1
|
Bertinetti C, Mosley C, Jones S, Torres‐Dowdall J. Robust Sensory Traits Across Light Habitats: Visual Signals but Not Receptors Vary in Centrarchids Inhabiting Distinct Photic Environments. Mol Ecol 2025; 34:e17721. [PMID: 40066691 PMCID: PMC11974496 DOI: 10.1111/mec.17721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/08/2025] [Accepted: 02/21/2025] [Indexed: 04/08/2025]
Abstract
Visual communication in fish is often shaped by their light environment, which influences both sensory (e.g., eye size, opsin gene expression) and signalling traits (e.g., body reflectance). This study explores the phenotypic variation in the visual communication traits of six species of centrarchids (Centrarchidae) inhabiting two contrasting light environments. We measured morphological, molecular and signalling traits to determine their variation across photic conditions. Our findings reveal significant interspecific variation in sensory traits but no consistent phenotypic variation between light environments. Centrarchids showed robust visual systems with green-sensitive rh2 and red-sensitive lws opsin genes representing the main chromatic channels, with their expression remaining largely unaffected between distinct light habitats. We also found significant molecular evolution in the visual opsin genes, although these changes were not associated with environmental conditions. However, body reflectance displayed species-specific responses to environmental conditions, suggesting that signalling traits may be more flexible than sensory traits. Overall, our results challenge the generality of the current paradigm in visual ecology, which portrays visual systems in fish as highly tunable owing to photic conditions. Our study highlights the potential evolutionary or developmental constraints on centrarchid visual systems and their implications for adaptability to various habitats and novel environmental threats.
Collapse
Affiliation(s)
- César Bertinetti
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Camille Mosley
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Stuart Jones
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | | |
Collapse
|
2
|
Tettamanti V, Marshall NJ, Cheney KL, Cortesi F. Damsels in Disguise: Development of Ultraviolet Sensitivity and Colour Patterns in Damselfishes (Pomacentridae). Mol Ecol 2025; 34:e17680. [PMID: 39907248 PMCID: PMC11874681 DOI: 10.1111/mec.17680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Damselfishes (Pomacentridae) are widespread and highly abundant on tropical coral reefs. They exhibit diverse body colouration within and between the ~250 species and across ontogenetic stages. In addition to human-visible colours (i.e., 400-700 nm), most adult damselfishes reflect ultraviolet (UV, 300-400 nm) colour patches. UV sensitivity and UV colour signals are essential for feeding and form the basis for a secret communication channel invisible to the many UV-blind predatory fish on the reef; however, how these traits develop across ontogenetic stages and their distribution across the damselfish family is poorly characterised. Here, we used UV photography, phylogenetic reconstructions of opsin genes, and differential gene expression analysis (DGE) of retinal samples to investigate the development of UV vision and colour patterns in three ontogenetic stages (pre-settlement larval, juvenile, and adult) of 11 damselfish species. Using DGE, we found similar gene expression between juveniles and adults, which strongly differed from larvae. All species and all stages expressed at least one UV-sensitive sws1 opsin gene. However, UV body colour patterns only started to appear at the juvenile stage. Moreover, Pomacentrus species displayed highly complex UV body patterns that were correlated with the expression of two sws1 copies. This could mean that some damselfishes can discriminate colours that change only in their UV component. We demonstrate dramatic shifts in both UV sensitivity and UV colouration across the development stages of damselfish while highlighting the importance of considering ontogeny when studying the coevolution of visual systems and colour signals.
