1
|
Martínez A, Bonaglia S, Di Domenico M, Fonseca G, Ingels J, Jörger KM, Laumer C, Leasi F, Zeppilli D, Baldrighi E, Bik H, Cepeda D, Curini-Galletti M, Cutter AD, Dos Santos G, Fattorini S, Frisch D, Gollner S, Jondelius U, Kerbl A, Kocot KM, Majdi N, Mammola S, Martín-Durán JM, Menegotto A, Montagna PA, Nascimento FJA, Puillandre N, Rognant A, Sánchez N, Santos IR, Schmidt-Rhaesa A, Schratzberger M, Semprucci F, Shimabukuro M, Sommerfield PJ, Struck TH, Sørensen MV, Wallberg A, Worsaae K, Yamasaki H, Fontaneto D. Fundamental questions in meiofauna research highlight how small but ubiquitous animals can improve our understanding of Nature. Commun Biol 2025; 8:449. [PMID: 40097602 PMCID: PMC11914145 DOI: 10.1038/s42003-025-07888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Affiliation(s)
- Alejandro Martínez
- Molecular Ecology Group (MEG), Water Research Institute (CNR-IRSA), National Research Council, 28922, Verbania Pallanza, Italy.
| | - Stefano Bonaglia
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Maikon Di Domenico
- Center for Marine Studies (CEM), Federal University of Paraná (UFPR), Pontal do Paraná, Paraná, Brazil
| | - Gustavo Fonseca
- Marine Science Institute, Federal University of São Paulo, Santos, Brazil
| | - Jeroen Ingels
- National Institute of Water and Atmospheric Research, 301 Evans Bay Parade, Hataitai, 6021, Wellington, New Zealand
| | | | | | - Francesca Leasi
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Daniela Zeppilli
- UMR6197 Biologie et Écologie des Ecosystèmes Marins Profonds, University Brest, CNRS, Ifremer, 29280, Plouzané, France
| | - Elisa Baldrighi
- Department of Biology, The University of Nevada, Reno, NV, USA
| | - Holly Bik
- Department of Marine Science & Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Diego Cepeda
- Department of Life Sciences, University of Alcalá (UAH), Ctra. Madrid-Barcelona Km.33, 600. 28805 Alcalá de Henares, Madrid, Spain
| | - Marco Curini-Galletti
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Asher D Cutter
- Department of Ecology & Evolutionary Biology. University of Toronto, Toronto, ON, M5S3B2, Canada
| | - Giovanni Dos Santos
- Zoology Department, Federal University of Pernambuco, 50670-901, Recife-PE, Brazil
| | - Simone Fattorini
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Via Vetoio - Coppito, 67100, L'Aquila, Italy
| | - Dagmar Frisch
- Department of Evolutionary and Integrative Ecology, IGB Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Sabine Gollner
- Department of Ocean Systems (OCS), Royal Netherlands Institute for Sea Research (NIOZ), Landsdiep 4, 1797 SZ 't Horntje, Texel, The Netherlands
| | - Ulf Jondelius
- Swedish Museum of Natural History, Department of Zoology, POB 50007, SE-104 05, Stockholm, Sweden
| | - Alexandra Kerbl
- Department for Evolutionary Neurobiology, Centre for Organismal Studies, University Heidelberg. Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Kevin M Kocot
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Nabil Majdi
- Réserve Naturelle Nationale de la Forêt de la Massane, Sorbonne Université, UPMC Université Paris 06, Observatoire Océanologique de Banyuls, 66650, Banyuls-sur-Mer, France
| | - Stefano Mammola
- Molecular Ecology Group (MEG), Water Research Institute (CNR-IRSA), National Research Council, 28922, Verbania Pallanza, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, Finland
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences. Queen Mary University of London. Mile End Road, E1 4NS, London, UK
| | - André Menegotto
- Department of Ecology, Research Centre for Biodiversity and Global Change, Autonomous University of Madrid (CIBC-UAM), C/ Darwin 2, 28049, Madrid, Spain
- Terrestrial Ecology Group (TEG-UAM), Department of Ecology, Autonomous University of Madrid, 28049, Madrid, Spain
- Department of Ecology, ICB, Federal University of Goiás, Goiânia, 74690-900, Brazil
