1
|
Snead AA, Quackenbush CR, Trojahn S, McDonald AL, Lins LSF, Cornelius C, Adams PE, Ma D, Hsu Y, Haag E, Silvestre F, Kanamori A, Earley RL, Kelley JL. Embryonic thermal environments drive plasticity in gene expression. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:111. [PMID: 40493125 PMCID: PMC12152062 DOI: 10.1007/s10695-025-01522-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 05/23/2025] [Indexed: 06/12/2025]
Abstract
When embryos experience different environments than their parents, plasticity can enable the development of alternate phenotypes that confer higher fitness in the new conditions. Temperature-induced plasticity could be especially critical for species that inhabit areas with considerable thermal variation. We studied transcriptional variation in embryos of mangrove rivulus (Kryptolebias marmoratus)-a self-fertilizing hermaphroditic, eurythermal fish that resides in notoriously spatiotemporally variable mangrove forests-exposed to different thermal regimes during development. To study transcriptional plasticity, we first improved the genome assembly to chromosome length scaffolds (N50 of 28.17 Megabases). Whole transcriptome sequencing revealed that both temperature and developmental timing modulated embryonic gene expression. We found few differences in gene expression between embryos incubated in cold and warm conditions and assessed before the temperature-sensitive period of development, indicating high resistance to stochastic changes in gene expression early in development. Replicate embryos exposed to cold temperatures and sampled after the temperature-sensitive period showed less variation in gene expression than those sampled before, suggesting canalization of the plastic response. DNA replication/repair, organelle, and gas transport pathways were upregulated while nervous system development, cell signaling, and cell adhesion were downregulated in cold-exposed compared to warm-exposed embryos sampled after the temperature-sensitive period. These plastic shifts in gene expression could have major implications for reorganizing the phenotype (e.g., apoptosis, mitosis) in response to environmental changes occurring within a generation.
Collapse
Affiliation(s)
- Anthony A Snead
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Box 870344, Tuscaloosa, AL, 35487, USA
- Department of Biology, New York University, New York, NY, 10003, USA
| | - Corey R Quackenbush
- School of Biological Sciences, Washington State University, 100 Dairy Road, Pullman, WA, 99164, USA
| | - Shawn Trojahn
- School of Biological Sciences, Washington State University, 100 Dairy Road, Pullman, WA, 99164, USA
| | - Anna L McDonald
- School of Biological Sciences, Washington State University, 100 Dairy Road, Pullman, WA, 99164, USA
| | - Luana S F Lins
- School of Biological Sciences, Washington State University, 100 Dairy Road, Pullman, WA, 99164, USA
- Australian National Insect Collection, CSIRO, Canberra, Australia
| | - Chris Cornelius
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Box 870344, Tuscaloosa, AL, 35487, USA
| | - Paula E Adams
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Box 870344, Tuscaloosa, AL, 35487, USA
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dengke Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Yuying Hsu
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Eric Haag
- Department of Biology and Biological Sciences Graduate Program, University of Maryland, College Park, MD, 20742, USA
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth, and the Environment, University of Namur, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Akira Kanamori
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi, 464-8602, Japan
| | - Ryan L Earley
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Box 870344, Tuscaloosa, AL, 35487, USA.
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, 100 Dairy Road, Pullman, WA, 99164, USA.
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
| |
Collapse
|
2
|
Yao S, Ord TJ. Adaptation for crypsis versus conspicuous social signalling following transitions across an extreme ecotone. J Evol Biol 2025; 38:580-593. [PMID: 40109254 DOI: 10.1093/jeb/voaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/09/2024] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
A key selection pressure in most habitats is predation, and a common strategy adopted by prey is crypsis through background matching. Many marine blenny fishes are in the process of a dramatic transition across one of the world's most extreme ecotones: the invasion of land across the intertidal zone. We investigated the impact of this transition on body crypsis versus the conspicuousness of visual signals across 56 blenny taxa relative to 59 biologically relevant backgrounds, as viewed by conspecifics and four representative fish and avian predators. We computed 33 colour and 23 pattern indices from standardised digital photographs of six individuals for each taxa (median sample). Six of these indices were selected for detailed analysis following phylogenetic Principal Component Analysis. While phylogenetic regressions revealed some aspects of body crypsis appeared to have changed adaptively with the progressive transition to land (specifically a reduction in body colour saturation), colonisation was primarily facilitated by a generalist form of crypsis. That is, the colours and patterns of aquatic blennies were already well matched to the range of terrestrial backgrounds where amphibious and terrestrial species were observed out of water. Predation appears to have been an important selection pressure constraining the colour and pattern of the dorsal fins used in social communication, which also matched visual backgrounds. Our data implies anti-predator strategies that translate well across habitats and different predator regimes will facilitate colonisation by either reducing predation risk or allowing species to persist long enough to respond adaptively to environmental change.
Collapse
Affiliation(s)
- Shizhi Yao
- Evolution and Ecology Research Centre, and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Terry J Ord
- Evolution and Ecology Research Centre, and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
3
|
Wang YC, Kao IP, Chang CH. Dietary carotenoids enhance SWS1 expression in female western mosquitofish (Gambusia affinis) but do not impair their likelihood of pregnancy in the presence of male guppy. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025:10.1007/s00359-025-01741-w. [PMID: 40299003 DOI: 10.1007/s00359-025-01741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025]
Abstract
The various cone opsin genes are responsible for distinct ecological tasks, with the altered expression profiles in teleost fishes representing an excellent paradigm for studying how fishes can quickly adapt to diverse habitats within their lifecycles. The molecular mechanisms underlying transcriptional switching among cone opsin genes are still being investigated, but factors such as light conditions, developmental stages, sex hormones, and diet are known to play a role in changing cone opsin expression profiles. Based on previous research on guppies, we hypothesized that a diet rich in carotenoids could enhance expression of the opsin gene LWS in western mosquitofish (Gambusia affinis) and potentially influence female mate choice. We raised female western mosquitofish under low-level or high-level carotenoid diets and then conducted female mating preference experiments, with or without the presence of male guppy (Poecilia reticulata). qPCR revealed that high carotenoid intake upregulates SWS1 rather than LWS transcription. This positive feedback loop may promote foraging efficiency and also protect the visual system from UV damage. The carotenoid diets had no effect on pregnancy likelihood, possibly because UV light is not a critical cue in western mosquitofish female mate choice and/or the light source we used did not encompass the UV spectrum. Presence of male guppies had no effect on pregnancy likelihood, though a previous study reported that it significantly reduced brood size. Therefore, interactions between male guppies and western mosquitofish likely reduces the number of copulations and/or disrupts parenting to reduce the number of offspring.
Collapse
Affiliation(s)
- Yu-Chun Wang
- Institution of Fisheries Science, National Taiwan University, Taipei City, Taiwan
- Technical Service Division, Fisheries Research Institute, Ministry of Agriculture, Keelung City, Taiwan
| | - I-Pei Kao
- Freshwater Aquaculture Research Center Chupei Station, Fisheries Research Institute, Ministry of Agriculture, Hsinchu County, Taiwan
| | - Chia-Hao Chang
- Department of Science Education, National Taipei University of Education, Taipei City, Taiwan.
| |
Collapse
|
4
|
Bertinetti C, Mosley C, Jones S, Torres‐Dowdall J. Robust Sensory Traits Across Light Habitats: Visual Signals but Not Receptors Vary in Centrarchids Inhabiting Distinct Photic Environments. Mol Ecol 2025; 34:e17721. [PMID: 40066691 PMCID: PMC11974496 DOI: 10.1111/mec.17721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/08/2025] [Accepted: 02/21/2025] [Indexed: 04/08/2025]
Abstract
Visual communication in fish is often shaped by their light environment, which influences both sensory (e.g., eye size, opsin gene expression) and signalling traits (e.g., body reflectance). This study explores the phenotypic variation in the visual communication traits of six species of centrarchids (Centrarchidae) inhabiting two contrasting light environments. We measured morphological, molecular and signalling traits to determine their variation across photic conditions. Our findings reveal significant interspecific variation in sensory traits but no consistent phenotypic variation between light environments. Centrarchids showed robust visual systems with green-sensitive rh2 and red-sensitive lws opsin genes representing the main chromatic channels, with their expression remaining largely unaffected between distinct light habitats. We also found significant molecular evolution in the visual opsin genes, although these changes were not associated with environmental conditions. However, body reflectance displayed species-specific responses to environmental conditions, suggesting that signalling traits may be more flexible than sensory traits. Overall, our results challenge the generality of the current paradigm in visual ecology, which portrays visual systems in fish as highly tunable owing to photic conditions. Our study highlights the potential evolutionary or developmental constraints on centrarchid visual systems and their implications for adaptability to various habitats and novel environmental threats.
Collapse
Affiliation(s)
- César Bertinetti
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Camille Mosley
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Stuart Jones
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | | |
Collapse
|
5
|
Foster TN, Williamson AG, Foster BR, Toomey MB. Light environment and seasonal variation in the visual system of the red shiner (Cyprinella lutrensis). J Exp Biol 2025; 228:jeb249878. [PMID: 39935365 DOI: 10.1242/jeb.249878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 02/08/2025] [Indexed: 02/13/2025]
Abstract
The light environment underwater can vary dramatically over space and time, challenging the visual systems of aquatic organisms. To meet these challenges, many species shift their spectral sensitivities through changes in visual pigment chromophore composition and opsin expression. The red shiner (Cyprinella lutrensis) is a North American cyprinid minnow species that inhabits waters ranging widely in turbidity and temperature. We hypothesized that the visual system of the red shiner is plastic with chromophore composition and opsin expression varying in response to the environment. To test this hypothesis, we collected red shiners throughout the year from three Oklahoma creeks that vary in turbidity. We characterized the light environment by spectroradiometry, measured chromophore composition of the eyes with high performance liquid chromatography, characterized the mechanisms of chromophore metabolism, and examined ocular gene expression by RNA sequencing and de novo transcriptome assembly. We observed significantly higher proportions of the long wavelength-shifted A2 chromophore in the eyes of fish from the turbid site and in samples collected in winter, suggesting that there may be a temperature-dependent trade-off between chromophore-based spectral tuning and chromophore-related noise. Opsin expression varied between turbid and clear creeks, but did not align with light environment as expected, and the magnitude of these differences was limited compared with the differences in chromophore composition. We confirmed that red shiner CYP27C1 catalyzes the conversion of A1 to A2, but the ocular expression of CYP27C1 was not well correlated with A2 levels in the eye, suggesting conversion may be occurring outside the eye.
