1
|
Kołodziejczyk J, Fijarczyk A, Porth I, Robakowski P, Vella N, Vella A, Kloch A, Biedrzycka A. Genomic investigations of successful invasions: the picture emerging from recent studies. Biol Rev Camb Philos Soc 2025; 100:1396-1418. [PMID: 39956989 PMCID: PMC12120398 DOI: 10.1111/brv.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
Invasion biology aims to identify traits and mechanisms that contribute to successful invasions, while also providing general insights into the mechanisms underlying population expansion and adaptation to rapid climate and habitat changes. Certain phenotypic attributes have been linked to successful invasions, and the role of genetics has been critical in understanding adaptation of invasive species. Nevertheless, a comprehensive summary evaluating the most common evolutionary mechanisms associated with successful invasions across species and environments is still lacking. Here we present a systematic review of studies since 2015 that have applied genomic tools to investigate mechanisms of successful invasions across different organisms. We examine demographic patterns such as changes in genomic diversity at the population level, the presence of genetic bottlenecks and gene flow in the invasive range. We review mechanisms of adaptation such as selection from standing genetic variation and de novo mutations, hybridisation and introgression, all of which can have an impact on invasion success. This comprehensive review of recent articles on the genomic diversity of invasive species led to the creation of a searchable database to provide researchers with an accessible resource. Analysis of this database allowed quantitative assessment of demographic and adaptive mechanisms acting in invasive species. A predominant role of admixture in increasing levels of genetic diversity enabling molecular adaptation in novel habitats is the most important finding of our study. The "genetic paradox" of invasive species was not validated in genomic data across species and ecosystems. Even though the presence of genetic drift and bottlenecks is commonly reported upon invasion, a large reduction in genomic diversity is rarely observed. Any decrease in genetic diversity is often relatively mild and almost always restored via gene flow between different invasive populations. The fact that loci under selection are frequently detected suggests that adaptation to novel habitats on a molecular level is not hindered. The above findings are confirmed herein for the first time in a semi-quantitative manner by molecular data. We also point to gaps and potential improvements in the design of studies of mechanisms driving rapid molecular adaptation in invasive populations. These include the scarcity of comprehensive studies that include sampling from multiple native and invasive populations, identification of invasion sources, longitudinal population sampling, and the integration of fitness measures into genomic analyses. We also note that the potential of whole genome studies is often not exploited fully in predicting invasive potential. Comparative genomic studies identifying genome features promoting invasions are underrepresented despite their potential for use as a tool in invasive species control.
Collapse
Affiliation(s)
- Joanna Kołodziejczyk
- Institute of Nature Conservation, Polish Academy of SciencesMickiewicza 33Kraków31‐120Poland
| | - Anna Fijarczyk
- Natural Resources Canada, Laurentian Forestry Centre1055 Rue du PepsQuébec CityQuebecG1V 4C7Canada
- Department of BiologyLaval University1045 Avenue de la MédecineQuébec CityQuebecG1V 0A6Canada
- Institute of Integrative Biology and SystemsLaval University1030 Avenue de La MédecineQuébec CityQuebecG1V 0A6Canada
| | - Ilga Porth
- Institute of Integrative Biology and SystemsLaval University1030 Avenue de La MédecineQuébec CityQuebecG1V 0A6Canada
- Department of Wood and Forest SciencesLaval University1030 Avenue de La MédecineQuébec CityQuebecG1V 0A6Canada
- Centre for Forest ResearchLaval University2405 Rue de La TerrasseQuébec CityQuebecG1V 0A6Canada
| | - Piotr Robakowski
- Faculty of Forestry and Wood TechnologyPoznań University of Life Sciences71E Wojska Polskiego StreetPoznańPL 60‐625Poland
| | - Noel Vella
- Conservation Biology Research Group, Department of BiologyUniversity of MaltaMsidaMSD2080Malta
| | - Adriana Vella
- Conservation Biology Research Group, Department of BiologyUniversity of MaltaMsidaMSD2080Malta
| | - Agnieszka Kloch
- Faculty of BiologyUniversity of WarsawMiecznikowa 1Warsaw02‐089Poland
| | - Aleksandra Biedrzycka
- Institute of Nature Conservation, Polish Academy of SciencesMickiewicza 33Kraków31‐120Poland
| |
Collapse
|
2
|
Ren C, Comes HP, Zhu S, Zhang X, Jiang W, Fu C, Chen J, Ma Y, Qiu Y. Genome-wide patterns of local adaptation associated with transposable elements in Tetrastigma hemsleyanum (Vitaceae). THE NEW PHYTOLOGIST 2025. [PMID: 40448394 DOI: 10.1111/nph.70264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 05/12/2025] [Indexed: 06/02/2025]
Abstract
The mobility of transposable elements (TEs) partly drives genome evolution, potentially leading to either adaptive or deleterious effects. However, it remains far from clear whether and how TEs contribute to adaptation to changing environments, especially in plants. We analyzed whole-genome sequencing data from 29 ecologically diverse Tetrastigma hemsleyanum populations to infer the species' demographic history and its impact on TE polymorphisms. Integrated selective sweep and genome-environment association (GEA) approaches were employed to examine the contribution of TEs to environmental adaptation. The ancestor of T. hemsleyanum diverged during the late Miocene/Pliocene, forming two lineages that further split into four sublineages. These (sub)lineages underwent periodic population declines and recoveries during the late-Pleistocene climatic oscillations, with most polymorphic TEs transposing during the last glacial period. A small fraction of these TEs (0.033-0.40%) showed signatures of positive selection, while a broader subset (0.081-0.76%) correlated significantly with climatic variables. Notably, these selected or climate-linked TE polymorphisms were preferentially retained in gene-poor regions and frequently linked to genes involved in organ development and stress/defense response. Our findings demonstrate that TEs played a key regulatory and adaptive role in T. hemsleyanum's response to environmental change, underscoring their importance in better understanding the genomic mechanisms underlying adaptation.
Collapse
Affiliation(s)
- Chaoqian Ren
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Hans Peter Comes
- Department of Environment & Biodiversity, Salzburg University, Salzburg, A-5020, Austria
| | - Shanshan Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xinyi Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Weimei Jiang
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chengxin Fu
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jun Chen
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yazhen Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Yingxiong Qiu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| |
Collapse
|
3
|
Groza C, Chen X, Wheeler TJ, Bourque G, Goubert C. A unified framework to analyze transposable element insertion polymorphisms using graph genomes. Nat Commun 2024; 15:8915. [PMID: 39414821 PMCID: PMC11484939 DOI: 10.1038/s41467-024-53294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/02/2024] [Indexed: 10/18/2024] Open
Abstract
Transposable elements are ubiquitous mobile DNA sequences generating insertion polymorphisms, contributing to genomic diversity. We present GraffiTE, a flexible pipeline to analyze polymorphic mobile elements insertions. By integrating state-of-the-art structural variant detection algorithms and graph genomes, GraffiTE identifies polymorphic mobile elements from genomic assemblies or long-read sequencing data, and genotypes these variants using short or long read sets. Benchmarking on simulated and real datasets reports high precision and recall rates. GraffiTE is designed to allow non-expert users to perform comprehensive analyses, including in models with limited transposable element knowledge and is compatible with various sequencing technologies. Here, we demonstrate the versatility of GraffiTE by analyzing human, Drosophila melanogaster, maize, and Cannabis sativa pangenome data. These analyses reveal the landscapes of polymorphic mobile elements and their frequency variations across individuals, strains, and cultivars.