Collapse
Affiliation(s)
- Valerio Tettamanti
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - N. Justin Marshall
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Karen L. Cheney
- School of the EnvironmentThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fabio Cortesi
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
- School of the EnvironmentThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
3
|
Gerwin J, Torres-Dowdall J, Brown TF, Meyer A. Expansion and Functional Diversification of Long-Wavelength-Sensitive Opsin in Anabantoid Fishes. J Mol Evol 2024; 92:432-448. [PMID: 38861038 PMCID: PMC11291592 DOI: 10.1007/s00239-024-10181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Gene duplication is one of the most important sources of novel genotypic diversity and the subsequent evolution of phenotypic diversity. Determining the evolutionary history and functional changes of duplicated genes is crucial for a comprehensive understanding of adaptive evolution. The evolutionary history of visual opsin genes is very dynamic, with repeated duplication events followed by sub- or neofunctionalization. While duplication of the green-sensitive opsins rh2 is common in teleost fish, fewer cases of multiple duplication events of the red-sensitive opsin lws are known. In this study, we investigate the visual opsin gene repertoire of the anabantoid fishes, focusing on the five lws opsin genes found in the genus Betta. We determine the evolutionary history of the lws opsin gene by taking advantage of whole-genome sequences of nine anabantoid species, including the newly assembled genome of Betta imbellis. Our results show that at least two independent duplications of lws occurred in the Betta lineage. The analysis of amino acid sequences of the lws paralogs of Betta revealed high levels of diversification in four of the seven transmembrane regions of the lws protein. Amino acid substitutions at two key-tuning sites are predicted to lead to differentiation of absorption maxima (λmax) between the paralogs within Betta. Finally, eye transcriptomics of B. splendens at different developmental stages revealed expression shifts between paralogs for all cone opsin classes. The lws genes are expressed according to their relative position in the lws opsin cluster throughout ontogeny. We conclude that temporal collinearity of lws expression might have facilitated subfunctionalization of lws in Betta and teleost opsins in general.
Collapse
Affiliation(s)
- Jan Gerwin
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Julián Torres-Dowdall
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Thomas F Brown
- Max Planck Institute of Molecular Cellular Biology and Genetics, Dresden, Germany
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
4
|
Torres-Dowdall J, Karagic N, Prabhukumar F, Meyer A. Differential Regulation of Opsin Gene Expression in Response to Internal and External Stimuli. Genome Biol Evol 2024; 16:evae125. [PMID: 38860496 DOI: 10.1093/gbe/evae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024] Open
Abstract
Determining how internal and external stimuli interact to determine developmental trajectories of traits is a challenge that requires the integration of different subfields of biology. Internal stimuli, such as hormones, control developmental patterns of phenotypic changes, which might be modified by external environmental cues (e.g. plasticity). Thyroid hormone (TH) modulates the timing of opsin gene expression in developing Midas cichlid fish (Amphilophus citrinellus). Moreover, fish reared in red light accelerate this developmental timing compared to fish reared in white light. Hence, we hypothesized that plasticity caused by variation in light conditions has coopted the TH signaling pathway to induce changes in opsin gene expression. We treated Midas cichlids with TH and crossed this treatment with two light conditions, white and red. We observed that not only opsin expression responded similarly to TH and red light but also that, at high TH levels, there is limited capacity for light-induced plasticity. Transcriptomic analysis of the eye showed that genes in the TH pathway were affected by TH, but not by light treatments. Coexpression network analyses further suggested that response to light was independent of the response to TH manipulations. Taken together, our results suggest independent mechanisms mediating development and plasticity during development of opsin gene expression, and that responses to environmental stimuli may vary depending on internal stimuli. This conditional developmental response to external factors depending on internal ones (e.g. hormones) might play a fundamental role in the patterns of phenotypic divergence observed in Midas cichlids and potentially other organisms.
