1
|
Deng H, Eichmann A, Schwartz MA. Fluid Shear Stress-Regulated Vascular Remodeling: Past, Present, and Future. Arterioscler Thromb Vasc Biol 2025; 45:882-900. [PMID: 40207366 DOI: 10.1161/atvbaha.125.322557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The vascular system remodels throughout life to ensure adequate perfusion of tissues as they grow, regress, or change metabolic activity. Angiogenesis, the sprouting of new blood vessels to expand the capillary network, versus regression, in which endothelial cells die or migrate away to remove unneeded capillaries, controls capillary density. In addition, upstream arteries adjust their diameters to optimize blood flow to downstream vascular beds, which is controlled primarily by vascular endothelial cells sensing fluid shear stress (FSS) from blood flow. Changes in capillary density and small artery tone lead to changes in the resistance of the vascular bed, which leads to changes in flow through the arteries that feed these small vessels. The resultant decreases or increases in FSS through these vessels then stimulate their inward or outward remodeling, respectively. This review summarizes our knowledge of endothelial FSS-dependent vascular remodeling, offering insights into potential therapeutic interventions. We first provide a historical overview, then discuss the concept of set point and mechanisms of low-FSS-mediated and high-FSS-mediated inward and outward remodeling. We then cover in vivo animal models, molecular mechanisms, and clinical implications. Understanding the mechanisms underlying physiological endothelial FSS-mediated vascular remodeling and their failure due to mutations or chronic inflammatory and metabolic stresses may lead to new therapeutic strategies to prevent or treat vascular diseases.
Collapse
Affiliation(s)
- Hanqiang Deng
- Yale Cardiovascular Research Center CT (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Department of Internal Medicine (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
| | - Anne Eichmann
- Yale Cardiovascular Research Center CT (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Department of Internal Medicine (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
| | - Martin A Schwartz
- Yale Cardiovascular Research Center CT (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Department of Internal Medicine (H.D., A.E., M.A.S.), Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale School of Medicine, New Haven, CT (M.A.S.)
- Department of Biomedical Engineering, Yale School of Engineering, New Haven, CT (M.A.S.)
| |
Collapse
|
2
|
Ramirez-Perez FI, Jurrissen TJ, Augenreich MA, Castorena-Gonzalez JA, Morales-Quinones M, Foote CA, Nourian Z, Lateef OM, Imkaew N, Sun Z, Hill MA, Meininger GA, Padilla J, Martinez-Lemus LA. Small Arteries From Old Spontaneously Hypertensive Rats Exhibit Enhanced Endothelium-Independent Vasodilatory Capacity and Reduced Stiffness. Microcirculation 2025; 32:e70004. [PMID: 39962557 DOI: 10.1111/micc.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/23/2024] [Accepted: 02/02/2025] [Indexed: 05/09/2025]
Abstract
OBJECTIVE In conduit arteries, aging and hypertension are associated with stiffening characterized by increased cytoskeletal F-actin and endothelial dysfunction. Herein, we determined if this also happens at the level of the resistance vasculature. METHODS We retrospectively compared the mechanical and structural characteristics of small arteries isolated from older hypertensive and younger normotensive (64.7 ± 2.8 vs. 32.1 ± 1.9 years old) human subjects. The intersection of aging and hypertension was studied in small mesenteric arteries from old (88 weeks of age) spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) normotensive rats. RESULTS Arteries from older hypertensive subjects were stiffer and had more F-actin, relative to those from younger normotensives. Comparatively, arteries from old SHRs showed reduced stiffness and increased vasodilation to sodium nitroprusside without changes in F-actin. Matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) were increased in the SHR arteries and exposure of naive arteries to exogenous MMP-2 and MMP-9 augmented responsiveness to sodium nitroprusside and adenosine. CONCLUSIONS In conclusion, resistance arteries from old SHRs are softer and vasodilate more to exogenous nitric oxide than those of WKY rats. This improved endothelial-independent vasodilation is associated with an increased vascular expression of MMP-2 and MMP-9. We further conclude that aging and hypertension effects on the microcirculation may vary between species and vascular beds.
Collapse
Affiliation(s)
| | - Thomas J Jurrissen
- NextGen Precision Health, University of Missouri, Columbia, Missouri, USA
| | - Marc A Augenreich
- NextGen Precision Health, University of Missouri, Columbia, Missouri, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | | | | | - Christopher A Foote
- NextGen Precision Health, University of Missouri, Columbia, Missouri, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Zahra Nourian
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Olubodun M Lateef
- NextGen Precision Health, University of Missouri, Columbia, Missouri, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Natnicha Imkaew
- NextGen Precision Health, University of Missouri, Columbia, Missouri, USA
| | - Zhe Sun
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Michael A Hill
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Gerald A Meininger
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
3
|
Aalkjaer C. Understanding the Importance of the Small Artery Media-Lumen Ratio: Past and Present. Basic Clin Pharmacol Toxicol 2025; 136:e14127. [PMID: 39806524 DOI: 10.1111/bcpt.14127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
The media-lumen diameter ratio of small arteries is increased in hypertension, diabetes and obesity. It is likely that both shear stress on the endothelial cells, transmural pressure and smooth muscle cell tone are important for the altered vascular structure. However, the precise interaction and importance of these factors are incompletely understood. At the molecular level transglutaminases, metalloproteinases, integrins, NO and several other factors have been suggested to be important, but our understanding of how the many factors together control vascular structure is surprisingly limited. The media-lumen diameter ratio of the small arteries has prognostic value, which is independent of the classical risk factors for cardiovascular disease. Importantly this is also the case in patients treated pharmacologically for high blood pressure. It is therefore relevant to consider small artery structure as a potential target in relation to prevention of cardiovascular disease.
Collapse
|
4
|
Park H, Trupiano SP, Medarev SL, Ghosh P, Caldwell JT, Yarrow JF, Muller-Delp JM. Aerobic exercise training-induced bone and vascular adaptations in mice lacking adiponectin. Bone 2025; 190:117272. [PMID: 39369833 PMCID: PMC11795456 DOI: 10.1016/j.bone.2024.117272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Adiponectin regulates lipid and glucose metabolism, and insulin sensitivity in various target organs; however, the effects of adiponectin on bone health remain controversial. Exercise training can enhance bone density, bone microarchitecture, and blood flow. This study aimed to elucidate the role of adiponectin in adaptations of bone microarchitecture and bone vasculature in response to aerobic exercise training. Adult male C57BL/6 wild-type (WT) and homozygous adiponectin knockout (AdipoKO) mice were either treadmill exercise trained or remained sedentary for 8-10 weeks. The trabecular structures of the distal femoral metaphysis, a weight-bearing bone, and the mandible, a non-weight-bearing bone, were examined using microcomputed tomography. The femoral principal nutrient arteries were isolated to assess vasoreactivity (vasodilation and vasoconstriction) and structural remodeling. At the femoral metaphysis, impaired trabecular bone structures, including reduced connectivity density and increased trabecular spacing, were observed in AdipoKO mice compared to WT mice. In addition, nitric oxide-mediated, endothelium-dependent vasodilation was substantially reduced, and wall-to-lumen ratio was significantly increased in the femoral principal nutrient artery of AdipoKO mice. Interestingly, although exercise training-induced enhancements in trabecular connectivity density were observed at the femoral metaphysis of both WT and AdipoKO, increased vasoconstrictor responses were only observed in the femoral principal nutrient artery of WT mice, not in the AdipoKO mice. In mandibular trabecular bone, exercise training increased trabecular bone volume fraction (BV/TV, %) and intersection surface in the mandible of both WT and AdipoKO mice. These findings indicate that adiponectin is crucial for maintaining normal bone microarchitecture and vasculature. Although the absence of adiponectin compromises bone vascular adaptation to exercise training in mice, some exercise training-induced alterations in bone microarchitecture occurred in the absence of adiponectin, suggesting contribution of compensatory mechanisms during exercise training.
Collapse
Affiliation(s)
- Hyerim Park
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Samuel P Trupiano
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Steven L Medarev
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Payal Ghosh
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Jacob T Caldwell
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA; Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI, USA
| | - Joshua F Yarrow
- Eastern Colorado Geriatrics Research, Education, and Clinical Center, Rocky Mountain Regional Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO, USA
| | - Judy M Muller-Delp
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
5
|
Ferreira-Santos L, Martinez-Lemus LA, Padilla J. Sitting leg vasculopathy: potential adaptations beyond the endothelium. Am J Physiol Heart Circ Physiol 2024; 326:H760-H771. [PMID: 38241008 PMCID: PMC11221807 DOI: 10.1152/ajpheart.00489.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
Increased sitting time, the most common form of sedentary behavior, is an independent risk factor for all-cause and cardiovascular disease mortality; however, the mechanisms linking sitting to cardiovascular risk remain largely elusive. Studies over the last decade have led to the concept that excessive time spent in the sitting position and the ensuing reduction in leg blood flow-induced shear stress cause endothelial dysfunction. This conclusion has been mainly supported by studies using flow-mediated dilation in the lower extremities as the measured outcome. In this review, we summarize evidence from classic studies and more recent ones that collectively support the notion that prolonged sitting-induced leg vascular dysfunction is likely also attributable to changes occurring in vascular smooth muscle cells (VSMCs). Indeed, we provide evidence that prolonged constriction of resistance arteries can lead to modifications in the structural characteristics of the vascular wall, including polymerization of actin filaments in VSMCs and inward remodeling, and that these changes manifest in a time frame that is consistent with the vascular changes observed with prolonged sitting. We expect this review will stimulate future studies with a focus on VSMC cytoskeletal remodeling as a potential target to prevent the detrimental vascular ramifications of too much sitting.
Collapse
Affiliation(s)
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| |
Collapse
|
6
|
Shazly T, Uline M, Webb C, Pederson B, Eberth JF, Kolachalama VB. Novel Payloads to Mitigate Maladaptive Inward Arterial Remodeling in Drug-Coated Balloon Therapy. J Biomech Eng 2023; 145:121004. [PMID: 37542712 PMCID: PMC10578076 DOI: 10.1115/1.4063122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
Drug-coated balloon therapy is a minimally invasive endovascular approach to treat obstructive arterial disease, with increasing utilization in the peripheral circulation due to improved outcomes as compared to alternative interventional modalities. Broader clinical use of drug-coated balloons is limited by an incomplete understanding of device- and patient-specific determinants of treatment efficacy, including late outcomes that are mediated by postinterventional maladaptive inward arterial remodeling. To address this knowledge gap, we propose a predictive mathematical model of pressure-mediated femoral artery remodeling following drug-coated balloon deployment, with account of drug-based modulation of resident vascular cell phenotype and common patient comorbidities, namely, hypertension and endothelial cell dysfunction. Our results elucidate how postinterventional arterial remodeling outcomes are altered by the delivery of a traditional anti-proliferative drug, as well as by codelivery with an anti-contractile drug. Our findings suggest that codelivery of anti-proliferative and anti-contractile drugs could improve patient outcomes following drug-coated balloon therapy, motivating further consideration of novel payloads in next-generation devices.