Collapse
Affiliation(s)
- Cristian Groza
- Quantitative Life Sciences, McGill University, Montréal, QC, Canada
| | - Xun Chen
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Travis J Wheeler
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Guillaume Bourque
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Canadian Centre for Computational Genomics, McGill University, Montréal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
- Human Genetics, McGill University, Montréal, QC, Canada
| | - Clément Goubert
- Human Genetics, McGill University, Montréal, QC, Canada.
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
4
|
Garambois C, Boulesteix M, Fablet M. Effects of Arboviral Infections on Transposable Element Transcript Levels in Aedes aegypti. Genome Biol Evol 2024; 16:evae092. [PMID: 38695057 PMCID: PMC11110940 DOI: 10.1093/gbe/evae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/23/2024] Open
Abstract
Transposable elements are mobile repeated sequences found in all genomes. Transposable elements are controlled by RNA interference pathways in most organisms, and this control involves the PIWI-interacting RNA pathway and the small interfering RNA pathway, which is also known to be the first line of antiviral defense in invertebrates. Using Drosophila, we recently showed that viral infections result in the modulation of transposable element transcript levels through modulation of the small RNA repertoire. The Aedes aegypti mosquito is of particular interest because almost half of its genome is made of transposable elements, and it is described as a major vector of viruses (such as the dengue [DENV], Zika [ZIKV], and chikungunya [CHIKV] arboviruses). Moreover, Aedes mosquitoes are unique among insects in that the PIWI-interacting RNA pathway is also involved in the somatic antiviral response, in addition to the transposable element control and PIWI-interacting RNA pathway genes expanded in the mosquito genome. For these reasons, we studied the impacts of viral infections on transposable element transcript levels in A. aegypti samples. We retrieved public datasets corresponding to RNA-seq data obtained from viral infections by DENV, ZIKV, and CHIKV in various tissues. We found that transposable element transcripts are moderately modulated following viral infection and that the direction of the modulation varies greatly across tissues and viruses. These results highlight the need for an in-depth investigation of the tightly intertwined interactions between transposable elements and viruses.
Collapse
Affiliation(s)
- Chloé Garambois
- Universite Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, CNRS, VAS, Villeurbanne 69622, France
| | - Matthieu Boulesteix
- Universite Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, CNRS, VAS, Villeurbanne 69622, France
| | - Marie Fablet
- Universite Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, CNRS, VAS, Villeurbanne 69622, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
5
|
Ma LJ, Cao LJ, Chen JC, Tang MQ, Song W, Yang FY, Shen XJ, Ren YJ, Yang Q, Li H, Hoffmann AA, Wei SJ. Rapid and Repeated Climate Adaptation Involving Chromosome Inversions following Invasion of an Insect. Mol Biol Evol 2024; 41:msae044. [PMID: 38401527 PMCID: PMC10924284 DOI: 10.1093/molbev/msae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
Following invasion, insects can become adapted to conditions experienced in their invasive range, but there are few studies on the speed of adaptation and its genomic basis. Here, we examine a small insect pest, Thrips palmi, following its contemporary range expansion across a sharp climate gradient from the subtropics to temperate areas. We first found a geographically associated population genetic structure and inferred a stepping-stone dispersal pattern in this pest from the open fields of southern China to greenhouse environments of northern regions, with limited gene flow after colonization. In common garden experiments, both the field and greenhouse groups exhibited clinal patterns in thermal tolerance as measured by critical thermal maximum (CTmax) closely linked with latitude and temperature variables. A selection experiment reinforced the evolutionary potential of CTmax with an estimated h2 of 6.8% for the trait. We identified 3 inversions in the genome that were closely associated with CTmax, accounting for 49.9%, 19.6%, and 8.6% of the variance in CTmax among populations. Other genomic variations in CTmax outside the inversion region were specific to certain populations but functionally conserved. These findings highlight rapid adaptation to CTmax in both open field and greenhouse populations and reiterate the importance of inversions behaving as large-effect alleles in climate adaptation.
Collapse
Affiliation(s)
- Li-Jun Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Meng-Qing Tang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wei Song
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fang-Yuan Yang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiu-Jing Shen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ya-Jing Ren
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qiong Yang
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ary Anthony Hoffmann
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
6
|
Cang FA, Welles SR, Wong J, Ziaee M, Dlugosch KM. Genome size variation and evolution during invasive range expansion in an introduced plant. Evol Appl 2024; 17:e13624. [PMID: 38283607 PMCID: PMC10810172 DOI: 10.1111/eva.13624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024] Open
Abstract
Plants demonstrate exceptional variation in genome size across species, and their genome sizes can also vary dramatically across individuals and populations within species. This aspect of genetic variation can have consequences for traits and fitness, but few studies attributed genome size differentiation to ecological and evolutionary processes. Biological invasions present particularly useful natural laboratories to infer selective agents that might drive genome size shifts across environments and population histories. Here, we test hypotheses for the evolutionary causes of genome size variation across 14 invading populations of yellow starthistle, Centaurea solstitialis, in California, United States. We use a survey of genome sizes and trait variation to ask: (1) Is variation in genome size associated with developmental trait variation? (2) Are genome sizes smaller toward the leading edge of the expansion, consistent with selection for "colonizer" traits? Or alternatively, does genome size increase toward the leading edge of the expansion, consistent with predicted consequences of founder effects and drift? (3) Finally, are genome sizes smaller at higher elevations, consistent with selection for shorter development times? We found that 2C DNA content varied 1.21-fold among all samples, and was associated with flowering time variation, such that plants with larger genomes reproduced later, with lower lifetime capitula production. Genome sizes increased toward the leading edge of the invasion, but tended to decrease at higher elevations, consistent with genetic drift during range expansion but potentially strong selection for smaller genomes and faster development time at higher elevations. These results demonstrate how genome size variation can contribute to traits directly tied to reproductive success, and how selection and drift can shape that variation. We highlight the influence of genome size on dynamics underlying a rapid range expansion in a highly problematic invasive plant.