Collapse
Affiliation(s)
- Julián Torres-Dowdall
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Nidal Karagic
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Femina Prabhukumar
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
5
|
Bertinetti C, Härer A, Karagic N, Meyer A, Torres-Dowdall J. Repeated Divergence in Opsin Gene Expression Mirrors Photic Habitat Changes in Rapidly Evolving Crater Lake Cichlid Fishes. Am Nat 2024; 203:604-617. [PMID: 38635367 DOI: 10.1086/729420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractSelection pressures differ along environmental gradients, and traits tightly linked to fitness (e.g., the visual system) are expected to track such variation. Along gradients, adaptation to local conditions might be due to heritable and nonheritable environmentally induced variation. Disentangling these sources of phenotypic variation requires studying closely related populations in nature and in the laboratory. The Nicaraguan lakes represent an environmental gradient in photic conditions from clear crater lakes to very turbid great lakes. From two old, turbid great lakes, Midas cichlid fish (Amphilophus cf. citrinellus) independently colonized seven isolated crater lakes of varying light conditions, resulting in a small adaptive radiation. We estimated variation in visual sensitivities along this photic gradient by measuring cone opsin gene expression among lake populations. Visual sensitivities observed in all seven derived crater lake populations shifted predictably in direction and magnitude, repeatedly mirroring changes in photic conditions. Comparing wild-caught and laboratory-reared fish revealed that 48% of this phenotypic variation is genetically determined and evolved rapidly. Decreasing intrapopulation variation as environments become spectrally narrower suggests that different selective landscapes operate along the gradient. We conclude that the power to predict phenotypic evolution along gradients depends on both the magnitude of environmental change and the selective landscape shape.
Collapse
|
6
|
Chau KD, Hauser FE, Van Nynatten A, Daane JM, Harris MP, Chang BSW, Lovejoy NR. Multiple Ecological Axes Drive Molecular Evolution of Cone Opsins in Beloniform Fishes. J Mol Evol 2024; 92:93-103. [PMID: 38416218 DOI: 10.1007/s00239-024-10156-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/12/2024] [Indexed: 02/29/2024]
Abstract
Ecological and evolutionary transitions offer an excellent opportunity to examine the molecular basis of adaptation. Fishes of the order Beloniformes include needlefishes, flyingfishes, halfbeaks, and allies, and comprise over 200 species occupying a wide array of habitats-from the marine epipelagic zone to tropical rainforest rivers. These fishes also exhibit a diversity of diets, including piscivory, herbivory, and zooplanktivory. We investigated how diet and habitat affected the molecular evolution of cone opsins, which play a key role in bright light and colour vision and are tightly linked to ecology and life history. We analyzed a targeted-capture dataset to reconstruct the evolutionary history of beloniforms and assemble cone opsin sequences. We implemented codon-based clade models of evolution to examine how molecular evolution was affected by habitat and diet. We found high levels of positive selection in medium- and long-wavelength beloniform opsins, with piscivores showing increased positive selection in medium-wavelength opsins and zooplanktivores showing increased positive selection in long-wavelength opsins. In contrast, short-wavelength opsins showed purifying selection. While marine/freshwater habitat transitions have an effect on opsin molecular evolution, we found that diet plays a more important role. Our study suggests that evolutionary transitions along ecological axes produce complex adaptive interactions that affect patterns of selection on genes that underlie vision.
Collapse
Affiliation(s)
- Katherine D Chau
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Biology, York University, Toronto, ON, Canada
| | - Frances E Hauser
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Alexander Van Nynatten
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Biology, University of Victoria, Victoria, Canada
| | - Jacob M Daane
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | | | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Nathan R Lovejoy
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
de Almeida Borghezan E, da Silva Pires TH, Zuanon J, Sugiura H, Kohshima S, Kishida T. Unstable environmental conditions constrain the fine-tune between opsin sensitivity and underwater light in an Amazon forest stream fish. J Evol Biol 2024; 37:212-224. [PMID: 38262627 DOI: 10.1093/jeb/voae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/07/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024]
Abstract
Visual adaptations can stem from variations in amino acid composition, chromophore utilization, and differential opsin gene expression levels, enabling individuals to adjust their light sensitivity to environmental lighting conditions. In stable environments, adaptations often involve amino acid substitutions, whereas in unstable conditions, differential gene expression may be a more relevant mechanism. Amazon forest streams present diverse underwater lighting conditions and experience short-term water colour fluctuations. In these environments, it is less likely for genetic and amino acid sequences to undergo modifications that tailor opsin proteins to the prevailing lighting conditions, particularly in species having several copies of the same gene. The sailfin tetra, Crenuchus spilurus, inhabits black and clear water Amazon forest streams. The long-wavelength sensitivity (LWS) is an important component for foraging and courtship. Here, we investigated LWS opsin genes in the sailfin tetra. Three copies of LWS1 and two copies of LWS2 genes were found. The maximum absorbance wavelength (λmax) estimated from the amino acid sequences of LWS1 genes exhibited variation among the different copies. In contrast, the copies of LWS2 genes showed identical expected λmax values. Although the amino acid positions affecting λmax varied among LWS genes, they remained consistent among populations living in different water colours. The relative expression levels of LWS genes differed between gene copies. While not formally tested, our results suggest that in fluctuating environments, visual adaptations may primarily stem from alterations in gene expression profiles and/or chromophore usage rather than precise genetic tuning of protein light sensitivity to environmental lighting conditions.