Collapse
Affiliation(s)
- Tarek Shazly
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208; College of Engineering and Computing, Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208; Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC 29208
| | - Mark Uline
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208; Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC 29208; College of Engineering and Computing, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208
| | - Clinton Webb
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208; Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC 29208; School of Medicine, Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC 29208
| | - Breanna Pederson
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208
| | - John F. Eberth
- Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104
| | - Vijaya B. Kolachalama
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118; Department of Computer Science and Faculty of Computing and Data Sciences, Boston University, Boston, MA 02115
| |
Collapse
|
7
|
Rachev A, Shazly T. A Mathematical Model of Maladaptive Inward Eutrophic Remodeling of Muscular Arteries in Hypertension. J Biomech Eng 2023; 145:011012. [PMID: 35900832 PMCID: PMC9445322 DOI: 10.1115/1.4055109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/19/2022] [Indexed: 11/08/2022]
Abstract
We propose a relatively simple two-dimensional mathematical model for maladaptive inward remodeling of resistive arteries in hypertension in terms of vascular solid mechanics. The main premises are: (i) maladaptive inward remodeling manifests as a reduced increase in the arterial mass compared to the case of adaptive remodeling under equivalent hypertensive pressures and (ii) the pressure-induced circumferential stress in the arterial wall is restored to its basal target value as happens in the case of adaptive remodeling. The rationale for these assumptions is the experimental findings that elevated tone in association with sustained hypertensive pressure down-regulate the normal differentiation of vascular smooth muscle cells from contractile to synthetic phenotype and the data for the calculated hoop stress before and after completion of remodeling. Results from illustrative simulations show that as the hypertensive pressure increases, remodeling causes a nonmonotonic variation of arterial mass, a decrease in inner arterial diameter, and an increase in wall thickness. These findings and the model prediction that inward eutrophic remodeling is preceded by inward hypertrophic remodeling are supported by published observations. Limitations and perspectives for refining the mathematical model are discussed.
Collapse
Affiliation(s)
- Alexander Rachev
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208; Institute of Mechanics, Acad. G Bonchev Str. Block 4, Sofia 1113, Bulgaria
| | - Tarek Shazly
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
8
|
Bi J, Duan Y, Wang M, He C, Li X, Zhang X, Tao Y, Du Y, Liu H. Deletion of large-conductance calcium-activated potassium channels promotes vascular remodelling through the CTRP7-mediated PI3K/Akt signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1-11. [PMID: 36514218 PMCID: PMC10157624 DOI: 10.3724/abbs.2022179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The large-conductance calcium-activated potassium (BK) channel is a critical regulator and potential therapeutic target of vascular tone and architecture, and abnormal expression or dysfunction of this channel is linked to many vascular diseases. Vascular remodelling is the early pathological basis of severe vascular diseases. Delaying the progression of vascular remodelling can reduce cardiovascular events, but the pathogenesis remains unclear. To clarify the role of BK channels in vascular remodelling, we use rats with BK channel α subunit knockout (BK α ‒/‒). The results show that BK α ‒/‒ rats have smaller inner and outer diameters, thickened aortic walls, increased fibrosis, and disordered elastic fibers of the aortas compared with WT rats. When the expression and function of BK α are inhibited in human umbilical arterial smooth muscle cells (HUASMCs), the expressions of matrix metalloproteinase 2 (MMP2), MMP9, and interleukin-6 are enhanced, while the expressions of smooth muscle cell contractile phenotype proteins are reduced. RNA sequencing, bioinformatics analysis and qPCR verification show that C1q/tumor necrosis factor-related protein 7 ( CTRP7) is the downstream target gene. Furthermore, except for that of MMPs, a similar pattern of IL-6, smooth muscle cell contractile phenotype proteins expression trend is observed after CTRP7 knockdown. Moreover, knockdown of both BK α and CTRP7 in HUASMCs activates PI3K/Akt signaling. Additionally, CTRP7 is expressed in vascular smooth muscle cells (VSMCs), and BK α deficiency activates the PI3K/Akt pathway by reducing CTRP7 level. Therefore, we first show that BK channel deficiency leads to vascular remodelling. The BK channel and CTRP7 may serve as potential targets for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jing Bi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Yanru Duan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Meili Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Chunyu He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Xiaoyue Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Xi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Yan Tao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| | - Yunhui Du
- Beijing Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing 100069, China
| |
Collapse
|
9
|
Ozdemir S, Yalcin-Enis I, Yalcinkaya B, Yalcinkaya F. An Investigation of the Constructional Design Components Affecting the Mechanical Response and Cellular Activity of Electrospun Vascular Grafts. MEMBRANES 2022; 12:929. [PMID: 36295688 PMCID: PMC9607146 DOI: 10.3390/membranes12100929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Cardiovascular disease is anticipated to remain the leading cause of death globally. Due to the current problems connected with using autologous arteries for bypass surgery, researchers are developing tissue-engineered vascular grafts (TEVGs). The major goal of vascular tissue engineering is to construct prostheses that closely resemble native blood vessels in terms of morphological, mechanical, and biological features so that these scaffolds can satisfy the functional requirements of the native tissue. In this setting, morphology and cellular investigation are usually prioritized, while mechanical qualities are generally addressed superficially. However, producing grafts with good mechanical properties similar to native vessels is crucial for enhancing the clinical performance of vascular grafts, exposing physiological forces, and preventing graft failure caused by intimal hyperplasia, thrombosis, aneurysm, blood leakage, and occlusion. The scaffold's design and composition play a significant role in determining its mechanical characteristics, including suturability, compliance, tensile strength, burst pressure, and blood permeability. Electrospun prostheses offer various models that can be customized to resemble the extracellular matrix. This review aims to provide a comprehensive and comparative review of recent studies on the mechanical properties of fibrous vascular grafts, emphasizing the influence of structural parameters on mechanical behavior. Additionally, this review provides an overview of permeability and cell growth in electrospun membranes for vascular grafts. This work intends to shed light on the design parameters required to maintain the mechanical stability of vascular grafts placed in the body to produce a temporary backbone and to be biodegraded when necessary, allowing an autologous vessel to take its place.
Collapse
Affiliation(s)
- Suzan Ozdemir
- Textile Engineering Department, Textile Technologies and Design Faculty, Istanbul Technical University, Beyoglu, 34467 Istanbul, Turkey
| | - Ipek Yalcin-Enis
- Textile Engineering Department, Textile Technologies and Design Faculty, Istanbul Technical University, Beyoglu, 34467 Istanbul, Turkey
| | - Baturalp Yalcinkaya
- Department of Material Science, Faculty of Mechanical Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Fatma Yalcinkaya
- Department of Environmental Technology, Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec, 461 17 Liberec, Czech Republic
| |
Collapse
|
10
|
Shelley J, Boddy L, Knowles Z, Stewart C, Frost F, Nazareth D, Walshaw M, Dawson E. Physical activity assessment and vascular function in adults with cystic fibrosis and their non-CF peers. J Sports Sci 2022; 40:1837-1848. [PMID: 36018045 DOI: 10.1080/02640414.2022.2115224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
An understanding of physical activity (PA) and related health benefits remains limited in adults with Cystic Fibrosis (CF). Raw acceleration data metrics may improve the quality of assessment and further this understanding. The study aimed to compare PA between people with CF (pwCF) and non-CF peers and examine associations between PA, vascular function and health outcome measures. PA was assessed in 62 participants (31 pwCF) using ActiGraph accelerometers. Vascular function (a marker of cardiovascular disease risk) was assessed using flow-mediated dilatation (FMD) in sub-groups of pwCF (n = 12) and matched controls. Average Euclidean norm minus one (ENMO) (total PA) was significantly lower (p = 0.005) in pwCF (35.09 ± 10.60 mg), than their non-CF peers (44.62 ± 13.78 mg). PwCF had PA profiles (intensity gradient) indicative of more time in lower intensity activity (-2.62 ± 0.20, -2.37 ± 0.23). Vigorous activity was positively associated with lung function (rs = 0.359) and Quality of Life (r = 0.412). There were no significant differences (p = 0.313) in FMD% between pwCF (5.29 ± 2.76%) and non-CF peers (4.34 ± 1.58%) and no associations with PA. PwCF engaged in less moderate-to-vigorous PA and demonstrated a steeper PA profile than their non-CF peers.
Collapse
Affiliation(s)
- James Shelley
- Research Institute for Sport and Exercise Sciences, Lancaster University, Lancaster, UK
| | - Lynne Boddy
- Research Institute for Sport and Exercise Sciences, Lancaster University, Lancaster, UK
| | - Zoe Knowles
- Research Institute for Sport and Exercise Sciences, Lancaster University, Lancaster, UK
| | - Claire Stewart
- Research Institute for Sport and Exercise Sciences, Lancaster University, Lancaster, UK
| | - Freddy Frost
- Department of Respiratory Medicine, Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, UK
| | - Dilip Nazareth
- Department of Respiratory Medicine, Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, UK
| | - Martin Walshaw
- Department of Respiratory Medicine, Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, UK
| | - Ellen Dawson
- Research Institute for Sport and Exercise Sciences, Lancaster University, Lancaster, UK
| |
Collapse
|
11
|
Wang M, Yin X, Li S, Zhang X, Yi M, He C, Li X, Wang W, Zhang S, Liu H. Large‐Conductance Calcium‐Activated Potassium Channel Opener, NS1619, Protects Against Mesenteric Artery Remodeling Induced by Agonistic Autoantibodies Against the Angiotensin II Type 1 Receptor. J Am Heart Assoc 2022; 11:e024046. [PMID: 35156422 PMCID: PMC9245824 DOI: 10.1161/jaha.121.024046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Agonistic autoantibodies against the angiotensin II type 1 receptor (AT1‐AAs) extensively exist in patients with hypertensive diseases and have been demonstrated to play crucial roles in the pathophysiological process of vascular remodeling. However, the treatment options are limited. The large‐conductance calcium‐activated potassium (BK) channel is a critical regulator and potential therapeutic target of vascular tone and architecture. We have previously observed that AT1‐AAs have an inhibitory effect on BK channels. However, whether BK channel dysfunction is involved in AT1‐AAs‐induced vascular remodeling and the therapeutic effect of BK channel opener is unclear. Methods and Results In our study, mesenteric arteries from AT1‐AAs‐positive rats exhibited increased wall thickness, narrowing of the arteriolar lumen, and increased collagen accumulation. Patch clamp test results showed that the voltage sensitivity of BK channel declined in mesenteric arteriolar smooth muscle cells from AT1‐AAs‐positive rats. Experiments with freshly isolated mesenteric arteriolar smooth muscle cells showed that AT1‐AAs reduced the opening probability, open levels, open dwell time, and calcium sensitivity of BK channel. Experiments with HEK293T cells transfected with GFP‐ZERO‐BK α‐subunit plasmids suggested a BK channel α‐subunit‐dependent mechanism. BK channel α‐subunit deficient, namely KCNMA1−/− rats showed a phenotype of mesenteric artery remodeling. The administration of NS1619, a specific BK channel opener targeting the α‐subunit, reversed the phenotypic transition and migration induced by AT1‐AAs in cultured mesenteric arteriolar smooth muscle cells. Finally, perfusion of NS1619 significantly relieved the pathological effects induced by AT1‐AAs in vivo. Conclusions In summary, we provide compelling evidence that BK channel α‐subunit dysfunction mediates AT1‐AAs‐induced mesenteric artery remodeling. Preservation of BK channel activity may serve as a potential strategy for the treatment of AT1‐AAs‐induced maladaptive resistance artery remodeling.