Collapse
Affiliation(s)
- F. Alice Cang
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | - Shana R. Welles
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
- Utah Valley UniversityOremUtahUSA
| | - Jenny Wong
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | - Maia Ziaee
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
- Mills CollegeOaklandCaliforniaUSA
| | - Katrina M. Dlugosch
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
7
|
Feldmeyer B, Bornberg-Bauer E, Dohmen E, Fouks B, Heckenhauer J, Huylmans AK, Jones ARC, Stolle E, Harrison MC. Comparative Evolutionary Genomics in Insects. Methods Mol Biol 2024; 2802:473-514. [PMID: 38819569 DOI: 10.1007/978-1-0716-3838-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Genome sequencing quality, in terms of both read length and accuracy, is constantly improving. By combining long-read sequencing technologies with various scaffolding techniques, chromosome-level genome assemblies are now achievable at an affordable price for non-model organisms. Insects represent an exciting taxon for studying the genomic underpinnings of evolutionary innovations, due to ancient origins, immense species-richness, and broad phenotypic diversity. Here we summarize some of the most important methods for carrying out a comparative genomics study on insects. We describe available tools and offer concrete tips on all stages of such an endeavor from DNA extraction through genome sequencing, annotation, and several evolutionary analyses. Along the way we describe important insect-specific aspects, such as DNA extraction difficulties or gene families that are particularly difficult to annotate, and offer solutions. We describe results from several examples of comparative genomics analyses on insects to illustrate the fascinating questions that can now be addressed in this new age of genomics research.
Collapse
Affiliation(s)
- Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Molecular Ecology, Frankfurt, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Elias Dohmen
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Bertrand Fouks
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jacqueline Heckenhauer
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
| | - Ann Kathrin Huylmans
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Alun R C Jones
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Eckart Stolle
- Museum Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Mark C Harrison
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
| |
Collapse
|
8
|
Bonnin L, Tran A, Herbreteau V, Marcombe S, Boyer S, Mangeas M, Menkes C. Predicting the Effects of Climate Change on Dengue Vector Densities in Southeast Asia through Process-Based Modeling. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:127002. [PMID: 36473499 PMCID: PMC9726451 DOI: 10.1289/ehp11068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Aedes aegypti and Ae. albopictus mosquitoes are major vectors for several human diseases of global importance, such as dengue and yellow fever. Their life cycles and hosted arboviruses are climate sensitive and thus expected to be impacted by climate change. Most studies investigating climate change impacts on Aedes at global or continental scales focused on their future global distribution changes, whereas a single study focused on its effects on Ae. aegypti densities regionally. OBJECTIVES A process-based approach was used to model densities of Ae. aegypti and Ae. albopictus and their potential evolution with climate change using a panel of nine CMIP6 climate models and climate scenarios ranging from strong to low mitigation measures at the Southeast Asian scale and for the next 80 y. METHODS The process-based model described, through a system of ordinary differential equations, the variations of mosquito densities in 10 compartments, corresponding to 10 different stages of mosquito life cycle, in response to temperature and precipitation variations. Local field data were used to validate model outputs. RESULTS We show that both species densities will globally increase due to future temperature increases. In Southeast Asia by the end of the century, Ae. aegypti densities are expected to increase from 25% with climate mitigation measures to 46% without; Ae. albopictus densities are expected to increase from 13%-21%, respectively. However, we find spatially contrasted responses at the seasonal scales with a significant decrease in Ae. albopictus densities in lowlands during summer in the future. DISCUSSION These results contrast with previous results, which brings new insight on the future impacts of climate change on Aedes densities. Major sources of uncertainties, such as mosquito model parametrization and climate model uncertainties, were addressed to explore the limits of such modeling. https://doi.org/10.1289/EHP11068.
Collapse
Affiliation(s)
- Lucas Bonnin
- ENTROPIE (UMR 9220), IRD, Université de la Réunion, CNRS, Ifremer, Université de Nouvelle Calédonie, Nouméa, Nouvelle-Calédonie
| | - Annelise Tran
- CIRAD, UMR TETIS, Sainte-Clotilde, Reunion Island, France
- TETIS, Université Montpellier, AgroParisTech, CIRAD, CNRS, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Sainte-Clotilde, Reunion Island, France
- ASTRE, Université Montpellier, CIRAD, INRAE, Montpellier, France
| | - Vincent Herbreteau
- ESPACE-DEV, IRD, Université Antilles, Université Guyane, Université Montpellier, Université de la Réunion, Montpellier, France
- ESPACE-DEV, IRD, Université Antilles, Université Guyane, Université Montpellier, Université de la Réunion, Phnom Penh, Cambodia
| | - Sébastien Marcombe
- Medical Entomology and Vector-Borne Disease Laboratory, Institut Pasteur du Laos, Vientiane, Lao PDR
| | - Sébastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Morgan Mangeas
- ENTROPIE (UMR 9220), IRD, Université de la Réunion, CNRS, Ifremer, Université de Nouvelle Calédonie, Nouméa, Nouvelle-Calédonie
| | - Christophe Menkes
- ENTROPIE (UMR 9220), IRD, Université de la Réunion, CNRS, Ifremer, Université de Nouvelle Calédonie, Nouméa, Nouvelle-Calédonie
| |
Collapse
|
9
|
Hanson HE, Wang C, Schrey AW, Liebl AL, Ravinet M, Jiang RH, Martin LB. Epigenetic Potential and DNA Methylation in an Ongoing House Sparrow (Passer domesticus) Range Expansion. Am Nat 2022; 200:662-674. [DOI: 10.1086/720950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Abstract
Organisms mount the cellular stress response whenever environmental parameters exceed the range that is conducive to maintaining homeostasis. This response is critical for survival in emergency situations because it protects macromolecular integrity and, therefore, cell/organismal function. From an evolutionary perspective, the cellular stress response counteracts severe stress by accelerating adaptation via a process called stress-induced evolution. In this Review, we summarize five key physiological mechanisms of stress-induced evolution. Namely, these are stress-induced changes in: (1) mutation rates, (2) histone post-translational modifications, (3) DNA methylation, (4) chromoanagenesis and (5) transposable element activity. Through each of these mechanisms, organisms rapidly generate heritable phenotypes that may be adaptive, maladaptive or neutral in specific contexts. Regardless of their consequences to individual fitness, these mechanisms produce phenotypic variation at the population level. Because variation fuels natural selection, the physiological mechanisms of stress-induced evolution increase the likelihood that populations can avoid extirpation and instead adapt under the stress of new environmental conditions.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| | - Dietmar Kültz
- Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| |
Collapse
|
11
|
Su Y, Huang Q, Wang Z, Wang T. High genetic and epigenetic variation of transposable elements: Potential drivers to rapid adaptive evolution for the noxious invasive weed Mikania micrantha. Ecol Evol 2021; 11:13501-13517. [PMID: 34646486 PMCID: PMC8495827 DOI: 10.1002/ece3.8075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022] Open
Abstract
Why invasive species can rapidly adapt to novel environments is a puzzling question known as the genetic paradox of invasive species. This paradox is explainable in terms of transposable elements (TEs) activity, which are theorized to be powerful mutational forces to create genetic variation. Mikania micrantha, a noxious invasive weed, in this sense provides an excellent opportunity to test the explanation. The genetic and epigenetic variation of 21 invasive populations of M. micrantha in southern China have been examined by using transposon display (TD) and transposon methylation display (TMD) techniques to survey 12 TE superfamilies. Our results showed that M. micrantha populations maintained an almost equally high level of TE-based genetic and epigenetic variation and they have been differentiated into subpopulations genetically and epigenetically. A similar positive spatial genetic and epigenetic structure pattern was observed within 300 m. Six and seven TE superfamilies presented significant genetic and epigenetic isolation by distance (IBD) pattern. In total, 59 genetic and 86 epigenetic adaptive TE loci were identified. Of them, 51 genetic and 44 epigenetic loci were found to correlate with 25 environmental variables (including precipitation, temperature, vegetation coverage, and soil metals). Twenty-five transposon-inserted genes were sequenced and homology-based annotated, which are found to be involved in a variety of molecular and cellular functions. Our research consolidates the importance of TE-associated genetic and epigenetic variation in the rapid adaptation and invasion of M. micrantha.
