1
|
Sabino-Pinto J, Maan ME. The Amphibian Major Histocompatibility Complex-A Review and Future Outlook. J Mol Evol 2025; 93:38-61. [PMID: 39774934 PMCID: PMC11850509 DOI: 10.1007/s00239-024-10223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
The major histocompatibility complex (MHC) is a cluster of functionally related genes encoding proteins which, among other functions, mediate immune system activation. While the MHC of many vertebrates has been extensively studied, less is known about the amphibian MHC. This represents an important knowledge gap because amphibians mark the evolutionary transition from an aquatic to a terrestrial lifestyle and often maintain a biphasic lifestyle. Hence, they tend to be exposed to both aquatic and terrestrial pathogen communities, providing opportunities to gain fundamental insights into how the immune system responds to different environmental challenges. Moreover, amphibians are globally threatened by invasive pathogens and the MHC may play a role in combating population decline. In this review, we summarize the current state of knowledge regarding the amphibian MHC and identify the major differences with other vertebrates. We also review how the number of MHC gene copies varies across amphibian groups and how MHC-based variation relates to amphibian ontogeny, behaviour, disease, and phylogeography. We conclude by identifying knowledge gaps and proposing priorities for future research.
Collapse
Affiliation(s)
- Joana Sabino-Pinto
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.
| | - Martine E Maan
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
2
|
Jay P, Aubier TG, Joron M. The interplay of local adaptation and gene flow may lead to the formation of supergenes. Mol Ecol 2024; 33:e17297. [PMID: 38415327 DOI: 10.1111/mec.17297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/29/2024]
Abstract
Supergenes are genetic architectures resulting in the segregation of alternative combinations of alleles underlying complex phenotypes. The co-segregation of alleles at linked loci is often facilitated by polymorphic chromosomal rearrangements suppressing recombination locally. Supergenes are involved in many complex polymorphisms, including sexual, colour or behavioural polymorphisms in numerous plants, fungi, mammals, fish, and insects. Despite a long history of empirical and theoretical research, the formation of supergenes remains poorly understood. Here, using a two-island population genetic model, we explore how gene flow and the evolution of overdominant chromosomal inversions may jointly lead to the formation of supergenes. We show that the evolution of inversions in differentiated populations, both under disruptive selection, leads to an increase in frequency of poorly adapted, immigrant haplotypes. Indeed, rare allelic combinations, such as immigrant haplotypes, are more frequently reshuffled by recombination than common allelic combinations, and therefore benefit from the recombination suppression generated by inversions. When an inversion capturing a locally adapted haplotype spreads but is associated with a fitness cost hampering its fixation (e.g. a recessive mutation load), the maintenance of a non-inverted haplotype in the population is enhanced; under certain conditions, the immigrant haplotype persists alongside the inverted local haplotype, while the standard local haplotype disappears. This establishes a stable, local polymorphism with two non-recombining haplotypes encoding alternative adaptive strategies, that is, a supergene. These results bring new light to the importance of local adaptation, overdominance, and gene flow in the formation of supergenes and inversion polymorphisms in general.
Collapse
Affiliation(s)
- Paul Jay
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Thomas G Aubier
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
3
|
Gaczorek T, Dudek K, Fritz U, Bahri-Sfar L, Baird SJE, Bonhomme F, Dufresnes C, Gvoždík V, Irwin D, Kotlík P, Marková S, McGinnity P, Migalska M, Moravec J, Natola L, Pabijan M, Phillips KP, Schöneberg Y, Souissi A, Radwan J, Babik W. Widespread Adaptive Introgression of Major Histocompatibility Complex Genes across Vertebrate Hybrid Zones. Mol Biol Evol 2024; 41:msae201. [PMID: 39324637 PMCID: PMC11472244 DOI: 10.1093/molbev/msae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/23/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024] Open
Abstract
Interspecific introgression is a potentially important source of novel variation of adaptive significance. Although multiple cases of adaptive introgression are well documented, broader generalizations about its targets and mechanisms are lacking. Multiallelic balancing selection, particularly when acting through rare allele advantage, is an evolutionary mechanism expected to favor adaptive introgression. This is because introgressed alleles are likely to confer an immediate selective advantage, facilitating their establishment in the recipient species even in the face of strong genomic barriers to introgression. Vertebrate major histocompatibility complex genes are well-established targets of long-term multiallelic balancing selection, so widespread adaptive major histocompatibility complex introgression is expected. Here, we evaluate this hypothesis using data from 29 hybrid zones formed by fish, amphibians, squamates, turtles, birds, and mammals at advanced stages of speciation. The key prediction of more extensive major histocompatibility complex introgression compared to genome-wide introgression was tested with three complementary statistical approaches. We found evidence for widespread adaptive introgression of major histocompatibility complex genes, providing a link between the process of adaptive introgression and an underlying mechanism. Our work identifies major histocompatibility complex introgression as a general mechanism by which species can acquire novel, and possibly regain previously lost, variation that may enhance defense against pathogens and increase adaptive potential.
Collapse
Affiliation(s)
- T Gaczorek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - K Dudek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - U Fritz
- Museum of Zoology (Museum für Tierkunde), Senckenberg Dresden, Dresden, Germany
| | - L Bahri-Sfar
- Biodiversité, Parasitologie et Ecologie des Ecosystèmes Aquatiques, Faculté des Sciences de Tunis, Univ de Tunis El Manar, Tunis, Tunisia
| | - S J E Baird
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - F Bonhomme
- Institut des Sciences de l'Evolution, Université de Montpellier, Montpellier, France
| | - C Dufresnes
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - V Gvoždík
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Zoology, National Museum of the Czech Republic, Prague, Czech Republic
| | - D Irwin
- Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - P Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| | - S Marková
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| | - P McGinnity
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - M Migalska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - J Moravec
- Department of Zoology, National Museum of the Czech Republic, Prague, Czech Republic
| | - L Natola
- Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Pabijan
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - K P Phillips
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Canadian Rivers Institute, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Y Schöneberg
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - A Souissi
- Biodiversité, Parasitologie et Ecologie des Ecosystèmes Aquatiques, Faculté des Sciences de Tunis, Univ de Tunis El Manar, Tunis, Tunisia
- MARBEC, Univ Montpellier, 34000 Montpellier, France
| | - J Radwan
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - W Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
4
|
Münger X, Robin M, Dalén L, Grossen C. Facilitated introgression from domestic goat into Alpine ibex at immune loci. Mol Ecol 2024; 33:e17429. [PMID: 38847234 DOI: 10.1111/mec.17429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 07/09/2024]
Abstract
Hybridization can result in the transfer of adaptive genetic material from one species to another, known as adaptive introgression. Bottlenecked (and hence genetically depleted) species are expected to be particularly receptive to adaptive introgression, since introgression can introduce new or previously lost adaptive genetic variation. The Alpine ibex (Capra ibex), which recently recovered from near extinction, is known to hybridize with the domestic goat (Capra aegagrus hircus), and signals of introgression previously found at the major histocompatibility complex were suggested to potentially be adaptive. Here, we combine two ancient whole genomes of Alpine ibex with 29 modern Alpine ibex genomes and 31 genomes representing six related Capra species to investigate the genome-wide patterns of introgression and confirm the potential relevance of immune loci. We identified low rates of admixture in modern Alpine ibex through various F statistics and screening for putative introgressed tracts. Further results based on demographic modelling were consistent with introgression to have occurred during the last 300 years, coinciding with the known species bottleneck, and that in each generation, 1-2 out of 100 Alpine ibex had a domestic goat parent. The putatively introgressed haplotypes were enriched at immune-related genes, where the adaptive value of alternative alleles may give individuals with otherwise depleted genetic diversity a selective advantage. While interbreeding with domestic species is a prevalent issue in species conservation, in this specific case, it resulted in putative adaptive introgression. Our findings highlight the complex interplay between hybridization, adaptive evolution, and the potential risks and benefits associated with anthropogenic influences on wild species.
