salvelinus leucomaenis leucomaenis) is an anadromous fish that has been severely harmed by human land-use development, particularly through habitat fragmentation. However, the anthropogenic impacts on populations of this species have not been evaluated, except those on small dammed-off populations. Using multiplexed ISSR genotyping by sequencing, we investigated the genetic structure of white-spotted charr in four tributaries in the upper section of the Kanayama Dam in the Sorachi River, Hokkaido Island, Japan. There were no distinct genetic structures (FST = 0.014), probably because some active individuals migrate frequently among tributaries. By model-flexible demographic simulation, historical changes in the effective population size were inferred. The result indicates that the population size has decreased since the end of the last glacial period, with three major population decline events, including recent declines that were probably associated with recent human activities. Nevertheless, populations in the watershed upstream of the Kanayama Dam are still expected to be at low risk of immediate extinction, owing to the large watershed size and the limited number of small check dams. An effective conservation measure for sustaining the white-spotted charr population is to maintain high connectivity between tributaries, such as by providing fishways in check dams during construction.
Collapse
|
18
|
Bergamo LW, Silva-Brandão KL, Vicentini R, Fresia P, Azeredo-Espin AML. Genetic Differentiation of a New World Screwworm Fly Population from Uruguay Detected by SNPs, Mitochondrial DNA and Microsatellites in Two Consecutive Years. INSECTS 2020; 11:E539. [PMID: 32824385 PMCID: PMC7469150 DOI: 10.3390/insects11080539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/02/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
The New World screwworm (NWS) fly, Cochliomyia hominivorax (Diptera: Calliphoridae), is an economically important ectoparasite currently distributed in South America and in the Caribbean basin. The successful eradication of this species in USA, Mexico and continental Central America was achieved by a control program based on the sterile insect technique (SIT). In order to implement a genetic control strategy over the NWS fly's current area of occurrence, first, it is necessary to understand the species dynamics and population structure. In order to address this objective, the spatial genetic structure of the NWS fly was previously reported in South America based on different genetic markers; however, to date, no study has investigated temporal changes in the genetic composition of its populations. In the current study, the temporal genetic structure of a NWS fly population from Uruguay was investigated through two consecutive samplings from the same locality over an interval of approximately 18 generations. The genetic structure was accessed with neutral and under selection SNPs obtained with genotyping-by-sequencing. The results gathered with these data were compared to estimates achieved with mitochondrial DNA sequences and eight microsatellite markers. Temporal changes in the genetic composition were revealed by all three molecular markers, which may be attributed to seasonal changes in the NWS fly's southern distribution. SNPs were employed for the first time for estimating the genetic structure in a NWS fly population; these results provide new clues and perspectives on its population genetic structure. This approach could have significant implications for the planning and implementation of management programs.
Collapse
Affiliation(s)
- Luana Walravens Bergamo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas SP 13083-970, Brazil;
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP), Campinas SP 13083-862, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (CBMEG-UNICAMP), Campinas SP 13083-875, Brazil;
| | - Karina Lucas Silva-Brandão
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (CBMEG-UNICAMP), Campinas SP 13083-875, Brazil;
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (CCNH-UFABC), Santo André SP 09210-580, Brazil
| | - Renato Vicentini
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas SP 13083-970, Brazil;
| | - Pablo Fresia
- Unidad Mixta Pasteur + INIA (UMPI), Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Ana Maria Lima Azeredo-Espin
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas SP 13083-970, Brazil;
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (CBMEG-UNICAMP), Campinas SP 13083-875, Brazil;
| |
Collapse
|
19
|
Genomic Data Reveal Conserved Female Heterogamety in Giant Salamanders with Gigantic Nuclear Genomes. G3-GENES GENOMES GENETICS 2019; 9:3467-3476. [PMID: 31439718 PMCID: PMC6778777 DOI: 10.1534/g3.119.400556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Systems of genetic sex determination and the homology of sex chromosomes in different taxa vary greatly across vertebrates. Much progress remains to be made in understanding systems of genetic sex determination in non-model organisms, especially those with homomorphic sex chromosomes and/or large genomes. We used reduced representation genome sequencing to investigate genetic sex determination systems in the salamander family Cryptobranchidae (genera Cryptobranchus and Andrias), which typifies both of these inherent difficulties. We tested hypotheses of male- or female-heterogamety by sequencing hundreds of thousands of anonymous genomic regions in a panel of known-sex cryptobranchids and characterized patterns of presence/absence, inferred zygosity, and depth of coverage to identify sex-linked regions of these 56 gigabase genomes. Our results strongly support the hypothesis that all cryptobranchid species possess homologous systems of female heterogamety, despite maintenance of homomorphic sex chromosomes over nearly 60 million years. Additionally, we report a robust, non-invasive genetic assay for sex diagnosis in Cryptobranchus and Andrias which may have great utility for conservation efforts with these endangered salamanders. Co-amplification of these W-linked markers in both cryptobranchid genera provides evidence for long-term sex chromosome stasis in one of the most divergent salamander lineages. These findings inform hypotheses about the ancestral mode of sex determination in salamanders, but suggest that comparative data from other salamander families are needed. Our results further demonstrate that massive genomes are not necessarily a barrier to effective genome-wide sequencing and that the resulting data can be highly informative about sex determination systems in taxa with homomorphic sex chromosomes.