Collapse
Affiliation(s)
- Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen UniversityShenzhenChina
| | - Qiqi Huang
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhen Wang
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ting Wang
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
12
|
Ludwig A, Schemberger MO, Gazolla CB, de Moura Gama J, Duarte I, Lopes ALK, Mathias C, Petters-Vandresen DAL, Zattera ML, Bruschi DP. Transposable elements expression in Rhinella marina (cane toad) specimens submitted to immune and stress challenge. Genetica 2021; 149:335-342. [PMID: 34383169 DOI: 10.1007/s10709-021-00130-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022]
Abstract
Transposable elements (TEs) are important components of eukaryotic genomes and compose around 30% of the genome of Rhinella marina, an invasive toad species. Considering the possible role of TEs in the adaptation of populations, we have analyzed the expression of TEs in publicly available spleen tissue transcriptomic data generated for this species after immune and stress challenge. By analyzing the transcriptome assembly, we detected a high number of TE segments. Moreover, some distinct TE families were differentially expressed in some conditions. Our result shows that several TEs are capable of being transcribed in R. marina and they could help to generate a rapid response of specimens to the environment. Also, we can suggest that these TEs could be activated in the germinative cells as well producing variability to be selected and shaped by the evolutionary processes behind the success of this invasive species. Thus, the TEs are important targets for investigation in the context of R. marina adaptation.
Collapse
Affiliation(s)
- Adriana Ludwig
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde (LaCTAS), Instituto Carlos Chagas - Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Michelle Orane Schemberger
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
| | - Camilla Borges Gazolla
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Joana de Moura Gama
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Iraine Duarte
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Ana Luisa Kalb Lopes
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde (LaCTAS), Instituto Carlos Chagas - Fiocruz-PR, Curitiba, Paraná, Brazil
- Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Carolina Mathias
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | | | - Michelle Louise Zattera
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Daniel Pacheco Bruschi
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
- Laboratório de Citogenética Evolutiva e Conservação Animal (LabCECA), Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
| |
Collapse
|
13
|
Schmidt TL, Swan T, Chung J, Karl S, Demok S, Yang Q, Field MA, Muzari MO, Ehlers G, Brugh M, Bellwood R, Horne P, Burkot TR, Ritchie S, Hoffmann AA. Spatial population genomics of a recent mosquito invasion. Mol Ecol 2021; 30:1174-1189. [PMID: 33421231 DOI: 10.1111/mec.15792] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/20/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Population genomic approaches can characterize dispersal across a single generation through to many generations in the past, bridging the gap between individual movement and intergenerational gene flow. These approaches are particularly useful when investigating dispersal in recently altered systems, where they provide a way of inferring long-distance dispersal between newly established populations and their interactions with existing populations. Human-mediated biological invasions represent such altered systems which can be investigated with appropriate study designs and analyses. Here we apply temporally restricted sampling and a range of population genomic approaches to investigate dispersal in a 2004 invasion of Aedes albopictus (the Asian tiger mosquito) in the Torres Strait Islands (TSI) of Australia. We sampled mosquitoes from 13 TSI villages simultaneously and genotyped 373 mosquitoes at genome-wide single nucleotide polymorphisms (SNPs): 331 from the TSI, 36 from Papua New Guinea (PNG) and four incursive mosquitoes detected in uninvaded regions. Within villages, spatial genetic structure varied substantially but overall displayed isolation by distance and a neighbourhood size of 232-577. Close kin dyads revealed recent movement between islands 31-203 km apart, and deep learning inferences showed incursive Ae. albopictus had travelled to uninvaded regions from both adjacent and nonadjacent islands. Private alleles and a co-ancestry matrix indicated direct gene flow from PNG into nearby islands. Outlier analyses also detected four linked alleles introgressed from PNG, with the alleles surrounding 12 resistance-associated cytochrome P450 genes. By treating dispersal as both an intergenerational process and a set of discrete events, we describe a highly interconnected invasive system.
Collapse
Affiliation(s)
- Thomas L Schmidt
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Tom Swan
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QLD, Australia
| | - Jessica Chung
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia.,Melbourne Bioinformatics, University of Melbourne, Parkville, VIC, Australia
| | - Stephan Karl
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Samuel Demok
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Matt A Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Mutizwa Odwell Muzari
- Medical Entomology, Tropical Public Health Services Cairns, Cairns and Hinterland Hospital & Health Services, Cairns, QLD, Australia
| | - Gerhard Ehlers
- Medical Entomology, Tropical Public Health Services Cairns, Cairns and Hinterland Hospital & Health Services, Cairns, QLD, Australia
| | - Mathew Brugh
- Medical Entomology, Tropical Public Health Services Cairns, Cairns and Hinterland Hospital & Health Services, Cairns, QLD, Australia
| | - Rodney Bellwood
- Medical Entomology, Tropical Public Health Services Cairns, Cairns and Hinterland Hospital & Health Services, Cairns, QLD, Australia
| | - Peter Horne
- Medical Entomology, Tropical Public Health Services Cairns, Cairns and Hinterland Hospital & Health Services, Cairns, QLD, Australia
| | - Thomas R Burkot
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Scott Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QLD, Australia.,Institute of Vector-Borne Disease, Monash University, Clayton, VIC, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
14
|
Gilbert C, Peccoud J, Cordaux R. Transposable Elements and the Evolution of Insects. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:355-372. [PMID: 32931312 DOI: 10.1146/annurev-ento-070720-074650] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Insects are major contributors to our understanding of the interaction between transposable elements (TEs) and their hosts, owing to seminal discoveries, as well as to the growing number of sequenced insect genomes and population genomics and functional studies. Insect TE landscapes are highly variable both within and across insect orders, although phylogenetic relatedness appears to correlate with similarity in insect TE content. This correlation is unlikely to be solely due to inheritance of TEs from shared ancestors and may partly reflect preferential horizontal transfer of TEs between closely related species. The influence of insect traits on TE landscapes, however, remains unclear. Recent findings indicate that, in addition to being involved in insect adaptations and aging, TEs are seemingly at the cornerstone of insect antiviral immunity. Thus, TEs are emerging as essential insect symbionts that may have deleterious or beneficial consequences on their hosts, depending on context.