| | - Paul A Montagna
- Harte Research Institute, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA
| | | | - Nicolas Puillandre
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP51, Paris, France
| | - Anne Rognant
- Océanopolis. Port de Plaisance du Moulin blanc. B.P. 91039. Brest Cedex 1, Brest, 29210, France
| | - Nuria Sánchez
- Facultad de Ciencias Biológicas, Departamento de Biodiversidad, Ecología y Evolución José Antonio Novais, 12. Planta 10. 28040 Madrid, Spain. Universidad Complutense de Madrid, Madrid, Spain
| | - Isaac R Santos
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Federica Semprucci
- Dipartimento di Scienze Biomolecolari., Università degli Studi di Urbino Carlo Bo, Marche, Italy
| | - Mauricio Shimabukuro
- Universidade Federal do Rio Grande (FURG) - Instituto de Oceanografia, Rio Grande, Brazil
| | | | - Torsten H Struck
- Natural History Museum, University of Oslo, 1172, Blindern, 0318, Oslo, Norway
| | - Martin V Sørensen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University; Husargatan 3, 751 23, Uppsala, Sweden
| | - Katrine Worsaae
- Marine Biological Section, Department of Biology, University of Copenhagen, Universitetsparken 4, 2100, Copenhagen, Denmark
| | | | - Diego Fontaneto
- Molecular Ecology Group (MEG), Water Research Institute (CNR-IRSA), National Research Council, 28922, Verbania Pallanza, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
6
|
Sánchez-Ramírez S, Weiss JG, Thomas CG, Cutter AD. Widespread misregulation of inter-species hybrid transcriptomes due to sex-specific and sex-chromosome regulatory evolution. PLoS Genet 2021; 17:e1009409. [PMID: 33667233 PMCID: PMC7968742 DOI: 10.1371/journal.pgen.1009409] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/17/2021] [Accepted: 02/09/2021] [Indexed: 01/04/2023] Open
Abstract
When gene regulatory networks diverge between species, their dysfunctional expression in inter-species hybrid individuals can create genetic incompatibilities that generate the developmental defects responsible for intrinsic post-zygotic reproductive isolation. Both cis- and trans-acting regulatory divergence can be hastened by directional selection through adaptation, sexual selection, and inter-sexual conflict, in addition to cryptic evolution under stabilizing selection. Dysfunctional sex-biased gene expression, in particular, may provide an important source of sexually-dimorphic genetic incompatibilities. Here, we characterize and compare male and female/hermaphrodite transcriptome profiles for sibling nematode species Caenorhabditis briggsae and C. nigoni, along with allele-specific expression in their F1 hybrids, to deconvolve features of expression divergence and regulatory dysfunction. Despite evidence of widespread stabilizing selection on gene expression, misexpression of sex-biased genes pervades F1 hybrids of both sexes. This finding implicates greater fragility of male genetic networks to produce dysfunctional organismal phenotypes. Spermatogenesis genes are especially prone to high divergence in both expression and coding sequences, consistent with a "faster male" model for Haldane's rule and elevated sterility of hybrid males. Moreover, underdominant expression pervades male-biased genes compared to female-biased and sex-neutral genes and an excess of cis-trans compensatory regulatory divergence for X-linked genes underscores a "large-X effect" for hybrid male expression dysfunction. Extensive regulatory divergence in sex determination pathway genes likely contributes to demasculinization of XX hybrids. The evolution of genetic incompatibilities due to regulatory versus coding sequence divergence, however, are expected to arise in an uncorrelated fashion. This study identifies important differences between the sexes in how regulatory networks diverge to contribute to sex-biases in how genetic incompatibilities manifest during the speciation process.