Collapse
|
20
|
Burkhart JJ, Puckett EE, Beringer CJ, Sholy CN, Semlitsch RD, Eggert LS. Post-Pleistocene differentiation in a Central Interior Highlands endemic salamander. Ecol Evol 2019; 9:11171-11184. [PMID: 31641463 PMCID: PMC6802018 DOI: 10.1002/ece3.5619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 11/07/2022] Open
Abstract
AIM For many endemic species with limited dispersal capacities, the relationship between landscape changes and species distributions is still unclear. We characterized the population structure of the endemic ringed salamander (Ambystoma annulatum) across its distribution in the Central Interior Highlands (CIH) of North America, an area of high species endemism, to infer the ecological and evolutionary history of the species. METHODS We sampled 498 individuals across the species distribution and characterized the population genetic structure using nuclear microsatellite and mitochondrial DNA (mtDNA) markers. RESULTS Ambystoma annulatum exist in two strongly supported nuclear genetic clusters across the CIH that correspond to a northern cluster that includes the Missouri Ozark populations and a southern cluster that includes the Arkansas and Oklahoma Ozarks and the Ouachita Mountains. Our demographic models estimated that these populations diverged approximately 2,700 years ago. Pairwise estimates of genetic differentiation at microsatellite and mtDNA markers indicated limited contemporary gene flow and suggest that genetic differentiation was primarily influenced by changes in the post-Pleistocene landscape of the CIH. MAIN CONCLUSIONS Both the geologic history and post-European settlement history of the CIH have influenced the population genetic structure of A. annulatum. The low mtDNA diversity suggests a retraction into and expansion out of refugial areas in the south-central Ozarks, during temperature fluctuations of the Pleistocene and Holocene epochs. Similarly, the estimated divergence time for the two nuclear clusters corresponds to changes in the post-Pleistocene landscape. More recently, decreased A. annulatum gene flow may be a result of increased habitat fragmentation and alteration post-European settlement.
Collapse
Affiliation(s)
| | - Emily E. Puckett
- Department of Biological SciencesUniversity of MemphisMemphisTNUSA
| | | | | | | | - Lori S. Eggert
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| |
Collapse
|
21
|
Huang JP. Holocene Population Decline and Conservation Implication for the Western Hercules Beetle, Dynastes grantii (Coleoptera, Scarabaeidae). J Hered 2019; 110:629-637. [DOI: 10.1093/jhered/esz036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/25/2019] [Indexed: 12/17/2022] Open
Abstract
Abstract
The Western Hercules beetle (Dynastes grantii) is endemic to the highland forest habitats of southwestern United States and northern Mexico. The habitats harbor many endemic species, but are being threatened by rapid climate change and urban development. In this study, the genetic structure of D. grantii populations from southwestern United States was investigated. Specifically, genomic data from double-digest restriction-site-associated DNA sequencing libraries were utilized to test whether geographically distant populations from the Mogollon Rim (Arizona [N = 12 individuals] and New Mexico [N = 10 individuals]) are genetically structured. The study also estimated the effective population size of the Mogollon Rim populations based on genetic diversity. The results indicated that the 2 geographic populations from the Mogollon Rim were not genetically structured. A population size reduction was detected since the end of the last glacial period, which coincided with a reduction of forest habitat in the study area. The results implied that the connectivity and the size of highland forest habitats in the Mogollon Rim could have been the major factors shaping the population genetic structure and demographic history of D. grantii. The Western Hercules beetle could be a useful flagship species for local natural history education and to promote the conservation of highland forest habitats.
