1
|
Andrade Barboza C, Gonçalves LM, Pereira E, Cruz RD, Andrade Louzada R, Boulina M, Almaça J. SARS-CoV-2 Spike S1 Subunit Triggers Pericyte and Microvascular Dysfunction in Human Pancreatic Islets. Diabetes 2025; 74:355-367. [PMID: 39715591 PMCID: PMC11842606 DOI: 10.2337/db24-0816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
The COVID-19 pandemic has profoundly affected human health; however, the mechanisms underlying its impact on metabolic and vascular systems remain incompletely understood. Clinical evidence suggests that SARS-CoV-2 directly disrupts vascular homeostasis, with perfusion abnormalities observed in various tissues. The pancreatic islet, a key endocrine miniorgan reliant on its microvasculature for optimal function, may be particularly vulnerable. Studies have proposed a link between SARS-CoV-2 infection and islet dysfunction, but the mechanisms remain unclear. Here, we investigated how SARS-CoV-2 spike S1 protein affects human islet microvascular function. Using confocal microscopy and living pancreas slices from organ donors without diabetes, we show that a SARS-CoV-2 spike S1 recombinant protein activates pericytes, key regulators of islet capillary diameter and β-cell function, and induces capillary constriction. These effects are driven by a loss of ACE2 from pericytes' plasma membrane, impairing ACE2 activity and increasing local angiotensin II levels. Our findings highlight islet pericyte dysfunction as a potential contributor to the diabetogenic effects of SARS-CoV-2 and offer new insights into the mechanisms linking COVID-19, vascular dysfunction, and diabetes. ARTICLE HIGHLIGHTS Different components of the renin-angiotensin system are expressed by vascular cells in human pancreatic islets. The islet microvasculature is responsive to vasoactive angiotensin peptides. This pancreatic renin-angiotensin system is targeted upon incubation with a SARS-CoV-2 spike recombinant protein. SARS-CoV-2 spike activates pericytes and constricts capillaries in human islets. Islet vascular dysfunction could contribute to dysglycemia in some patients with COVID-19.
Collapse
Affiliation(s)
- Catarina Andrade Barboza
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Elizabeth Pereira
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
| | - Roxana Diaz Cruz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Ruy Andrade Louzada
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Maria Boulina
- Diabetes Research Institute, University of Miami Health System, Miami, FL
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
- Diabetes Research Institute, University of Miami Health System, Miami, FL
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
2
|
Mateus Gonçalves L, Andrade Barboza C, Almaça J. Diabetes as a Pancreatic Microvascular Disease-A Pericytic Perspective. J Histochem Cytochem 2024; 72:131-148. [PMID: 38454609 PMCID: PMC10956440 DOI: 10.1369/00221554241236535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Diabetes is not only an endocrine but also a vascular disease. Vascular defects are usually seen as consequence of diabetes. However, at the level of the pancreatic islet, vascular alterations have been described before symptom onset. Importantly, the cellular and molecular mechanisms underlying these early vascular defects have not been identified, neither how these could impact the function of islet endocrine cells. In this review, we will discuss the possibility that dysfunction of the mural cells of the microvasculature-known as pericytes-underlies vascular defects observed in islets in pre-symptomatic stages. Pericytes are crucial for vascular homeostasis throughout the body, but their physiological and pathophysiological functions in islets have only recently started to be explored. A previous study had already raised interest in the "microvascular" approach to this disease. With our increased understanding of the crucial role of the islet microvasculature for glucose homeostasis, here we will revisit the vascular aspects of islet function and how their deregulation could contribute to diabetes pathogenesis, focusing in particular on type 1 diabetes (T1D).
Collapse
Affiliation(s)
- Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Catarina Andrade Barboza
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
- Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, Miami, Florida
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
3
|
Weston CS, Boehm BO, Pozzilli P. Type 1 diabetes: A new vision of the disease based on endotypes. Diabetes Metab Res Rev 2024; 40:e3770. [PMID: 38450851 DOI: 10.1002/dmrr.3770] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Diagnosis and management of type 1 diabetes (T1D) have remained largely unchanged for the last several years. The management of the disease remains primarily focused on its phenotypical presentation and less on endotypes, namely the specific biological mechanisms behind the development of the disease. Furthermore, the treatment of T1D is essentially universal and indiscriminate-with patients administering insulin at varying dosages and frequencies to maintain adequate glycaemic control. However, it is now well understood that T1D is a heterogeneous disease with many different biological mechanisms (i.e. endotypes) behind its complex pathophysiology. A range of factors, including age of onset, immune system regulation, rate of β-cell destruction, autoantibodies, body weight, genetics and the exposome are recognised to play a role in the development of the condition. Patients can be classified into distinct diabetic subtypes based on these factors, which can be used to categorise patients into specific endotypes. The classification of patients into endotypes allows for a greater understanding of the natural progression of the disease, giving rise to more accurate and patient-centred therapies and follow-up monitoring, specifically for other autoimmune diseases. This review proposes 6 unique endotypes of T1D based on the current literature. The recognition of these endotypes could then be used to direct therapeutic modalities based on patients' individual pathophysiology.