Collapse
Affiliation(s)
- Meili Wang
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular DiseaseCapital Medical University Beijing China
| | - Xiaochen Yin
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
| | - Shuanglei Li
- Division of Adult Cardiac Surgery Department of Cardiology The Sixth Medical CenterChinese PLA General Hospital Beijing China
| | - Xi Zhang
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
| | - Ming Yi
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
| | - Chunyu He
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
| | - Xiaoyue Li
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
| | - Wei Wang
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular DiseaseCapital Medical University Beijing China
| | - Suli Zhang
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular DiseaseCapital Medical University Beijing China
| | - Huirong Liu
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular DiseaseCapital Medical University Beijing China
| |
Collapse
|
12
|
István L, Czakó C, Benyó F, Élő Á, Mihály Z, Sótonyi P, Varga A, Nagy ZZ, Kovács I. The effect of systemic factors on retinal blood flow in patients with carotid stenosis: an optical coherence tomography angiography study. GeroScience 2022; 44:389-401. [PMID: 34837589 PMCID: PMC8810958 DOI: 10.1007/s11357-021-00492-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
Carotid artery stenosis (CAS) is among the leading causes of mortality and permanent disabilities in the Western world. CAS is a consequence of systemic atherosclerotic disease affecting the majority of the aging population. Optical coherence tomography angiography (OCTA) is a novel imaging technique for visualizing retinal blood flow. It is a noninvasive, fast method for qualitative and quantitative assessment of the microcirculation. Cerebral and retinal circulation share similar anatomy, physiology, and embryology; thus, retinal microvasculature provides a unique opportunity to study the pathogenesis of cerebral small vessel disease in vivo. In this study, we aimed to analyze the effect of systemic risk factors on retinal blood flow in the eyes of patients with significant carotid artery stenosis using OCT angiography. A total of 112 eyes of 56 patients with significant carotid stenosis were included in the study. We found that several systemic factors, such as decreased estimated glomerular filtration rate (eGFR), hypertension, and carotid occlusion have a significant negative effect on retinal blood flow, while statin use and carotid surgery substantially improve ocular microcirculation. Neither diabetes, clopidogrel or acetylsalicylic acid use, BMI, serum lipid level, nor thrombocyte count showed a significant effect on ocular blood flow. Our results demonstrate that a systematic connection does exist between certain systemic risk factors and retinal blood flow in this patient population. OCTA could help in the assessment of cerebral circulation of patients with CAS due to its ability to detect subtle changes in retinal microcirculation that is considered to represent changes in intracranial blood flow.
Collapse
Affiliation(s)
- Lilla István
- Department of Ophthalmology, Semmelweis University, 39 Mária Street, 1085, Budapest, Hungary
| | - Cecilia Czakó
- Department of Ophthalmology, Semmelweis University, 39 Mária Street, 1085, Budapest, Hungary
| | - Fruzsina Benyó
- Department of Ophthalmology, Semmelweis University, 39 Mária Street, 1085, Budapest, Hungary
| | - Ágnes Élő
- Department of Ophthalmology, Semmelweis University, 39 Mária Street, 1085, Budapest, Hungary
| | - Zsuzsa Mihály
- Department of Vascular & Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Péter Sótonyi
- Department of Vascular & Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Andrea Varga
- Department of Vascular & Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, 39 Mária Street, 1085, Budapest, Hungary
| | - Illés Kovács
- Department of Ophthalmology, Semmelweis University, 39 Mária Street, 1085, Budapest, Hungary.
- Department of Ophthalmology, Weill Cornell Medical College, New York, USA.
- Department of Clinical Ophthalmology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
13
|
Ramirez-Perez FI, Cabral-Amador FJ, Whaley-Connell AT, Aroor AR, Morales-Quinones M, Woodford ML, Ghiarone T, Ferreira-Santos L, Jurrissen TJ, Manrique-Acevedo CM, Jia G, DeMarco VG, Padilla J, Martinez-Lemus LA, Lastra G. Cystamine reduces vascular stiffness in Western diet-fed female mice. Am J Physiol Heart Circ Physiol 2022; 322:H167-H180. [PMID: 34890280 PMCID: PMC8742720 DOI: 10.1152/ajpheart.00431.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Consumption of diets high in fat, sugar, and salt (Western diet, WD) is associated with accelerated arterial stiffening, a major independent risk factor for cardiovascular disease (CVD). Women with obesity are more prone to develop arterial stiffening leading to more frequent and severe CVD compared with men. As tissue transglutaminase (TG2) has been implicated in vascular stiffening, our goal herein was to determine the efficacy of cystamine, a nonspecific TG2 inhibitor, at reducing vascular stiffness in female mice chronically fed a WD. Three experimental groups of female mice were created. One was fed regular chow diet (CD) for 43 wk starting at 4 wk of age. The second was fed a WD for the same 43 wk, whereas a third cohort was fed WD, but also received cystamine (216 mg/kg/day) in the drinking water during the last 8 wk on the diet (WD + C). All vascular stiffness parameters assessed, including aortic pulse wave velocity and the incremental modulus of elasticity of isolated femoral and mesenteric arteries, were significantly increased in WD- versus CD-fed mice, and reduced in WD + C versus WD-fed mice. These changes coincided with respectively augmented and diminished vascular wall collagen and F-actin content, with no associated effect in blood pressure. In cultured human vascular smooth muscle cells, cystamine reduced TG2 activity, F-actin:G-actin ratio, collagen compaction capacity, and cellular stiffness. We conclude that cystamine treatment represents an effective approach to reduce vascular stiffness in female mice in the setting of WD consumption, likely because of its TG2 inhibitory capacity.NEW & NOTEWORTHY This study evaluates the novel role of transglutaminase 2 (TG2) inhibition to directly treat vascular stiffness. Our data demonstrate that cystamine, a nonspecific TG2 inhibitor, improves vascular stiffness induced by a diet rich in fat, fructose, and salt. This research suggests that TG2 inhibition might bear therapeutic potential to reduce the disproportionate burden of cardiovascular disease in females in conditions of chronic overnutrition.
Collapse
Affiliation(s)
- Francisco I. Ramirez-Perez
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,2Biomedical, Biological, and Chemical Engineering Department, University of Missouri, Columbia, Missouri
| | | | - Adam T. Whaley-Connell
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,4Division of Nephrology and Hypertension, Department of Medicine, University of Missouri, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | - Annayya R. Aroor
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | | | - Makenzie L. Woodford
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Thaysa Ghiarone
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Larissa Ferreira-Santos
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,6Instituto do Coracao, Hospital das Clínicas da Faculdade de
Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade
de São Paulo, São Paulo, Brazil
| | - Thomas J. Jurrissen
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,7Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Camila M. Manrique-Acevedo
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | - GuangHong Jia
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| | - Vincent G. DeMarco
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,4Division of Nephrology and Hypertension, Department of Medicine, University of Missouri, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri,8Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,7Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Luis A. Martinez-Lemus
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,2Biomedical, Biological, and Chemical Engineering Department, University of Missouri, Columbia, Missouri,8Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Guido Lastra
- 3Research Service, Harry S. Truman Memorial
Veterans’ Hospital, Columbia, Missouri,5Division of Endocrinology and Diabetes, Department of Internal Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
14
|
Privalova EA, Belenkov YN, Danilogorskaya YA, Zheleznykh EA, Kozhevnikova MV, Zektser VY, Lishuta AS, Ilgisonis IS. To study the dynamics of serum levels of vascular remodeling in patients with hypertension, including in combination with type 2 diabetes mellitus during 12‑month therapy with perindopril A. KARDIOLOGIIA 2022; 62:24-31. [PMID: 35168530 DOI: 10.18087/cardio.2022.1.n1890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Aim To study the dynamics of serum markers for vascular remodeling in patients with arterial hypertension (AH), including AH associated with type 2 diabetes mellitus (DM2) during the 12-month treatment with the angiotensin-converting enzyme (ACE) inhibitor, perindopril A.Material and methods The study included patients with grade 1-2 AH with or without type 2 DM (30 and 32, respectively). Perindopril A 10 mg/day was administered for the outpatient correction of previous, ineffective antihypertensive therapy. The following biomarkers were measured for all patients at baseline and at 12 months: matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), E-selectin, endothelin 1, transforming growth factor β-1 (TGF-β1), and von Willebrand factor (WF). Laboratory tests were performed with enzyme immunoassay.Results After 12 months of the perindopril A (perindopril arginine) 10 mg/day treatment, both groups achieved the goal blood pressure. Evaluation of biomarker dynamics during the perindopril A treatment showed significant decreases in MMP-9, TIMP-1, and endothelin 1 in the AH group; then the level of TIMP-1 returned to normal values (р<0.05). In the AH+DM2 group, the MMP-9 concentration was significantly decreased (р<0.05); the other values did not show any significant differences. In both groups, MMP-9 was significantly decreased (28.6 % (р=0.01) in group 1 and 33.2 % (р=0.00) in group 2. Notably, in none of these groups, did this index reach normal values. Also, there were no significant differences in this index between the groups (р=0.66). It should be noted that the decreases in TIMP-1 were significantly different between the groups (р=0.001). Thus, this biomarker did not significantly decrease in patients with AH and DM2 (р=0.26) whereas in group 1 (AH without DM2), the level of TIMP-1 decreased by 39.3 % and reached the normal range (р=0.005).Conclusion Concentrations of biomarkers were decreased in both groups. However, in the AH group, there were statistically significant decreases in the markers that reflect processes of fibrosis and vasoconstriction. At the same time in the AH+DM2 group, there was no significant dynamics of the biomarkers, which was most likely due to more pronounced damage of blood vessels. However, the decrease in MMP-9 may indicate an alleviation of fibrotic processes in arterial walls. These results allow a conclusion that the long-term treatment with the ACE inhibitor, perindopril A, may reverse remodeling of the vascular changes that are called "early vascular ageing".r aging".
Collapse
Affiliation(s)
- E A Privalova
- I.M. Sechenov First Moscow Medical University (Sechenov University), Moscow
| | - Yu N Belenkov
- I.M. Sechenov First Moscow Medical University (Sechenov University), Moscow
| | | | - E A Zheleznykh
- I.M. Sechenov First Moscow Medical University (Sechenov University), Moscow
| | - M V Kozhevnikova
- I.M. Sechenov First Moscow Medical University (Sechenov University), Moscow
| | - V Y Zektser
- I.M. Sechenov First Moscow Medical University (Sechenov University), Moscow
| | - A S Lishuta
- I.M. Sechenov First Moscow Medical University (Sechenov University), Moscow
| | - I S Ilgisonis
- I.M. Sechenov First Moscow Medical University (Sechenov University), Moscow
| |
Collapse
|
15
|
Weber E, Aglianò M, Bertelli E, Gabriele G, Gennaro P, Barone V. Lymphatic Collecting Vessels in Health and Disease: A Review of Histopathological Modifications in Lymphedema. Lymphat Res Biol 2022; 20:468-477. [PMID: 35041535 PMCID: PMC9603277 DOI: 10.1089/lrb.2021.0090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Secondary lymphedema of the extremities affects millions of people in the world as a common side effect of oncological treatments with heavy impact on every day life of patients and on the health care system. One of the surgical techniques for lymphedema treatment is the creation of a local connection between lymphatic vessels and veins, facilitating drainage of lymphatic fluid into the circulatory system. Successful results, however, rely on using a functional vessel for the anastomosis, and vessel function, in turn, depends on its structure. The structure of lymphatic collecting vessels changes with the progression of lymphedema. They appear initially dilated by excess interstitial fluid entered at capillary level. The number of lymphatic smooth muscle cells in their media then increases in the attempt to overcome the impaired drainage. When lymphatic muscle cells hyperplasia occurs at the expenses of the lumen, vessel patency decreases hampering lymph flow. Finally, collagen fiber accumulation leads to complete occlusion of the lumen rendering the vessel unfit to conduct lymph. Different types of vessels may coexist in the same patient but usually the distal part of the limb contains less affected vessels that are more likely to perform efficient lymphatic–venular anastomosis. Here we review the structure of the lymphatic collecting vessels in health and in lymphedema, focusing on the histopathological changes of the lymphatic vessel wall based on the observations on segments of the vessels used for lymphatic–venular anastomoses.