Collapse
Affiliation(s)
- Tarah N Foster
- Department of Biological Sciences, University of Tulsa, Oklahoma 74104, USA
| | | | - Bradley R Foster
- Department of Biological Sciences, University of Tulsa, Oklahoma 74104, USA
| | - Matthew B Toomey
- Department of Biological Sciences, University of Tulsa, Oklahoma 74104, USA
| |
Collapse
|
6
|
Gerwin J, Torres-Dowdall J, Brown TF, Meyer A. Expansion and Functional Diversification of Long-Wavelength-Sensitive Opsin in Anabantoid Fishes. J Mol Evol 2024; 92:432-448. [PMID: 38861038 PMCID: PMC11291592 DOI: 10.1007/s00239-024-10181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Gene duplication is one of the most important sources of novel genotypic diversity and the subsequent evolution of phenotypic diversity. Determining the evolutionary history and functional changes of duplicated genes is crucial for a comprehensive understanding of adaptive evolution. The evolutionary history of visual opsin genes is very dynamic, with repeated duplication events followed by sub- or neofunctionalization. While duplication of the green-sensitive opsins rh2 is common in teleost fish, fewer cases of multiple duplication events of the red-sensitive opsin lws are known. In this study, we investigate the visual opsin gene repertoire of the anabantoid fishes, focusing on the five lws opsin genes found in the genus Betta. We determine the evolutionary history of the lws opsin gene by taking advantage of whole-genome sequences of nine anabantoid species, including the newly assembled genome of Betta imbellis. Our results show that at least two independent duplications of lws occurred in the Betta lineage. The analysis of amino acid sequences of the lws paralogs of Betta revealed high levels of diversification in four of the seven transmembrane regions of the lws protein. Amino acid substitutions at two key-tuning sites are predicted to lead to differentiation of absorption maxima (λmax) between the paralogs within Betta. Finally, eye transcriptomics of B. splendens at different developmental stages revealed expression shifts between paralogs for all cone opsin classes. The lws genes are expressed according to their relative position in the lws opsin cluster throughout ontogeny. We conclude that temporal collinearity of lws expression might have facilitated subfunctionalization of lws in Betta and teleost opsins in general.
Collapse
Affiliation(s)
- Jan Gerwin
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Julián Torres-Dowdall
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Thomas F Brown
- Max Planck Institute of Molecular Cellular Biology and Genetics, Dresden, Germany
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
7
|
Yu H, Chen H, Wang X, Zhang Y, Tan Y, Wang L, Sun J, Luo J, Song F. Sws2 Gene Positively Regulates Melanin Production in Plectropomus leopardus Skin via Direct Regulation of the Synthesis of Retinoic Acid. Int J Mol Sci 2024; 25:7513. [PMID: 39062755 PMCID: PMC11277425 DOI: 10.3390/ijms25147513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Opsins are a class of transmembrane proteins encoded by opsin genes, and they play a variety of functional roles. Short wavelength-sensitive opsin 2 (sws2), one of the five classes of visual opsin genes, mainly senses blue light. Previous research has indicated that sws2 is essential for melanocyte formation in fish; however, its specific role in skin color differentiation remains to be elucidated. Here, we identified the sws2 gene in a prized reef-dwelling fish, Plectropomus leopardus. The full-length P. leopardus sws2 gene encodes a protein consisting of 351 amino acids, and exhibits substantial homology with other fish species. The expression of the sws2 gene was widespread across P. leopardus tissues, with high expression in eye and skin tissues. Through immunohistochemistry and in situ hybridization analyses, we discovered that the sws2 gene was primarily localized in the rod and cone cells of the retina, and epidermal cells of the skin. Furthermore, dsRNA interference was used for sws2 gene knockdown in living P. leopardus to elucidate its function in skin color differentiation. Black-color-related genes, melanin contents, and tyrosinase activity in the skin significantly decreased after sws2 knockdown (p < 0.05), but red-color-related genes and carotenoid and lutein contents significantly increased (p < 0.05). Retinoic acid injection produced the opposite results. Our results suggested that the sws2 gene influences P. leopardus skin color regulation by affecting vitamin synthesis and melanin-related gene expression levels. This study establishes a foundation for elucidating the molecular mechanisms by which sws2 regulates melanocyte formation in fish skin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Feibiao Song
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan University, Haikou 570228, China; (H.Y.); (H.C.); (X.W.); (Y.Z.); (Y.T.); (L.W.); (J.S.); (J.L.)
| |
Collapse
|
8
|
Torres-Dowdall J, Karagic N, Prabhukumar F, Meyer A. Differential Regulation of Opsin Gene Expression in Response to Internal and External Stimuli. Genome Biol Evol 2024; 16:evae125. [PMID: 38860496 DOI: 10.1093/gbe/evae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024] Open
Abstract
Determining how internal and external stimuli interact to determine developmental trajectories of traits is a challenge that requires the integration of different subfields of biology. Internal stimuli, such as hormones, control developmental patterns of phenotypic changes, which might be modified by external environmental cues (e.g. plasticity). Thyroid hormone (TH) modulates the timing of opsin gene expression in developing Midas cichlid fish (Amphilophus citrinellus). Moreover, fish reared in red light accelerate this developmental timing compared to fish reared in white light. Hence, we hypothesized that plasticity caused by variation in light conditions has coopted the TH signaling pathway to induce changes in opsin gene expression. We treated Midas cichlids with TH and crossed this treatment with two light conditions, white and red. We observed that not only opsin expression responded similarly to TH and red light but also that, at high TH levels, there is limited capacity for light-induced plasticity. Transcriptomic analysis of the eye showed that genes in the TH pathway were affected by TH, but not by light treatments. Coexpression network analyses further suggested that response to light was independent of the response to TH manipulations. Taken together, our results suggest independent mechanisms mediating development and plasticity during development of opsin gene expression, and that responses to environmental stimuli may vary depending on internal stimuli. This conditional developmental response to external factors depending on internal ones (e.g. hormones) might play a fundamental role in the patterns of phenotypic divergence observed in Midas cichlids and potentially other organisms.
Collapse
Affiliation(s)
- Julián Torres-Dowdall
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Nidal Karagic
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Femina Prabhukumar
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
9
|
Bertinetti C, Härer A, Karagic N, Meyer A, Torres-Dowdall J. Repeated Divergence in Opsin Gene Expression Mirrors Photic Habitat Changes in Rapidly Evolving Crater Lake Cichlid Fishes. Am Nat 2024; 203:604-617. [PMID: 38635367 DOI: 10.1086/729420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractSelection pressures differ along environmental gradients, and traits tightly linked to fitness (e.g., the visual system) are expected to track such variation. Along gradients, adaptation to local conditions might be due to heritable and nonheritable environmentally induced variation. Disentangling these sources of phenotypic variation requires studying closely related populations in nature and in the laboratory. The Nicaraguan lakes represent an environmental gradient in photic conditions from clear crater lakes to very turbid great lakes. From two old, turbid great lakes, Midas cichlid fish (Amphilophus cf. citrinellus) independently colonized seven isolated crater lakes of varying light conditions, resulting in a small adaptive radiation. We estimated variation in visual sensitivities along this photic gradient by measuring cone opsin gene expression among lake populations. Visual sensitivities observed in all seven derived crater lake populations shifted predictably in direction and magnitude, repeatedly mirroring changes in photic conditions. Comparing wild-caught and laboratory-reared fish revealed that 48% of this phenotypic variation is genetically determined and evolved rapidly. Decreasing intrapopulation variation as environments become spectrally narrower suggests that different selective landscapes operate along the gradient. We conclude that the power to predict phenotypic evolution along gradients depends on both the magnitude of environmental change and the selective landscape shape.
Collapse
|
10
|
Searle PC, Shiozawa DK, Evans RP, Hill JT, Suli A, Stark MR, Belk MC. Heterochronic shift in gene expression leads to ontogenetic morphological divergence between two closely related polyploid species. iScience 2024; 27:109566. [PMID: 38632992 PMCID: PMC11022054 DOI: 10.1016/j.isci.2024.109566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/04/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Heterochrony-alteration to the rate or timing of development-is an important mechanism of trait differentiation associated with speciation. Heterochrony may explain the morphological divergence between two polyploid species, June sucker (Chasmistes liorus) and Utah sucker (Catostomus ardens). The larvae of both species have terminal mouths; however, as adults, June sucker and Utah sucker develop subterminal and ventral mouths, respectively. We document a difference in the timing of shape development and a corresponding change in the timing of gene expression, suggesting the distinctive mouth morphology in June suckers may result from paedomorphosis. Specifically, adult June suckers exhibit an intermediate mouth morphology between the larval (terminal) and ancestral (ventral) states. Endemic and sympatric Chasmistes/Catostomus pairs in two other lakes also are morphologically divergent, but genetically similar. These species pairs could have resulted from the differential expression of genes and corresponding divergence in trait development. Paedomorphosis may lead to adaptive diversification in Catostomids.
Collapse
Affiliation(s)
- Peter C. Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | | | - R. Paul Evans
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jonathon T. Hill
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Arminda Suli
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Michael R. Stark
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Mark C. Belk
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
11
|
Chau KD, Hauser FE, Van Nynatten A, Daane JM, Harris MP, Chang BSW, Lovejoy NR. Multiple Ecological Axes Drive Molecular Evolution of Cone Opsins in Beloniform Fishes. J Mol Evol 2024; 92:93-103. [PMID: 38416218 DOI: 10.1007/s00239-024-10156-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/12/2024] [Indexed: 02/29/2024]
Abstract
Ecological and evolutionary transitions offer an excellent opportunity to examine the molecular basis of adaptation. Fishes of the order Beloniformes include needlefishes, flyingfishes, halfbeaks, and allies, and comprise over 200 species occupying a wide array of habitats-from the marine epipelagic zone to tropical rainforest rivers. These fishes also exhibit a diversity of diets, including piscivory, herbivory, and zooplanktivory. We investigated how diet and habitat affected the molecular evolution of cone opsins, which play a key role in bright light and colour vision and are tightly linked to ecology and life history. We analyzed a targeted-capture dataset to reconstruct the evolutionary history of beloniforms and assemble cone opsin sequences. We implemented codon-based clade models of evolution to examine how molecular evolution was affected by habitat and diet. We found high levels of positive selection in medium- and long-wavelength beloniform opsins, with piscivores showing increased positive selection in medium-wavelength opsins and zooplanktivores showing increased positive selection in long-wavelength opsins. In contrast, short-wavelength opsins showed purifying selection. While marine/freshwater habitat transitions have an effect on opsin molecular evolution, we found that diet plays a more important role. Our study suggests that evolutionary transitions along ecological axes produce complex adaptive interactions that affect patterns of selection on genes that underlie vision.