Collapse
Affiliation(s)
- Craig Sinclair Weston
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Paolo Pozzilli
- Endocrinology and Metabolic Diseases, Campus Bio-Medico of Rome, Rome, Italy
- Centre of Immunobiology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Chen QD, Liu L, Zhao XH, Liang JB, Li SW. Challenges and opportunities in the islet transplantation microenvironment: a comprehensive summary of inflammatory cytokine, immune cells, and vascular endothelial cells. Front Immunol 2023; 14:1293762. [PMID: 38111575 PMCID: PMC10725940 DOI: 10.3389/fimmu.2023.1293762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
It is now understood that islet transplantation serves as a β-cell replacement therapy for type 1 diabetes. Many factors impact the survival of transplanted islets, especially those related to the microenvironment. This review explored microenvironmental components, including vascular endothelial cells, inflammatory cytokines, and immune cells, and their profound effects on post-islet transplantation survival rates. Furthermore, it revealed therapeutic strategies aimed at targeting these elements. Current evidence suggests that vascular endothelial cells are pivotal in facilitating vascularization and nutrient supply and establishing a new microcirculation network for transplanted islets. Consequently, preserving the functionality of vascular endothelial cells emerges as a crucial strategy to enhance the survival of islet transplantation. Release of cytokines will lead to activation of immune cells and production and release of further cytokines. While immune cells hold undeniable significance in regulating immune responses, their activation can result in rejection reactions. Thus, establishing immunological tolerance within the recipient's body is essential for sustaining graft functionality. Indeed, future research endeavors should be directed toward developing precise strategies for modulating the microenvironment to achieve higher survival rates and more sustained transplantation outcomes. While acknowledging certain limitations inherent to this review, it provides valuable insights that can guide further exploration in the field of islet transplantation. In conclusion, the microenvironment plays a paramount role in islet transplantation. Importantly, we discuss novel perspectives that could lead to broader clinical applications and improved patient outcomes in islet transplantation.
Collapse
Affiliation(s)
- Qi-dong Chen
- Taizhou Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-hong Zhao
- Department of Pharmacy, Taizhou Hospital, Zhejiang University , Taizhou, Zhejiang, China
| | - Jun-bo Liang
- Taizhou Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
5
|
Tamayo A, Gonçalves LM, Rodriguez-Diaz R, Pereira E, Canales M, Caicedo A, Almaça J. Pericyte Control of Blood Flow in Intraocular Islet Grafts Impacts Glucose Homeostasis in Mice. Diabetes 2022; 71:1679-1693. [PMID: 35587617 PMCID: PMC9490358 DOI: 10.2337/db21-1104] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022]
Abstract
The pancreatic islet depends on blood supply to efficiently sense plasma glucose levels and deliver insulin and glucagon into the circulation. Long believed to be passive conduits of nutrients and hormones, islet capillaries were recently found to be densely covered with contractile pericytes with the capacity to locally control blood flow. Here, we determined the contribution of pericyte regulation of islet blood flow to plasma insulin and glucagon levels and glycemia. Selective optogenetic activation of pericytes in intraocular islet grafts contracted capillaries and diminished blood flow. In awake mice, acute light-induced stimulation of islet pericytes decreased insulin and increased glucagon plasma levels, producing hyperglycemic effects. Interestingly, pericytes are the targets of sympathetic nerves in the islet, suggesting that sympathetic control of hormone secretion may occur in part by modulating pericyte activity and blood flow. Indeed, in vivo activation of pericytes with the sympathetic agonist phenylephrine decreased blood flow in mouse islet grafts, lowered plasma insulin levels, and increased glycemia. We further show that islet pericytes and blood vessels in living human pancreas slices responded to sympathetic input. Our findings indicate that pericytes mediate vascular responses in the islet that are required for adequate hormone secretion and glucose homeostasis. Vascular and neuronal alterations that are commonly seen in the islets of people with diabetes may impair regulation of islet blood flow and thus precipitate islet dysfunction.