Collapse
Affiliation(s)
- Xenia Münger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Mathieu Robin
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Love Dalén
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Christine Grossen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| |
Collapse
|
5
|
Babik W, Marszałek M, Dudek K, Antunes B, Palomar G, Zając B, Taugbøl A, Pabijan M. Limited evidence for genetic differentiation or adaptation in two amphibian species across replicated rural-urban gradients. Evol Appl 2024; 17:e13700. [PMID: 38832082 PMCID: PMC11146147 DOI: 10.1111/eva.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
Urbanization leads to complex environmental changes and poses multiple challenges to organisms. Amphibians are highly susceptible to the effects of urbanization, with land use conversion, habitat destruction, and degradation ranked as the most significant threats. Consequently, amphibians are declining in urban areas, in both population numbers and abundance, however, the effect of urbanization on population genetic parameters remains unclear. Here, we studied the genomic response to urbanization in two widespread European species, the common toad Bufo bufo (26 localities, 480 individuals), and the smooth newt Lissotriton vulgaris (30 localities, 516 individuals) in three geographic regions: southern and northern Poland and southern Norway. We assessed genome-wide SNP variation using RADseq (ca. 42 and 552 thousand SNPs in toads and newts, respectively) and adaptively relevant major histocompatibility complex (MHC) class I and II genes. The results linked most of the genetic differentiation in both marker types to regional (latitudinal) effects, which also correspond to historical biogeography. Further, we did not find any association between genetic differentiation and level of urbanization at local scales for either species. However, urban smooth newts, but not toads, have lower levels of within-population genome-wide diversity, suggesting higher susceptibility to the negative effects of urbanization. A decreasing level of genetic diversity linked to increasing urbanization was also found for MHC II in smooth newts, while the relationship between MHC class I diversity and urbanization differed between geographic regions. We did not find any effects of urbanization on MHC diversity in the toad populations. Although two genetic environment association analyses of genome-wide data, LFMM and BayPass, revealed numerous (219 in B. bufo and 7040 in L. vulgaris) SNPs statistically associated with urbanization, we found a marked lack of repeatability between geographic regions, suggesting a complex and multifaceted response to natural selection elicited by life in the city.
Collapse
Affiliation(s)
- W. Babik
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - M. Marszałek
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - K. Dudek
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - B. Antunes
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - G. Palomar
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
- Department of Genetics, Physiology and Microbiology, Faculty of Biological SciencesComplutense University of MadridMadridSpain
| | - B. Zając
- Faculty of Biology, Institute of Zoology and Biomedical ResearchJagiellonian UniversityKrakówPoland
| | - A. Taugbøl
- Norwegian Institute for Nature ResearchLillehammerNorway
| | - M. Pabijan
- Faculty of Biology, Institute of Zoology and Biomedical ResearchJagiellonian UniversityKrakówPoland
| |
Collapse
|
6
|
Howard-McCombe J, Jamieson A, Carmagnini A, Russo IRM, Ghazali M, Campbell R, Driscoll C, Murphy WJ, Nowak C, O'Connor T, Tomsett L, Lyons LA, Muñoz-Fuentes V, Bruford MW, Kitchener AC, Larson G, Frantz L, Senn H, Lawson DJ, Beaumont MA. Genetic swamping of the critically endangered Scottish wildcat was recent and accelerated by disease. Curr Biol 2023; 33:4761-4769.e5. [PMID: 37935118 DOI: 10.1016/j.cub.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
The European wildcat population in Scotland is considered critically endangered as a result of hybridization with introduced domestic cats,1,2 though the time frame over which this gene flow has taken place is unknown. Here, using genome data from modern, museum, and ancient samples, we reconstructed the trajectory and dated the decline of the local wildcat population from viable to severely hybridized. We demonstrate that although domestic cats have been present in Britain for over 2,000 years,3 the onset of hybridization was only within the last 70 years. Our analyses reveal that the domestic ancestry present in modern wildcats is markedly over-represented in many parts of the genome, including the major histocompatibility complex (MHC). We hypothesize that introgression provides wildcats with protection against diseases harbored and introduced by domestic cats, and that this selection contributes to maladaptive genetic swamping through linkage drag. Using the case of the Scottish wildcat, we demonstrate the importance of local ancestry estimates to both understand the impacts of hybridization in wild populations and support conservation efforts to mitigate the consequences of anthropogenic and environmental change.
Collapse
Affiliation(s)
- Jo Howard-McCombe
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK; RZSS WildGenes Laboratory, Conservation Department, Royal Zoological Society of Scotland, Edinburgh EH12 6TS, UK.
| | - Alexandra Jamieson
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford OX1 3QY, UK; Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilians University of Munich, Munich, Germany
| | - Alberto Carmagnini
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilians University of Munich, Munich, Germany; School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | | | - Muhammad Ghazali
- RZSS WildGenes Laboratory, Conservation Department, Royal Zoological Society of Scotland, Edinburgh EH12 6TS, UK
| | - Ruairidh Campbell
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney OX13 5QL, UK; NatureScot, Great Glen House, Leachkin Road, Inverness IV3 8NW, UK
| | | | - William J Murphy
- Texas A&M University, Veterinary Integrative Biosciences, College Station, TX 77843, USA
| | - Carsten Nowak
- Senckenberg Research Institute and Natural History Museum, Center for Wildlife Genetics, 63571 Weimar, Germany
| | - Terry O'Connor
- BioArCh, Department of Archaeology, University of York, York YO10 5NG, UK
| | - Louise Tomsett
- Mammal Section, Science Department, Natural History Museum, London SW7 5BD, UK
| | - Leslie A Lyons
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Violeta Muñoz-Fuentes
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh EH1 1JF, UK; School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK
| | - Greger Larson
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford OX1 3QY, UK
| | - Laurent Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilians University of Munich, Munich, Germany; School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Helen Senn
- RZSS WildGenes Laboratory, Conservation Department, Royal Zoological Society of Scotland, Edinburgh EH12 6TS, UK.
| | - Daniel J Lawson
- School of Mathematics, University of Bristol, Bristol BS8 1UG, UK.