Collapse
Affiliation(s)
- Katherine D Chau
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Biology, York University, Toronto, ON, Canada
| | - Frances E Hauser
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Alexander Van Nynatten
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Biology, University of Victoria, Victoria, Canada
| | - Jacob M Daane
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | | | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Nathan R Lovejoy
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Irazábal-González L, Wright DS, Maan ME. Developmental and environmental plasticity in opsin gene expression in Lake Victoria cichlid fish. Evol Dev 2024; 26:e12465. [PMID: 38041513 DOI: 10.1111/ede.12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
In many organisms, sensory abilities develop and evolve according to the changing demands of navigating, foraging, and communication across different environments and life stages. Teleost fish inhabit heterogeneous light environments and exhibit a large diversity in visual system properties among species. Cichlids are a classic example of this diversity; visual system variation is generated by different tuning mechanisms that involve both genetic factors and phenotypic plasticity. Here, we document the developmental progression of visual pigment gene expression in Lake Victoria cichlids and test if these patterns are influenced by variation in light conditions. We reared two sister species of Pundamilia to adulthood in two distinct visual conditions that resemble the light environments that they naturally inhabit in Lake Victoria. We also included interspecific first-generation hybrids. We focused on the four opsins that are expressed in Pundamilia adults (using real-time quantitative polymerase chain reaction (RT-qPCR)) (SWS2B, SWS2A, RH2A, and LWS) at 17 time points. We find that opsin expression profiles progress from shorter-wavelength sensitive opsins to longer-wavelength sensitive opsins with increasing age, in both species and their hybrids. The developmental trajectories of opsin expression also responded plastically to the visual conditions. Developmental and environmental plasticity in opsin expression may provide an important stepping stone in the evolution of cichlid visual system diversity.
Collapse
Affiliation(s)
- Lucia Irazábal-González
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Daniel S Wright
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Martine E Maan
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Roux N, Miura S, Dussenne M, Tara Y, Lee SH, de Bernard S, Reynaud M, Salis P, Barua A, Boulahtouf A, Balaguer P, Gauthier K, Lecchini D, Gibert Y, Besseau L, Laudet V. The multi-level regulation of clownfish metamorphosis by thyroid hormones. Cell Rep 2023; 42:112661. [PMID: 37347665 PMCID: PMC10467156 DOI: 10.1016/j.celrep.2023.112661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023] Open
Abstract
Most marine organisms have a biphasic life cycle during which pelagic larvae transform into radically different juveniles. In vertebrates, the role of thyroid hormones (THs) in triggering this transition is well known, but how the morphological and physiological changes are integrated in a coherent way with the ecological transition remains poorly explored. To gain insight into this question, we performed an integrated analysis of metamorphosis of a marine teleost, the false clownfish (Amphiprion ocellaris). We show how THs coordinate a change in color vision as well as a major metabolic shift in energy production, highlighting how it orchestrates this transformation. By manipulating the activity of liver X regulator (LXR), a major regulator of metabolism, we also identify a tight link between metabolic changes and metamorphosis progression. Strikingly, we observed that these regulations are at play in the wild, explaining how hormones coordinate energy needs with available resources during the life cycle.
Collapse
Affiliation(s)
- Natacha Roux
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Saori Miura
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Mélanie Dussenne
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Yuki Tara
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Shu-Hua Lee
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10, Dah-Uen Rd., Jiau Shi, I-Lan 262, Taiwan
| | | | - Mathieu Reynaud
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Pauline Salis
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Agneesh Barua
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, University of Montpellier, 34090 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, University of Montpellier, 34090 Montpellier, France
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, INRAE USC 1370 École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, 69007 Lyon, France
| | - David Lecchini
- PSL Research University, EPHE-UPVD-CNRS-UAR 3278 CRIOBE BP 1013, 98729 Papetoai, Moorea, French Polynesia; Laboratoire d'Excellence "CORAIL," 66100 Perpignan, France
| | - Yann Gibert
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Laurence Besseau
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France.
| | - Vincent Laudet
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan; Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10, Dah-Uen Rd., Jiau Shi, I-Lan 262, Taiwan.
| |
Collapse
|
14
|
Lu K, Wu J, Tang S, Jia X, Liang XF. Knockout of sws2a and sws2b in Medaka ( Oryzias latipes) Reveals Their Roles in Regulating Vision-Guided Behavior and Eye Development. Int J Mol Sci 2023; 24:ijms24108786. [PMID: 37240129 DOI: 10.3390/ijms24108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The medaka (Oryzias latipes) is an excellent vertebrate model for studying the development of the retina. Its genome database is complete, and the number of opsin genes is relatively small compared to zebrafish. Short wavelength sensitive 2 (sws2), a G-protein-coupled receptor expressed in the retina, has been lost in mammals, but its role in eye development in fish is still poorly understood. In this study, we established a sws2a and sws2b knockout medaka model by CRISPR/Cas9 technology. We discovered that medaka sws2a and sws2b are mainly expressed in the eyes and may be regulated by growth differentiation factor 6a (gdf6a). Compared with the WT, sws2a-/- and sws2b-/- mutant larvae displayed an increase in swimming speed during the changes from light to dark. We also observed that sws2a-/- and sws2b-/- larvae both swam faster than WT in the first 10 s of the 2 min light period. The enhanced vision-guided behavior in sws2a-/- and sws2b-/- medaka larvae may be related to the upregulation of phototransduction-related genes. Additionally, we also found that sws2b affects the expression of eye development genes, while sws2a is unaffected. Together, these findings indicate that sws2a and sws2b knockouts increase vision-guided behavior and phototransduction, but on the other hand, sws2b plays an important role in regulating eye development genes. This study provides data for further understanding of the role of sws2a and sws2b in medaka retina development.
Collapse
Affiliation(s)
- Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Jiaqi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Shulin Tang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xiaodan Jia
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
15
|
Fogg LG, Cortesi F, Gache C, Lecchini D, Marshall NJ, de Busserolles F. Developing and adult reef fish show rapid light-induced plasticity in their visual system. Mol Ecol 2023; 32:167-181. [PMID: 36261875 PMCID: PMC10099556 DOI: 10.1111/mec.16744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 12/29/2022]
Abstract
The visual capabilities of fish are optimized for their ecology and light environment over evolutionary time. Similarly, fish vision can adapt to regular changes in light conditions within their lifetime, e.g., ontogenetic or seasonal variation. However, we do not fully understand how vision responds to irregular short-term changes in the light environment, e.g., algal blooms and light pollution. In this study, we investigated the effect of short-term exposure to unnatural light conditions on opsin gene expression and retinal cell densities in juvenile and adult diurnal reef fish (convict surgeonfish; Acanthurus triostegus). Results revealed phenotypic plasticity in the retina across ontogeny, particularly during development. The most substantial differences at both molecular and cellular levels were found under constant dim light, while constant bright light and simulated artificial light at night had a lesser effect. Under dim light, juveniles and adults increased absolute expression of the cone opsin genes, sws2a, rh2c and lws, within a few days and juveniles also decreased densities of cones, inner nuclear layer cells and ganglion cells. These changes potentially enhanced vision under the altered light conditions. Thus, our study suggests that plasticity mainly comes into play when conditions are extremely different to the species' natural light environment, i.e., a diurnal fish in "constant night". Finally, in a rescue experiment on adults, shifts in opsin expression were reverted within 24 h. Overall, our study showed rapid, reversible light-induced changes in the retina of A. triostegus, demonstrating phenotypic plasticity in the visual system of a reef fish throughout life.
Collapse
Affiliation(s)
- Lily G. Fogg
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fabio Cortesi
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Camille Gache
- PSL Research University, EPHE‐UPVD‐CNRS, UAR3278 CRIOBEPapetoaiFrench Polynesia
- Laboratoire d'Excellence “CORAIL”ParisFrance
| | - David Lecchini
- PSL Research University, EPHE‐UPVD‐CNRS, UAR3278 CRIOBEPapetoaiFrench Polynesia
- Laboratoire d'Excellence “CORAIL”ParisFrance
| | - N. Justin Marshall
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fanny de Busserolles
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
16
|
Lupše N, Kłodawska M, Truhlářová V, Košátko P, Kašpar V, Bitja Nyom AR, Musilova Z. Developmental changes of opsin gene expression in ray-finned fishes (Actinopterygii). Proc Biol Sci 2022; 289:20221855. [DOI: 10.1098/rspb.2022.1855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fish often change their habitat and trophic preferences during development. Dramatic functional differences between embryos, larvae, juveniles and adults also concern sensory systems, including vision. Here, we focus on the photoreceptors (rod and cone cells) in the retina and their gene expression profiles during development. Using comparative transcriptomics on 63 species, belonging to 23 actinopterygian orders, we report general developmental patterns of opsin expression, mostly suggesting an increased importance of the rod opsin (
RH1
) gene and the long-wavelength-sensitive cone opsin, and a decreasing importance of the shorter wavelength-sensitive cone opsin throughout development. Furthermore, we investigate in detail ontogenetic changes in 14 selected species (from Polypteriformes, Acipenseriformes, Cypriniformes, Aulopiformes and Cichliformes), and we report examples of expanded cone opsin repertoires, cone opsin switches (mostly within
RH2
) and increasing rod : cone ratio as evidenced by the opsin and phototransduction cascade genes. Our findings provide molecular support for developmental stage-specific visual palettes of ray-finned fishes and shifts between, which most likely arose in response to ecological, behavioural and physiological factors.