Collapse
Affiliation(s)
- Elio de Almeida Borghezan
- Wildlife Research Center of the Kyoto University, Kyoto, Japan
- National Institute for Amazonian Research, Manaus, Brazil
| | | | - Jansen Zuanon
- National Institute for Amazonian Research, Manaus, Brazil
| | - Hideki Sugiura
- Wildlife Research Center of the Kyoto University, Kyoto, Japan
| | - Shiro Kohshima
- Wildlife Research Center of the Kyoto University, Kyoto, Japan
| | - Takushi Kishida
- Wildlife Research Center of the Kyoto University, Kyoto, Japan
- College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
8
|
Man LLH, Storey SS, Bertolesi GE, McFarlane S. Cell-type expression and activation by light of neuropsins in the developing and mature Xenopus retina. Front Cell Neurosci 2023; 17:1266945. [PMID: 37799826 PMCID: PMC10547888 DOI: 10.3389/fncel.2023.1266945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Photosensitive opsins detect light and perform image- or nonimage-forming tasks. Opsins such as the "classical" visual opsins and melanopsin are well studied. However, the retinal expression and functions of a novel family of neuropsins are poorly understood. We explored the developmental time-course and cell-type specificity of neuropsin (opn5, 6a, 6b, and 8) expression in Xenopus laevis by in situ hybridization and immunohistochemistry. We compared the Xenopus results with publicly available single cell RNA sequencing (scRNA-seq) data from zebrafish, chicken, and mouse. Additionally, we analyzed light-activation of neuropsin-expressing cells through induction of c-fos mRNA. opn5 and opn8 expression begins at stage 37/38 when the retinal circuits begin to be activated. Once retinal circuits connect to the brain, opn5 mRNA is distributed across multiple retinal cell types, including bipolar (~70%-75%), amacrine (~10%), and retinal ganglion (~20%) cells, with opn8 present in amacrine (~70%) and retinal ganglion (~30%) cells. opn6a and opn6b mRNAs emerge in newborn-photoreceptors (stage 35), and are colocalized in rods and cones by stage 37/38. Interestingly, in the mature larval retina (stage 43/44), opn6a and opn6b mRNAs become preferentially localized to rods and cones, respectively, while newborn photoreceptors bordering the proliferative ciliary marginal zone express both genes. In zebrafish, opn6a and opn6b are also expressed in photoreceptors, while Müller glia and amacrine cells express opn8c. Most neuropsin-expressing retinal ganglion cells display c-fos expression in response to light, as do over half of the neuropsin-expressing interneurons. This study gave a better understanding of retinal neuropsin-expressing cells, their developmental onset, and light activation.
Collapse
Affiliation(s)
| | | | - Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Ricci V, Ronco F, Boileau N, Salzburger W. Visual opsin gene expression evolution in the adaptive radiation of cichlid fishes of Lake Tanganyika. SCIENCE ADVANCES 2023; 9:eadg6568. [PMID: 37672578 PMCID: PMC10482347 DOI: 10.1126/sciadv.adg6568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Tuning the visual sensory system to the ambient light is essential for survival in many animal species. This is often achieved through duplication, functional diversification, and/or differential expression of visual opsin genes. Here, we examined 753 new retinal transcriptomes from 112 species of cichlid fishes from Lake Tanganyika to unravel adaptive changes in gene expression at the macro-evolutionary and ecosystem level of one of the largest vertebrate adaptive radiations. We found that, across the radiation, all seven cone opsins-but not the rhodopsin-rank among the most differentially expressed genes in the retina, together with other vision-, circadian rhythm-, and hemoglobin-related genes. We propose two visual palettes characteristic of very shallow- and deep-water living species, respectively, and show that visual system adaptations along two major ecological axes, macro-habitat and diet, occur primarily via gene expression variation in a subset of cone opsin genes.