Collapse
Affiliation(s)
- Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France;
| | - Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, 86073 Poitiers CEDEX 9, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, 86073 Poitiers CEDEX 9, France
| |
Collapse
|
15
|
Wegner KM, Lokmer A, John U. Genomic and Transcriptomic Differentiation of Independent Invasions of the Pacific Oyster Crassostrea gigas. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.567049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
16
|
Liu Z, Fan M, Yue EK, Li Y, Tao RF, Xu HM, Duan MH, Xu JH. Natural variation and evolutionary dynamics of transposable elements in Brassica oleracea based on next-generation sequencing data. HORTICULTURE RESEARCH 2020; 7:145. [PMID: 32922817 PMCID: PMC7459127 DOI: 10.1038/s41438-020-00367-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/22/2020] [Accepted: 06/19/2020] [Indexed: 06/02/2023]
Abstract
Brassica oleracea comprises various economically important vegetables and presents extremely diverse morphological variations. They provide a rich source of nutrition for human health and have been used as a model system for studying polyploidization. Transposable elements (TEs) account for nearly 40% of the B. oleracea genome and contribute greatly to genetic diversity and genome evolution. Although the proliferation of TEs has led to a large expansion of the B. oleracea genome, little is known about the population dynamics and evolutionary activity of TEs. A comprehensive mobilome profile of 45,737 TE loci was obtained from resequencing data from 121 diverse accessions across nine B. oleracea morphotypes. Approximately 70% (32,195) of the loci showed insertion polymorphisms between or within morphotypes. In particular, up to 1221 loci were differentially fixed among morphotypes. Further analysis revealed that the distribution of the population frequency of TE loci was highly variable across different TE superfamilies and families, implying a diverse expansion history during host genome evolution. These findings provide better insight into the evolutionary dynamics and genetic diversity of B. oleracea genomes and will potentially serve as a valuable resource for molecular markers and association studies between TE-based genomic variations and morphotype-specific phenotypic differentiation.
Collapse
Affiliation(s)
- Zhen Liu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| | - Miao Fan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| | - Er-Kui Yue
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| | - Yu Li
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| | - Ruo-Fu Tao
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| | - Hai-Ming Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| | - Ming-Hua Duan
- Zhejiang Zhengjingyuan Pharmacy Chain Co., Ltd. & Hangzhou Zhengcaiyuan Pharmaceutical Co., Ltd., 310021 Hangzhou, People’s Republic of China
| | - Jian-Hong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| |
Collapse
|
17
|
Ma L, Cao L, Hoffmann AA, Gong Y, Chen J, Chen H, Wang X, Zeng A, Wei S, Zhou Z. Rapid and strong population genetic differentiation and genomic signatures of climatic adaptation in an invasive mealybug. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ling Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
- Institute of Insect Science Hunan Agriculture University Changsha China
| | - Li‐Jun Cao
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Ary A. Hoffmann
- School of BioSciences Bio21 Institute The University of Melbourne Melbourne Victoria Australia
| | - Ya‐Jun Gong
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Jin‐Cui Chen
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Hong‐Song Chen
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests Institute of Plant Protection Guangxi Academy of Agricultural Sciences Nanning China
| | - Xu‐Bo Wang
- Yunnan Academy of Biodiversity, Southwest Forestry University Kunming China
| | - Ai‐Ping Zeng
- Institute of Insect Science Hunan Agriculture University Changsha China
| | - Shu‐Jun Wei
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Zhong‐Shi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
18
|
Dallimore T, Goodson D, Batke S, Strode C. A potential global surveillance tool for effective, low-cost sampling of invasive Aedes mosquito eggs from tyres using adhesive tape. Parasit Vectors 2020; 13:91. [PMID: 32075683 PMCID: PMC7031899 DOI: 10.1186/s13071-020-3939-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/03/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The international movement of used tyres is a major factor responsible for global introductions of Aedes invasive mosquitoes (AIMs) (Diptera: Culicidae) that are major disease vectors (e.g. dengue, Zika, chikungunya and yellow fever). Surveillance methods are restricted by expense, availability and efficiency to detect all life stages. Currently, no tested method exists to screen imported used tyres for eggs in diapause, the life stage most at risk from accidental introduction. Here we test the efficiency of adhesive tape as an affordable and readily available material to screen tyres for eggs, testing its effect on hatch rate, larval development, DNA amplification and structural damage on the egg surface. RESULTS We demonstrated that the properties of adhesive tape can influence pick up of dormant eggs attached to dry surfaces. Tapes with high levels of adhesion, such as duct tape, removed eggs with high levels of efficiency (97% ± 3.14). Egg numbers collected from cleaned used tyres were found to explain larval hatch rate success well, particularly in subsequent larval to adult emergence experiments. The strength of this relationship decreased when we tested dirty tyres. Damage to the exochorion was observed following scanning electron microscopy (SEM), possibly resulting in the high variance in the observed model. We found that five days was the optimal time for eggs to remain on all tested tapes for maximum return on hatch rate success. Tape type did not inhibit amplification of DNA of eggs from three, five or ten days of exposure. Using this DNA, genotyping of AIMs was possible using species-specific markers. CONCLUSIONS We demonstrated for the first time that adhesive tapes are effective at removing AIM eggs from tyres. We propose that this method could be a standardised tool for surveillance to provide public health authorities and researchers with an additional method to screen tyre cargo. We provide a screening protocol for this purpose. This method has a global applicability and in turn can lead to increased predictability of introductions and improve screening methods at high risk entry points.
Collapse
Affiliation(s)
- Thom Dallimore
- Department of Biology, Edge Hill University, St. Helens Road, Ormskirk, Lancashire L39 4QP UK
| | - David Goodson
- Department of Biology, Edge Hill University, St. Helens Road, Ormskirk, Lancashire L39 4QP UK
| | - Sven Batke
- Department of Biology, Edge Hill University, St. Helens Road, Ormskirk, Lancashire L39 4QP UK
| | - Clare Strode
- Department of Biology, Edge Hill University, St. Helens Road, Ormskirk, Lancashire L39 4QP UK
| |
Collapse
|
19
|
Baltazar-Soares M, Blanchet S, Cote J, Tarkan AS, Záhorská E, Gozlan RE, Eizaguirre C. Genomic footprints of a biological invasion: Introduction from Asia and dispersal in Europe of the topmouth gudgeon (Pseudorasbora parva). Mol Ecol 2019; 29:71-85. [PMID: 31755610 PMCID: PMC7003831 DOI: 10.1111/mec.15313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 12/14/2022]
Abstract
Facilitated by the intensification of global trading, the introduction and dispersal of species to areas in which they are historically non-native is nowadays common. From an evolutionary standpoint, invasions are paradoxical: not only non-native environments could be different from native ones for which introduced individuals would be ill-adapted, but also small founding population size should be associated with reduced adaptive potential. As such, biological invasions are considered valuable real-time evolutionary experiments. Here, we investigated the population structure and adaptive potential of the highly invasive topmouth gudgeon (Pseudorasbora parva) across Europe and East Asia. We RAD-sequenced 301 specimens from sixteen populations and three distinct within-catchment invaded regions as well as two locations in the native range. With 13,785 single nucleotide polymorphisms, we provide conclusive evidence for a genome-wide signature of two distinct invasion events, in Slovakia and Turkey, each originating from a specific area in the native range. A third invaded area, in France, appears to be the result of dispersal within the invasive range. Few loci showed signs of selection, the vast majority of which being identified in the Slovakian region. Functional annotation suggests that faster early stage development, resistance to pollution and immunocompetence contribute to the invasion success of the local habitats. By showing that populations in the invasive range have different evolutionary histories, our study reinforces the idea that populations, rather than species, are the units to consider in invasion biology.