Collapse
Affiliation(s)
- Nik Lupše
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Monika Kłodawska
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Veronika Truhlářová
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Prokop Košátko
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Vojtěch Kašpar
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Arnold Roger Bitja Nyom
- Department of Management of Fisheries and Aquatic Ecosystems, University of Douala, Douala P.O. Box 7236, Cameroon
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré P.O. Box 454, Cameroon
| | - Zuzana Musilova
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| |
Collapse
|
17
|
Schott RK, Bell RC, Loew ER, Thomas KN, Gower DJ, Streicher JW, Fujita MK. Transcriptomic evidence for visual adaptation during the aquatic to terrestrial metamorphosis in leopard frogs. BMC Biol 2022; 20:138. [PMID: 35761245 PMCID: PMC9238225 DOI: 10.1186/s12915-022-01341-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/30/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Differences in morphology, ecology, and behavior through ontogeny can result in opposing selective pressures at different life stages. Most animals, however, transition through two or more distinct phenotypic phases, which is hypothesized to allow each life stage to adapt more freely to its ecological niche. How this applies to sensory systems, and in particular how sensory systems adapt across life stages at the molecular level, is not well understood. Here, we used whole-eye transcriptomes to investigate differences in gene expression between tadpole and juvenile southern leopard frogs (Lithobates sphenocephalus), which rely on vision in aquatic and terrestrial light environments, respectively. Because visual physiology changes with light levels, we also tested the effect of light and dark exposure. RESULTS We found 42% of genes were differentially expressed in the eyes of tadpoles versus juveniles and 5% for light/dark exposure. Analyses targeting a curated subset of visual genes revealed significant differential expression of genes that control aspects of visual function and development, including spectral sensitivity and lens composition. Finally, microspectrophotometry of photoreceptors confirmed shifts in spectral sensitivity predicted by the expression results, consistent with adaptation to distinct light environments. CONCLUSIONS Overall, we identified extensive expression-level differences in the eyes of tadpoles and juveniles related to observed morphological and physiological changes through metamorphosis and corresponding adaptive shifts to improve vision in the distinct aquatic and terrestrial light environments these frogs inhabit during their life cycle. More broadly, these results suggest that decoupling of gene expression can mediate the opposing selection pressures experienced by organisms with complex life cycles that inhabit different environmental conditions throughout ontogeny.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Biology, York University, Toronto, Ontario, Canada.
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA.
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Ellis R Loew
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Kate N Thomas
- Department of Life Sciences, The Natural History Museum, London, UK
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, London, UK
| | | | - Matthew K Fujita
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
18
|
Karagic N, Härer A, Meyer A, Torres-Dowdall J. Thyroid hormone tinkering elicits integrated phenotypic changes potentially explaining rapid adaptation of color vision in cichlid fish. Evolution 2022; 76:837-845. [PMID: 35247267 DOI: 10.1111/evo.14455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 01/05/2022] [Indexed: 01/21/2023]
Abstract
Vision is critical for most vertebrates, including fish. One challenge that aquatic habitats pose is the high variability in spectral properties depending on depth and the inherent optical properties of the water. By altering opsin gene expression and chromophore usage, cichlid fish modulate visual sensitivities to maximize sensory input from the available light in their respective habitat. Thyroid hormone (TH) has been proposed to play a role in governing adaptive diversification in visual sensitivity in Nicaraguan Midas cichlids, which evolved in less than 4000 generations. As suggested by indirect measurements of TH levels (i.e., expression of deiodinases), populations adapted to short wavelength light in clear lakes have lower TH levels than ones inhabiting turbid lakes enriched in long-wavelength light. We experimentally manipulated TH levels by exposing 2-week-old Midas cichlids to exogenous TH or a TH inhibitor and measured opsin gene expression and chromophore usage (via cyp27c1 expression). Although exogenous TH induces long-wavelength sensitivity by changing opsin gene expression and chromophore usage in a concerted manner, TH-inhibited fish exhibit a visual phenotype with sensitivities shifted to shorter wavelengths. Tinkering with TH levels in eyes results in concerted phenotypic changes that can provide a rapid mechanism of adaptation to novel light environments.
Collapse
Affiliation(s)
- Nidal Karagic
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Andreas Härer
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany.,Division of Biological Sciences, Section of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, California, 92093
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | | |
Collapse
|
19
|
Musilova Z, Salzburger W, Cortesi F. The Visual Opsin Gene Repertoires of Teleost Fishes: Evolution, Ecology, and Function. Annu Rev Cell Dev Biol 2021; 37:441-468. [PMID: 34351785 DOI: 10.1146/annurev-cellbio-120219-024915] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual opsin genes expressed in the rod and cone photoreceptor cells of the retina are core components of the visual sensory system of vertebrates. Here, we provide an overview of the dynamic evolution of visual opsin genes in the most species-rich group of vertebrates, teleost fishes. The examination of the rich genomic resources now available for this group reveals that fish genomes contain more copies of visual opsin genes than are present in the genomes of amphibians, reptiles, birds, and mammals. The expansion of opsin genes in fishes is due primarily to a combination of ancestral and lineage-specific gene duplications. Following their duplication, the visual opsin genes of fishes repeatedly diversified at the same key spectral-tuning sites, generating arrays of visual pigments sensitive from the ultraviolet to the red spectrum of the light. Species-specific opsin gene repertoires correlate strongly with underwater light habitats, ecology, and color-based sexual selection. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Zuzana Musilova
- Department of Zoology, Charles University, Prague 128 44, Czech Republic;
| | | | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Queensland, Australia;
| |
Collapse
|
20
|
Matsuo M, Kamei Y, Fukamachi S. Behavioural red-light sensitivity in fish according to the optomotor response. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210415. [PMID: 34386255 PMCID: PMC8334835 DOI: 10.1098/rsos.210415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/06/2021] [Indexed: 05/12/2023]
Abstract
Various procedures have been adopted to investigate spectral sensitivity of animals, e.g. absorption spectra of visual pigments, electroretinography, optokinetic response, optomotor response (OMR) and phototaxis. The use of these techniques has led to various conclusions about animal vision. However, visual sensitivity should be evaluated consistently for a reliable comparison. In this study, we retrieved behavioural data of several fish species using a single OMR procedure and compared their sensitivities to near-infrared light. Besides cavefish that lack eyes, some species were not appropriate for the OMR test because they either stayed still or changed swimming direction frequently. Eight of 13 fish species tested were OMR positive. Detailed analyses using medaka, goldfish, zebrafish, guppy, stickleback and cichlid revealed that all the fish were sensitive to light at a wavelength greater than or equal to 750 nm, where the threshold wavelengths varied from 750 to 880 nm. Fish opsin repertoire affected the perception of red light. By contrast, the copy number of long-wavelength-sensitive (LWS) genes did not necessarily improve red-light sensitivity. While the duplication of LWS and other cone opsin genes that has occurred extensively during fish evolution might not aid increasing spectral sensitivity, it may provide some other advantageous ophthalmic function, such as enhanced spectral discrimination.
Collapse
Affiliation(s)
- Megumi Matsuo
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Tokyo 112-8681, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Aichi 444-8585, Japan
| | - Shoji Fukamachi
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Tokyo 112-8681, Japan
| |
Collapse
|
21
|
Chang CH, Catchen J, Moran RL, Rivera-Colón AG, Wang YC, Fuller RC. Sequence Analysis and Ontogenetic Expression Patterns of Cone Opsin Genes in the Bluefin Killifish (Lucania goodei). J Hered 2021; 112:357-366. [PMID: 33837393 DOI: 10.1093/jhered/esab017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Sensory systems allow for the transfer of environmental stimuli into internal cues that can alter physiology and behavior. Many studies of visual systems focus on opsins to compare spectral sensitivity among individuals, populations, and species living in different lighting environments. This requires an understanding of the cone opsins, which can be numerous. The bluefin killifish is a good model for studying the interaction between environments and visual systems as they are found in both clear springs and tannin-stained swamps. We conducted a genome-wide screening and demonstrated that the bluefin killifish has 9 cone opsins: 1 SWS1 (354 nm), 2 SWS2 (SWS2B: 359 nm, SWS2A: 448 nm), 2 RH2 (RH2-2: 476 nm, RH2-1: 537 nm), and 4 LWS (LWS-1: 569 nm, LWS-2: 524 nm, LWS-3: 569 nm, LWS-R: 560 or 569 nm). These 9 cone opsins were located on 4 scaffolds. One scaffold contained the 2 SWS2 and 3 of the 4 LWS opsins in the same syntenic order as found in other cyprinodontoid fishes. We also compared opsin expression in larval and adult killifish under clear water conditions, which mimic springs. Two of the newly discovered opsins (LWS-2 and LWS-3) were expressed at low levels (<0.2%). Whether these opsins make meaningful contributions to visual perception in other contexts (i.e., swamp conditions) is unclear. In contrast, there was an ontogenetic change from using LWS-R to LWS-1 opsin. Bluefin killifish adults may be slightly more sensitive to longer wavelengths, which might be related to sexual selection and/or foraging preferences.
Collapse
Affiliation(s)
- Chia-Hao Chang
- TIGP, Biodiversity Program, Tunghai University, Taiwan Boulevard, Taichung City, Taiwan
| | - Julian Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, South Goodwin, Urbana, IL
| | - Rachel L Moran
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN
| | - Angel G Rivera-Colón
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, South Goodwin, Urbana, IL
| | - Yu-Chun Wang
- Planning and Information Division, Fisheries Research Institute, Keelung City, Taiwan
| | - Rebecca C Fuller
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, 606 East Healey Street, Champaign, IL
| |
Collapse
|
22
|
Wang Y, Zhou L, Wu L, Song C, Ma X, Xu S, Du T, Li X, Li J. Evolutionary ecology of the visual opsin gene sequence and its expression in turbot (Scophthalmus maximus). BMC Ecol Evol 2021; 21:114. [PMID: 34098879 PMCID: PMC8186084 DOI: 10.1186/s12862-021-01837-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/24/2021] [Indexed: 11/27/2022] Open
Abstract
Background As flatfish, turbot undergo metamorphosis as part of their life cycle. In the larval stage, turbot live at the ocean surface, but after metamorphosis they move to deeper water and turn to benthic life. Thus, the light environment differs greatly between life stages. The visual system plays a great role in organic evolution, but reports of the relationship between the visual system and benthic life are rare. In this study, we reported the molecular and evolutionary analysis of opsin genes in turbot, and the heterochronic shifts in opsin expression during development. Results Our gene synteny analysis showed that subtype RH2C was not on the same gene cluster as the other four green-sensitive opsin genes (RH2) in turbot. It was translocated to chromosome 8 from chromosome 6. Based on branch-site test and spectral tuning sites analyses, E122Q and M207L substitutions in RH2C, which were found to be under positive selection, are closely related to the blue shift of optimum light sensitivities. And real-time PCR results indicated the dominant opsin gene shifted from red-sensitive (LWS) to RH2B1 during turbot development, which may lead to spectral sensitivity shifts to shorter wavelengths. Conclusions This is the first report that RH2C may be an important subtype of green opsin gene that was retained by turbot and possibly other flatfish species during evolution. Moreover, E122Q and M207L substitutions in RH2C may contribute to the survival of turbot in the bluish colored ocean. And heterochronic shifts in opsin expression may be an important strategy for turbot to adapt to benthic life. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01837-2.