| | - Mark A Beaumont
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK.
| |
Collapse
|
7
|
Fu M, Eimes JA, Kong S, Lamichhaney S, Waldman B. Identification of major histocompatibility complex genotypes associated with resistance to an amphibian emerging infectious disease. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105470. [PMID: 37336279 DOI: 10.1016/j.meegid.2023.105470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Amphibian chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), emerged from Asia and spread globally. By comparing functional MHC IIß1 alleles from an Asian Bd-resistant anuran species (Bufo gargarizans) with those of an Australasian Bd-susceptible species (Litoria caerulea), we identified MHC genotypes associated with Bd resistance. These alleles encode a glycine deletion (G90β1) and adjacent motifs in the deepest pathogen-derived peptide-binding groove. Every Bd-resistant individual, but no susceptible individuals, possessed at least one allele encoding the variant. We detected trans-species polymorphism at the end of the MHC IIβ1 sequences. The G90β1 deletion was encoded by different alleles in the two species, suggesting it may have evolved independently in each species rather than having been derived from a common ancestor. These results are consistent with a scenario by which MHC adaptations that confer resistance to the pathogen have evolved by convergent evolution. Immunogenetic studies such as this are critical to ongoing conservation efforts.
Collapse
Affiliation(s)
- Minjie Fu
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea.
| | - John A Eimes
- University College, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Sungsik Kong
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Sangeet Lamichhaney
- Department of Biological Sciences, Kent State University, Kent, OH 44243, USA
| | - Bruce Waldman
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
8
|
Antunes B, Figueiredo-Vázquez C, Dudek K, Liana M, Pabijan M, Zieliński P, Babik W. Landscape genetics reveals contrasting patterns of connectivity in two newt species (Lissotriton montandoni and L. vulgaris). Mol Ecol 2023; 32:4515-4530. [PMID: 35593303 DOI: 10.1111/mec.16543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
Abstract
Ecologically distinct species may respond to landscape changes in different ways. In addition to basic ecological data, the extent of the geographic range has been successfully used as an indicator of species sensitivity to anthropogenic landscapes, with widespread species usually found to be less sensitive compared to range-restricted species. In this study, we investigate connectivity patterns of two closely related but ecologically distinct newt species - the range-restricted, Lissotriton montandoni and the widespread, L. vulgaris - using genomic data, a highly replicated setting (six geographic regions per species), and tools from landscape genetics. Our results show the importance of forest for connectivity in both species, but at the same time suggest differential use of forested habitat, with L. montandoni and L. vulgaris showing the highest connectivity at forest-core and forest-edges, respectively. Anthropogenic landscapes (i.e., higher crop- or urban-cover) increased resistance in both species, but the effect was one to three orders of magnitude stronger in L. montandoni than in L. vulgaris. This result is consistent with a view of L. vulgaris as an ecological generalist. Even so, currently, the negative impact of anthropogenic landscapes is mainly seen in connectivity among L. vulgaris populations, which show significantly stronger isolation and lower effective sizes relative to L. montandoni. Overall, this study emphasizes how habitat destruction is compromising genetic connectivity not only in endemic, range-restricted species of conservation concern but also in widespread generalist species, despite their comparatively lower sensitivity to anthropogenic landscape changes.
Collapse
Affiliation(s)
- Bernardo Antunes
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Clara Figueiredo-Vázquez
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | | | - Maciej Pabijan
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Piotr Zieliński
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
9
|
Lozano-Martín C, Bracamonte SE, Barluenga M. Evolution of MHC IIB Diversity Across Cichlid Fish Radiations. Genome Biol Evol 2023; 15:evad110. [PMID: 37314153 PMCID: PMC10306275 DOI: 10.1093/gbe/evad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
The genes of the major histocompatibility complex (MHC) are among the most polymorphic genes in vertebrates and crucial for their adaptive immune response. These genes frequently show inconsistencies between allelic genealogies and species phylogenies. This phenomenon is thought to be the result of parasite-mediated balancing selection maintaining ancient alleles through speciation events (trans-species polymorphism [TSP]). However, allele similarities may also arise from postspeciation mechanisms, such as convergence or introgression. Here, we investigated the evolution of MHC class IIB diversity in the cichlid fish radiations across Africa and the Neotropics by a comprehensive review of available MHC IIB DNA sequence information. We explored what mechanism explains the MHC allele similarities found among cichlid radiations. Our results showed extensive allele similarity among cichlid fish across continents, likely due to TSP. Functionality at MHC was also shared among species of the different continents. The maintenance of MHC alleles for long evolutionary times and their shared functionality may imply that certain MHC variants are essential in immune adaptation, even in species that diverged millions of years ago and occupy different environments.
Collapse
|
10
|
Gaczorek TS, Marszałek M, Dudek K, Arntzen JW, Wielstra B, Babik W. Interspecific introgression of MHC genes in Triturus newts: Evidence from multiple contact zones. Mol Ecol 2023; 32:867-880. [PMID: 36458894 PMCID: PMC10108261 DOI: 10.1111/mec.16804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
The major histocompatibility complex (MHC) genes are central to the adaptive immune response in vertebrates. Selection generally maintains high MHC variation because the spectrum of recognized pathogens depends on MHC polymorphism. Novel alleles favoured by selection originate by interallelic recombination or de novo mutations but may also be acquired by introgression from related species. However, the extent and prevalence of MHC introgression remain an open question. In this study, we tested for MHC introgression in six hybrid zones formed by six Triturus newt species. We sequenced and genotyped the polymorphic second exons of the MHC class I and II genes and compared their interspecific similarity at various distances from the centre of the hybrid zone. We found evidence for introgression of both MHC classes in the majority of examined hybrid zones, with support for a more substantial class I introgression. Furthermore, the overall MHC allele sharing outside of hybrid zones was elevated between pairs of Triturus species with abutting ranges, regardless of the phylogenetic distance between them. No effect of past hybrid zone movement on MHC allele sharing was found. Finally, using previously published genome-wide data, we demonstrated that MHC introgression was more extensive than genome-wide introgression, supporting its adaptive potential. Our study thus provides evidence for the prevalence of MHC introgression across multiple Triturus hybrid zones, indicating that MHC introgression between divergent hybridizing species may be widespread and adaptive.