Collapse
Affiliation(s)
- Elisabetta Weber
- Department of Molecular and Developmental Medicine and Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Margherita Aglianò
- Department of Clinical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine and Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Guido Gabriele
- Department of Medical Biotechnologies, University of Siena, Azienda Ospedaliera Universitaria Senese AOUS, Siena, Italy
| | - Paolo Gennaro
- Department of Medical Biotechnologies, University of Siena, Azienda Ospedaliera Universitaria Senese AOUS, Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine and Surgical and Neurological Sciences, University of Siena, Siena, Italy
| |
Collapse
|
16
|
MEKK3-TGFβ crosstalk regulates inward arterial remodeling. Proc Natl Acad Sci U S A 2021; 118:2112625118. [PMID: 34911761 DOI: 10.1073/pnas.2112625118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 01/08/2023] Open
Abstract
Arterial remodeling is an important adaptive mechanism that maintains normal fluid shear stress in a variety of physiologic and pathologic conditions. Inward remodeling, a process that leads to reduction in arterial diameter, plays a critical role in progression of such common diseases as hypertension and atherosclerosis. Yet, despite its pathogenic importance, molecular mechanisms controlling inward remodeling remain undefined. Mitogen-activated protein kinases (MAPKs) perform a number of functions ranging from control of proliferation to migration and cell-fate transitions. While the MAPK ERK1/2 signaling pathway has been extensively examined in the endothelium, less is known about the role of the MEKK3/ERK5 pathway in vascular remodeling. To better define the role played by this signaling cascade, we studied the effect of endothelial-specific deletion of its key upstream MAP3K, MEKK3, in adult mice. The gene's deletion resulted in a gradual inward remodeling of both pulmonary and systematic arteries, leading to spontaneous hypertension in both vascular circuits and accelerated progression of atherosclerosis in hyperlipidemic mice. Molecular analysis revealed activation of TGFβ-signaling both in vitro and in vivo. Endothelial-specific TGFβR1 knockout prevented inward arterial remodeling in MEKK3 endothelial knockout mice. These data point to the unexpected participation of endothelial MEKK3 in regulation of TGFβR1-Smad2/3 signaling and inward arterial remodeling in artery diseases.
Collapse
|
17
|
Grenier C, Caillon A, Munier M, Grimaud L, Champin T, Toutain B, Fassot C, Blanc-Brude O, Loufrani L. Dual Role of Thrombospondin-1 in Flow-Induced Remodeling. Int J Mol Sci 2021; 22:12086. [PMID: 34769516 PMCID: PMC8584526 DOI: 10.3390/ijms222112086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022] Open
Abstract
(1) Background: Chronic increases in blood flow, as in cardiovascular diseases, induce outward arterial remodeling. Thrombospondin-1 (TSP-1) is known to interact with matrix proteins and immune cell-surface receptors, but its contribution to flow-mediated remodeling in the microcirculation remains unknown. (2) Methods: Mesenteric arteries were ligated in vivo to generate high- (HF) and normal-flow (NF) arteries in wild-type (WT) and TSP-1-deleted mice (TSP-1-/-). After 7 days, arteries were isolated and studied ex vivo. (3) Results: Chronic increases in blood flow induced outward remodeling in WT mice (increasing diameter from 221 ± 10 to 280 ± 10 µm with 75 mmHg intraluminal pressure) without significant effect in TSP-1-/- (296 ± 18 to 303 ± 14 µm), neutropenic or adoptive bone marrow transfer mice. Four days after ligature, pro inflammatory gene expression levels (CD68, Cox2, Gp91phox, p47phox and p22phox) increased in WT HF arteries but not in TSP-1-/- mice. Perivascular neutrophil accumulation at day 4 was significantly lower in TSP-1-/- than in WT mice. (4) Conclusions: TSP-1 origin is important; indeed, circulating TSP-1 participates in vasodilation, whereas both circulating and tissue TSP-1 are involved in arterial wall thickness and diameter expansion.
Collapse
Affiliation(s)
- Céline Grenier
- UMR CNRS 6015, 49100 Angers, France; (C.G.); (A.C.); (M.M.); (L.G.); (T.C.); (B.T.); (C.F.)
- INSERM U1083, 49100 Angers, France
- MITOVASC Institute, University of Angers, 49100 Angers, France
| | - Antoine Caillon
- UMR CNRS 6015, 49100 Angers, France; (C.G.); (A.C.); (M.M.); (L.G.); (T.C.); (B.T.); (C.F.)
- INSERM U1083, 49100 Angers, France
- MITOVASC Institute, University of Angers, 49100 Angers, France
| | - Mathilde Munier
- UMR CNRS 6015, 49100 Angers, France; (C.G.); (A.C.); (M.M.); (L.G.); (T.C.); (B.T.); (C.F.)
- INSERM U1083, 49100 Angers, France
- MITOVASC Institute, University of Angers, 49100 Angers, France
| | - Linda Grimaud
- UMR CNRS 6015, 49100 Angers, France; (C.G.); (A.C.); (M.M.); (L.G.); (T.C.); (B.T.); (C.F.)
- INSERM U1083, 49100 Angers, France
- MITOVASC Institute, University of Angers, 49100 Angers, France
| | - Tristan Champin
- UMR CNRS 6015, 49100 Angers, France; (C.G.); (A.C.); (M.M.); (L.G.); (T.C.); (B.T.); (C.F.)
- INSERM U1083, 49100 Angers, France
- MITOVASC Institute, University of Angers, 49100 Angers, France
| | - Bertrand Toutain
- UMR CNRS 6015, 49100 Angers, France; (C.G.); (A.C.); (M.M.); (L.G.); (T.C.); (B.T.); (C.F.)
- INSERM U1083, 49100 Angers, France
- MITOVASC Institute, University of Angers, 49100 Angers, France
| | - Céline Fassot
- UMR CNRS 6015, 49100 Angers, France; (C.G.); (A.C.); (M.M.); (L.G.); (T.C.); (B.T.); (C.F.)
- INSERM U1083, 49100 Angers, France
- MITOVASC Institute, University of Angers, 49100 Angers, France
| | | | - Laurent Loufrani
- UMR CNRS 6015, 49100 Angers, France; (C.G.); (A.C.); (M.M.); (L.G.); (T.C.); (B.T.); (C.F.)
- INSERM U1083, 49100 Angers, France
- MITOVASC Institute, University of Angers, 49100 Angers, France
| |
Collapse
|
18
|
Eiken O, Elia A, Sköldefors H, Sundblad P, Keramidas ME, Kölegård R. Adaptation to 5 weeks of intermittent local vascular pressure increments; mechanisms to be considered in the development of primary hypertension? Am J Physiol Heart Circ Physiol 2021; 320:H1303-H1312. [PMID: 33481701 DOI: 10.1152/ajpheart.00763.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aims were to study effects of iterative exposures to moderate elevations of local intravascular pressure on arterial/arteriolar stiffness and plasma levels of vasoactive substances. Pressures in the vasculature of an arm were increased by 150 mmHg in healthy men (n = 11) before and after a 5-wk regimen, during which the vasculature in one arm was exposed to fifteen 40-min sessions of moderately increased transmural pressure (+65 to +105 mmHg). This vascular pressure training and the pressure-distension determinations were conducted by exposing the subjects' arm versus remaining part of the body to differential ambient pressure. During the pressure-distension determinations, venous samples were simultaneously obtained from pressurized and unpressurized vessels. Pressure training reduced arterial pressure distension by 40 ± 23% and pressure-induced flow by 33 ± 30% (P < 0.01), but only in the pressure-trained arm, suggesting local adaptive mechanisms. The distending pressure-diameter and distending pressure-flow curves, with training-induced increments in pressure thresholds and reductions in response gains, suggest that the increased precapillary stiffness was attributable to increased contractility and structural remodeling of the walls. Acute vascular pressure provocation induced local release of angiotensin-II (ANG II) and endothelin-1 (ET-1) (P < 0.05), suggesting that these vasoconstrictors limited the pressure distension. Pressure training increased basal levels of ET-1 and induced local pressure release of matrix metalloproteinase 7 (P < 0.05), suggesting involvement of these substances in vascular remodeling. The findings are compatible with the notion that local intravascular pressure load acts as a prime mover in the development of primary hypertension.NEW & NOTEWORTHY Adaptive responses to arterial/arteriolar pressure elevation have typically been investigated in cross-sectional studies in hypertensive patients or in longitudinal studies in experimental animals. The present investigation shows that in healthy individuals, fifteen 40-min, carefully controlled, moderate transmural pressure elevations markedly increase in vivo stiffness (i.e. reduce pressure distension) in arteries and arterioles. The response is mediated via local mechanisms, and it appears that endothelin-1, angiotensin-II, and matrix metalloproteinase 7 may have key roles.
Collapse
Affiliation(s)
- O Eiken
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - A Elia
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - H Sköldefors
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - P Sundblad
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - M E Keramidas
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - R Kölegård
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
19
|
Morales-Quinones M, Ramirez-Perez FI, Foote CA, Ghiarone T, Ferreira-Santos L, Bloksgaard M, Spencer N, Kimchi ET, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. LIMK (LIM Kinase) Inhibition Prevents Vasoconstriction- and Hypertension-Induced Arterial Stiffening and Remodeling. Hypertension 2020; 76:393-403. [PMID: 32594801 DOI: 10.1161/hypertensionaha.120.15203] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increased arterial stiffness and vascular remodeling precede and are consequences of hypertension. They also contribute to the development and progression of life-threatening cardiovascular diseases. Yet, there are currently no agents specifically aimed at preventing or treating arterial stiffening and remodeling. Previous research indicates that vascular smooth muscle actin polymerization participates in the initial stages of arterial stiffening and remodeling and that LIMK (LIM kinase) promotes F-actin formation and stabilization via cofilin phosphorylation and consequent inactivation. Herein, we hypothesize that LIMK inhibition is able to prevent vasoconstriction- and hypertension-associated arterial stiffening and inward remodeling. We found that small visceral arteries isolated from hypertensive subjects are stiffer and have greater cofilin phosphorylation than those from nonhypertensives. We also show that LIMK inhibition prevents arterial stiffening and inward remodeling in isolated human small visceral arteries exposed to prolonged vasoconstriction. Using cultured vascular smooth muscle cells, we determined that LIMK inhibition prevents vasoconstrictor agonists from increasing cofilin phosphorylation, F-actin volume, and cell cortex stiffness. We further show that localized LIMK inhibition prevents arteriolar inward remodeling in hypertensive mice. This indicates that hypertension is associated with increased vascular smooth muscle cofilin phosphorylation, cytoskeletal stress fiber formation, and heightened arterial stiffness. Our data further suggest that pharmacological inhibition of LIMK prevents vasoconstriction-induced arterial stiffening, in part, via reductions in vascular smooth muscle F-actin content and cellular stiffness. Accordingly, LIMK inhibition should represent a promising therapeutic means to stop the progression of arterial stiffening and remodeling in hypertension.