Collapse
Affiliation(s)
- Santiago Sánchez-Ramírez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- * E-mail: (SSR); (ADC)
| | - Jörg G. Weiss
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Cristel G. Thomas
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- * E-mail: (SSR); (ADC)
| |
Collapse
|
8
|
Cutter AD, Morran LT, Phillips PC. Males, Outcrossing, and Sexual Selection in Caenorhabditis Nematodes. Genetics 2019; 213:27-57. [PMID: 31488593 PMCID: PMC6727802 DOI: 10.1534/genetics.119.300244] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Males of Caenorhabditis elegans provide a crucial practical tool in the laboratory, but, as the rarer and more finicky sex, have not enjoyed the same depth of research attention as hermaphrodites. Males, however, have attracted the attention of evolutionary biologists who are exploiting the C. elegans system to test longstanding hypotheses about sexual selection, sexual conflict, transitions in reproductive mode, and genome evolution, as well as to make new discoveries about Caenorhabditis organismal biology. Here, we review the evolutionary concepts and data informed by study of males of C. elegans and other Caenorhabditis We give special attention to the important role of sperm cells as a mediator of inter-male competition and male-female conflict that has led to drastic trait divergence across species, despite exceptional phenotypic conservation in many other morphological features. We discuss the evolutionary forces important in the origins of reproductive mode transitions from males being common (gonochorism: females and males) to rare (androdioecy: hermaphrodites and males) and the factors that modulate male frequency in extant androdioecious populations, including the potential influence of selective interference, host-pathogen coevolution, and mutation accumulation. Further, we summarize the consequences of males being common vs rare for adaptation and for trait divergence, trait degradation, and trait dimorphism between the sexes, as well as for molecular evolution of the genome, at both micro-evolutionary and macro-evolutionary timescales. We conclude that C. elegans male biology remains underexploited and that future studies leveraging its extensive experimental resources are poised to discover novel biology and to inform profound questions about animal function and evolution.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario M5S3B2, Canada
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, Georgia 30322, and
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
9
|
Mark S, Weiss J, Sharma E, Liu T, Wang W, Claycomb JM, Cutter AD. Genome structure predicts modular transcriptome responses to genetic and environmental conditions. Mol Ecol 2019; 28:3681-3697. [PMID: 31325381 DOI: 10.1111/mec.15185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
Abstract
Understanding the plasticity, robustness and modularity of transcriptome expression to genetic and environmental conditions is crucial to deciphering how organisms adapt in nature. To test how genome architecture influences transcriptome profiles, we quantified expression responses for distinct temperature-adapted genotypes of the nematode Caenorhabditis briggsae when exposed to chronic temperature stresses throughout development. We found that 56% of the 8,795 differentially expressed genes show genotype-specific changes in expression in response to temperature (genotype-by-environment interactions, GxE). Most genotype-specific responses occur under heat stress, indicating that cold vs. heat stress responses involve distinct genomic architectures. The 22 co-expression modules that we identified differ in their enrichment of genes with genetic vs. environmental vs. interaction effects, as well as their genomic spatial distributions, functional attributes and rates of molecular evolution at the sequence level. Genes in modules enriched for simple effects of either genotype or temperature alone tend to evolve especially rapidly, consistent with disproportionate influence of adaptation or weaker constraint on these subsets of loci. Chromosome-scale heterogeneity in nucleotide polymorphism, however, rather than the scale of individual genes predominates as the source of genetic differences among expression profiles, and natural selection regimes are largely decoupled between coding sequences and noncoding flanking sequences that contain cis-regulatory elements. These results illustrate how the form of transcriptome modularity and genome structure contribute to predictable profiles of evolutionary change.
Collapse
Affiliation(s)
- Stephanie Mark
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Joerg Weiss
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Eesha Sharma
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ting Liu
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Wei Wang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|