Collapse
Affiliation(s)
- Tomasz S Gaczorek
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Marzena Marszałek
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Jan W Arntzen
- Naturalis Biodiversity Center, Leiden, The Netherlands.,Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Ben Wielstra
- Naturalis Biodiversity Center, Leiden, The Netherlands.,Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
11
|
Dearborn DC, Warren S, Hailer F. Meta-analysis of major histocompatibility complex (MHC) class IIA reveals polymorphism and positive selection in many vertebrate species. Mol Ecol 2022; 31:6390-6406. [PMID: 36208104 PMCID: PMC9729452 DOI: 10.1111/mec.16726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 01/13/2023]
Abstract
Pathogen-mediated selection and sexual selection are important drivers of evolution. Both processes are known to target genes of the major histocompatibility complex (MHC), a gene family encoding cell-surface proteins that display pathogen peptides to the immune system. The MHC is also a model for understanding processes such as gene duplication and trans-species allele sharing. The class II MHC protein is a heterodimer whose peptide-binding groove is encoded by an MHC-IIA gene and an MHC-IIB gene. However, our literature review found that class II MHC papers on infectious disease or sexual selection included IIA data only 18% and 9% of the time, respectively. To assess whether greater emphasis on MHC-IIA is warranted, we analysed MHC-IIA sequence data from 50 species of vertebrates (fish, amphibians, birds, mammals) to test for polymorphism and positive selection. We found that the number of MHC-IIA alleles within a species was often high, and covaried with sample size and number of MHC-IIA genes assayed. While MHC-IIA variability tended to be lower than that of MHC-IIB, the difference was only ~25%, with ~3 fewer IIA alleles than IIB. Furthermore, the unexpectedly high MHC-IIA variability showed clear signatures of positive selection in most species, and positive selection on MHC-IIA was stronger in fish than in other surveyed vertebrate groups. Our findings underscore that MHC-IIA can be an important target of selection. Future studies should therefore expand the characterization of MHC-IIA at both allelic and genomic scales, and incorporate MHC-IIA into models of fitness consequences of MHC variation.
Collapse
Affiliation(s)
- Donald C Dearborn
- Biology Department, Bates College, 44 Campus Ave, Lewiston, Maine, USA,Roux Institute, Northeastern University, Fore St, Portland, Maine, USA,Co-corresponding authors: and
| | - Sophie Warren
- Biology Department, Bates College, 44 Campus Ave, Lewiston, Maine, USA,Present address: Department of Health Policy, London School of Economics and Political Science, Houghton Street, London WC2A 2AE, UK
| | - Frank Hailer
- Organisms and Environment, School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK,Co-corresponding authors: and
| |
Collapse
|
12
|
Minias P, Palomar G, Dudek K, Babik W. Salamanders reveal novel trajectories of amphibian MHC evolution. Evolution 2022; 76:2436-2449. [PMID: 36000494 DOI: 10.1111/evo.14601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/06/2022] [Accepted: 07/29/2022] [Indexed: 01/22/2023]
Abstract
Genes of the major histocompatibility complex (MHC) code for immune proteins that are crucial for pathogen recognition in vertebrates. MHC research in nonmodel taxa has long been hampered by its genomic complexity that makes the locus-specific genotyping challenging. The recent progress in sequencing and genotyping methodologies allows an extensive phylogenetic coverage in studies of MHC evolution. Here, we analyzed the peptide-binding region of MHC class I (MHC-I) in 30 species of salamanders from six families representative of Urodela phylogeny. This extensive dataset revealed an extreme diversity of MHC-I in salamanders, both in terms of sequence diversity (about 3000 variants) and architecture (2-22 gene copies per species). The signal of positive selection was moderate and consistent between both peptide-binding domains, but varied greatly between genera. Positions of positively selected sites mostly coincided with human peptide-binding sites, suggesting similar structural properties of MHC-I molecules across distant vertebrate lineages. Finally, we provided evidence for the common intraexonic recombination at MHC-I and for the role of life history traits in the processes of MHC-I expansion/contraction. Our study revealed novel evolutionary trajectories of amphibian MHC and it contributes to the understanding of the mechanisms that generated extraordinary MHC diversity throughout vertebrate evolution.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, 90-237, Poland
| | - Gemma Palomar
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, 30-387, Poland.,Parasitology Unit, Department of Biomedicine and Biotechnology, Faculty of Pharmacy, Universidad de Alcalá (UAH), Alcalá de Henares, Madrid, 28805, Spain
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, 30-387, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, 30-387, Poland
| |
Collapse
|
13
|
Sá ALAD, Baker PKB, Breaux B, Oliveira JM, Klautau AGCDM, Legatzki K, Luna FDO, Attademo FLN, Hunter ME, Criscitiello MF, Schneider MPC, Sena LDS. Novel insights on aquatic mammal MHC evolution: Evidence from manatee DQB diversity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104398. [PMID: 35307479 DOI: 10.1016/j.dci.2022.104398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The low diversity in marine mammal major histocompatibility complex (MHC) appears to support the hypothesis of reduced pathogen selective pressure in aquatic systems compared to terrestrial environments. However, the lack of characterization of the aquatic and evolutionarily distant Sirenia precludes drawing more generalized conclusions. Therefore, we aimed to characterize the MHC DQB diversity of two manatee species and compare it with those reported for marine mammals. Our results identified 12 and 6 alleles in T. inunguis and T. manatus, respectively. Alleles show high rates of nonsynonymous substitutions, suggesting loci are evolving under positive selection. Among aquatic mammals, Pinnipeda DQB had smaller numbers of alleles, higher synonymous substitution rate, and a dN/dS ratio closer to 1, suggesting it may be evolving under more relaxed selection compared to fully aquatic mammals. This contradicts one of the predictions of the hypothesis that aquatic environments impose reduced pathogen pressure to mammalian immune system. These results suggest that the unique evolutionary trajectories of mammalian MHC may impose challenges in drawing ecoevolutionary conclusions from comparisons across distant vertebrate lineages.
Collapse
Affiliation(s)
- André Luiz Alves de Sá
- Laboratory of Applied Genetics (LGA), Socio-Environmental and Water Resources Institute (ISARH), Federal Rural University of the Amazon (UFRA), Av. Presidente Tancredo Neves 2501, 66077-830, Belém, PA, Brazil; Laboratory of Genomics and Biotechnology, Biological Sciences Institute, Federal University of Pará (UFPA), R. Augusto Correa 01, 66075-110, Belém, PA, Brazil.
| | - Pamela Ketrya Barreiros Baker
- Laboratory of Genomics and Biotechnology, Biological Sciences Institute, Federal University of Pará (UFPA), R. Augusto Correa 01, 66075-110, Belém, PA, Brazil
| | - Breanna Breaux
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jairo Moura Oliveira
- Zoological Park of Santarém - Universidade da Amazônia (ZOOUNAMA), R. Belo Horizonte, 68030-150, Santarém, PA, Brazil
| | - Alex Garcia Cavalleiro de Macedo Klautau
- Centro Nacional de Pesquisa e Conservação da Biodiversidade Marinha do Norte (CEPNOR), Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), Av. Presidente Tancredo Neves 2501, 66077-830, Belém, PA, Brazil
| | - Kristian Legatzki
- Centro Nacional de Pesquisa e Conservação da Biodiversidade Marinha do Norte (CEPNOR), Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), Av. Presidente Tancredo Neves 2501, 66077-830, Belém, PA, Brazil
| | - Fábia de Oliveira Luna
- National Center for Research and Conservation of Aquatic Mammals, Chico Mendes Institute for Biodiversity Conservation (CMA), ICMBio, Rua Alexandre Herculano 197, 11050-031, Santos, SP, Brazil
| | - Fernanda Löffler Niemeyer Attademo
- National Center for Research and Conservation of Aquatic Mammals, Chico Mendes Institute for Biodiversity Conservation (CMA), ICMBio, Rua Alexandre Herculano 197, 11050-031, Santos, SP, Brazil
| | - Margaret Elizabeth Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, 7920 NW 71st Street, Gainesville, FL, 32653, USA.