Collapse
Affiliation(s)
- Yunong Wang
- College of Fisheries, Ocean University of China, Qingdao, 266003, People's Republic of China.,CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Li Zhou
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Lele Wu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Changbin Song
- Institute of Semiconductors, Chinese Academy of Science, Beijing, 100083, People's Republic of China
| | - Xiaona Ma
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Shihong Xu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Tengfei Du
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Xian Li
- College of Fisheries, Ocean University of China, Qingdao, 266003, People's Republic of China. .,CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.
| | - Jun Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| |
Collapse
|
23
|
Hiermes M, Reher S, Rick IP, Bakker TCM. Influence of lighting environment on social preferences in sticklebacks from two different photic habitats. I. mate preferences of wild-caught females. Curr Zool 2021; 67:299-308. [PMID: 34616922 PMCID: PMC8488994 DOI: 10.1093/cz/zoab008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Ultraviolet (UV) A signals (320-400 nm) are important in mate choice in numerous species. The sensitivity for UV signals is not only assumed to be costly, but also expected to be a function of the prevailing ecological conditions. Generally, those signals are favored by selection that efficiently reach the receiver. A decisive factor for color signaling is the lighting environment, especially in aquatic habitats, as the visibility of signals, and thus costs and benefits, are instantaneously influenced by it. Although ecological aspects of color signal evolution are relatively well-studied, there is little data on specific effects of environmental UV-light conditions on signaling at these shorter wavelengths. We studied wild-caught gravid female 3-spined sticklebacks Gasterosteus aculeatus of 2 photic habitat types (tea-stained and clear-water lakes), possessing great variation in their UV transmission. In 2 treatments, tea-stained and clear-water, preferences for males viewed under UV-present (UV+) and UV-absent (UV-) conditions were tested. A preference for males under UV+ conditions was found for females from both habitat types, thus stressing the significance of UV signals in stickleback's mate choice decisions. However, females from both habitat types showed the most pronounced preferences for males under UV+ conditions under clear-water test conditions. Moreover, reflectance measurements revealed that the carotenoid-based orange-red breeding coloration in wild-caught males of both habitat types differed significantly in color intensity (higher in clear-water males) and hue (more red shifted in clear-water males) while no significant differences in UV coloration were found. The differential reflection patterns in longer wavelengths suggest that sticklebacks of both habitat types have adapted to the respective water conditions. Adaptations of UV signals in a sexual context to ambient light conditions in both behavior and coloration seem less evident.
Collapse
Affiliation(s)
- Meike Hiermes
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn, 53121, Germany
| | - Stephanie Reher
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn, 53121, Germany
- Institute of Zoology, Functional Ecology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Ingolf P Rick
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn, 53121, Germany
- Institute of Zoology, University of Bonn, Meckenheimer Allee 169, Bonn, 53115, Germany
| | - Theo C M Bakker
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn, 53121, Germany
| |
Collapse
|
24
|
Hiermes M, Marder MB, Reher S, Rick IP, Vitt S, Bakker TCM. Influence of lighting environment on social preferences in sticklebacks from two different photic habitats. II. Shoaling and mate preferences of lab-bred fishes. Curr Zool 2021; 67:309-319. [PMID: 34616923 PMCID: PMC8489012 DOI: 10.1093/cz/zoab033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/06/2021] [Indexed: 11/21/2022] Open
Abstract
Different environmental conditions may lead to diverse morphological, behavioral, and physiological adaptations of different populations of the same species. Lighting conditions, for example, vary vastly especially between aquatic habitats, and have been shown to elicit adaptations. The availability of short-wave ultraviolet (UV) light is especially fluctuating, as UV wavelengths are attenuated strongly depending on water properties. The island of North Uist, Scotland, comprises 2 differential habitat types, tea-stained and clear-water lakes, varying considerably in UV transmission. In previous studies, wild-caught 3-spined stickleback Gasterosteus aculeatus populations (3 populations of each habitat type) were tested with respect to their shoaling and mate preferences for fish viewed under UV-present and UV-absent conditions. The results revealed a habitat-dependent preference of UV cues during shoal choice (tea-stained populations: preference for UV-absent condition in tea-stained water; clear-water populations: no preference in clear-water) but an overall preference for UV-present conditions during mate choice. To assess genetic influences on these behavioral patterns, similar experiments were conducted with lab-bred F1-generations of the same stickleback populations that were raised in a common environment (i.e. standardized clear-water conditions). Offspring of sticklebacks from tea-stained lakes tended to prefer shoals viewed under UV-absent conditions (only in tea-stained water), while sticklebacks from clear-water lakes showed a significant preference for the shoal viewed under UV-present conditions in clear-water but not in tea-stained water. Mate-preference experiments demonstrated that females from the tea-stained lakes significantly preferred and females from the clear-water lakes preferred by trend the male viewed under UV-present conditions in the clear-water treatment. The results for both shoaling- and mate-preference tests were largely similar for wild-caught and lab-bred sticklebacks, thus hinting at a genetic basis for the preference patterns.
Collapse
Affiliation(s)
- Meike Hiermes
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn 53121, Germany
| | - Michael B Marder
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn 53121, Germany
| | - Stephanie Reher
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn 53121, Germany
- Institute of Zoology, Functional Ecology, Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg 20146, Germany
| | - Ingolf P Rick
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn 53121, Germany
- Institute of Zoology, University of Bonn, Meckenheimer Allee 169, Bonn 53115, Germany
| | - Simon Vitt
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn 53121, Germany
| | - Theo C M Bakker
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn 53121, Germany
| |
Collapse
|
25
|
Zheng S, Shao F, Tao W, Liu Z, Long J, Wang X, Zhang S, Zhao Q, Carleton KL, Kocher TD, Jin L, Wang Z, Peng Z, Wang D, Zhang Y. Chromosome-level assembly of southern catfish (silurus meridionalis) provides insights into visual adaptation to nocturnal and benthic lifestyles. Mol Ecol Resour 2021; 21:1575-1592. [PMID: 33503304 DOI: 10.1111/1755-0998.13338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 01/07/2023]
Abstract
The Southern catfish (Silurus meridionalis) is a nocturnal and benthic freshwater fish endemic to the Yangtze River and its tributaries. In this study, we constructed a chromosome-level draft genome of S. meridionalis using 69.7-Gb Nanopore long reads and 49.5-Gb Illumina short reads. The genome assembly was 741.2 Mb in size with a contig N50 of 13.19 Mb. An additional 116.4 Gb of Bionano and 77.4 Gb of Hi-C data were applied to assemble contigs into scaffolds and further into 29 chromosomes, resulting in a 738.9-Mb genome with a scaffold N50 of 28.04 Mb. A total of 22,965 protein-coding genes were predicted from the genome with 22,519 (98.06%) genes functionally annotated. Comparative genomic and transcriptomic analyses revealed a rod-dominated visual system which was responsible for scotopic vision. The absence of cone opsins SWS1 and SWS2 resulted in the lack of ultraviolet and blue violet sensitivity. Mutations at key amino acid sites of RH1.1, RH1.2 and RH2 resulted in spectral tuning good for dim light vision and narrow colour vision. A higher expression level of rod phototransduction genes than that of cone genes and higher rod-to-cone ratio led to higher optical sensitivity under dim light conditions. In addition, analysis of the genes involved in eye morphogenesis and development revealed the loss of some conserved noncoding elements, which might be associated with the small eyes in catfish. Together, our study provides important clues for the adaptation of the catfish visual system to the nocturnal and benthic lifestyles. The draft genome of S. meridionalis represents a valuable resource for studies of the molecular mechanisms of ecological adaptation.
Collapse
Affiliation(s)
- Shuqing Zheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Zhilong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Juan Long
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Xiaoshuang Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Shuai Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Qingyuan Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Zhijian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Zuogang Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| | - Yaoguang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, P. R. China
| |
Collapse
|
26
|
Lofeu L, Anelli V, Straker LC, Kohlsdorf T. Developmental plasticity reveals hidden fish phenotypes and enables morphospace diversification. Evolution 2021; 75:1170-1188. [PMID: 33783852 DOI: 10.1111/evo.14221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 01/01/2023]
Abstract
The establishment of a given phenotype is only one expression from a range of hidden developmental possibilities. Developmental plasticity at hidden reaction norms might elicit phenotypic diversification under new developmental environments. Current discussion benefits from empirical analyses that integrate multiple environmental stimuli to evaluate how plastic responses may shape phenotypic variation. We raised Megaleporinus macrocephalus fish in different environmental settings to address contributions of developmental plasticity for emergence of new phenotypes and subsequent morphospace diversification. Plastic morphotypes were evaluated at two complementary scales, the M. macrocephalus morphospace and the higher taxonomic level of Anostomidae family. Morphospace analyses demonstrated that developmental plasticity quickly releases distinct head morphotypes that were hidden in the parental monomorphic population. Plastic morphotypes occupied discrete and previously unfilled morphospace regions, a result obtained from comparisons with a control population and in analyses including several Anostomidae species. Plastic responses involved adjustments in shape and relative position of head bonesets, and fish raised under specific environmental combinations rescued phenotypic patterns described for different genera. Therefore, developmental plasticity possibly contributes to adaptive radiation in Anostomidae. Results illustrate how plastic responses enable morphospace diversification and contribute to evolution.