Collapse
Affiliation(s)
- Alejandro Tamayo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Rayner Rodriguez-Diaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Elizabeth Pereira
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
| | - Melissa Canales
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Program of Neuroscience, University of Miami Miller School of Medicine, Miami, FL
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
6
|
Serra CA, dos Reis AF, Calsa B, Bueno CS, Helaehil JV, de Souza SAR, de Oliveira CA, Vanzella EC, do Amaral MEC. Quercetin prevents insulin dysfunction in hypertensive animals. J Diabetes Metab Disord 2022; 21:407-417. [PMID: 35673430 PMCID: PMC9167338 DOI: 10.1007/s40200-022-00987-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
Angiotensin II induced increase in hypertension enhances oxidative stress and compromises insulin action and pancreatic function. Quercetin-rich foods are beneficial for hypertensive and diabetic animals owing to their antioxidant function. The aim of this study was to evaluate the antioxidant effects of quercetin in hypertensive rats on insulin action, signaling, and secretion. Wistar rats were randomly divided into three groups: sham, hypertensive rats (H), and hypertensive rats supplemented with quercetin (HQ). After three months of initial hypertension, quercetin was administered at 50 mg/kg/day for 30 days. Our results indicate that hypertension and serum lipid peroxidation levels were reduced by quercetin supplementation. We observed increased insulin sensitivity in adipose tissue, corroborating the insulin tolerance test, HOMA index, and improvements in lipid profile. Despite normal insulin secretion at 2.8 and 20 mM of glucose, animals treated with quercetin exhibited increased number of islets per section; increased protein expression of muscarinic receptor type 3, VEGF, and catalase in islets; and hepatic mRNA levels of Ide were normalized. In conclusion, supplementation with quercetin improved insulin action and prevented pancreatic and metabolic dysfunction.
Collapse
Affiliation(s)
- Cristiane Alves Serra
- Graduate Program in Biomedical Sciences, Centro Universitário da Fundação Hermínio Ometto, FHO, Av. Maximiliano Barutto n° 500, Jardim Universitário, Araras, SP 13607-339 Brazil
| | - Alexandre Freire dos Reis
- Graduate Program in Biomedical Sciences, Centro Universitário da Fundação Hermínio Ometto, FHO, Av. Maximiliano Barutto n° 500, Jardim Universitário, Araras, SP 13607-339 Brazil
| | - Bruno Calsa
- Graduate Program in Biomedical Sciences, Centro Universitário da Fundação Hermínio Ometto, FHO, Av. Maximiliano Barutto n° 500, Jardim Universitário, Araras, SP 13607-339 Brazil
| | - Cintia Sena Bueno
- Biomedical College, Centro Universitário da Fundação Hermínio Ometto, FHO, Araras, SP Brazil
| | - Júlia Venturini Helaehil
- Graduate Program in Biomedical Sciences, Centro Universitário da Fundação Hermínio Ometto, FHO, Av. Maximiliano Barutto n° 500, Jardim Universitário, Araras, SP 13607-339 Brazil
| | | | - Camila Andrea de Oliveira
- Graduate Program in Biomedical Sciences, Centro Universitário da Fundação Hermínio Ometto, FHO, Av. Maximiliano Barutto n° 500, Jardim Universitário, Araras, SP 13607-339 Brazil
| | - Emerielle Cristine Vanzella
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, SP Brazil
| | - Maria Esméria Corezola do Amaral
- Graduate Program in Biomedical Sciences, Centro Universitário da Fundação Hermínio Ometto, FHO, Av. Maximiliano Barutto n° 500, Jardim Universitário, Araras, SP 13607-339 Brazil
| |
Collapse
|
7
|
Biondi G, Marrano N, Borrelli A, Rella M, Palma G, Calderoni I, Siciliano E, Lops P, Giorgino F, Natalicchio A. Adipose Tissue Secretion Pattern Influences β-Cell Wellness in the Transition from Obesity to Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23105522. [PMID: 35628332 PMCID: PMC9143684 DOI: 10.3390/ijms23105522] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
The dysregulation of the β-cell functional mass, which is a reduction in the number of β-cells and their ability to secure adequate insulin secretion, represents a key mechanistic factor leading to the onset of type 2 diabetes (T2D). Obesity is recognised as a leading cause of β-cell loss and dysfunction and a risk factor for T2D. The natural history of β-cell failure in obesity-induced T2D can be divided into three steps: (1) β-cell compensatory hyperplasia and insulin hypersecretion, (2) insulin secretory dysfunction, and (3) loss of β-cell mass. Adipose tissue (AT) secretes many hormones/cytokines (adipokines) and fatty acids that can directly influence β-cell function and viability. As this secretory pattern is altered in obese and diabetic patients, it is expected that the cross-talk between AT and pancreatic β-cells could drive the maintenance of the β-cell integrity under physiological conditions and contribute to the reduction in the β-cell functional mass in a dysmetabolic state. In the current review, we summarise the evidence of the ability of the AT secretome to influence each step of β-cell failure, and attempt to draw a timeline of the alterations in the adipokine secretion pattern in the transition from obesity to T2D that reflects the progressive deterioration of the β-cell functional mass.