| | - Michael Frederick Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| | - Maria Paula Cruz Schneider
- Laboratory of Genomics and Biotechnology, Biological Sciences Institute, Federal University of Pará (UFPA), R. Augusto Correa 01, 66075-110, Belém, PA, Brazil.
| | - Leonardo Dos Santos Sena
- Center for Advanced Biodiversity Studies (CEABIO), Biological Sciences Institute, Federal University of Pará (UFPA), R. Augusto Correa 01, 66075-110, Belém, PA, Brazil.
| |
Collapse
|
14
|
Wang B, Zhu F, Shi Z, Huang Z, Sun R, Wang Q, Ouyang G, Ji W. Molecular characteristics, polymorphism and expression analysis of mhc Ⅱ in yellow catfish(pelteobagrus fulvidraco)responding to Flavobacterium columnare infection. FISH & SHELLFISH IMMUNOLOGY 2022; 125:90-100. [PMID: 35483597 DOI: 10.1016/j.fsi.2022.04.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 04/04/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
The major histocompatibility complex (MHC) is an important component of the immune system of vertebrates, which plays a vital role in presenting extrinsic antigens. In this study, we cloned and characterized the mhc ⅡA and mhc ⅡB genes of yellow catfish Pelteobagrus fulvidraco. The open reading frames (ORFs) of mhc ⅡA and mhc ⅡB genes were 708 bp and 747bp in length, encoding 235 and 248 amino acids, respectively. The structure of mhc ⅡA and mhc ⅡB includes a signal peptide, an α1/β1 domain, an α2/β2 domain, a transmembrane region and a cytoplasmic region. Homologous identity analysis revealed that both mhc ⅡA and mhc ⅡB shared high protein sequence similarity with that of Chinese longsnout catfish Leiocassis longirostris. mhc ⅡA and mhc ⅡB showed similar expression patterns in different tissues, with the higher expression level in spleen, head kidney and gill and lower expression in liver, stomach, gall bladder and heart. The mRNA expression level of mhc ⅡA and mhc ⅡB in different embryonic development stages also showed the similar trends. The higher expression was detected from fertilized egg to 32 cell stage, low expression from multicellular period to 3 days post hatching (dph), and then the expression increased to a higher level from 4 dph to 14 dph. The mRNA expression levels of mhc ⅡA and mhc ⅡB were significantly up-regulated not only in the body kidney and spleen, but also in the midgut, hindgut, liver and gill after challenge of Flavobacterium columnare. The results suggest that Mhc Ⅱ plays an important role in the anti-infection process of yellow catfish P. fulvidraco.
Collapse
Affiliation(s)
- Bingchao Wang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangzheng Zhu
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zechao Shi
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Zhenyu Huang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruhan Sun
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingchao Wang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gang Ouyang
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Wei Ji
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Otto M, Zheng Y, Wiehe T. Recombination, selection and the evolution of tandem gene arrays. Genetics 2022; 221:6572811. [PMID: 35460227 PMCID: PMC9252282 DOI: 10.1093/genetics/iyac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Multigene families—immunity genes or sensory receptors, for instance—are often subject to diversifying selection. Allelic diversity may be favored not only through balancing or frequency-dependent selection at individual loci but also by associating different alleles in multicopy gene families. Using a combination of analytical calculations and simulations, we explored a population genetic model of epistatic selection and unequal recombination, where a trade-off exists between the benefit of allelic diversity and the cost of copy abundance. Starting from the neutral case, where we showed that gene copy number is Gamma distributed at equilibrium, we derived also the mean and shape of the limiting distribution under selection. Considering a more general model, which includes variable population size and population substructure, we explored by simulations mean fitness and some summary statistics of the copy number distribution. We determined the relative effects of selection, recombination, and demographic parameters in maintaining allelic diversity and shaping the mean fitness of a population. One way to control the variance of copy number is by lowering the rate of unequal recombination. Indeed, when encoding recombination by a rate modifier locus, we observe exactly this prediction. Finally, we analyzed the empirical copy number distribution of 3 genes in human and estimated recombination and selection parameters of our model.
Collapse
Affiliation(s)
- Moritz Otto
- Institut für Genetik, Universität zu Köln, Zülpicher Straße 47a, 50674 Köln, Germany
| | - Yichen Zheng
- Institut für Genetik, Universität zu Köln, Zülpicher Straße 47a, 50674 Köln, Germany
| | - Thomas Wiehe
- Institut für Genetik, Universität zu Köln, Zülpicher Straße 47a, 50674 Köln, Germany
| |
Collapse
|
16
|
Martin KR, Mansfield KL, Savage AE. Adaptive evolution of major histocompatibility complex class I immune genes and disease associations in coastal juvenile sea turtles. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211190. [PMID: 35154791 PMCID: PMC8825991 DOI: 10.1098/rsos.211190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/06/2022] [Indexed: 05/12/2023]
Abstract
Characterizing polymorphism at the major histocompatibility complex (MHC) genes is key to understanding the vertebrate immune response to disease. Despite being globally afflicted by the infectious tumour disease fibropapillomatosis (FP), immunogenetic variation in sea turtles is minimally explored. We sequenced the α 1 peptide-binding region of MHC class I genes (162 bp) from 268 juvenile green (Chelonia mydas) and 88 loggerhead (Caretta caretta) sea turtles in Florida, USA. We recovered extensive variation (116 alleles) and trans-species polymorphism. Supertyping analysis uncovered three functional MHC supertypes corresponding to the three well-supported clades in the phylogeny. We found significant evidence of positive selection at seven amino acid sites in the class I exon. Random forest modelling and risk ratio analysis of Ch. mydas alleles uncovered one allele weakly associated with smooth FP tumour texture, which may be associated with disease outcome. Our study represents the first characterization of MHC class I diversity in Ch. mydas and the largest sample of sea turtles used to date in any study of adaptive genetic variation, revealing tremendous genetic variation and high adaptive potential to viral pathogen threats. The novel associations we identified between MHC diversity and FP outcomes in sea turtles further highlight the importance of evaluating genetic predictors of disease, including MHC and other functional markers.