Collapse
Affiliation(s)
- Virginie Ricci
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Nicolas Boileau
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Hu Y, Wang X, Xu Y, Yang H, Tong Z, Tian R, Xu S, Yu L, Guo Y, Shi P, Huang S, Yang G, Shi S, Wei F. Molecular mechanisms of adaptive evolution in wild animals and plants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:453-495. [PMID: 36648611 PMCID: PMC9843154 DOI: 10.1007/s11427-022-2233-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Wild animals and plants have developed a variety of adaptive traits driven by adaptive evolution, an important strategy for species survival and persistence. Uncovering the molecular mechanisms of adaptive evolution is the key to understanding species diversification, phenotypic convergence, and inter-species interaction. As the genome sequences of more and more non-model organisms are becoming available, the focus of studies on molecular mechanisms of adaptive evolution has shifted from the candidate gene method to genetic mapping based on genome-wide scanning. In this study, we reviewed the latest research advances in wild animals and plants, focusing on adaptive traits, convergent evolution, and coevolution. Firstly, we focused on the adaptive evolution of morphological, behavioral, and physiological traits. Secondly, we reviewed the phenotypic convergences of life history traits and responding to environmental pressures, and the underlying molecular convergence mechanisms. Thirdly, we summarized the advances of coevolution, including the four main types: mutualism, parasitism, predation and competition. Overall, these latest advances greatly increase our understanding of the underlying molecular mechanisms for diverse adaptive traits and species interaction, demonstrating that the development of evolutionary biology has been greatly accelerated by multi-omics technologies. Finally, we highlighted the emerging trends and future prospects around the above three aspects of adaptive evolution.
Collapse
Affiliation(s)
- Yibo Hu
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yongchao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zeyu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ran Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Fuwen Wei
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
11
|
Vöcking O, Macias-Muñoz A, Jaeger SJ, Oakley TH. Deep Diversity: Extensive Variation in the Components of Complex Visual Systems across Animals. Cells 2022; 11:cells11243966. [PMID: 36552730 PMCID: PMC9776813 DOI: 10.3390/cells11243966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular underpinnings of the evolution of complex (multi-part) systems is a fundamental topic in biology. One unanswered question is to what the extent do similar or different genes and regulatory interactions underlie similar complex systems across species? Animal eyes and phototransduction (light detection) are outstanding systems to investigate this question because some of the genetics underlying these traits are well characterized in model organisms. However, comparative studies using non-model organisms are also necessary to understand the diversity and evolution of these traits. Here, we compare the characteristics of photoreceptor cells, opsins, and phototransduction cascades in diverse taxa, with a particular focus on cnidarians. In contrast to the common theme of deep homology, whereby similar traits develop mainly using homologous genes, comparisons of visual systems, especially in non-model organisms, are beginning to highlight a "deep diversity" of underlying components, illustrating how variation can underlie similar complex systems across taxa. Although using candidate genes from model organisms across diversity was a good starting point to understand the evolution of complex systems, unbiased genome-wide comparisons and subsequent functional validation will be necessary to uncover unique genes that comprise the complex systems of non-model groups to better understand biodiversity and its evolution.