Collapse
|
8
|
Memon B, Abdelalim EM. ACE2 function in the pancreatic islet: Implications for relationship between SARS-CoV-2 and diabetes. Acta Physiol (Oxf) 2021; 233:e13733. [PMID: 34561952 PMCID: PMC8646749 DOI: 10.1111/apha.13733] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 01/08/2023]
Abstract
The molecular link between SARS-CoV-2 infection and susceptibility is not well understood. Nonetheless, a bi-directional relationship between SARS-CoV-2 and diabetes has been proposed. The angiotensin-converting enzyme 2 (ACE2) is considered as the primary protein facilitating SARS-CoV and SARS-CoV-2 attachment and entry into the host cells. Studies suggested that ACE2 is expressed in the endocrine cells of the pancreas including beta cells, in addition to the lungs and other organs; however, its expression in the islets, particularly beta cells, has been met with some contradiction. Importantly, ACE2 plays a crucial role in glucose homoeostasis and insulin secretion by regulating beta cell physiology. Given the ability of SARS-CoV-2 to infect human pluripotent stem cell-derived pancreatic cells in vitro and the presence of SARS-CoV-2 in pancreatic samples from COVID-19 patients strongly hints that SARS-CoV-2 can invade the pancreas and directly cause pancreatic injury and diabetes. However, more studies are required to dissect the underpinning molecular mechanisms triggered in SARS-CoV-2-infected islets that lead to aggravation of diabetes. Regardless, it is important to understand the function of ACE2 in the pancreatic islets to design relevant therapeutic interventions in combatting the effects of SARS-CoV-2 on diabetes pathophysiology. Herein, we detail the function of ACE2 in pancreatic beta cells crucial for regulating insulin sensitivity, secretion, and glucose metabolism. Also, we discuss the potential role played by ACE2 in aiding SARS-COV-2 entry into the pancreas and the possibility of ACE2 cooperation with alternative entry factors as well as how that may be linked to diabetes pathogenesis.
Collapse
Affiliation(s)
- Bushra Memon
- College of Health and Life Sciences Hamad Bin Khalifa University (HBKU)Qatar Foundation Doha Qatar
- Diabetes Research Center Qatar Biomedical Research Institute (QBRI)Hamad Bin KhalifaUniversity (HBKU)Qatar Foundation (QF) Doha Qatar
| | - Essam M. Abdelalim
- College of Health and Life Sciences Hamad Bin Khalifa University (HBKU)Qatar Foundation Doha Qatar
- Diabetes Research Center Qatar Biomedical Research Institute (QBRI)Hamad Bin KhalifaUniversity (HBKU)Qatar Foundation (QF) Doha Qatar
| |
Collapse
|
9
|
Abstract
The current COVID-19 pandemic, which continues to spread across the globe, is caused by severe acute respiratory syndrome coronavirus (SARS-Cov-2). Soon after the pandemic emerged in China, it became clear that the receptor-binding domain (RBD) of angiotensin-converting enzyme 2 (ACE2) serves as the primary cell surface receptor for SARS-Cov-2. Subsequent work has shown that diabetes and hyperglycemia are major risk factors for morbidity and mortality in COVID-19 patients. However, data on the pattern of expression of ACE2 on human pancreatic β cells remain contradictory. Additionally, there is no consensus on whether the virus can directly infect and damage pancreatic islets and hence exacerbate diabetes. In this mini-review, we highlight the role of ACE2 receptor and summarize the current state of knowledge regarding its expression/co-localization in human pancreatic endocrine cells. We also discuss recent data on the permissiveness of human pancreatic β cells to SARS-Cov-2 infection.