Collapse
Affiliation(s)
| | - Simon Blanchet
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Moulis, France
| | - Julien Cote
- UMR5174 (Laboratoire Evolution et Diversité Biologique), CNRS, University Toulouse III Paul Sabatier, Toulouse, France
| | - Ali S Tarkan
- Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Muğla, Turkey.,Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Eva Záhorská
- Faculty of Natural Sciences, Department of Ecology, Comenius University, Bratislava, Slovakia
| | - Rodolphe E Gozlan
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Christophe Eizaguirre
- School of Chemical and Biological Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
20
|
Sherpa S, Blum MGB, Després L. Cold adaptation in the Asian tiger mosquito's native range precedes its invasion success in temperate regions. Evolution 2019; 73:1793-1808. [DOI: 10.1111/evo.13801] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/06/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Stéphanie Sherpa
- Université Grenoble Alpes CNRS, UMR 5553 LECA F‐38000 Grenoble France
| | - Michael G. B. Blum
- Université Grenoble Alpes CNRS, UMR 5525 TIMC‐IMAG F‐38000 Grenoble France
| | - Laurence Després
- Université Grenoble Alpes CNRS, UMR 5553 LECA F‐38000 Grenoble France
| |
Collapse
|
21
|
Sherpa S, Blum MGB, Capblancq T, Cumer T, Rioux D, Després L. Unravelling the invasion history of the Asian tiger mosquito in Europe. Mol Ecol 2019; 28:2360-2377. [PMID: 30849200 DOI: 10.1111/mec.15071] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 01/15/2023]
Abstract
Multiple introductions are key features for the establishment and persistence of introduced species. However, little is known about the contribution of genetic admixture to the invasive potential of populations. To address this issue, we studied the recent invasion of the Asian tiger mosquito (Aedes albopictus) in Europe. Combining genome-wide single nucleotide polymorphisms and historical knowledge using an approximate Bayesian computation framework, we reconstruct the colonization routes and establish the demographic dynamics of invasion. The colonization of Europe involved at least three independent introductions in Albania, North Italy and Central Italy that subsequently acted as dispersal centres throughout Europe. We show that the topology of human transportation networks shaped demographic histories with North Italy and Central Italy being the main dispersal centres in Europe. Introduction modalities conditioned the levels of genetic diversity in invading populations, and genetically diverse and admixed populations promoted more secondary introductions and have spread farther than single-source invasions. This genomic study provides further crucial insights into a general understanding of the role of genetic diversity promoted by modern trade in driving biological invasions.
Collapse
Affiliation(s)
| | - Michael G B Blum
- Université Grenoble Alpes, CNRS UMR 5525 TIMC-IMAG, Grenoble, France
| | | | - Tristan Cumer
- Université Grenoble Alpes, CNRS UMR 5553 LECA, Grenoble, France
| | - Delphine Rioux
- Université Grenoble Alpes, CNRS UMR 5553 LECA, Grenoble, France
| | | |
Collapse
|
22
|
Monitoring of alien mosquitoes of the genus Aedes (Diptera: Culicidae) in Austria. Parasitol Res 2019; 118:1633-1638. [PMID: 30877440 PMCID: PMC6478629 DOI: 10.1007/s00436-019-06287-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/06/2019] [Indexed: 01/23/2023]
Abstract
Systematic, continuous mosquito surveillance is considered the most reliable tool to predict the spread and establishment of alien mosquito species such as the Asian tiger mosquito (Aedes albopictus), Japanese bush mosquito (Aedes japonicus), and the transmission risk of mosquito-borne arboviruses to humans. Only single individuals of Ae. albopictus have been found in Austria so far. However, it is likely that the species will be able to establish populations in the future due to global trade and traffic as well as increasing temperatures in the course of global climate change. In summer 2017, a project surveilling the oviposition of newly introduced Aedes mosquitoes, using ovitraps, was set up by means of citizen scientists and researchers and was performed in six federal provinces of Austria-Tyrol, Carinthia, Vienna, Lower Austria, Styria, and Burgenland. Eggs of Ae. albopictus were identified in Tyrol during the months August and September, while Ae. japonicus was found in Lower Austria, Styria, and Burgenland. In Vienna and Carinthia, all ovitraps were negative for Aedes eggs; however, Ae. japonicus was found for the first time in Vienna in July 2017 during routine sampling of adult mosquitoes. With this project, we demonstrated the benefits of citizen scientists for ovitrap-based mosquito surveillance. The finding of Ae. albopictus eggs in Northern Tyrol is not yet a proof of the establishment of a self-sustaining population, although it indicates the ongoing introduction of this species along main traffic routes from Italy, where this mosquito is well established. The risk of establishment of the tiger mosquito in the Lower Inn Valley is therefore a given and informing the public about preventive measures to hinder and delay this development is highly recommended.
Collapse
|
23
|
Marin P, Genitoni J, Barloy D, Maury S, Gibert P, Ghalambor CK, Vieira C. Biological invasion: The influence of the hidden side of the (epi)genome. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13317] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pierre Marin
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1 Université de Lyon Villeurbanne France
| | - Julien Genitoni
- ESE, Ecology and Ecosystem Health, Agrocampus Ouest INRA Rennes France
- LBLGC EA 1207 INRA, Université d'Orléans, USC 1328 Orléans France
| | - Dominique Barloy
- ESE, Ecology and Ecosystem Health, Agrocampus Ouest INRA Rennes France
| | - Stéphane Maury
- LBLGC EA 1207 INRA, Université d'Orléans, USC 1328 Orléans France
| | - Patricia Gibert
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1 Université de Lyon Villeurbanne France
| | - Cameron K. Ghalambor
- Department of Biology and Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1 Université de Lyon Villeurbanne France
| |
Collapse
|
24
|
Lerat E, Goubert C, Guirao‐Rico S, Merenciano M, Dufour A, Vieira C, González J. Population-specific dynamics and selection patterns of transposable element insertions in European natural populations. Mol Ecol 2019; 28:1506-1522. [PMID: 30506554 PMCID: PMC6849870 DOI: 10.1111/mec.14963] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 01/02/2023]
Abstract
Transposable elements (TEs) are ubiquitous sequences in genomes of virtually all species. While TEs have been investigated for several decades, only recently we have the opportunity to study their genome-wide population dynamics. Most of the studies so far have been restricted either to the analysis of the insertions annotated in the reference genome or to the analysis of a limited number of populations. Taking advantage of the European Drosophila population genomics consortium (DrosEU) sequencing data set, we have identified and measured the dynamics of TEs in a large sample of European Drosophila melanogaster natural populations. We showed that the mobilome landscape is population-specific and highly diverse depending on the TE family. In contrast with previous studies based on SNP variants, no geographical structure was observed for TE abundance or TE divergence in European populations. We further identified de novo individual insertions using two available programs and, as expected, most of the insertions were present at low frequencies. Nevertheless, we identified a subset of TEs present at high frequencies and located in genomic regions with a high recombination rate. These TEs are candidates for being the target of positive selection, although neutral processes should be discarded before reaching any conclusion on the type of selection acting on them. Finally, parallel patterns of association between the frequency of TE insertions and several geographical and temporal variables were found between European and North American populations, suggesting that TEs can be potentially implicated in the adaptation of populations across continents.