Collapse
Affiliation(s)
- Katherine R. Martin
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA
| | - Katherine L. Mansfield
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA
| | - Anna E. Savage
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA
| |
Collapse
|
17
|
Zheng W, Yan LJ, Burgess KS, Luo YH, Zou JY, Qin HT, Wang JH, Gao LM. Natural hybridization among three Rhododendron species (Ericaceae) revealed by morphological and genomic evidence. BMC PLANT BIOLOGY 2021; 21:529. [PMID: 34763662 PMCID: PMC8582147 DOI: 10.1186/s12870-021-03312-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/02/2021] [Indexed: 06/08/2023]
Abstract
BACKGROUND Natural hybridization can influence the adaptive response to selection and accelerate species diversification. Understanding the composition and structure of hybrid zones may elucidate patterns of hybridization processes that are important to the formation and maintenance of species, especially for taxa that have experienced rapidly adaptive radiation. Here, we used morphological traits, ddRAD-seq and plastid DNA sequence data to investigate the structure of a Rhododendron hybrid zone and uncover the hybridization patterns among three sympatric and closely related species. RESULTS Our results show that the hybrid zone is complex, where bi-directional hybridization takes place among the three sympatric parental species: R. spinuliferum, R. scabrifolium, and R. spiciferum. Hybrids between R. spinuliferum and R. spiciferum (R. ×duclouxii) comprise multiple hybrid classes and a high proportion of F1 generation hybrids, while a novel hybrid taxon between R. spinuliferum and R. scabrifolium dominated the F2 generation, but no backcross individuals were detected. The hybrid zone showed basically coincident patterns of population structure between genomic and morphological data. CONCLUSIONS Natural hybridization exists among the three Rhododendron species in the hybrid zone, although patterns of hybrid formation vary between hybrid taxa, which may result in different evolutionary outcomes. This study represents a unique opportunity to dissect the ecological and evolutionary mechanisms associated with adaptive radiation of Rhododendron species in a biodiversity hotspot.
Collapse
Affiliation(s)
- Wei Zheng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
| | - Li-Jun Yan
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
- College of Vocational and Technical Education, Yunnan Normal University, 650092, Kunming, Yunnan, China
| | - Kevin S Burgess
- Department of Biology, Columbus State University, University System of Georgia, 31907-5645, Columbus, GA, USA
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
| | - Jia-Yun Zou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
| | - Han-Tao Qin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
| | - Ji-Hua Wang
- The Flower Research Institute, Yunnan Academy of Agricultural Sciences, 650205, Kunming, China.
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China.
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, 674100, Lijiang, Yunnan, China.
| |
Collapse
|
18
|
Cheng Y, Grueber C, Hogg CJ, Belov K. Improved high-throughput MHC typing for non-model species using long-read sequencing. Mol Ecol Resour 2021; 22:862-876. [PMID: 34551192 PMCID: PMC9293008 DOI: 10.1111/1755-0998.13511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022]
Abstract
The major histocompatibility complex (MHC) plays a critical role in the vertebrate immune system. Accurate MHC typing is critical to understanding not only host fitness and disease susceptibility, but also the mechanisms underlying host‐pathogen co‐evolution. However, due to the high degree of gene duplication and diversification of MHC genes, it is often technically challenging to accurately characterise MHC genetic diversity in non‐model species. Here we conducted a systematic review to identify common issues associated with current widely used MHC typing approaches. Then to overcome these challenges, we developed a long‐read based MHC typing method along with a new analysis pipeline. Our approach enables the sequencing of fully phased MHC alleles spanning all key functional domains and the separation of highly similar alleles as well as the removal of technical artefacts such as PCR heteroduplexes and chimeras. Using this approach, we performed population‐scale MHC typing in the Tasmanian devil (Sarcophilus harrisii), revealing previously undiscovered MHC functional diversity in this endangered species. Our new method provides a better solution for addressing research questions that require high MHC typing accuracy. Since the method is not limited by species or the number of genes analysed, it will be applicable for studying not only the MHC but also other complex gene families.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Catherine Grueber
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.,San Diego Zoo Wildlife Alliance, San Diego, California, USA
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Fredericksen M, Ameline C, Krebs M, Hüssy B, Fields PD, Andras JP, Ebert D. Infection phenotypes of a coevolving parasite are highly diverse, structured, and specific. Evolution 2021; 75:2540-2554. [PMID: 34431523 PMCID: PMC9290032 DOI: 10.1111/evo.14323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022]
Abstract
Understanding how diversity is maintained in natural populations is a major goal of evolutionary biology. In coevolving hosts and parasites, negative frequency-dependent selection is one mechanism predicted to maintain genetic variation. While much is known about host diversity, parasite diversity remains understudied in coevolutionary research. Here, we survey natural diversity in a bacterial parasite by characterizing infection phenotypes for over 50 isolates in relation to 12 genotypes of their host, Daphnia magna. We find striking phenotypic variation among parasite isolates, and we discover the parasite can infect its host through at least five different attachment sites. Variation in attachment success at each site is explained to varying degrees by host and parasite genotypes. A spatial correlation analysis showed that infectivity of different isolates does not correlate with geographic distance, meaning isolates from widespread populations are equally able to infect the host. Overall, our results reveal that infection phenotypes of this parasite are highly diverse. Our results are consistent with the prediction that under Red Queen coevolutionary dynamics both the host and the parasite should show high genetic diversity for traits of functional importance in their interactions.
Collapse
Affiliation(s)
- Maridel Fredericksen
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland
| | - Camille Ameline
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland
| | - Michelle Krebs
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland
| | - Benjamin Hüssy
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland
| | - Jason P Andras
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland.,Department of Biological Sciences, Clapp Laboratory, Mount Holyoke College, South Hadley, Massachusetts
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland
| |
Collapse
|
20
|
Diversity of MHC IIB genes and parasitism in hybrids of evolutionarily divergent cyprinoid species indicate heterosis advantage. Sci Rep 2021; 11:16860. [PMID: 34413384 PMCID: PMC8376869 DOI: 10.1038/s41598-021-96205-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
The genes of the major histocompatibility complex (MHC) are an essential component of the vertebrate immune system and MHC genotypes may determine individual susceptibility to parasite infection. In the wild, selection that favors MHC variability can create situations in which interspecies hybrids experience a survival advantage. In a wild system of two naturally hybridizing leuciscid fish, we assessed MHC IIB genetic variability and its potential relationships to hosts' ectoparasite communities. High proportions of MHC alleles and parasites were species-specific. Strong positive selection at specific MHC codons was detected in both species and hybrids. MHC allele expression in hybrids was slightly biased towards the maternal species. Controlling for a strong seasonal effect on parasite communities, we found no clear associations between host-specific parasites and MHC alleles or MHC supertypes. Hybrids shared more MHC alleles with the more MHC-diverse parental species, but expressed intermediate numbers of MHC alleles and positively selected sites. Hybrids carried significantly fewer ectoparasites than either parent species, suggesting a hybrid advantage via potential heterosis.