Collapse
Affiliation(s)
- Mariana Morales-Quinones
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Francisco I Ramirez-Perez
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Biological Engineering (F.I.R.-P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Christopher A Foote
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Thaysa Ghiarone
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Larissa Ferreira-Santos
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Instituto do Coração (InCor), Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, Brazil (L.F.-S.)
| | - Maria Bloksgaard
- Department of Molecular Medicine, University of Southern Denmark, Odense (M.B.)
| | | | - Eric T Kimchi
- Department of Surgery (E.T.K.), University of Missouri, Columbia, MO.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (E.T.K., C.M.-A.)
| | - Camila Manrique-Acevedo
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism (C.M.-A.), University of Missouri, Columbia, MO.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (E.T.K., C.M.-A.)
| | - Jaume Padilla
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, MO
| | - Luis A Martinez-Lemus
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Biological Engineering (F.I.R.-P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology (L.A.M.-L.), University of Missouri, Columbia, MO
| |
Collapse
|
20
|
Danilogorskaya YA, Zheleznykh EA, Privalova EA, Belenkov YN, Shchendrigina AA, Kozhevnikova MV, Shakaryants GA, Zektser VY, Lishuta AS, Khabarova NV. [Vasoprotective Effects of Prolonged Therapy With Perindopril A in Patients with Hypertension Including Concomitant Type 2 Diabetes Mellitus]. ACTA ACUST UNITED AC 2020; 60:4-9. [PMID: 32245348 DOI: 10.18087/cardio.2020.1.n888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/20/2019] [Indexed: 11/18/2022]
Abstract
Objective Investigate the dynamics of morphological and functional markers of vascular remodeling in patients with arterial hypertension (AH), including those with concomitant type 2 diabetes mellitus (DM2), during 12-month administration of perindopril A.Material and Methods The study included patients with grade I-II AH, with and without DM2 (30 and 32 patients, respectively), who underwent outpatient correction of initially ineffective antihypertensive therapy and administration of perindopril A, 10 mg/day. Morphological and functional parameters of vascular remodeling were evaluated in all patients at baseline and at 12 months using photoplethysmography. Stiffness index (SI) and phase shift (PS) were measured in large vessels. Reflection index (RI) and occlusion index (OI) were measured in microvessels. Computed nailfold videocapillaroscopy was used to determine capillary density (CD) at rest (CDr), CD during venous occlusion test (CDvo), and CD during reactive hyperemia test (CDrh). Data are medians [interquartile range].Results After 12-month administration of perindopril A, the morphological and functional parameters of vascular remodeling in AH patients without DM2 significantly improved at all vascular levels. SI decreased to 9.25 [7.8; 10.93 ] m/s and PS increased to 7.4 [5.6; 9.05] ms. In microvasculature, a statistically significant reduction was observed in RI, 31 [27; 36.5]%, and an increase was observed in OI, which characterizes endothelium function, 1.75 [1.68; 1.9]. Capillary CDr significantly increased to 40.5 [34.93; 46] cap/mm2, as did CDvo and CDrh. At the same time, in the group of patients with AH and DM2, a significant improvement was observed for the large vessels. SI decreased to 9.8 [9.08; 10.58] m/s, and PS increased to 6.95 [5.13; 10.08]. The RI index, reflecting the structural condition of arterioles, significantly decreased to 34 [25.9; 45.53]%, and the OI index, characterizing endothelial function, did not change significantly, 1.4 [1.3; 1.6]. Capillary CDr significantly increased to 31.55 [27.68; 34.7 ] cap/mm2; however, CDvo and CDrh did not change significantly. Renal function improved in both groups.Conclusion Both groups demonstrated improvement of morphological parameters at all levels of the arterial bed. However, patients with AH and concomitant DM2 showed no improvement of the endothelial function of arterioles and capillaries compared to improvement in AH patients without DM2. This reflected the more severe endothelial dysfunction present in AH patients with DM2.
Collapse
Affiliation(s)
- Yu A Danilogorskaya
- I.M. Sechenov First Moscow State Medical University, Department of Hospital Therapy #1
| | - E A Zheleznykh
- I.M. Sechenov First Moscow State Medical University, Department of Hospital Therapy #1
| | - E A Privalova
- I.M. Sechenov First Moscow State Medical University, Department of Hospital Therapy #1
| | - Yu N Belenkov
- I.M. Sechenov First Moscow State Medical University, Department of Hospital Therapy #1
| | - A A Shchendrigina
- I.M. Sechenov First Moscow State Medical University, Department of Hospital Therapy #1
| | - M V Kozhevnikova
- I.M. Sechenov First Moscow State Medical University, Department of Hospital Therapy #1
| | - G A Shakaryants
- I.M. Sechenov First Moscow State Medical University, Department of Hospital Therapy #1
| | - V Yu Zektser
- I.M. Sechenov First Moscow State Medical University, Department of Hospital Therapy #1
| | - A S Lishuta
- I.M. Sechenov First Moscow State Medical University, Department of Hospital Therapy #1
| | - N V Khabarova
- I.M. Sechenov First Moscow State Medical University, Department of Hospital Therapy #1
| |
Collapse
|
21
|
Affiliation(s)
- Cameron G McCarthy
- From the Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH (C.G.M.)
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth (S.G.)
| | - R Clinton Webb
- Department of Physiology, Augusta University, GA (R.C.W.)
| |
Collapse
|
22
|
Looft-Wilson RC, Billig JE, Sessa WC. Shear Stress Attenuates Inward Remodeling in Cultured Mouse Thoracodorsal Arteries in an eNOS-Dependent, but Not Hemodynamic Manner, and Increases Cx37 Expression. J Vasc Res 2019; 56:284-295. [PMID: 31574503 PMCID: PMC6908748 DOI: 10.1159/000502690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 08/13/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Arteries chronically constricted in culture remodel to smaller diameters. Conversely, elevated luminal shear stress (SS) promotes outward remodeling of arteries in vivo and prevents inward remodeling in culture in a nitric oxide synthase (NOS)-dependent manner. OBJECTIVES To determine whether SS-induced prevention of inward remodeling in cultured arteries is specifically eNOS-dependent and requires dilation, and whether SS alters the expression of eNOS and other genes potentially involved in remodeling. METHODS Female mouse thoracodorsal arteries were cannulated, pressurized to 80 mm Hg, and cultured for 2 days with low SS (<7 dyn/cm2), high SS (≥15 dyn/cm2), high SS + L-NAME (NOS inhibitor, 10-4 M), or high SS in arteries from eNOS-/- mice. In separate arteries cultured 1 day with low or high SS, eNOS and connexin (Cx) 37, Cx40, and Cx43 mRNA were assessed with real-time PCR. RESULTS High SS caused little change in passive diameters after culture (-4.7 ± 2.0%), which was less than low SS (-18.9 ± 1.4%; p < 0.0001), high SS eNOS-/- (-18.0 ± 1.5; p < 0.001), or high SS + L-NAME (-12.0 ± 0.6%; nonsignificant) despite similar constriction during culture. Cx37 mRNA expression was increased (p < 0.05) with high SS, but other gene levels were not different. CONCLUSIONS eNOS is involved in SS-induced prevention of inward remodeling in cultured small arteries. This effect does not require NO-mediated dilation. SS increased Cx37.
Collapse
Affiliation(s)
- Robin C Looft-Wilson
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA,
- Department of Cardiology, Yale University School of Medicine, New Haven, Connecticut, USA,
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA,
- Department of Kinesiology and Health Sciences, College of William and Mary, Williamsburg, Virginia, USA,
| | - Janelle E Billig
- Department of Kinesiology and Health Sciences, College of William and Mary, Williamsburg, Virginia, USA
| | - William C Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Cardiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Danilogorskaya YA, Zheleznykh EA, Privalova EA, Belenkov YN, Shchendrigina AA, Kozhevnikova MV, Shakaryants GA, Zektser VY, Lishuta AS, Ilgisonis IS. Vascular Remodeling Markers in Patients with Essential Arterial Hypertension Depending on Presence of Type 2 Diabetes Mellitus. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2019. [DOI: 10.20996/1819-6446-2019-15-3-328-334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aim. To study some vascular remodeling markers in hypertensive patients depending on the presence of type 2 diabetes mellitus.Material and methods. The study included patients with essential hypertension 1-2 degrees of increase in blood pressure with/without type 2 diabetes (30 and 32 patients respectively). Using photoplethysmography in combination with reactive hyperemia test structural and functional markers of vascular remodeling were determined: in large vessels – stiffness index and phase shift; in microvessels – reflection index and the occlusion index. Using the computer video capillaroscopy of the nail bed the density of the capillary network at rest, after venous occlusion and after the test with reactive hyperemia was determined. ELISA was used for determining the level of humoral markers of endothelium dysfunction and vascular bed remodeling: metalloproteinase 9, metalloproteinase 9 inhibitor, E-selectin, endothelin, transforming growth factor (TGF-β1), endothelial growthfactor A.Results. In compare with hypertensive patients in hypertensive patients with type 2 diabetes significantly higher stiffness index values (11.15 [10.05; 12.35] vs 10.15 [8.83; 11.83] m/s; p=0.04) were found as well as significantly lower (p=0.00) capillary network density at rest (26.4 [24.2; 27.6] vs 35.1 [33.0; 45.0] cap/mm2; p=0.00) after the tests with reactive hyperemia (29 [24; 33.3] vs 40.0 [35.0;43.3] cap/mm2; p=0.00) and venous occlusion (32.5 [27.8; 34.5] vs 40.0 [33.0; 45.0] cap/mm2). In hypertensive patients with type 2 diabetes significantly higher levels of TFG-β1 (11648 [4117.8; 37933.8] vs 3938.5 [1808.8; 7694] pg/ml; p=0.00) and significantly lower levels of endothelin-1 (0,46 [0,29;1,3] vs 1.73 [0.63; 2.30] ng/ml; p=0.01) was detected in compare with hypertensive patients without type 2 diabetes.Conclusion. In both groups some signs of vascular remodeling were found at the level of both large arteries and microvessels (arterioles and capillaries). However, the group of hypertension + type 2 diabetes mellitus had statistically significantly more pronounced changes in arterial stiffness, capillary network density, as well as humoral markers levels of fibrosis and endothelial dysfunction.
Collapse
Affiliation(s)
| | - E. A. Zheleznykh
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E. A. Privalova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - Yu. N. Belenkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - M. V. Kozhevnikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - G. A. Shakaryants
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - V. Y. Zektser
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. S. Lishuta
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I. S. Ilgisonis
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
24
|
Branyan KW, Devallance ER, Lemaster KA, Skinner RC, Bryner RW, Olfert IM, Kelley EE, Frisbee JC, Chantler PD. Role of Chronic Stress and Exercise on Microvascular Function in Metabolic Syndrome. Med Sci Sports Exerc 2019; 50:957-966. [PMID: 29271845 DOI: 10.1249/mss.0000000000001531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The present study examined the effect of unpredictable chronic mild stress (UCMS) on peripheral microvessel function in healthy and metabolic syndrome (MetS) rodents and whether exercise training could prevent the vascular dysfunction associated with UCMS. METHODS Lean and obese (model of MetS) Zucker rats (LZR and OZR) were exposed to 8 wk of UCMS, exercise (Ex), UCMS + Ex, or control conditions. At the end of the intervention, gracilis arterioles (GA) were isolated and hung in a pressurized myobath to assess endothelium-dependent (EDD) and endothelium-independent (EID) dilation. Levels of nitric oxide (NO) and reactive oxygen species (ROS) were measured through 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate and dihydroethidium staining, respectively. RESULTS Compared with LZR controls, EDD and EID were lower (P = 0.0001) in LZR-UCMS. The OZR-Ex group had a higher EDD (P = 0.0001) and EID (P = 0.003) compared with OZR controls, whereas only a difference in EDD (P = 0.01) was noted between the LZR-control and LZR-Ex groups. Importantly, EDD and EID were higher in the LZR (P = 0.0001; P = 0.02) and OZR (P = 0.0001; P = 0.02) UCMS + Ex groups compared with UCMS alone. Lower NO bioavailability and higher ROS were noted in the LZR-UCMS group (P = 0.0001), but not OZR-UCMS, compared with controls. The Ex and UCMS-Ex groups had higher NO bioavailability (P = 0.0001) compared with the control and UCMS groups, but ROS levels remained high. CONCLUSIONS The comorbidity between UCMS and MetS does not exacerbate the effects of one another on GA EDD responses, but does lead to the development of other vasculopathy adaptations, which can be partially explained by alterations in NO and ROS production. Importantly, exercise training alleviates most of the negative effects of UCMS on GA function.