Collapse
Affiliation(s)
- Emmanuelle Lerat
- Laboratoire de Biométrie et Biologie EvolutiveUMR 5558Université de Lyon, Université Lyon 1, CNRSVilleurbanneFrance
| | - Clément Goubert
- Molecular Biology and GeneticsCornell UniversityIthacaNew York
| | - Sara Guirao‐Rico
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| | - Miriam Merenciano
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| | - Anne‐Béatrice Dufour
- Laboratoire de Biométrie et Biologie EvolutiveUMR 5558Université de Lyon, Université Lyon 1, CNRSVilleurbanneFrance
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie EvolutiveUMR 5558Université de Lyon, Université Lyon 1, CNRSVilleurbanneFrance
| | - Josefa González
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| |
Collapse
|
25
|
Ogden NH, Wilson JRU, Richardson DM, Hui C, Davies SJ, Kumschick S, Le Roux JJ, Measey J, Saul WC, Pulliam JRC. Emerging infectious diseases and biological invasions: a call for a One Health collaboration in science and management. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181577. [PMID: 31032015 PMCID: PMC6458372 DOI: 10.1098/rsos.181577] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/18/2019] [Indexed: 05/11/2023]
Abstract
The study and management of emerging infectious diseases (EIDs) and of biological invasions both address the ecology of human-associated biological phenomena in a rapidly changing world. However, the two fields work mostly in parallel rather than in concert. This review explores how the general phenomenon of an organism rapidly increasing in range or abundance is caused, highlights the similarities and differences between research on EIDs and invasions, and discusses shared management insights and approaches. EIDs can arise by: (i) crossing geographical barriers due to human-mediated dispersal, (ii) crossing compatibility barriers due to evolution, and (iii) lifting of environmental barriers due to environmental change. All these processes can be implicated in biological invasions, but only the first defines them. Research on EIDs is embedded within the One Health concept-the notion that human, animal and ecosystem health are interrelated and that holistic approaches encompassing all three components are needed to respond to threats to human well-being. We argue that for sustainable development, biological invasions should be explicitly considered within One Health. Management goals for the fields are the same, and direct collaborations between invasion scientists, disease ecologists and epidemiologists on modelling, risk assessment, monitoring and management would be mutually beneficial.
Collapse
Affiliation(s)
- Nick H. Ogden
- National Microbiology Laboratory, Public Health Agency of Canada, Canada
- South African DST-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, South Africa
| | - John R. U. Wilson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Claremont, Cape Town, South Africa
| | - David M. Richardson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
| | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Matieland 7602, South Africa
- Mathematical and Physical Biosciences, African Institute for Mathematical Sciences (AIMS), Muizenberg 7945, South Africa
| | - Sarah J. Davies
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
| | - Sabrina Kumschick
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Claremont, Cape Town, South Africa
| | - Johannes J. Le Roux
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
- Department of Biological Sciences, Macquarie University, Sydney 2109, Australia
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
| | - Wolf-Christian Saul
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Matieland 7602, South Africa
| | - Juliet R. C. Pulliam
- South African DST-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, South Africa
| |
Collapse
|
26
|
Pischedda E, Scolari F, Valerio F, Carballar-Lejarazú R, Catapano PL, Waterhouse RM, Bonizzoni M. Insights Into an Unexplored Component of the Mosquito Repeatome: Distribution and Variability of Viral Sequences Integrated Into the Genome of the Arboviral Vector Aedes albopictus. Front Genet 2019; 10:93. [PMID: 30809249 PMCID: PMC6379468 DOI: 10.3389/fgene.2019.00093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/29/2019] [Indexed: 01/01/2023] Open
Abstract
The Asian tiger mosquito Aedes albopictus is an invasive mosquito and a competent vector for public-health relevant arboviruses such as Chikungunya (Alphavirus), Dengue and Zika (Flavivirus) viruses. Unexpectedly, the sequencing of the genome of this mosquito revealed an unusually high number of integrated sequences with similarities to non-retroviral RNA viruses of the Flavivirus and Rhabdovirus genera. These Non-retroviral Integrated RNA Virus Sequences (NIRVS) are enriched in piRNA clusters and coding sequences and have been proposed to constitute novel mosquito immune factors. However, given the abundance of NIRVS and their variable viral origin, their relative biological roles remain unexplored. Here we used an analytical approach that intersects computational, evolutionary and molecular methods to study the genomic landscape of mosquito NIRVS. We demonstrate that NIRVS are differentially distributed across mosquito genomes, with a core set of seemingly the oldest integrations with similarity to Rhabdoviruses. Additionally, we compare the polymorphisms of NIRVS with respect to that of fast and slow-evolving genes within the Ae. albopictus genome. Overall, NIRVS appear to be less polymorphic than slow-evolving genes, with differences depending on whether they occur in intergenic regions or in piRNA clusters. Finally, two NIRVS that map within the coding sequences of genes annotated as Rhabdovirus RNA-dependent RNA polymerase and the nucleocapsid-encoding gene, respectively, are highly polymorphic and are expressed, suggesting exaptation possibly to enhance the mosquito's antiviral responses. These results greatly advance our understanding of the complexity of the mosquito repeatome and the biology of viral integrations in mosquito genomes.