Collapse
Affiliation(s)
- Waseem El-Huneidi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates (UAE)
| | - Mawieh Hamad
- Department of Basic sciences, Sharjah Institute for Medical Research, Sharjah, University of Sharjah, United Arab Emirates (UAE)
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, SharjahUAE
| | - Jalal Taneera
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates (UAE)
- Department of Basic sciences, Sharjah Institute for Medical Research, Sharjah, University of Sharjah, United Arab Emirates (UAE)
- CONTACT Dr. Jalal Taneera Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272 United Arab Emirates (UAE) Tel: +97165057743
| |
Collapse
|
10
|
Wang J, Feng Y, Huo H, Zhang X, Yue J, Zhang W, Yan Z, Jiao X. NLRP3 inflammasome mediates angiotensin II-induced islet β cell apoptosis. Acta Biochim Biophys Sin (Shanghai) 2019; 51:501-508. [PMID: 30939192 DOI: 10.1093/abbs/gmz032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 12/23/2022] Open
Abstract
Elevation of angiotensin II (Ang II) in the serum of patients with diabetes is known to promote apoptosis of islet β cells, but the underlying mechanism remains unclear. The aim of the present study was to explore the role of Nod-like receptor protein 3 (NLRP3) inflammasome in Ang II-induced apoptosis of pancreatic islet β cells and investigate the possible underlying mechanism. The effect of Ang II on INS-1 cell (a rat insulinoma cell line) viability was detected by CCK-8 method. The cell apoptosis was detected by flow cytometry and western blot analysis. The effect of Ang II on the expressions of thioredoxin-interacting protein (TXNIP) and NLRP3 protein was detected by western blot analysis. The expression of TXNIP mRNA was detected by real-time polymerase chain reaction. The results showed that Ang II was able to reduce INS-1 cell viability and promote apoptosis and at the same time up-regulate the expressions of TXNIP and NLRP3 components. Ang II-induced apoptosis was inhibited after administration of the NLRP3 inhibitor MCC950, and TXNIP silencing could reduce the NLRP3 expression and apoptosis, while both effects of Ang II on TXNIP-NLRP3 and its apoptosis-inducing effect were inhibited by angiotensin II type I receptor (AT1R) blocker Telmisartan. Our results demonstrated that the TXNIP-NLRP3 inflammasome pathway mediated Ang II-induced INS-1 cell apoptosis and might hopefully become a novel target for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Cellular Physiology of Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yanjin Feng
- Key Laboratory of Cellular Physiology of Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
- Department of Pediatrics, Linfen Central Hospital, Linfen, China
| | - Haiyan Huo
- Key Laboratory of Cellular Physiology of Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Xumei Zhang
- Key Laboratory of Cellular Physiology of Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jiping Yue
- Key Laboratory of Cellular Physiology of Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Wenting Zhang
- Key Laboratory of Cellular Physiology of Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zi Yan
- Key Laboratory of Cellular Physiology of Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Xiangying Jiao
- Key Laboratory of Cellular Physiology of Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Jansson L, Carlsson PO. Pancreatic Blood Flow with Special Emphasis on Blood Perfusion of the Islets of Langerhans. Compr Physiol 2019; 9:799-837. [PMID: 30892693 DOI: 10.1002/cphy.c160050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pancreatic islets are more richly vascularized than the exocrine pancreas, and possess a 5- to 10-fold higher basal and stimulated blood flow, which is separately regulated. This is reflected in the vascular anatomy of the pancreas where islets have separate arterioles. There is also an insulo-acinar portal system, where numerous venules connect each islet to the acinar capillaries. Both islets and acini possess strong metabolic regulation of their blood perfusion. Of particular importance, especially in the islets, is adenosine and ATP/ADP. Basal and stimulated blood flow is modified by local endothelial mediators, the nervous system as well as gastrointestinal hormones. Normally the responses to the nervous system, especially the parasympathetic and sympathetic nerves, are fairly similar in endocrine and exocrine parts. The islets seem to be more sensitive to the effects of endothelial mediators, especially nitric oxide, which is a permissive factor to maintain the high basal islet blood flow. The gastrointestinal hormones with pancreatic effects mainly influence the exocrine pancreatic blood flow, whereas islets are less affected. A notable exception is incretin hormones and adipokines, which preferentially affect islet vasculature. Islet hormones can influence both exocrine and endocrine blood vessels, and these complex effects are discussed. Secondary changes in pancreatic and islet blood flow occur during several conditions. To what extent changes in blood perfusion may affect the pathogenesis of pancreatic diseases is discussed. Both type 2 diabetes mellitus and acute pancreatitis are conditions where we think there is evidence that blood flow may contribute to disease manifestations. © 2019 American Physiological Society. Compr Physiol 9:799-837, 2019.