Collapse
|
21
|
Kataoka C, Kashiwada S. Ecological Risks Due to Immunotoxicological Effects on Aquatic Organisms. Int J Mol Sci 2021; 22:8305. [PMID: 34361068 PMCID: PMC8347160 DOI: 10.3390/ijms22158305] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
The immunotoxic effects of some anthropogenic pollutants on aquatic organisms are among the causes of concern over the presence of these pollutants in the marine environment. The immune system is part of an organism's biological defense necessarily for homeostasis. Thus, the immunotoxicological impacts on aquatic organisms are important to understand the effects of pollutant chemicals in the aquatic ecosystem. When aquatic organisms are exposed to pollutant chemicals with immunotoxicity, it results in poor health. In addition, aquatic organisms are exposed to pathogenic bacteria, viruses, parasites, and fungi. Exposure to pollutant chemicals has reportedly caused aquatic organisms to show various immunotoxic symptoms such as histological changes of lymphoid tissue, changes of immune functionality and the distribution of immune cells, and changes in the resistance of organisms to infection by pathogens. Alterations of immune systems by contaminants can therefore lead to the deaths of individual organisms, increase the general risk of infections by pathogens, and probably decrease the populations of some species. This review introduced the immunotoxicological impact of pollutant chemicals in aquatic organisms, including invertebrates, fish, amphibians, and marine mammals; described typical biomarkers used in aquatic immunotoxicological studies; and then, discussed the current issues on ecological risk assessment and how to address ecological risk assessment through immunotoxicology. Moreover, the usefulness of the population growth rate to estimate the immunotoxicological impact of pollution chemicals was proposed.
Collapse
Affiliation(s)
- Chisato Kataoka
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Shosaku Kashiwada
- Department of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan;
- Research Centre for Life and Environmental Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| |
Collapse
|
22
|
Frayer ME, Payseur BA. Demographic history shapes genomic ancestry in hybrid zones. Ecol Evol 2021; 11:10290-10302. [PMID: 34367575 PMCID: PMC8328415 DOI: 10.1002/ece3.7833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022] Open
Abstract
Demographic factors such as migration rate and population size can impede or facilitate speciation. In hybrid zones, reproductive boundaries between species are tested and demography mediates the opportunity for admixture between lineages that are partially isolated. Genomic ancestry is a powerful tool for revealing the history of admixed populations, but models and methods based on local ancestry are rarely applied to structured hybrid zones. To understand the effects of demography on ancestry in hybrids zones, we performed individual-based simulations under a stepping-stone model, treating migration rate, deme size, and hybrid zone age as parameters. We find that the number of ancestry junctions (the transition points between genomic regions with different ancestries) and heterogenicity (the genomic proportion heterozygous for ancestry) are often closely connected to demographic history. Reducing deme size reduces junction number and heterogenicity. Elevating migration rate increases heterogenicity, but migration affects junction number in more complex ways. We highlight the junction frequency spectrum as a novel and informative summary of ancestry that responds to demographic history. A substantial proportion of junctions are expected to fix when migration is limited or deme size is small, changing the shape of the spectrum. Our findings suggest that genomic patterns of ancestry could be used to infer demographic history in hybrid zones.
Collapse
Affiliation(s)
- Megan E. Frayer
- Laboratory of GeneticsUniversity of Wisconsin MadisonMadisonWIUSA
| | - Bret A. Payseur
- Laboratory of GeneticsUniversity of Wisconsin MadisonMadisonWIUSA
| |
Collapse
|
23
|
Talarico L, Marta S, Rossi AR, Crescenzo S, Petrosino G, Martinoli M, Tancioni L. Balancing selection, genetic drift, and human-mediated introgression interplay to shape MHC (functional) diversity in Mediterranean brown trout. Ecol Evol 2021; 11:10026-10041. [PMID: 34367556 PMCID: PMC8328470 DOI: 10.1002/ece3.7760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
The extraordinary polymorphism of major histocompatibility complex (MHC) genes is considered a paradigm of pathogen-mediated balancing selection, although empirical evidence is still scarce. Furthermore, the relative contribution of balancing selection to shape MHC population structure and diversity, compared to that of neutral forces, as well as its interaction with other evolutionary processes such as hybridization, remains largely unclear. To investigate these issues, we analyzed adaptive (MHC-DAB gene) and neutral (11 microsatellite loci) variation in 156 brown trout (Salmo trutta complex) from six wild populations in central Italy exposed to introgression from domestic hatchery lineages (assessed with the LDH gene). MHC diversity and structuring correlated with those at microsatellites, indicating the substantial role of neutral forces. However, individuals carrying locally rare MHC alleles/supertypes were in better body condition (a proxy of individual fitness/parasite load) regardless of the zygosity status and degree of sequence dissimilarity of MHC, hence supporting balancing selection under rare allele advantage, but not heterozygote advantage or divergent allele advantage. The association between specific MHC supertypes and body condition confirmed in part this finding. Across populations, MHC allelic richness increased with increasing admixture between native and domestic lineages, indicating introgression as a source of MHC variation. Furthermore, introgression across populations appeared more pronounced for MHC than microsatellites, possibly because initially rare MHC variants are expected to introgress more readily under rare allele advantage. Providing evidence for the complex interplay among neutral evolutionary forces, balancing selection, and human-mediated introgression in shaping the pattern of MHC (functional) variation, our findings contribute to a deeper understanding of the evolution of MHC genes in wild populations exposed to anthropogenic disturbance.
Collapse
Affiliation(s)
- Lorenzo Talarico
- Laboratory of Experimental Ecology and AquacultureDepartment of BiologyUniversity of Rome “Tor Vergata”RomeItaly
| | - Silvio Marta
- Department of Environmental Science and PolicyUniversity of MilanMilanItaly
| | - Anna Rita Rossi
- Department of Biology and Biotechnology C. DarwinUniversity of Rome “La Sapienza”RomeItaly
| | - Simone Crescenzo
- Department of Biology and Biotechnology C. DarwinUniversity of Rome “La Sapienza”RomeItaly
| | - Gerardo Petrosino
- Department of Biology and Biotechnology C. DarwinUniversity of Rome “La Sapienza”RomeItaly
| | - Marco Martinoli
- Laboratory of Experimental Ecology and AquacultureDepartment of BiologyUniversity of Rome “Tor Vergata”RomeItaly
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA)Centro di Zootecnia e AcquacolturaMonterotondoItaly
| | - Lorenzo Tancioni
- Laboratory of Experimental Ecology and AquacultureDepartment of BiologyUniversity of Rome “Tor Vergata”RomeItaly
| |
Collapse
|
24
|
Palomar G, Dudek K, Wielstra B, Jockusch EL, Vinkler M, Arntzen JW, Ficetola GF, Matsunami M, Waldman B, Těšický M, Zieliński P, Babik W. Molecular Evolution of Antigen-Processing Genes in Salamanders: Do They Coevolve with MHC Class I Genes? Genome Biol Evol 2021; 13:6121093. [PMID: 33501944 PMCID: PMC7883663 DOI: 10.1093/gbe/evaa259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Proteins encoded by antigen-processing genes (APGs) prepare antigens for presentation by the major histocompatibility complex class I (MHC I) molecules. Coevolution between APGs and MHC I genes has been proposed as the ancestral gnathostome condition. The hypothesis predicts a single highly expressed MHC I gene and tight linkage between APGs and MHC I. In addition, APGs should evolve under positive selection, a consequence of the adaptive evolution in MHC I. The presence of multiple highly expressed MHC I genes in some teleosts, birds, and urodeles appears incompatible with the coevolution hypothesis. Here, we use urodele amphibians to test two key expectations derived from the coevolution hypothesis: 1) the linkage between APGs and MHC I was studied in Lissotriton newts and 2) the evidence for adaptive evolution in APGs was assessed using 42 urodele species comprising 21 genera from seven families. We demonstrated that five APGs (PSMB8, PSMB9, TAP1, TAP2, and TAPBP) are tightly linked (<0.5 cM) to MHC I. Although all APGs showed some codons under episodic positive selection, we did not find a pervasive signal of positive selection expected under the coevolution hypothesis. Gene duplications, putative gene losses, and divergent allelic lineages detected in some APGs demonstrate considerable evolutionary dynamics of APGs in salamanders. Overall, our results indicate that if coevolution between APGs and MHC I occurred in urodeles, it would be more complex than envisaged in the original formulation of the hypothesis.