Collapse
Affiliation(s)
- Leandro Lofeu
- Department of Biology - FFCLRP, University of São Paulo, São Paulo, 14040-900, Brazil
| | - Vinicius Anelli
- Department of Biology - FFCLRP, University of São Paulo, São Paulo, 14040-900, Brazil
| | - Lorian Cobra Straker
- Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Tiana Kohlsdorf
- Department of Biology - FFCLRP, University of São Paulo, São Paulo, 14040-900, Brazil
| |
Collapse
|
27
|
Hauser FE, Ilves KL, Schott RK, Alvi E, López-Fernández H, Chang BSW. Evolution, inactivation and loss of short wavelength-sensitive opsin genes during the diversification of Neotropical cichlids. Mol Ecol 2021; 30:1688-1703. [PMID: 33569886 DOI: 10.1111/mec.15838] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/30/2022]
Abstract
Natural variation in the number, expression and function of sensory genes in an organism's genome is often tightly linked to different ecological and evolutionary forces. Opsin genes, which code for the first step in visual transduction, are ideal models for testing how ecological factors such as light environment may influence visual system adaptation. Neotropical cichlid fishes are a highly ecologically diverse group that evolved in a variety of aquatic habitats, including black (stained), white (opaque) and clear waters. We used cross-species exon capture to sequence Neotropical cichlid short wavelength-sensitive (SWS) opsins, which mediate ultraviolet (UV) to blue visual sensitivity. Neotropical cichlid SWS1 opsin (UV-sensitive) underwent a relaxation of selective constraint during the early phases of cichlid diversification in South America, leading to pseudogenization and loss. Conversely, SWS2a (blue-sensitive) experienced a burst of episodic positive selection at the base of the South American cichlid radiation. This burst coincides with SWS1 relaxation and loss, and is consistent with findings in ecomorphological studies characterizing a period of extensive ecological divergence in Neotropical cichlids. We use ancestral sequence reconstruction and protein modelling to investigate mutations along this ancestral branch that probably modified SWS2a function. Together, our results suggest that variable light environments played a prominent early role in shaping SWS opsin diversity during the Neotropical cichlid radiation. Our results also illustrate that long-term evolution under light-limited conditions in South America may have reduced visual system plasticity; specifically, early losses of UV sensitivity may have constrained the evolutionary trajectory of Neotropical cichlid vision.
Collapse
Affiliation(s)
- Frances E Hauser
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Katriina L Ilves
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Erin Alvi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hernán López-Fernández
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Torres-Dowdall J, Karagic N, Härer A, Meyer A. Diversity in visual sensitivity across Neotropical cichlid fishes via differential expression and intraretinal variation of opsin genes. Mol Ecol 2021; 30:1880-1891. [PMID: 33619757 DOI: 10.1111/mec.15855] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
The visual system of vertebrates has greatly contributed to our understanding of how different molecular mechanisms shape adaptive phenotypic diversity. Extensive work on African cichlid fishes has shown how variation in opsin gene expression mediates diversification as well as convergent evolution in colour vision. This trait has received less attention in Neotropical cichlids, the sister lineage to African cichlids, but the work done so far led to the conclusion that colour vision is much less variable in Neotropical species. However, as only few taxa have been investigated and as recent work found contradicting patterns, the diversity in meotropical cichlids might be greatly underestimated. Here, we survey patterns of opsin gene expression in 35 representative species of Neotropical cichlids, revealing much more variation than previously known. This diversity can be attributed to two main mechanisms: (i) differential expression of the blue-sensitive sws2a, the green-sensitive rh2a, and the red-sensitive lws opsin genes, and (ii) simultaneous expression of up to five opsin genes, instead of only three as commonly found, in a striking dorsoventral pattern across the retina. This intraretinal variation in opsin genes expression results in steep gradients in visual sensitivity that may represent a convergent adaptation to clear waters with broad light environments. These results highlight the role and flexibility of gene expression in generating adaptive phenotypic diversification.
Collapse
Affiliation(s)
- Julián Torres-Dowdall
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nidal Karagic
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andreas Härer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
29
|
Carleton KL, Yourick MR. Axes of visual adaptation in the ecologically diverse family Cichlidae. Semin Cell Dev Biol 2020; 106:43-52. [PMID: 32439270 PMCID: PMC7486233 DOI: 10.1016/j.semcdb.2020.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
The family Cichlidae contains approximately 2000 species that live in diverse freshwater habitats including murky lakes, turbid rivers, and clear lakes from both the Old and New Worlds. Their visual systems are similarly diverse and have evolved specific sensitivities that differ along several axes of variation. Variation in cornea and lens transmission affect which wavelengths reach the retina. Variation in photoreceptor number and distribution affect brightness sensitivity, spectral sensitivity and resolution. Probably their most dynamic characteristic is the variation in visual pigment peak sensitivities. Visual pigments can be altered through changes in chromophore, opsin sequence and opsin expression. Opsin expression varies by altering which of the seven available cone opsins in their genomes are turned on. These opsins can even be coexpressed to produce seemingly infinitely tunable cone sensitivities. Both chromophore and opsin expression can vary on either rapid (hours or days), slower (seasonal or ontogenetic) or evolutionary timescales. Such visual system shifts have enabled cichlids to adapt to different habitats and foraging styles. Through both short term plasticity and longer evolutionary adaptations, cichlids have proven to be ecologically successful and an excellent model for studying organismal adaptation.
Collapse
Affiliation(s)
- Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| | - Miranda R Yourick
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
30
|
Patel D, Barnes JE, Davies WIL, Stenkamp DL, Patel JS. Short-wavelength-sensitive 2 (Sws2) visual photopigment models combined with atomistic molecular simulations to predict spectral peaks of absorbance. PLoS Comput Biol 2020; 16:e1008212. [PMID: 33085657 PMCID: PMC7605715 DOI: 10.1371/journal.pcbi.1008212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/02/2020] [Accepted: 09/21/2020] [Indexed: 12/02/2022] Open
Abstract
For many species, vision is one of the most important sensory modalities for mediating essential tasks that include navigation, predation and foraging, predator avoidance, and numerous social behaviors. The vertebrate visual process begins when photons of the light interact with rod and cone photoreceptors that are present in the neural retina. Vertebrate visual photopigments are housed within these photoreceptor cells and are sensitive to a wide range of wavelengths that peak within the light spectrum, the latter of which is a function of the type of chromophore used and how it interacts with specific amino acid residues found within the opsin protein sequence. Minor differences in the amino acid sequences of the opsins are known to lead to large differences in the spectral peak of absorbance (i.e. the λmax value). In our prior studies, we developed a new approach that combined homology modeling and molecular dynamics simulations to gather structural information associated with chromophore conformation, then used it to generate statistical models for the accurate prediction of λmax values for photopigments derived from Rh1 and Rh2 amino acid sequences. In the present study, we test our novel approach to predict the λmax of phylogenetically distant Sws2 cone opsins. To build a model that can predict the λmax using our approach presented in our prior studies, we selected a spectrally-diverse set of 11 teleost Sws2 photopigments for which both amino acid sequence information and experimentally measured λmax values are known. The final first-order regression model, consisting of three terms associated with chromophore conformation, was sufficient to predict the λmax of Sws2 photopigments with high accuracy. This study further highlights the breadth of our approach in reliably predicting λmax values of Sws2 cone photopigments, evolutionary-more distant from template bovine RH1, and provided mechanistic insights into the role of known spectral tuning sites.
Collapse
Affiliation(s)
- Dharmeshkumar Patel
- Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, United States of America
| | - Jonathan E. Barnes
- Department of Physics, University of Idaho, Moscow, ID, United States of America
| | - Wayne I. L. Davies
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- The Oceans Graduate School, University of Western Australia, Perth, WA, Australia
- The Oceans Institute, University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, University of Western Australia, Perth, WA, Australia
| | - Deborah L. Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
- Institute for Bioinformatics and Evolutionary Biology, University of Idaho, Moscow, ID, United States of America
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
| |
Collapse
|
31
|
Carleton KL, Escobar-Camacho D, Stieb SM, Cortesi F, Marshall NJ. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J Exp Biol 2020; 223:jeb193334. [PMID: 32327561 PMCID: PMC7188444 DOI: 10.1242/jeb.193334] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Among vertebrates, teleost eye diversity exceeds that found in all other groups. Their spectral sensitivities range from ultraviolet to red, and the number of visual pigments varies from 1 to over 40. This variation is correlated with the different ecologies and life histories of fish species, including their variable aquatic habitats: murky lakes, clear oceans, deep seas and turbulent rivers. These ecotopes often change with the season, but fish may also migrate between ecotopes diurnally, seasonally or ontogenetically. To survive in these variable light habitats, fish visual systems have evolved a suite of mechanisms that modulate spectral sensitivities on a range of timescales. These mechanisms include: (1) optical media that filter light, (2) variations in photoreceptor type and size to vary absorbance and sensitivity, and (3) changes in photoreceptor visual pigments to optimize peak sensitivity. The visual pigment changes can result from changes in chromophore or changes to the opsin. Opsin variation results from changes in opsin sequence, opsin expression or co-expression, and opsin gene duplications and losses. Here, we review visual diversity in a number of teleost groups where the structural and molecular mechanisms underlying their spectral sensitivities have been relatively well determined. Although we document considerable variability, this alone does not imply functional difference per se. We therefore highlight the need for more studies that examine species with known sensitivity differences, emphasizing behavioral experiments to test whether such differences actually matter in the execution of visual tasks that are relevant to the fish.
Collapse
Affiliation(s)
- Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Sara M Stieb
- Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| |
Collapse
|
32
|
Schneider RF, Rometsch SJ, Torres-Dowdall J, Meyer A. Habitat light sets the boundaries for the rapid evolution of cichlid fish vision, while sexual selection can tune it within those limits. Mol Ecol 2020; 29:1476-1493. [PMID: 32215986 DOI: 10.1111/mec.15416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Cichlid fishes' famous diversity in body coloration is accompanied by a highly diverse and complex visual system. Although cichlids possess an unusually high number of seven cone opsin genes, they express only a subset of these during their ontogeny, accounting for their astonishing interspecific variation in visual sensitivities. Much of this diversity is thought to have been shaped by natural selection as cichlids inhabit a variety of habitats with distinct light environments. Also, sexual selection might have contributed to the observed visual diversity, and sexual dimorphism in coloration potentially co-evolved with sexual dimorphism in opsin expression. We investigated sex-specific opsin expression of several cichlids from Africa and the Neotropics and collected and integrated data sets on sex-specific body coloration, species-specific visual sensitivities, lens transmission and habitat light properties for some of them. We comparatively analysed this wide range of molecular and ecological data, illustrating how integrative approaches can address specific questions on the factors and mechanisms driving diversification, and the evolution of cichlid vision in particular. We found that both sexes expressed opsins at the same levels-even in sexually dimorphic cichlid species-which argues against coevolution of sexual dichromatism and differences in sex-specific visual sensitivity. Rather, a combination of environmental light properties and body coloration shaped the diversity in spectral sensitivities among cichlids. We conclude that although cichlids are particularly colourful and diverse and often sexually dimorphic, it would appear that natural rather than sexual selection is a more powerful force driving visual diversity in this hyperdiverse lineage.