Collapse
Affiliation(s)
- Leif Jansson
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden
| | - Per-Ola Carlsson
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden.,Uppsala University, Department of Medical Sciences, Uppsala, Sweden
| |
Collapse
|
12
|
Graus-Nunes F, Souza-Mello V. The renin-angiotensin system as a target to solve the riddle of endocrine pancreas homeostasis. Biomed Pharmacother 2018; 109:639-645. [PMID: 30404071 DOI: 10.1016/j.biopha.2018.10.191] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022] Open
Abstract
Local renin-angiotensin system (RAS) in the pancreas is linked to the modulation of glucose-stimulated insulin secretion (GSIS) in beta cells and insulin sensitivity in target tissues, emerging as a promising tool in the prevention and/or treatment of obesity, diabetes, and systemic arterial hypertension. Insulin resistance alters pancreatic islet cell distribution and morphology and hypertrophied islets exhibit upregulated angiotensin II type 1 receptor, which drives oxidative stress, apoptosis, and fibrosis, configuring beta cell dysfunction and diminishing islet lifespan. Pharmacological modulation of RAS has shown beneficial effects in diet-induced obesity model, mainly related to the translational potential that angiotensin receptor blockers and ECA2/ANG (1-7)/MAS receptor axis modulation have when it comes to islet preservation and type 2 diabetes prevention and/or treatment. This review describes the existing evidence for different approaches to blocking RAS elements in the management of insulin resistance and diabetes and focuses on islet remodeling and GSIS in rodents and humans.
Collapse
Affiliation(s)
- Francielle Graus-Nunes
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Chen H, Zhou W, Ruan Y, Yang L, Xu N, Chen R, Yang R, Sun J, Zhang Z. Reversal of angiotensin ll-induced β-cell dedifferentiation via inhibition of NF-κb signaling. Mol Med 2018; 24:43. [PMID: 30134927 PMCID: PMC6092859 DOI: 10.1186/s10020-018-0044-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is characterized by pancreatic β-cell failure, which arises from metabolic stress and results in β cell dedifferentiation, leading to β-cell death. Pathological activation of the renin–angiotensin system (RAS) contributes to increase cell stress, while RAS intervention reduces the onset of T2DM in high-risk populations and promotes insulin secretion in rodents. In this study, we investigated whether and how RAS induces β-cell dedifferentiation and the mechanism underlying this process. Methods In vitro, with the methods of quantitative real-time reverse transcriptase-PCR (qRT-PCR) and western blotting, we examined the change of cell identity-related gene expression, progenitor like gene expression, cellular function, and nuclear factor kappa b (NF-κb) signaling activity in β cell lines after exposure to angiotensin II (AngII) and disruption of RAS. In vivo, parallel studies were performed using db/db mice. Related protein expression was detected by Immunofluorescence analysis. Result Activation of RAS induced dedifferentiation and impaired insulin secretion, eventually leading to β-cell failure. Mechanistically, Angll induced β-cell dedifferentiation via NF-κb signaling, while treatment with lrbesartan and sc-514 reversed the progenitor state of β cells. Conclusion The present study found that RAS might induce β-cell dedifferentiation via angiotensin II receptor type 1 activation, which was promoted by NF-κb signaling. Therefore, blocking RAS or NF-kb signaling efficiently reversed the dedifferentiated status of β cells, suggesting a potential therapy for patients with type 2 diabetes. Electronic supplementary material The online version of this article (10.1186/s10020-018-0044-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Wenjun Zhou
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yuting Ruan
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Lei Yang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Ningning Xu
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Rongping Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Rui Yang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Jia Sun
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China.
| | - Zhen Zhang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
14
|
Lyu J, Imachi H, Fukunaga K, Sato S, Ibata T, Kobayashi T, Dong T, Yoshimoto T, Yonezaki K, Nagata H, Iwama H, Murao K. Angiotensin II induces cholesterol accumulation and impairs insulin secretion by regulating ABCA1 in beta cells. J Lipid Res 2018; 59:1906-1915. [PMID: 30108153 DOI: 10.1194/jlr.m085886] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/02/2018] [Indexed: 01/23/2023] Open
Abstract
In pancreatic β cells, ABCA1, a 254 kDa membrane protein, affects cholesterol homeostasis and insulin secretion. Angiotensin II, as the main effector of the renin-angiotensin system, decreases glucose-stimulated insulin secretion (GSIS). We examined the effect of angiotensin II on ABCA1 expression in primary pancreatic islets and INS-1 cells. Angiotensin II decreased ABCA1 protein and mRNA; angiotensin II type 1 receptor (AT1R) blockade rescued this ABCA1 repression. In parallel, angiotensin II suppressed the promoter activity of ABCA1, an effect that was abrogated by PD98095, a specific inhibitor of MAPK kinase (MEK). LXR enhanced ABCA1 promoter activity, and angiotensin II decreased the nuclear abundance of LXR protein. On a chromatin immunoprecipitation assay, LXR mediated the transcription of ABCA1 by directly binding to its promoter. Mutation of the LXR binding site on the ABCA1 promoter cancelled the effect of angiotensin II. Furthermore, angiotensin II induced cholesterol accumulation and impaired GSIS; inhibition of AT1R or MEK pathway reversed these effects. In summary, our study showed that angiotensin II suppressed ABCA1 expression in pancreatic islets and INS-1 cells, indicating that angiotensin II may influence GSIS by regulating ABCA1 expression. Additional research may address therapeutic needs in diseases such as diabetes mellitus.