Collapse
Affiliation(s)
- Kayla W Branyan
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Evan R Devallance
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Kent A Lemaster
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - R Christopher Skinner
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Randy W Bryner
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - I Mark Olfert
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Eric E Kelley
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Jefferson C Frisbee
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Paul D Chantler
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| |
Collapse
|
25
|
Williams HC, Ma J, Weiss D, Lassègue B, Sutliff R, Martín AS. The cofilin phosphatase slingshot homolog 1 restrains angiotensin II-induced vascular hypertrophy and fibrosis in vivo. J Transl Med 2019; 99:399-410. [PMID: 30291325 PMCID: PMC6442944 DOI: 10.1038/s41374-018-0116-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 06/30/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
The dual specificity phosphatase slingshot homolog 1 (SSH1) contributes to actin remodeling by dephosphorylating and activating the actin-severing protein cofilin. The reorganization of the actin cytoskeleton has been implicated in chronic hypertension and the subsequent mechano-adaptive rearrangement of vessel wall components. Therefore, using a novel Ssh1-/- mouse model, we investigated the potential role of SSH1 in angiotensin II (Ang II)-induced hypertension, and vascular remodeling. We found that loss of SSH1 did not produce overt phenotypic changes and that baseline blood pressures as well as heart rates were comparable between Ssh1+/+ and Ssh1-/- mice. Although 14 days of Ang II treatment equally increased systolic blood pressure in both genotypes, histological assessment of aortic samples indicated that medial thickening was exacerbated by the loss of SSH1. Consequently, reverse-transcription quantitative PCR analysis of the transcripts from Ang II-infused animals confirmed increased aortic expression levels of fibronectin, and osteopontin in Ssh1-/- when compared to wild-type mice. Mechanistically, our data suggest that fibrosis in SSH1-deficient mice occurs by a process that involves aberrant responses to Ang II-induced TGFβ1. Taken together, our work indicates that Ang II-dependent fibrotic gene expression and vascular remodeling, but not the Ang II-induced pressor response, are modulated by SSH1-mediated signaling pathways and SSH1 activity is protective against Ang II-induced remodeling in the vasculature.
Collapse
Affiliation(s)
- Holly C. Williams
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322
| | - Jing Ma
- Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia
| | - Daiana Weiss
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322
| | - Bernard Lassègue
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322
| | - Roy Sutliff
- Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia
| | - Alejandra San Martín
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322
| |
Collapse
|
26
|
Martinez-Quinones P, McCarthy CG, Watts SW, Klee NS, Komic A, Calmasini FB, Priviero F, Warner A, Chenghao Y, Wenceslau CF. Hypertension Induced Morphological and Physiological Changes in Cells of the Arterial Wall. Am J Hypertens 2018; 31:1067-1078. [PMID: 29788246 DOI: 10.1093/ajh/hpy083] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022] Open
Abstract
Morphological and physiological changes in the vasculature have been described in the evolution and maintenance of hypertension. Hypertension-induced vascular dysfunction may present itself as a contributing, or consequential factor, to vascular remodeling caused by chronically elevated systemic arterial blood pressure. Changes in all vessel layers, from the endothelium to the perivascular adipose tissue (PVAT), have been described. This mini-review focuses on the current knowledge of the structure and function of the vessel layers, specifically muscular arteries: intima, media, adventitia, PVAT, and the cell types harbored within each vessel layer. The contributions of each cell type to vessel homeostasis and pathophysiological development of hypertension will be highlighted.
Collapse
Affiliation(s)
- Patricia Martinez-Quinones
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, Georgia
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Cameron G McCarthy
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Nicole S Klee
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Amel Komic
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, Georgia
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Fabiano B Calmasini
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Fernanda Priviero
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Alexander Warner
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Yu Chenghao
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Camilla F Wenceslau
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
27
|
Klein A, Joseph PD, Christensen VG, Jensen LJ, Jacobsen JCB. Lack of tone in mouse small mesenteric arteries leads to outward remodeling, which can be prevented by prolonged agonist-induced vasoconstriction. Am J Physiol Heart Circ Physiol 2018; 315:H644-H657. [PMID: 29775408 DOI: 10.1152/ajpheart.00111.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inward remodeling of resistance vessels is an independent risk factor for cardiovascular events. Thus far, the remodeling process remains incompletely elucidated, but the activation level of the vascular smooth muscle cell appears to play a central role. Accordingly, previous data have suggested that an antagonistic and supposedly beneficial response, outward remodeling, may follow prolonged vasodilatation. The present study aimed to determine whether 1) outward remodeling follows 3 days of vessel culture without tone, 2) a similar response can be elicited in a much shorter 4-h timeframe, and, finally, 3) whether a 4-h response can be prevented or reversed by the presence of vasoconstrictors in the medium. Cannulated mouse small mesenteric arteries were organocultured for 3 days in the absence of tone, leading to outward remodeling that continued throughout the culture period. In more acute experiments in which cannulated small mesenteric arteries were maintained in physiological saline without tone for 4 h, we detected a similar outward remodeling that proceeded at a rate several times faster. In the 4-h experimental setting, continuous vasoconstriction to ~50% tone by abluminal application of UTP or norepinephrine + neuropeptide Y prevented outward remodeling but did not cause inward remodeling. Computational modeling was used to simulate and interpret these findings and to derive time constants of the remodeling processes. It is suggested that depriving resistance arteries of activation will lead to eutrophic outward remodeling, which can be prevented by vascular smooth muscle cell activation induced by prolonged vasoconstrictor exposure. NEW & NOTEWORTHY We have established an effective 4-h method for studying outward remodeling in pressurized mouse resistance vessels ex vivo and have determined conditions that block the remodeling response. This allows for investigating the subtle but clinically highly relevant phenomenon of outward remodeling while avoiding both laborious 3-day organoid culture of cannulated vessels and in vivo experiments lasting several weeks.
Collapse
Affiliation(s)
- Anika Klein
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Philomeena Daphne Joseph
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Vibeke Grøsfjeld Christensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Lars Jørn Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens Christian Brings Jacobsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
28
|
Parente JM, Pereira CA, Oliveira-Paula GH, Tanus-Santos JE, Tostes RC, Castro MM. Matrix Metalloproteinase-2 Activity is Associated with Divergent Regulation of Calponin-1 in Conductance and Resistance Arteries in Hypertension-induced Early Vascular Dysfunction and Remodelling. Basic Clin Pharmacol Toxicol 2017; 121:246-256. [PMID: 28374979 DOI: 10.1111/bcpt.12787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/27/2017] [Indexed: 01/19/2023]
Abstract
Matrix metalloproteinase (MMP)-2 participates in hypertension-induced maladaptive vascular remodelling by degrading extra- and intracellular proteins. The consequent extracellular matrix rearrangement and phenotype switch of vascular smooth muscle cells (VSMCs) lead to increased cellular migration and proliferation. As calponin-1 degradation by MMP-2 may lead to VSMC proliferation during hypertension, the hypothesis of this study is that increased MMP-2 activity contributes to early hypertension-induced maladaptive remodelling in conductance and resistance arteries via regulation of calponin-1. The main objective was to analyse whether MMP-2 exerts similar effects on the structure and function of the resistance and conductance arteries during early hypertension. Two-kidney, one-clip (2K-1C) hypertensive male rats and corresponding controls were treated with doxycycline (30 mg/kg/day) or water until reaching one week of hypertension. Systolic blood pressure was increased in 2K-1C rats, and doxycycline did not reduce it. Aortas and mesenteric arteries were analysed. MMP-2 activity and expression were increased in both arteries, and doxycycline reduced it. Significant hypertrophic remodelling and VSMC proliferation were observed in aortas but not in mesenteric arteries of 2K-1C rats. The contractility of mesenteric arteries to phenylephrine was increased in 2K-1C rats, and doxycycline prevented this alteration. The potency of phenylephrine to contract aortas of 2K-1C rats was increased, and doxycycline decreased it. Whereas calponin-1 expression was increased in 2K-1C mesenteric arteries, calponin-1 was reduced in aortas. Doxycycline treatment reverted changes in calponin-1 expression. MMP-2 contributes to hypertrophic remodelling in aortas by decreasing calponin-1 levels, which may result in VSMC proliferation. On the other hand, MMP-2-dependent increased calponin-1 in mesenteric arteries may contribute to vascular hypercontractility in 2K-1C rats. Divergent regulation of calponin-1 by MMP-2 may be an important mechanism that leads to maladaptive vascular effects in hypertension.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Calcium-Binding Proteins/metabolism
- Disease Models, Animal
- Female
- Hypertension, Renovascular/enzymology
- Hypertension, Renovascular/pathology
- Hypertension, Renovascular/physiopathology
- Matrix Metalloproteinase 2/metabolism
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/enzymology
- Mesenteric Arteries/pathology
- Mesenteric Arteries/physiopathology
- Microfilament Proteins/metabolism
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Rats, Wistar
- Signal Transduction
- Vascular Remodeling/drug effects
- Vascular Resistance/drug effects
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
- Vasodilator Agents/pharmacology
- Calponins
Collapse
Affiliation(s)
- Juliana M Parente
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Camila A Pereira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - José E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Michele M Castro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
29
|
Walker KA, Power MC, Gottesman RF. Defining the Relationship Between Hypertension, Cognitive Decline, and Dementia: a Review. Curr Hypertens Rep 2017; 19:24. [PMID: 28299725 DOI: 10.1007/s11906-017-0724-3] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypertension is a highly prevalent condition which has been established as a risk factor for cardiovascular and cerebrovascular disease. Although the understanding of the relationship between cardiocirculatory dysfunction and brain health has improved significantly over the last several decades, it is still unclear whether hypertension constitutes a potentially treatable risk factor for cognitive decline and dementia. While it is clear that hypertension can affect brain structure and function, recent findings suggest that the associations between blood pressure and brain health are complex and, in many cases, dependent on factors such as age, hypertension chronicity, and antihypertensive medication use. Whereas large epidemiological studies have demonstrated a consistent association between high midlife BP and late-life cognitive decline and incident dementia, associations between late-life blood pressure and cognition have been less consistent. Recent evidence suggests that hypertension may promote alterations in brain structure and function through a process of cerebral vessel remodeling, which can lead to disruptions in cerebral autoregulation, reductions in cerebral perfusion, and limit the brain's ability to clear potentially harmful proteins such as β-amyloid. The purpose of the current review is to synthesize recent findings from epidemiological, neuroimaging, physiological, genetic, and translational research to provide an overview of what is currently known about the association between blood pressure and cognitive function across the lifespan. In doing so, the current review also discusses the results of recent randomized controlled trials of antihypertensive therapy to reduce cognitive decline, highlights several methodological limitations, and provides recommendations for future clinical trial design.