Collapse
Affiliation(s)
- Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
- Integrative Research Center, The Field Museum of Natural History, Chicago, IL
| |
Collapse
|
22
|
Bi K, Linderoth T, Singhal S, Vanderpool D, Patton JL, Nielsen R, Moritz C, Good JM. Temporal genomic contrasts reveal rapid evolutionary responses in an alpine mammal during recent climate change. PLoS Genet 2019; 15:e1008119. [PMID: 31050681 PMCID: PMC6519841 DOI: 10.1371/journal.pgen.1008119] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/15/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Many species have experienced dramatic changes in their abundance and distribution during recent climate change, but it is often unclear whether such ecological responses are accompanied by evolutionary change. We used targeted exon sequencing of 294 museum specimens (160 historic, 134 modern) to generate independent temporal genomic contrasts spanning a century of climate change (1911-2012) for two co-distributed chipmunk species: an endemic alpine specialist (Tamias alpinus) undergoing severe range contraction and a stable mid-elevation species (T. speciosus). Using a novel analytical approach, we reconstructed the demographic histories of these populations and tested for evidence of recent positive directional selection. Only the retracting species showed substantial population genetic fragmentation through time and this was coupled with positive selection and substantial shifts in allele frequencies at a gene, Alox15, involved in regulation of inflammation and response to hypoxia. However, these rapid population and gene-level responses were not detected in an analogous temporal contrast from another area where T. alpinus has also undergone severe range contraction. Collectively, these results highlight that evolutionary responses may be variable and context dependent across populations, even when they show seemingly synchronous ecological shifts. Our results demonstrate that temporal genomic contrasts can be used to detect very recent evolutionary responses within and among contemporary populations, even in the face of complex demographic changes. Given the wealth of specimens archived in natural history museums, comparative analyses of temporal population genomic data have the potential to improve our understanding of recent and ongoing evolutionary responses to rapidly changing environments.
Collapse
Affiliation(s)
- Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
- Computational Genomics Resource Laboratory (CGRL), California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, United States of America
| | - Tyler Linderoth
- Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Sonal Singhal
- Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Dan Vanderpool
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - James L. Patton
- Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Craig Moritz
- Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
- Research School of Biology and Centre for Biodiversity Analysis, Australian National University, Canberra, ACT, Australia
| | - Jeffrey M. Good
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- Wildlife Biology Program, University of Montana, Missoula, MT, United States of America
| |
Collapse
|
23
|
Warmuth VM, Ellegren H. Genotype‐free estimation of allele frequencies reduces bias and improves demographic inference from RADSeq data. Mol Ecol Resour 2019; 19:586-596. [DOI: 10.1111/1755-0998.12990] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Vera M. Warmuth
- Department of Evolutionary Biology, Evolutionary Biology Centre Uppsala University Uppsala Sweden
- Division of Evolutionary Biology, Faculty of Biology Ludwig‐Maximilians‐Universität München Martinsried Germany
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre Uppsala University Uppsala Sweden
| |
Collapse
|
24
|
Advancing Understanding of Amphibian Evolution, Ecology, Behavior, and Conservation with Massively Parallel Sequencing. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_61] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Surmounting the Large-Genome “Problem” for Genomic Data Generation in Salamanders. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_36] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
26
|
Nunziata SO, Weisrock DW. Estimation of contemporary effective population size and population declines using RAD sequence data. Heredity (Edinb) 2017; 120:196-207. [PMID: 29269932 DOI: 10.1038/s41437-017-0037-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/12/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022] Open
Abstract
Large genomic data sets generated with restriction site-associated DNA sequencing (RADseq), in combination with demographic inference methods, are improving our ability to gain insights into the population history of species. We used a simulation approach to examine the potential for RADseq data sets to accurately estimate effective population size (N e) over the course of stable and declining population trends, and we compare the ability of two methods of analysis to accurately distinguish stable from steadily declining populations over a contemporary time scale (20 generations). Using a linkage disequilibrium-based analysis, individual sampling (i.e., n ≥ 30) had the greatest effect on N e estimation and the detection of population size declines, with declines reliably detected across scenarios ~10 generations after they began. Coalescent-based inference required fewer sampled individuals (i.e., n = 15), and instead was most influenced by the size of the SNP data set, with 25,000-50,000 SNPs required for accurate detection of population trends and at least 20 generations after decline began. The number of samples available and targeted number of RADseq loci are important criteria when choosing between these methods. Neither method suffered any apparent bias due to the effects of allele dropout typical of RAD data. With an understanding of the limitations and biases of these approaches, researchers can make more informed decisions when designing their sampling and analyses. Overall, our results reveal that demographic inference using RADseq data can be successfully applied to infer recent population size change and may be an important tool for population monitoring and conservation biology.
Collapse
Affiliation(s)
- Schyler O Nunziata
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA.
| | - David W Weisrock
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|