Collapse
Affiliation(s)
- Jingya Lyu
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Hitomi Imachi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Kensaku Fukunaga
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Seisuke Sato
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Tomohiro Ibata
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Toshihiro Kobayashi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Tao Dong
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Takuo Yoshimoto
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Kazuko Yonezaki
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Hiromi Nagata
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Koji Murao
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| |
Collapse
|
15
|
Xuan X, Gao F, Ma X, Huang C, Wang Y, Deng H, Wang S, Li W, Yuan L. Activation of ACE2/angiotensin (1-7) attenuates pancreatic β cell dedifferentiation in a high-fat-diet mouse model. Metabolism 2018; 81:83-96. [PMID: 29225087 DOI: 10.1016/j.metabol.2017.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/14/2017] [Accepted: 12/03/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Angiotensin-converting enzyme 2 (ACE2) has been identified in pancreatic islets and can preserve β cells. In this study, we aimed to examine the possible role of ACE2 and its end product, angiotensin 1-7 (A1-7), in reducing β cell dedifferentiation during metabolic stress. METHODS First, a lineage-tracing experiment was performed to track β cells in mice fed a high-fat diet (HFD). Second, the ACE2/A1-7 axis was evaluated in the HFD mouse model. Intraperitoneal glucose tolerance tests (IPGTTs) and intraperitoneal insulin tolerance tests (IPITTs) were conducted. Phenotypic changes in β cells were detected by immunohistochemistry and quantitative real-time PCR. Pancreatic sections were immunostained for vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). Finally, the effects of the ACE2/A1-7 axis were explored in isolated mouse islets exposed to different concentrations of glucose. Glucose-stimulated insulin release and levels of insulin mRNA and OCT4 mRNA were measured. RESULTS Pancreatic β cell dedifferentiation occurred both in vitro and in vivo in response to metabolic stress and was accompanied by ACE2 reduction. HFD-induced insulin resistance and glucose intolerance were exacerbated in ACE2-knockout (ACE2KO) mice but were alleviated by exogenous A1-7 in C57BL/6J mice. Approximately 20% of β cells were dedifferentiated in ACE2KO mice fed a standard rodent chow diet (SD). A higher percentage of dedifferentiated β cells was detected in ACE2KO mice than in wild-type (WT) mice under HFD conditions. In contrast, the administration of A1-7 alleviated HFD-induced β cell dedifferentiation in C57BL/6J mice. Moreover, the exogenous injection of A1-7 improved microcirculation in islets and decreased the production of iNOS in islets of C57BL/6J mice fed an HFD. Additionally, ACE2 was found to be mainly expressed in α cells of mice, while Mas, the receptor of A1-7, was distributed in β cells. CONCLUSIONS Overall, this study is the first to demonstrate that the ACE2/A1-7/Mas axis may be one of the intra-islet paracrine mechanisms of communication between α and β cells. Enhancing the ACE2/A1-7 axis exerts a protective effect by ameliorating β cell dedifferentiation, and this effect might be partially mediated through improvements in islet microcirculation and suppression of islet iNOS.