Collapse
Affiliation(s)
- Ralph F Schneider
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Marine Ecology, GEOMAR, Kiel, Germany
| | - Sina J Rometsch
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Julián Torres-Dowdall
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
33
|
Novales Flamarique I. Light exposure during embryonic and yolk-sac alevin development of Chinook salmon Oncorhynchus tshawytscha does not alter the spectral phenotype of photoreceptors. JOURNAL OF FISH BIOLOGY 2019; 95:214-221. [PMID: 30370922 DOI: 10.1111/jfb.13850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Colour vision is mediated by the expression of different visual pigments in photoreceptors of the vertebrate retina. Each visual pigment is a complex of a protein (opsin) and a vitamin A chromophore; alterations to either component affects visual pigment absorbance and, potentially, the visual capabilities of an animal. Many species of fish undergo changes in opsin expression during retinal development. In the case of salmonid fishes the single cone photoreceptors undergo a switch in opsin expression from SWS1 (ultraviolet sensitive) to SWS2 (blue-light sensitive) starting at the yolk-sac alevin stage, around the time when they first experience light. Whether light may initiate this event or produce a plastic response in the various photoreceptors is unknown. In this study, Chinook salmon Oncorhynchus tshawytscha were exposed to light from the embryonic (5 days prior to hatching) into the yolk sac alevin (25 days post hatching) stage and the spectral phenotype of photoreceptors assessed with respect to that of unexposed controls by in situ hybridization with opsin riboprobes. Light exposure did not change the spectral phenotype of photoreceptors, their overall morphology or spatial arrangement. These results concur with those from a variety of fish species and suggest that plasticity in photoreceptor spectral phenotype via changes in opsin expression may not be a widespread occurrence among teleosts.
Collapse
Affiliation(s)
- Inigo Novales Flamarique
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
- Department of Biology, University of Victoria, Victoria, Canada
| |
Collapse
|
34
|
Härer A, Karagic N, Meyer A, Torres-Dowdall J. Reverting ontogeny: rapid phenotypic plasticity of colour vision in cichlid fish. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190841. [PMID: 31417763 PMCID: PMC6689635 DOI: 10.1098/rsos.190841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Phenotypic plasticity, particularly during development, allows organisms to rapidly adjust to different environmental conditions. Yet, it is often unclear whether the extent and direction of plastic changes are restricted by an individual's ontogeny. Many species of cichlid fishes go through ontogenetic changes in visual sensitivity, from short to long wavelengths, by switching expression of cone opsin genes crucial for colour vision. During this progression, individuals often exhibit phenotypic plasticity to the ambient light conditions. However, it is commonly assumed that once an adult visual phenotype is reached, reverting to an earlier ontogenetic state with higher sensitivity at shorter wavelengths is not common. In this study, we experimentally demonstrate that four-month-old Midas cichlid fish (Amphilophus astorquii) show plasticity in single cone opsin expression after experiencing drastic changes in light conditions. Resulting shifts of visual sensitivity occurred presumably in an adaptive direction-towards shorter or longer wavelengths when exposed to short- or long-wavelength light, respectively. Single cone opsin expression changed within only a few days and went through a transitional phase of co-expression. When the environment was experimentally enriched in long-wavelength light, the corresponding change occurred gradually along a dorsoventral gradient within the retina. This plasticity allowed individuals to revert earlier ontogenetic changes and return to a more juvenile visual phenotype demonstrating previously unrecognized insights into temporal and spatial dynamics of phenotypic plasticity of the visual system in response to ambient light.
Collapse
Affiliation(s)
- Andreas Härer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nidal Karagic
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Julián Torres-Dowdall
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
| |
Collapse
|
35
|
Chang CH, Yan HY. Plasticity of opsin gene expression in the adult red shiner (Cyprinella lutrensis) in response to turbid habitats. PLoS One 2019; 14:e0215376. [PMID: 30978235 PMCID: PMC6461250 DOI: 10.1371/journal.pone.0215376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/01/2019] [Indexed: 11/30/2022] Open
Abstract
Vision is very important to fish as it is required for foraging food, fighting competitors, fleeing from predators, and finding potential mates. Vertebrates express opsin genes in photoreceptor cells to receive visual signals, and the variety of light levels in aquatic habits has driven fish to evolve multiple opsin genes with expression profiles that are highly plastic. In this study, red shiners (Cyprinella lutrensis) were exposed to four water turbidity treatments and their opsin genes were cloned to elucidate how opsin gene expression could be modulated by ambient light conditions. Opsin gene cloning revealed that these fish have single RH1, SWS1, SWS2 and LWS genes and two RH2 genes. Phylogenetic analysis also indicated that these two RH2 opsin genes-RH2A and RH2B -are in-paralogous. Using quantitative PCR, we found evidence that opsin expression is plastic in adults. Elevated proportional expression of LWS in the cone under ambient light and turbid treatment indicated that the red shiner's visual spectrum displays a red shift in response to increased turbidity.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Department of Life Science, Tunghai University, Taichung City, Taiwan
- Center for Ecology and Environment, Tunghai University, Taichung City, Taiwan
| | - Hong Young Yan
- National Museum of Marine Biology & Aquarium, Checheng, Pingtung, Taiwan
| |
Collapse
|
36
|
Escobar-Camacho D, Pierotti MER, Ferenc V, Sharpe DMT, Ramos E, Martins C, Carleton KL. Variable vision in variable environments: the visual system of an invasive cichlid ( Cichla monoculus) in Lake Gatun, Panama. ACTA ACUST UNITED AC 2019; 222:jeb.188300. [PMID: 30787138 DOI: 10.1242/jeb.188300] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/10/2019] [Indexed: 01/11/2023]
Abstract
An adaptive visual system is essential for organisms inhabiting new or changing light environments. The Panama Canal exhibits such variable environments owing to its anthropogenic origin and current human activities. Within the Panama Canal, Lake Gatun harbors several exotic fish species including the invasive peacock bass (Cichla monoculus), a predatory Amazonian cichlid. In this research, through spectral measurements and molecular and physiological experiments, we studied the visual system of C. monoculus and its adaptive capabilities. Our results suggest that (1) Lake Gatun is a highly variable environment, where light transmission changes throughout the canal waterway, and that (2) C. monoculus has several visual adaptations suited for this red-shifted light environment. Cichla monoculus filters short wavelengths (∼400 nm) from the environment through its ocular media and tunes its visual sensitivities to the available light through opsin gene expression. More importantly, based on shifts in spectral sensitivities of photoreceptors alone, and on transcriptome analysis, C. monoculus exhibits extreme intraspecific variation in the use of vitamin A1/A2 chromophore in their photoreceptors. Fish living in turbid water had higher proportions of vitamin A2, shifting sensitivities to longer wavelengths, than fish living in clear water. Furthermore, we also found variation in retinal transcriptomes, where fish from turbid and clear waters exhibited differentially expressed genes that vary greatly in their function. We suggest that this phenotypic plasticity has been key in the invasion success of C. monoculus.
Collapse
Affiliation(s)
| | - Michele E R Pierotti
- Naos Marine Laboratories, Smithsonian Tropical Research Institute, Calzada de Amador, Bld 356, 0843-03092 Panama, Republic of Panama
| | - Viktoria Ferenc
- Plant Ecology Group, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Diana M T Sharpe
- Naos Marine Laboratories, Smithsonian Tropical Research Institute, Calzada de Amador, Bld 356, 0843-03092 Panama, Republic of Panama
| | - Erica Ramos
- Department of Morphology, Biosciences Institute, São Paulo State University, Botucatu 18618-689, Brazil
| | - Cesar Martins
- Department of Morphology, Biosciences Institute, São Paulo State University, Botucatu 18618-689, Brazil
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
37
|
Mameri D, van Kammen C, Groothuis TGG, Seehausen O, Maan ME. Visual adaptation and microhabitat choice in Lake Victoria cichlid fish. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181876. [PMID: 31032041 PMCID: PMC6458373 DOI: 10.1098/rsos.181876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/05/2019] [Indexed: 06/04/2023]
Abstract
When different genotypes choose different habitats to better match their phenotypes, genetic differentiation within a population may be promoted. Mating within those habitats may subsequently contribute to reproductive isolation. In cichlid fish, visual adaptation to alternative visual environments is hypothesized to contribute to speciation. Here, we investigated whether variation in visual sensitivity causes different visual habitat preferences, using two closely related cichlid species that occur at different but overlapping water depths in Lake Victoria and that differ in visual perception (Pundamilia spp.). In addition to species differences, we explored potential effects of visual plasticity, by rearing fish in two different light conditions: broad-spectrum (mimicking shallow water) and red-shifted (mimicking deeper waters). Contrary to expectations, fish did not prefer the light environment that mimicked their typical natural habitat. Instead, we found an overall preference for the broad-spectrum environment. We also found a transient influence of the rearing condition, indicating that the assessment of microhabitat preference requires repeated testing to control for familiarity effects. Together, our results show that cichlid fish exert visual habitat preference but do not support straightforward visual habitat matching.
Collapse
Affiliation(s)
- Daniel Mameri
- CEF – Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Corina van Kammen
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Van Hall Larenstein University of Applied Sciences, Leeuwarden, The Netherlands
| | - Ton G. G. Groothuis
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Eawag Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Martine E. Maan
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
38
|
Tettamanti V, de Busserolles F, Lecchini D, Marshall NJ, Cortesi F. Visual system development of the spotted unicornfish, Naso brevirostris (Acanthuridae). J Exp Biol 2019; 222:jeb.209916. [DOI: 10.1242/jeb.209916] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022]
Abstract
Ontogenetic changes of the visual system are often correlated to shifts in habitat and feeding behaviour of animals. Coral reef fishes begin their lives in the pelagic zone and then migrate to the reef. This habitat transition frequently involves a change in diet and light environment as well as major morphological modifications. The spotted unicornfish, Naso brevirostris, is known to shift diet from zooplankton to algae and back to mainly zooplankton when transitioning from larval to juvenile and then to adult stages. Concurrently, N. brevirostris also moves from an open pelagic to a coral-associated habitat before migrating up in the water column when reaching adulthood. Using retinal mapping techniques, we discovered that the distribution and density of ganglion and photoreceptor cells in N. brevirostris mostly changes during the transition from the larval to the juvenile stage, with only minor modifications thereafter. Similarly, visual gene (opsin) expression based on RNA sequencing, although qualitatively similar between stages (all fishes mainly expressed the same three cone opsins; SWS2B, RH2B, RH2A), also showed the biggest quantitative difference when transitioning from larvae to juveniles. The juvenile stage in particular seems mismatched with its reef-associated ecology, which may be due to this stage only lasting a fraction of the lifespan of these fishes. Hence, the visual ontogeny found in N. brevirostris is very different from the progressive changes found in other reef fishes calling for a thorough analysis of visual system development of the reef fish community.