Collapse
Affiliation(s)
- Keenan A Walker
- Department of Neurology, Johns Hopkins University School of Medicine, Phipps 446D 600 North Wolfe St., Baltimore, MD, 21287, USA
| | - Melinda C Power
- Department of Epidemiology and Biostatistics, George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Rebecca F Gottesman
- Department of Neurology, Johns Hopkins University School of Medicine, Phipps 446D 600 North Wolfe St., Baltimore, MD, 21287, USA. .,Department of Epidemiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
30
|
Baron-Menguy C, Domenga-Denier V, Ghezali L, Faraci FM, Joutel A. Increased Notch3 Activity Mediates Pathological Changes in Structure of Cerebral Arteries. Hypertension 2016; 69:60-70. [PMID: 27821617 DOI: 10.1161/hypertensionaha.116.08015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/07/2016] [Accepted: 08/26/2016] [Indexed: 01/24/2023]
Abstract
CADASIL (Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy), the most frequent genetic cause of stroke and vascular dementia, is caused by highly stereotyped mutations in the NOTCH3 receptor, which is predominantly expressed in vascular smooth muscle. The well-established TgNotch3R169C mouse model develops characteristic features of the human disease, with deposition of NOTCH3 and other proteins, including TIMP3 (tissue inhibitor of metalloproteinase 3), on brain vessels, as well as reduced maximal dilation, and attenuated myogenic tone of cerebral arteries, but without elevated blood pressure. Increased TIMP3 levels were recently shown to be a major determinant of altered myogenic tone. In this study, we investigated the contribution of TIMP3 and Notch3 signaling to the impairment of maximal vasodilator capacity caused by the archetypal R169C mutation. Maximally dilated cerebral arteries in TgNotch3R169C mice exhibited a decrease in lumen diameter over a range of physiological pressures that occurred before myogenic tone deficits. This defect was not prevented by genetic reduction of TIMP3 in TgNotch3R169C mice and was not observed in mice overexpressing TIMP3. Knock-in mice with the R169C mutation (Notch3R170C/R170C) exhibited similar reductions in arterial lumen, and both TgNotch3R169C and Notch3R170C/R170C mice showed increased cerebral artery expression of Notch3 target genes. Reduced maximal vasodilation was prevented by conditional reduction of Notch activity in smooth muscle of TgNotch3R169C mice and mimicked by conditional activation of Notch3 in smooth muscle, an effect that was blood pressure-independent. We conclude that increased Notch3 activity mediates reduction in maximal dilator capacity of cerebral arteries in CADASIL and may contribute to reductions in cerebral blood flow.
Collapse
Affiliation(s)
- Celine Baron-Menguy
- From the Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, UMRS 1161, and Univ Paris Diderot, Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); DHU NeuroVasc Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); and Departments of Internal Medicine and Pharmacology, Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine, Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Valérie Domenga-Denier
- From the Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, UMRS 1161, and Univ Paris Diderot, Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); DHU NeuroVasc Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); and Departments of Internal Medicine and Pharmacology, Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine, Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Lamia Ghezali
- From the Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, UMRS 1161, and Univ Paris Diderot, Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); DHU NeuroVasc Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); and Departments of Internal Medicine and Pharmacology, Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine, Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Frank M Faraci
- From the Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, UMRS 1161, and Univ Paris Diderot, Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); DHU NeuroVasc Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); and Departments of Internal Medicine and Pharmacology, Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine, Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Anne Joutel
- From the Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, UMRS 1161, and Univ Paris Diderot, Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); DHU NeuroVasc Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); and Departments of Internal Medicine and Pharmacology, Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine, Iowa City Veterans Affairs Healthcare System (F.M.F.).
| |
Collapse
|
31
|
Role of mineralocorticoid receptor activation in cardiac diastolic dysfunction. Biochim Biophys Acta Mol Basis Dis 2016; 1863:2012-2018. [PMID: 27989961 DOI: 10.1016/j.bbadis.2016.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/29/2016] [Accepted: 10/26/2016] [Indexed: 02/07/2023]
Abstract
The prevalence of cardiac diastolic dysfunction and heart failure with preserved ejection, a major cause of morbidity and mortality in the western world, is increasing due, in part, to increases in obesity and type 2 diabetes. Characteristics of cardiac diastolic dysfunction include increased myocardial stiffness and impaired left ventricular (LV) relaxation that is characterized by prolonged isovolumic LV relaxation and slow LV filling. Obesity, insulin resistance and type 2 diabetes, especially in females promote activation of mineralocorticoid receptor (MR) signaling with resultant increases in oxidative stress, maladaptive immune responses, inflammation, and impairment of coronary blood flow and cardiac interstitial fibrosis. This review highlights findings from the recent surge in cardiac diastolic dysfunction research. To this end it highlights our contemporary understanding of molecular mechanisms of MR regulation by genetic, epigenetic and posttranslational modifications and resultant cardiac diastolic dysfunction associated with insulin resistance, obesity and type 2 diabetes. This review also explores potential preventative and therapeutic strategies directed in the prevention of cardiac diastolic dysfunction and heart failure with preserved ejection. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure edited by Dr. Jun Ren & Yingmei Zhang.
Collapse
|
32
|
Hillard JG, Gast TJ, Chui TY, Sapir D, Burns SA. Retinal Arterioles in Hypo-, Normo-, and Hypertensive Subjects Measured Using Adaptive Optics. Transl Vis Sci Technol 2016; 5:16. [PMID: 27617182 PMCID: PMC5015982 DOI: 10.1167/tvst.5.4.16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/07/2016] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Small artery and arteriolar walls thicken due to elevated blood pressure. Vascular wall thickness show a correlation with hypertensive subject history and risk for stroke and cardiovascular events. METHODS The inner and outer diameter of retinal arterioles from less than 10 to over 150 μm were measured using a multiply scattered light adaptive optics scanning laser ophthalmoscope (AOSLO). These measurements were made on three populations, one with habitual blood pressures less than 100/70 mm Hg, one with normal blood pressures without medication, and one with managed essential hypertension. RESULTS The wall to lumen ratio was largest for the smallest arterioles for all three populations. Data from the hypotensive group had a linear relationship between outer and inner diameters (r2 = 0.99) suggesting a similar wall structure in individuals prior to elevated blood pressures. Hypertensive subjects fell below the 95% confidence limits for the hypotensive relationship and had larger wall to lumen ratios and the normotensive group results fell between the other two groups. CONCLUSION High-resolution retinal imaging of subjects with essential hypertension showed a significant decrease in vessel inner diameter for a given outer diameter, and increases in wall to lumen ratio and wall cross-sectional areas over the entire range of vessel diameters and suggests that correcting for vessel size may improve the ability to identify significant vascular changes. TRANSLATIONAL RELEVANCE High-resolution imaging allows precise measurement of vasculature and by comparing results across risk populations may allow improved identification of individuals undergoing hypertensive arterial wall remodeling.
Collapse
Affiliation(s)
| | | | | | - Dan Sapir
- Indiana University Bloomington, IN, USA
| | | |
Collapse
|
33
|
Pennington KA, Ramirez-Perez FI, Pollock KE, Talton OO, Foote CA, Reyes-Aldasoro CC, Wu HH, Ji T, Martinez-Lemus LA, Schulz LC. Maternal Hyperleptinemia Is Associated with Male Offspring's Altered Vascular Function and Structure in Mice. PLoS One 2016; 11:e0155377. [PMID: 27187080 PMCID: PMC4871503 DOI: 10.1371/journal.pone.0155377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/27/2016] [Indexed: 12/27/2022] Open
Abstract
Children of mothers with gestational diabetes have greater risk of developing hypertension but little is known about the mechanisms by which this occurs. The objective of this study was to test the hypothesis that high maternal concentrations of leptin during pregnancy, which are present in mothers with gestational diabetes and/or obesity, alter blood pressure, vascular structure and vascular function in offspring. Wildtype (WT) offspring of hyperleptinemic, normoglycemic, Leprdb/+ dams were compared to genotype matched offspring of WT-control dams. Vascular function was assessed in male offspring at 6, and at 31 weeks of age after half the offspring had been fed a high fat, high sucrose diet (HFD) for 6 weeks. Blood pressure was increased by HFD but not affected by maternal hyperleptinemia. On a standard diet, offspring of hyperleptinemic dams had outwardly remodeled mesenteric arteries and an enhanced vasodilatory response to insulin. In offspring of WT but not Leprdb/+ dams, HFD induced vessel hypertrophy and enhanced vasodilatory responses to acetylcholine, while HFD reduced insulin responsiveness in offspring of hyperleptinemic dams. Offspring of hyperleptinemic dams had stiffer arteries regardless of diet. Therefore, while maternal hyperleptinemia was largely beneficial to offspring vascular health under a standard diet, it had detrimental effects in offspring fed HFD. These results suggest that circulating maternal leptin concentrations may interact with other factors in the pre- and post -natal environments to contribute to altered vascular function in offspring of diabetic pregnancies.
Collapse
Affiliation(s)
- Kathleen A. Pennington
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, United States of America
| | - Francisco I. Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, United States of America
| | - Kelly E. Pollock
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, United States of America
| | - Omonseigho O. Talton
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Christopher A. Foote
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | | | - Ho-Hsiang Wu
- Department of Statistics, University of Missouri, Columbia, Missouri, United States of America
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, Missouri, United States of America
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, United States of America
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (LAM); (LCS)
| | - Laura C. Schulz
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (LAM); (LCS)
| |
Collapse
|
34
|
Manrique C, Lastra G, Ramirez-Perez FI, Haertling D, DeMarco VG, Aroor AR, Jia G, Chen D, Barron BJ, Garro M, Padilla J, Martinez-Lemus LA, Sowers JR. Endothelial Estrogen Receptor-α Does Not Protect Against Vascular Stiffness Induced by Western Diet in Female Mice. Endocrinology 2016; 157:1590-600. [PMID: 26872089 PMCID: PMC4816732 DOI: 10.1210/en.2015-1681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Consumption of a diet high in fat and refined carbohydrates (Western diet [WD]) is associated with obesity and insulin resistance, both major risk factors for cardiovascular disease (CVD). In women, obesity and insulin resistance abrogate the protection against CVD likely afforded by estrogen signaling through estrogen receptor (ER)α. Indeed, WD in females results in increased vascular stiffness, which is independently associated with CVD. We tested the hypothesis that loss of ERα signaling in the endothelium exacerbates WD-induced vascular stiffening in female mice. We used a novel model of endothelial cell (EC)-specific ERα knockout (EC-ERαKO), obtained after sequential crossing of the ERα double floxed mice and VE-Cadherin Cre-recombinase mice. Ten-week-old females, EC-ERαKO and aged-matched genopairs were fed either a regular chow diet (control diet) or WD for 8 weeks. Vascular stiffness was measured in vivo by pulse wave velocity and ex vivo in aortic explants by atomic force microscopy. In addition, vascular reactivity was assessed in isolated aortic rings. Initial characterization of the model fed a control diet did not reveal changes in whole-body insulin sensitivity, aortic vasoreactivity, or vascular stiffness in the EC-ERαKO mice. Interestingly, ablation of ERα in ECs reduced WD-induced vascular stiffness and improved endothelial-dependent dilation. In the setting of a WD, endothelial ERα signaling contributes to vascular stiffening in females. The precise mechanisms underlying the detrimental effects of endothelial ERα in the setting of a WD remain to be elucidated.