Collapse
Affiliation(s)
- Xiuping Xuan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoyi Ma
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenghu Huang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ying Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongjun Deng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiqi Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wencun Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
16
|
Chan SMH, Lau YS, Miller AA, Ku JM, Potocnik S, Ye JM, Woodman OL, Herbert TP. Angiotensin II Causes β-Cell Dysfunction Through an ER Stress-Induced Proinflammatory Response. Endocrinology 2017; 158:3162-3173. [PMID: 28938442 DOI: 10.1210/en.2016-1879] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 08/11/2017] [Indexed: 12/20/2022]
Abstract
The metabolic syndrome is associated with an increase in the activation of the renin angiotensin system, whose inhibition reduces the incidence of new-onset diabetes. Importantly, angiotensin II (AngII), independently of its vasoconstrictor action, causes β-cell inflammation and dysfunction, which may be an early step in the development of type 2 diabetes. The aim of this study was to determine how AngII causes β-cell dysfunction. Islets of Langerhans were isolated from C57BL/6J mice that had been infused with AngII in the presence or absence of taurine-conjugated ursodeoxycholic acid (TUDCA) and effects on endoplasmic reticulum (ER) stress, inflammation, and β-cell function determined. The mechanism of action of AngII was further investigated using isolated murine islets and clonal β cells. We show that AngII triggers ER stress, an increase in the messenger RNA expression of proinflammatory cytokines, and promotes β-cell dysfunction in murine islets of Langerhans both in vivo and ex vivo. These effects were significantly attenuated by TUDCA, an inhibitor of ER stress. We also show that AngII-induced ER stress is required for the increased expression of proinflammatory cytokines and is caused by reactive oxygen species and IP3 receptor activation. These data reveal that the induction of ER stress is critical for AngII-induced β-cell dysfunction and indicates how therapies that promote ER homeostasis may be beneficial in the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Stanley M H Chan
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria 3083, Australia
| | - Yeh-Siang Lau
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Alyson A Miller
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria 3083, Australia
| | - Jacqueline M Ku
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria 3083, Australia
| | - Simon Potocnik
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria 3083, Australia
| | - Ji-Ming Ye
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria 3083, Australia
| | - Owen L Woodman
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria 3083, Australia
| | - Terence P Herbert
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria 3083, Australia
- School of Pharmacy, College of Science, Joseph Banks Laboratories, University of Lincoln, Lincoln, Lincolnshire LN6 7DL, United Kingdom
| |
Collapse
|
17
|
Sauter NS, Thienel C, Plutino Y, Kampe K, Dror E, Traub S, Timper K, Bédat B, Pattou F, Kerr-Conte J, Jehle AW, Böni-Schnetzler M, Donath MY. Angiotensin II induces interleukin-1β-mediated islet inflammation and β-cell dysfunction independently of vasoconstrictive effects. Diabetes 2015; 64:1273-83. [PMID: 25352639 DOI: 10.2337/db14-1282] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pathological activation of the renin-angiotensin system (RAS) is associated with the metabolic syndrome, and the new onset of type 2 diabetes can be delayed by RAS inhibition. In animal models of type 2 diabetes, inhibition of the RAS improves insulin secretion. However, the direct effects of angiotensin II on islet function and underlying mechanisms independent of changes in blood pressure remain unclear. Here we show that exposure of human and mouse islets to angiotensin II induces interleukin (IL)-1-dependent expression of IL-6 and MCP-1, enhances β-cell apoptosis, and impairs mitochondrial function and insulin secretion. In vivo, mice fed a high-fat diet and treated with angiotensin II and the vasodilator hydralazine to prevent hypertension showed defective glucose-stimulated insulin secretion and deteriorated glucose tolerance. Application of an anti-IL-1β antibody reduced the deleterious effects of angiotensin II on islet inflammation, restored insulin secretion, and improved glycemia. We conclude that angiotensin II leads to islet dysfunction via induction of inflammation and independent of vasoconstriction. Our findings reveal a novel role for the RAS and an additional rationale for the treatment of type 2 diabetic patients with an IL-1β antagonist.
Collapse
Affiliation(s)
- Nadine S Sauter
- Clinic of Endocrinology, Diabetes, and Metabolism, University Hospital Basel, Basel, Switzerland Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Constanze Thienel
- Clinic of Endocrinology, Diabetes, and Metabolism, University Hospital Basel, Basel, Switzerland Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Yuliya Plutino
- Clinic of Endocrinology, Diabetes, and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Kapil Kampe
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Erez Dror
- Clinic of Endocrinology, Diabetes, and Metabolism, University Hospital Basel, Basel, Switzerland Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Shuyang Traub
- Clinic of Endocrinology, Diabetes, and Metabolism, University Hospital Basel, Basel, Switzerland Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Katharina Timper
- Clinic of Endocrinology, Diabetes, and Metabolism, University Hospital Basel, Basel, Switzerland Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Benoit Bédat
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland University of Geneva School of Medicine, Geneva, Switzerland
| | | | | | - Andreas W Jehle
- Department of Biomedicine, University of Basel, Basel, Switzerland Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Marianne Böni-Schnetzler
- Clinic of Endocrinology, Diabetes, and Metabolism, University Hospital Basel, Basel, Switzerland Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes, and Metabolism, University Hospital Basel, Basel, Switzerland Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|