Collapse
Affiliation(s)
- Gemma Palomar
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Ben Wielstra
- Institute of Biology Leiden, Leiden University, The Netherlands.,Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Elizabeth L Jockusch
- Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan W Arntzen
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Gentile F Ficetola
- Department of Environmental Sciences and Policy, University of Milano, Italy.,Laboratoire d'Ecologie Alpine (LECA), CNRS, Université Grenoble Alpes and Université Savoie Mont Blanc, Grenoble, France
| | - Masatoshi Matsunami
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - Bruce Waldman
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA.,School of Biological Sciences, Seoul National University, South Korea
| | - Martin Těšický
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Piotr Zieliński
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
25
|
Balancing selection versus allele and supertype turnover in MHC class II genes in guppies. Heredity (Edinb) 2020; 126:548-560. [PMID: 32985616 DOI: 10.1038/s41437-020-00369-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023] Open
Abstract
Selection pressure from parasites is thought to be a major force shaping the extreme polymorphism of the major histocompatibility complex (MHC) genes, but the modes and consequences of selection remain unclear. Here, we analyse MHC class II and microsatellite diversity in 16 guppy (Poecilia reticulata) populations from two islands (Trinidad and Tobago) that have been separated for at least 10 ky. Within-population MHC diversity was high, but allele sharing was limited within islands and even lower between islands, suggesting relatively fast turnover of alleles. Allelic lineages strongly supported in phylogenetic analyses tended to be island-specific, suggesting rapid lineage sorting, and an expansion of an allelic lineage private to Tobago was observed. New alleles appear to be generated locally at a detectably high frequency. We did not detect a consistent signature of local adaptation, but FST outlier analysis suggested that balancing selection may be the more general process behind spatial variation in MHC allele frequencies in this system, particularly within Trinidad. We found no evidence for divergent allele advantage within populations, or for decreased genetic structuring of MHC supertypes compared to MHC alleles. The dynamic and complex nature of MHC evolution we observed in guppies, coupled with some evidence for balancing selection shaping MHC allele frequencies, are consistent with Red Queen processes of host-parasite coevolution.
Collapse
|
26
|
Gao L, Rieseberg LH. While neither universally applicable nor practical operationally, the biological species concept continues to offer a compelling framework for studying species and speciation. Natl Sci Rev 2020; 7:1398-1400. [PMID: 34692167 PMCID: PMC8288963 DOI: 10.1093/nsr/nwaa108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Lexuan Gao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, China
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Canada
| |
Collapse
|
27
|
Pabijan M, Palomar G, Antunes B, Antoł W, Zieliński P, Babik W. Evolutionary principles guiding amphibian conservation. Evol Appl 2020; 13:857-878. [PMID: 32431739 PMCID: PMC7232768 DOI: 10.1111/eva.12940] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
The Anthropocene has witnessed catastrophic amphibian declines across the globe. A multitude of new, primarily human-induced drivers of decline may lead to extinction, but can also push species onto novel evolutionary trajectories. If these are recognized by amphibian biologists, they can be engaged in conservation actions. Here, we summarize how principles stemming from evolutionary concepts have been applied for conservation purposes, and address emerging ideas at the vanguard of amphibian conservation science. In particular, we examine the consequences of increased drift and inbreeding in small populations and their implications for practical conservation. We then review studies of connectivity between populations at the landscape level, which have emphasized the limiting influence of anthropogenic structures and degraded habitat on genetic cohesion. The rapid pace of environmental changes leads to the central question of whether amphibian populations can cope either by adapting to new conditions or by shifting their ranges. We gloomily conclude that extinction seems far more likely than adaptation or range shifts for most species. That said, conservation strategies employing evolutionary principles, such as selective breeding, introduction of adaptive variants through translocations, ecosystem interventions aimed at decreasing phenotype-environment mismatch, or genetic engineering, may effectively counter amphibian decline in some areas or for some species. The spread of invasive species and infectious diseases has often had disastrous consequences, but has also provided some premier examples of rapid evolution with conservation implications. Much can be done in terms of setting aside valuable amphibian habitat that should encompass both natural and agricultural areas, as well as designing protected areas to maximize the phylogenetic and functional diversity of the amphibian community. We conclude that an explicit consideration and application of evolutionary principles, although certainly not a silver bullet, should increase effectiveness of amphibian conservation in both the short and long term.
Collapse
Affiliation(s)
- Maciej Pabijan
- Institute of Zoology and Biomedical ResearchFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Gemma Palomar
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Bernardo Antunes
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Weronika Antoł
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Piotr Zieliński
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Wiesław Babik
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| |
Collapse
|
28
|
Radwan J, Babik W, Kaufman J, Lenz TL, Winternitz J. Advances in the Evolutionary Understanding of MHC Polymorphism. Trends Genet 2020; 36:298-311. [DOI: 10.1016/j.tig.2020.01.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/26/2022]
|
29
|
Zieliński P, Dudek K, Arntzen JW, Palomar G, Niedzicka M, Fijarczyk A, Liana M, Cogǎlniceanu D, Babik W. Differential introgression across newt hybrid zones: Evidence from replicated transects. Mol Ecol 2019; 28:4811-4824. [DOI: 10.1111/mec.15251] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Piotr Zieliński
- Institute of Environmental Sciences Faculty of Biology Jagiellonian University Kraków Poland
| | - Katarzyna Dudek
- Institute of Environmental Sciences Faculty of Biology Jagiellonian University Kraków Poland
| | | | - Gemma Palomar
- Institute of Environmental Sciences Faculty of Biology Jagiellonian University Kraków Poland
| | - Marta Niedzicka
- Institute of Environmental Sciences Faculty of Biology Jagiellonian University Kraków Poland
| | - Anna Fijarczyk
- Département de Biologie Faculté des Sciences et de génie Université Laval Québec QC Canada
| | | | - Dan Cogǎlniceanu
- Faculty of Natural Sciences and Agricultural Sciences University Ovidius Constanţa Constanţa Romania
| | - Wiesław Babik
- Institute of Environmental Sciences Faculty of Biology Jagiellonian University Kraków Poland
| |
Collapse
|