Collapse
Affiliation(s)
- Oliver Vöcking
- Department of Biology, University of Kentucky, Lexington, KY 40508, USA
| | - Aide Macias-Muñoz
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Stuart J. Jaeger
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Todd H. Oakley
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Correspondence:
| |
Collapse
|
12
|
Bolstad K, Novales Flamarique I. Chromatic organization of retinal photoreceptors during eye migration of Atlantic halibut (Hippoglossus hippoglossus). J Comp Neurol 2022; 531:256-280. [PMID: 36217253 DOI: 10.1002/cne.25423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/08/2022]
Abstract
The retinas of fishes often have single and double cone photoreceptors that are organized in lattice-like mosaics. In flatfishes experiencing eye migration (i.e., the metamorphic process whereby one eye migrates to the other side of the head), the hexagonal lattice of single cones present in the larva undergoes major restructuring resulting in a dominant square mosaic postmetamorphosis consisting of four double cones surrounding each single cone. The expression of different opsin types during eye migration has not been examined despite its importance in understanding photoreceptor plasticity and whether cell fate (in terms of spectral phenotype) could influence square mosaic formation. Here, we probed the retina of Atlantic halibut undergoing eye migration for opsin expression using two antibodies, AHblue and AB5407, that labeled short wavelength sensitive 2 (SWS2) opsin and longer wavelength (predominantly middle wavelength sensitive, RH2) opsins, respectively. Throughout the retina, double and triple cones labeled with AB5407 exclusively, whereas the vast majority of single cones labeled with AHblue. A minority (<5%) of single cones in the square mosaic of the centroventral retina labeled with AB5407. In regions of mosaic transition and near peripheral growth zones, some single cones co-expressed at least two opsins as they labeled with both antibodies. Short wavelength (SWS2 expressing, or S) cones formed a nonrandom mosaic gradient from central to dorsal retina in a region dominated by the larval single cone mosaic. Our results demonstrate the expression of at least two opsins throughout the postmetamorphic retina and suggest opsin switching as a mechanism to create new cone spectral phenotypes. In addition, the S cone gradient at the onset of eye migration may underlie a plastic, cell induction mechanism by which a cone's phenotype determines that of its neighbors and the formation of the square mosaic.
Collapse
Affiliation(s)
- Kennedy Bolstad
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Iñigo Novales Flamarique
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.,Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
13
|
Hauser FE, Ilves KL, Schott RK, Alvi E, López-Fernández H, Chang BSW. Evolution, inactivation and loss of short wavelength-sensitive opsin genes during the diversification of Neotropical cichlids. Mol Ecol 2021; 30:1688-1703. [PMID: 33569886 DOI: 10.1111/mec.15838] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/30/2022]
Abstract
Natural variation in the number, expression and function of sensory genes in an organism's genome is often tightly linked to different ecological and evolutionary forces. Opsin genes, which code for the first step in visual transduction, are ideal models for testing how ecological factors such as light environment may influence visual system adaptation. Neotropical cichlid fishes are a highly ecologically diverse group that evolved in a variety of aquatic habitats, including black (stained), white (opaque) and clear waters. We used cross-species exon capture to sequence Neotropical cichlid short wavelength-sensitive (SWS) opsins, which mediate ultraviolet (UV) to blue visual sensitivity. Neotropical cichlid SWS1 opsin (UV-sensitive) underwent a relaxation of selective constraint during the early phases of cichlid diversification in South America, leading to pseudogenization and loss. Conversely, SWS2a (blue-sensitive) experienced a burst of episodic positive selection at the base of the South American cichlid radiation. This burst coincides with SWS1 relaxation and loss, and is consistent with findings in ecomorphological studies characterizing a period of extensive ecological divergence in Neotropical cichlids. We use ancestral sequence reconstruction and protein modelling to investigate mutations along this ancestral branch that probably modified SWS2a function. Together, our results suggest that variable light environments played a prominent early role in shaping SWS opsin diversity during the Neotropical cichlid radiation. Our results also illustrate that long-term evolution under light-limited conditions in South America may have reduced visual system plasticity; specifically, early losses of UV sensitivity may have constrained the evolutionary trajectory of Neotropical cichlid vision.
Collapse
Affiliation(s)
- Frances E Hauser
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Katriina L Ilves
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Erin Alvi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hernán López-Fernández
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|