Collapse
Affiliation(s)
- Valerio Tettamanti
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
- Swiss Federal Institute of Technology Zurich, 8092 Zurich, Switzerland
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| | - David Lecchini
- PSL Research University: EPHE-UPVD-CNRS, USR3278 CRIOBE, BP 1013, 98729 Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence “CORAIL”, Paris, France
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| |
Collapse
|
39
|
Härer A, Meyer A, Torres‐Dowdall J. Convergent phenotypic evolution of the visual system via different molecular routes: How Neotropical cichlid fishes adapt to novel light environments. Evol Lett 2018; 2:341-354. [PMID: 30283686 PMCID: PMC6121847 DOI: 10.1002/evl3.71] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
How predictable is evolution? This remains a fundamental but contested issue in evolutionary biology. When independent lineages colonize the same environment, we are presented with a natural experiment that allows us to ask if genetic and ecological differences promote species-specific evolutionary outcomes or whether species phenotypically evolve in a convergent manner in response to shared selection pressures. If so, are the molecular mechanisms underlying phenotypic convergence the same? In Nicaragua, seven species of cichlid fishes concurrently colonized two novel photic environments. Hence, their visual system represents a compelling model to address these questions, particularly since the adaptive value of phenotypic changes is well-understood. By analyzing retinal transcriptomes, we found that differential expression of genes responsible for color vision (cone opsins and cyp27c1) produced rapid and mostly convergent changes of predicted visual sensitivities. Notably, these changes occurred in the same direction in all species although there were differences in underlying gene expression patterns illustrating nonconvergence at the molecular level. Adaptive phenotypes evolved deterministically, even when species differ substantially in ecology and genetic variation. This provides strong evidence that phenotypic evolution of the visual system occurred in response to similar selective forces of the photic environment.
Collapse
Affiliation(s)
- Andreas Härer
- Zoology and Evolutionary Biology, Department of BiologyUniversity of KonstanzGermany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of BiologyUniversity of KonstanzGermany
- Radcliffe Institute for Advanced StudyHarvard UniversityCambridgeMassachusetts02138
| | - Julián Torres‐Dowdall
- Zoology and Evolutionary Biology, Department of BiologyUniversity of KonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
| |
Collapse
|
40
|
Karagic N, Härer A, Meyer A, Torres‐Dowdall J. Heterochronic opsin expression due to early light deprivation results in drastically shifted visual sensitivity in a cichlid fish: Possible role of thyroid hormone signaling. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:202-214. [DOI: 10.1002/jez.b.22806] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Nidal Karagic
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of Konstanz Konstanz Germany
| | - Andreas Härer
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of Konstanz Konstanz Germany
| | - Axel Meyer
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of Konstanz Konstanz Germany
- Radcliffe Institute for Advanced StudyHarvard University Cambridge Massachusetts
| | - Julián Torres‐Dowdall
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of Konstanz Konstanz Germany
- ZukunftskollegUniversity of Konstanz Konstanz Germany
| |
Collapse
|
41
|
Korshunova T, Lundin K, Malmberg K, Picton B, Martynov A. First true brackish-water nudibranch mollusc provides new insights for phylogeny and biogeography and reveals paedomorphosis-driven evolution. PLoS One 2018; 13:e0192177. [PMID: 29538398 PMCID: PMC5851531 DOI: 10.1371/journal.pone.0192177] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/16/2018] [Indexed: 11/18/2022] Open
Abstract
A unique example of brackish water fjord-related diversification of a new nudibranch genus and species Bohuslania matsmichaeli gen. n., sp. n. is presented. There are only few previously known brackish-water opisthobranchs and B. matsmichaeli gen. n., sp. n. is the first ever described brackish-water nudibranch with such an extremely limited known geographical range and apparently strict adherence to salinity levels lower than 20 per mille. Up to date the new taxon has been found only in a very restricted area in the Idefjord, bordering Sweden and Norway, but not in any other apparently suitable localities along the Swedish and Norwegian coasts. We also show in this study for the first time the molecular phylogenetic sister relationship between the newly discovered genus Bohuslania and the genus Cuthona. This supports the validity of the family Cuthonidae, which was re-established recently. Furthermore, it contributes to the understanding of the evolutionary patterns and classification of the whole group Nudibranchia. Molecular and morphological data indicate that brackish water speciation was triggered by paedomorphic evolution among aeolidacean nudibranchs at least two times independently. Thus, the present discovery of this new nudibranch genus contributes to several biological fields, including integration of molecular and morphological data as well as phylogenetic and biogeographical patterns.
Collapse
Affiliation(s)
- Tatiana Korshunova
- Koltzov Institute of Developmental Biology, Moscow, Russia
- Zoological Museum of the Moscow State University, Moscow, Russia
| | - Kennet Lundin
- Gothenburg Natural History museum, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | | | - Bernard Picton
- National Museums Northern Ireland, Cultra, United Kingdom
| | | |
Collapse
|
42
|
Schweikert LE, Grace MS. Altered environmental light drives retinal change in the Atlantic Tarpon (Megalops atlanticus) over timescales relevant to marine environmental disturbance. BMC Ecol 2018; 18:1. [PMID: 29347979 PMCID: PMC5774114 DOI: 10.1186/s12898-018-0157-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/09/2018] [Indexed: 12/13/2022] Open
Abstract
Background For many fish species, retinal function changes between life history stages as part of an encoded developmental program. Retinal change is also known to exhibit plasticity because retinal form and function can be influenced by light exposure over the course of development. Aside from studies of gene expression, it remains largely unknown whether retinal plasticity can provide functional responses to short-term changes in environmental light quality. The aim of this study was to determine whether the structure and function of the fish retina can change in response to altered light intensity and spectrum—not over the course of a developmental regime, but over shorter time periods relevant to marine habitat disturbance. Results The effects of light environment on sensitivity of the retina, as well as on cone photoreceptor distribution were examined in the Atlantic tarpon (Megalops atlanticus) on 2- and 4-month timescales. In a spectral experiment, juvenile M. atlanticus were placed in either ‘red’ or ‘blue’ light conditions (with near identical irradiance), and in an intensity experiment, juveniles were placed in either ‘bright’ or ‘dim’ light conditions (with near identical spectra). Analysis of the retina by electroretinography and anti-opsin immunofluorescence revealed that relative to fish held in the blue condition, those in the red condition exhibited longer-wavelength peak sensitivity and greater abundance of long-wavelength-sensitive (LWS) cone photoreceptors over time. Following pre-test dark adaption of the retina, fish held in the dim light required less irradiance to produce a standard retinal response than fish held in bright light, developing a greater sensitivity to white light over time. Conclusions The results show that structure and function of the M. atlanticus retina can rapidly adjust to changes in environmental light within a given developmental stage, and that such changes are dependent on light quality and the length of exposure. These findings suggest that the fish retina may be resilient to disturbances in environmental light, using retinal plasticity to compensate for changes in light quality over short timescales. Electronic supplementary material The online version of this article (10.1186/s12898-018-0157-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lorian E Schweikert
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Boulevard, Melbourne, FL, 32901, USA.,Department of Biology, Duke University, 130 Science Dr. Durham, Durham, NC, 27583, USA
| | - Michael S Grace
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Boulevard, Melbourne, FL, 32901, USA.
| |
Collapse
|
43
|
Patel JS, Brown CJ, Ytreberg FM, Stenkamp DL. Predicting peak spectral sensitivities of vertebrate cone visual pigments using atomistic molecular simulations. PLoS Comput Biol 2018; 14:e1005974. [PMID: 29364888 PMCID: PMC5798944 DOI: 10.1371/journal.pcbi.1005974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/05/2018] [Accepted: 01/13/2018] [Indexed: 11/19/2022] Open
Abstract
Vision is the dominant sensory modality in many organisms for foraging, predator avoidance, and social behaviors including mate selection. Vertebrate visual perception is initiated when light strikes rod and cone photoreceptors within the neural retina of the eye. Sensitivity to individual colors, i.e., peak spectral sensitivities (λmax) of visual pigments, are a function of the type of chromophore and the amino acid sequence of the associated opsin protein in the photoreceptors. Large differences in peak spectral sensitivities can result from minor differences in amino acid sequence of cone opsins. To determine how minor sequence differences could result in large spectral shifts we selected a spectrally-diverse group of 14 teleost Rh2 cone opsins for which sequences and λmax are experimentally known. Classical molecular dynamics simulations were carried out after embedding chromophore-associated homology structures within explicit bilayers and water. These simulations revealed structural features of visual pigments, particularly within the chromophore, that contributed to diverged spectral sensitivities. Statistical tests performed on all the observed structural parameters associated with the chromophore revealed that a two-term, first-order regression model was sufficient to accurately predict λmax over a range of 452-528 nm. The approach was accurate, efficient and simple in that site-by-site molecular modifications or complex quantum mechanics models were not required to predict λmax. These studies identify structural features associated with the chromophore that may explain diverged spectral sensitivities, and provide a platform for future, functionally predictive opsin modeling.
Collapse
Affiliation(s)
- Jagdish Suresh Patel
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States of America
| | - Celeste J. Brown
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
- Department of Physics, University of Idaho, Moscow, ID, United States of America
| | - F. Marty Ytreberg
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States of America
- Department of Physics, University of Idaho, Moscow, ID, United States of America
- Institute for Bioinformatics and Evolutionary Biology, University of Idaho, Moscow, ID, United States of America
| | - Deborah L. Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
- Institute for Bioinformatics and Evolutionary Biology, University of Idaho, Moscow, ID, United States of America
| |
Collapse
|