Collapse
Affiliation(s)
- Camila Manrique
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Guido Lastra
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Francisco I Ramirez-Perez
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Dominic Haertling
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Vincent G DeMarco
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Annayya R Aroor
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Guanghong Jia
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Dongqing Chen
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Brady J Barron
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Mona Garro
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Jaume Padilla
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - Luis A Martinez-Lemus
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| | - James R Sowers
- Division of Endocrinology, Diabetes and Metabolism (V.G.D., G.L., G.J., A.R.A., C.M., J.R.S., D.H., D.C., B.J.B., M.G.), Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, Missouri 65212; Department of Medical Pharmacology and Physiology (65212) (V.G.D., F.I.R.-P., L.A.M.-L., J.R.S.) and Research Service (V.G.D., J.R.S.), Harry S Truman Memorial Veterans Hospital, Columbia, Missouri 65201; Dalton Cardiovascular Research Center (F.I.R.-P., L.A.M.-L., J.P.), University of Missouri, Columbia, Missouri 65201; Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, Missouri 65211; and Departments of Child Health (65201) (J.P.) and Biological Engineering (L.A.M.-L., F.I.R.-P.), University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
35
|
Liao J, Chen Z, He Q, Liu Y, Wang J. Differential gene expression analysis and network construction of recurrent cardiovascular events. Mol Med Rep 2015; 13:1746-64. [PMID: 26708382 DOI: 10.3892/mmr.2015.4707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 11/02/2015] [Indexed: 11/06/2022] Open
Abstract
Recurrent cardiovascular events are vital to the prevention and treatment strategies in patients who have experienced primary cardiovascular events. However, the susceptibility of recurrent cardiovascular events varies among patients. Personalized treatment and prognosis prediction are urged. Microarray profiling of samples from patients with acute myocardial infarction (AMI), with or without recurrent cardiovascular events, were obtained from the Gene Expression Omnibus database. Bioinformatics analysis, including Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), were used to identify genes and pathways specifically associated with recurrent cardiovascular events. A protein-protein interaction (PPI) network was constructed and visualized. A total of 1,329 genes were differentially expressed in the two group samples. Among them, 1,023 differentially expressed genes (DEGs; 76.98%) were upregulated in the recurrent cardiovascular events group and 306 DEGs (23.02%) were downregulated. Significantly enriched GO terms for molecular functions were nucleotide binding and nucleic acid binding, for biological processes were signal transduction and regulation of transcription (DNA-dependent), and for cellular component were cytoplasm and nucleus. The most significant pathway in our KEGG analysis was Pathways in cancer (P=0.000336681), and regulation of actin cytoskeleton was also significantly enriched (P=0.00165229). In the PPI network, the significant hub nodes were GNG4, MAPK8, PIK3R2, EP300, CREB1 and PIK3CB. The present study demonstrated the underlying molecular differences between patients with AMI, with and without recurrent cardiovascular events, including DEGs, their biological function, signaling pathways and key genes in the PPI network. With the use of bioinformatics and genomics these findings can be used to investigate the pathological mechanism, and improve the prevention and treatment of recurrent cardiovascular events.
Collapse
Affiliation(s)
- Jiangquan Liao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Zhong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Qinghong He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Yongmei Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| |
Collapse
|
36
|
Bender SB, Castorena-Gonzalez JA, Garro M, Reyes-Aldasoro CC, Sowers JR, DeMarco VG, Martinez-Lemus LA. Regional variation in arterial stiffening and dysfunction in Western diet-induced obesity. Am J Physiol Heart Circ Physiol 2015; 309:H574-82. [PMID: 26092984 DOI: 10.1152/ajpheart.00155.2015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
Abstract
Increased central vascular stiffening, assessed in vivo by determination of pulse wave velocity (PWV), is an independent predictor of cardiovascular event risk. Recent evidence demonstrates that accelerated aortic stiffening occurs in obesity; however, little is known regarding stiffening of other disease-relevant arteries or whether regional variation in arterial stiffening occurs in this setting. We addressed this gap in knowledge by assessing femoral PWV in vivo in conjunction with ex vivo analyses of femoral and coronary structure and function in a mouse model of Western diet (WD; high-fat/high-sugar)-induced obesity and insulin resistance. WD feeding resulted in increased femoral PWV in vivo. Ex vivo analysis of femoral arteries revealed a leftward shift in the strain-stress relationship, increased modulus of elasticity, and decreased compliance indicative of increased stiffness following WD feeding. Confocal and multiphoton fluorescence microscopy revealed increased femoral stiffness involving decreased elastin/collagen ratio in conjunction with increased femoral transforming growth factor-β (TGF-β) content in WD-fed mice. Further analysis of the femoral internal elastic lamina (IEL) revealed a significant reduction in the number and size of fenestrae with WD feeding. Coronary artery stiffness and structure was unchanged by WD feeding. Functionally, femoral, but not coronary, arteries exhibited endothelial dysfunction, whereas coronary arteries exhibited increased vasoconstrictor responsiveness not present in femoral arteries. Taken together, our data highlight important regional variations in the development of arterial stiffness and dysfunction associated with WD feeding. Furthermore, our results suggest TGF-β signaling and IEL fenestrae remodeling as potential contributors to femoral artery stiffening in obesity.
Collapse
Affiliation(s)
- Shawn B Bender
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri School of Medicine, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Jorge A Castorena-Gonzalez
- Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri; Department of Biological Engineering, University of Missouri, Columbia, Missouri
| | - Mona Garro
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri; Department of Medicine-Endocrinology, Diabetes and Metabolism University of Missouri School of Medicine, Columbia, Missouri
| | | | - James R Sowers
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri; Department of Medicine-Endocrinology, Diabetes and Metabolism University of Missouri School of Medicine, Columbia, Missouri, Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri; and
| | - Vincent G DeMarco
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri; Department of Medicine-Endocrinology, Diabetes and Metabolism University of Missouri School of Medicine, Columbia, Missouri, Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri; and
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri; Department of Biological Engineering, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri; and
| |
Collapse
|
37
|
Martinez-Lemus LA. Current opinions on the control and role of vascular smooth muscle cell adhesion, calcium sensitization, and the cytoskeleton in vascular structure and function. Microcirculation 2015; 21:197-200. [PMID: 24654930 DOI: 10.1111/micc.12130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/17/2014] [Indexed: 01/07/2023]
Abstract
Vascular smooth muscle contraction and relaxation play a preponderant role on the active (acute) and structural (long-term) control of vascular diameter. This editorial overview summarizes and highlights the opinions expressed in seven reviews contained in this special topic issue of Microcirculation. The reviews address diverse aspects of the mechanisms that influence cell adhesion, calcium homeostasis, and cytoskeletal remodeling, and how these mechanisms affect vascular structure and function at different levels of the circulation.
Collapse
Affiliation(s)
- Luis A Martinez-Lemus
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri, USA
| |
Collapse
|
38
|
Fediuk J, Dakshinamurti S. A role for actin polymerization in persistent pulmonary hypertension of the newborn. Can J Physiol Pharmacol 2015; 93:185-94. [PMID: 25695400 DOI: 10.1139/cjpp-2014-0413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is defined as the failure of normal pulmonary vascular relaxation at birth. Hypoxia is known to impede postnatal disassembly of the actin cytoskeleton in pulmonary arterial myocytes, resulting in elevation of smooth muscle α-actin and γ-actin content in elastic and resistance pulmonary arteries in PPHN compared with age-matched controls. This review examines the original histological characterization of PPHN with attention to cytoskeletal structural remodeling and actin isoform abundance, reviews the existing evidence for understanding the biophysical and biochemical forces at play during neonatal circulatory transition, and specifically addresses the role of the cortical actin architecture, primarily identified as γ-actin, in the transduction of mechanical force in the hypoxic PPHN pulmonary circuit.
Collapse
Affiliation(s)
- Jena Fediuk
- Biology of Breathing Group, Manitoba Institute of Child Health, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada., Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
39
|
Ohanian J, Pieri M, Ohanian V. Non-receptor tyrosine kinases and the actin cytoskeleton in contractile vascular smooth muscle. J Physiol 2014; 593:3807-14. [PMID: 25433074 DOI: 10.1113/jphysiol.2014.284174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/14/2014] [Indexed: 01/01/2023] Open
Abstract
The contractility of vascular smooth muscle cells within the walls of arteries is regulated by mechanical stresses and vasoactive signals. Transduction of these diverse stimuli into a cellular response occurs through many different mechanisms, one being reorganisation of the actin cytoskeleton. In addition to a structural role in maintaining cellular architecture it is now clear that the actin cytoskeleton of contractile vascular smooth muscle cells is a dynamic structure reacting to changes in the cellular environment. Equally clear is that disrupting the cytoskeleton or interfering with its rearrangement, has profound effects on artery contractility. The actin cytoskeleton associates with dense plaques, also called focal adhesions, at the plasma membrane of smooth muscle cells. Vasoconstrictors and mechanical stress induce remodelling of the focal adhesions, concomitant with cytoskeletal reorganisation. Recent work has shown that non-receptor tyrosine kinases and tyrosine phosphorylation of focal adhesion proteins such as paxillin and Hic-5 are important for actin cytoskeleton and focal adhesion remodelling and contraction.
Collapse
Affiliation(s)
- Jacqueline Ohanian
- Institute of Cardiovascular Sciences, Manchester Academic Health Services Centre, University of Manchester, Manchester, UK
| | - Maria Pieri
- Institute of Cardiovascular Sciences, Manchester Academic Health Services Centre, University of Manchester, Manchester, UK
| | - Vasken Ohanian
- Institute of Cardiovascular Sciences, Manchester Academic Health Services Centre, University of Manchester, Manchester, UK
| |
Collapse
|
40
|
Fediuk J, Sikarwar AS, Nolette N, Dakshinamurti S. Thromboxane-induced actin polymerization in hypoxic neonatal pulmonary arterial myocytes involves Cdc42 signaling. Am J Physiol Lung Cell Mol Physiol 2014; 307:L877-87. [DOI: 10.1152/ajplung.00036.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In hypoxic pulmonary arterial (PA) myocytes, challenge with thromboxane mimetic U46619 induces marked actin polymerization and contraction, phenotypic features of persistent pulmonary hypertension of the newborn (PPHN). Rho GTPases regulate the actin cytoskeleton. We previously reported that U46619-induced actin polymerization in hypoxic PA myocytes occurs independently of the RhoA pathway and hypothesized involvement of the Cdc42 pathway. PA myocytes grown in normoxia or hypoxia for 72 h were stimulated with U46619, then analyzed for Rac/Cdc42 activation by affinity precipitation, phosphatidylinositide-3-kinase (PI3K) activity by phospho-Akt, phospho-p21-activated kinase (PAK) by immunoblot, and association of Cdc42 with neuronal Wiskott Aldrich Syndrome protein (N-WASp) by immunoprecipitation. The effect of Rac or PAK inhibition on filamentous actin was quantified by laser-scanning cytometry and by cytoskeletal fractionation; effects of actin-modifying agents were measured by isometric myography. Basal Cdc42 activity increased in hypoxia, whereas Rac activity decreased. U46619 challenge increased Cdc42 and Rac activity in hypoxic cells, independently of PI3K. Hypoxia increased phospho-PAK, unaltered by U46619. Association of Cdc42 with N-WASp decreased in hypoxia but increased after U46619 exposure. Hypoxia doubled filamentous-to-globular ratios of α- and γ-actin isoforms. Jasplakinolide stabilized γ-filaments, increasing force; cytochalasin D depolymerized all actin isoforms, decreasing force. Rac and PAK inhibition decreased filamentous actin in tissues although without decrease in force. Rho inhibition decreased myosin phosphorylation and force. Hypoxia induces actin polymerization in PA myocytes, particularly increasing filamentous α- and γ-actin, contributing to U46619-induced contraction. Hypoxic PA myocytes challenged with a thromboxane mimetic polymerize actin via the Cdc42 pathway, reflecting increased Cdc42 association with N-WASp. Mechanisms regulating thromboxane-mediated actin polymerization are potential targets for future PPHN pharmacotherapy.
Collapse
Affiliation(s)
- Jena Fediuk
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
- Department of Physiology University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anurag S. Sikarwar
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
- Department of Physiology University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nora Nolette
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Shyamala Dakshinamurti
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
- Department of Physiology University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|