Collapse
Affiliation(s)
- Elisa Pischedda
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Federica Valerio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Rebeca Carballar-Lejarazú
- Department of Microbiology & Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | | | - Robert M. Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | |
Collapse
|
27
|
Dennenmoser S, Sedlazeck FJ, Schatz MC, Altmüller J, Zytnicki M, Nolte AW. Genome‐wide patterns of transposon proliferation in an evolutionary young hybrid fish. Mol Ecol 2019; 28:1491-1505. [DOI: 10.1111/mec.14969] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Stefan Dennenmoser
- Institute for Biology and Environmental Sciences Carl von Ossietzky University Oldenburg Oldenburg Germany
| | | | - Michael C. Schatz
- Cold Spring Harbor Laboratory Cold Spring Harbor New York
- Departments of Computer Science and Biology Johns Hopkins University Baltimore Maryland
| | - Janine Altmüller
- Cologne Center for Genomics, and Institute of Human Genetics University of Cologne Cologne Germany
| | | | - Arne W. Nolte
- Institute for Biology and Environmental Sciences Carl von Ossietzky University Oldenburg Oldenburg Germany
| |
Collapse
|
28
|
Lee CC, Wang J. Rapid Expansion of a Highly Germline-Expressed Mariner Element Acquired by Horizontal Transfer in the Fire Ant Genome. Genome Biol Evol 2018; 10:3262-3278. [PMID: 30304394 PMCID: PMC6307670 DOI: 10.1093/gbe/evy220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2018] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) are present in almost all organisms and affect the host in various ways. TE activity can increase genomic variation and thereby affect host evolution. Currently active TEs are particularly interesting because they are likely generating new genomic diversity. These active TEs have been poorly studied outside of model organisms. In this study, we aimed to identify currently active TEs of a notorious invasive species, the red imported fire ant Solenopsis invicta. Using RNA profiling of male and female germline tissues, we found that the majority of TE-containing transcripts in the fire ant germline belong to the IS630-Tc1-Mariner superfamily. Subsequent genomic characterization of fire ant mariner content, molecular evolution analysis, and population comparisons revealed a highly expressed and highly polymorphic mariner element that is rapidly expanding in the fire ant genome. Additionally, using comparative genomics of multiple insect species we showed that this mariner has undergone several recent horizontal transfer events (<5.1 My). Our results document a rare case of a currently active TE originating from horizontal transfer.
Collapse
Affiliation(s)
- Chih-Chi Lee
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Laboratory of Insect Ecology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
29
|
Ruiling Z, Tongkai L, Zhendong H, Guifen Z, Dezhen M, Zhong Z. Genetic analysis of Aedes albopictus (Diptera, Culicidae) reveals a deep divergence in the original regions. Acta Trop 2018; 185:27-33. [PMID: 29729282 DOI: 10.1016/j.actatropica.2018.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/28/2018] [Accepted: 05/01/2018] [Indexed: 12/28/2022]
Abstract
Aedes albopictus has been described as one of the 100 worst invasive species in the world. This mosquito originated from southeastern Asia and currently has a widespread presence in every continent except Antarctica. The rapid global expansion of Ae. albopictus has increased public health concerns about arbovirus-related disease threats. Adaptation, adaption to novel areas is a biological challenge for invasive species, and the underlying processes can be studied at the molecular level. In this study, genetic analysis was performed using mitochondrial gene NADH dehydrogenase subunit 5 (ND5), based on both native and invasive populations. Altogether, 38 haplotypes were detected with H1 being the dominant and widely distributed in 21 countries. Both phylogenetic and network analyses supported the existence of five clades, with only clade I being involved in the subsequent global spread of Asian tiger mosquito. The other four clades (II, III, IV and V) were restricted to their original regions, which could be ancestral populations that had diverged from clade I in the early stages of evolution. Neutrality tests suggested that most of the populations had experienced recent expansion. Analysis of molecular variance and the population-pair statistic FST revealed that most populations lacked genetic structure, while high variability was detected within populations. Multiple and independent human-mediated introductions may explain the present results.
Collapse
|
30
|
da Silva AF, Dezordi FZ, Loreto ELS, Wallau GL. Drosophila parasitoid wasps bears a distinct DNA transposon profile. Mob DNA 2018; 9:23. [PMID: 30002736 PMCID: PMC6035795 DOI: 10.1186/s13100-018-0127-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/19/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The majority of Eukaryotic genomes are composed of a small portion of stable (non-mobile) genes and a large fraction of parasitic mobile elements such as transposable elements and endogenous viruses: the Mobilome. Such important component of many genomes are normally underscored in genomic analysis and detailed characterized mobilomes only exists for model species. In this study, we used a combination of de novo and homology approaches to characterize the Mobilome of two non-model parasitoid wasp species. RESULTS The different methodologies employed for TE characterization recovered TEs with different features as TE consensus number and size. Moreover, some TEs were detected only by one or few methodologies. RepeatExplorer and dnaPipeTE estimated a low TE content of 5.86 and 4.57% for Braconidae wasp and 5.22% and 7.42% for L. boulardi species, respectively. Both mobilomes are composed by a miscellaneous of ancient and recent elements. Braconidae wasps presented a large diversity of Maverick/Polintons Class II TEs while other TE superfamilies were more equally diverse in both species. Phylogenetic analysis of reconstructed elements showed that vertical transfer is the main mode of transmission. CONCLUSION Different methodologies should be used complementarity in order to achieve better mobilome characterization. Both wasps genomes have one of the lower mobilome estimates among all Hymenoptera genomes studied so far and presented a higher proportion of Class II than Class I TEs. The large majority of superfamilies analyzed phylogenetically showed that the elements are being inherited by vertical transfer. Overall, we achieved a deep characterization of the mobilome in two non-model parasitoid wasps improving our understanding of their evolution.
Collapse
Affiliation(s)
- Alexandre Freitas da Silva
- Pós Graduação em Biociências e Biotecnologia em Saúde, Instituto Aggeu Magalhães (IAM), Recife, Pernambuco Brazil
| | - Filipe Zimmer Dezordi
- Pós Graduação em Biociências e Biotecnologia em Saúde, Instituto Aggeu Magalhães (IAM), Recife, Pernambuco Brazil
| | - Elgion Lucio Silva Loreto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ/PE), Recife, Pernambuco Brazil
| |
Collapse
|
31
|
Lanciano S, Mirouze M. Transposable elements: all mobile, all different, some stress responsive, some adaptive? Curr Opin Genet Dev 2018; 49:106-114. [PMID: 29705597 DOI: 10.1016/j.gde.2018.04.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/06/2018] [Accepted: 04/11/2018] [Indexed: 12/12/2022]
Abstract
Transposable elements (TEs) were first identified through the polymorphisms they induced in plants and animals. Genomic studies have later revealed that TEs were highly abundant in eukaryotic genomes. Recently, more precise single individual genomic analyses have unravelled the huge diversity of TE insertions in many plant and animal species. In most cases the stress conditions behind this diversity are not known and neither is the adaptive capacity of these natural TE-induced variants. Here, we review some of the most recent examples of TE-related impacts on gene expression at the locus or the genome level and discuss the rich diversity of the TE repertoire and its potential role in adaptive evolution.
Collapse
Affiliation(s)
- Sophie Lanciano
- IRD, DIADE, University of Perpignan, Laboratory of Plant Genome and Development, Perpignan, France
| | - Marie Mirouze
- IRD, DIADE, University of Perpignan, Laboratory of Plant Genome and Development, Perpignan, France.
| |
Collapse
|