1
|
Martino F, Niglio T, Martino E, Barilla' F, Guardamagna O, Paravati V, Bassareo PP. Awareness of cholesterol levels in 46,309 Italian children and adolescents unveils the tip of the iceberg. Eur J Pediatr 2024; 183:4747-4754. [PMID: 39207459 DOI: 10.1007/s00431-024-05745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Cardiovascular diseases (CVD) risk factors include high cholesterol. Children with total cholesterol (TC) levels ≥ 170 mg/dL are usually considered hypercholesterolemic. This study aimed at investigating the awareness of TC levels in a large Italian paediatric population and at looking for a possible correlation between their TC and TC in their parents' blood. METHODS AND RESULTS A survey was carried out in 46,309 subjects (mean age 9.7 ± 2.3 years; age range 6-14 years) to check the awareness of their own TC levels by using a personal and family medical history questionnaire. In 95.67% of the sample TC value was unknown. In 2.69% TC was < 170 mg/dL, whereas 1.64% were hypercholesterolemic (TC ≥ 170 mg/dL). A statistically significant correlation was found between children with normal TC values and physiological TC values in both parents (p < 0.0001). Again, a significant association between children with high TC and their parents with high TC was detected when parents were analysed separately (i.e. children with TC ≥ 170 mg/dl vs maternal TC ≥ 200 mg/dL: OR 2.01 (95% CI 1.61-2.49, p < 0.001); children with TC ≥ 200 mg/dl vs maternal TC ≥ 240 mg/dL: OR 3.14 (95% CI 2.14-4.6, p < 0.001); children with TC ≥ 170 mg/dl vs paternal TC ≥ 200 mg/dL: OR 2.39 (95% CI 1.91-2.98, p < 0.001); children with TC ≥ 200 mg/dl vs paternal TC ≥ 240 mg/dL: OR 3.85 (95% CI 2.70-5,.50, p < 0.001). CONCLUSION Just a minority of the investigated young patients knew their TC. This is worrisome. Children with normal TC values are more likely to be born from healthy parents with physiological TC. In addition, high TC in the enrolled subjects is significantly associated with high TC in their parents. Overall, these findings seem to highlight the importance of health education and genetics in TC pathogenesis.
Collapse
Affiliation(s)
- Francesco Martino
- Department of Internal Medicine, Anaesthesiology, and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | | | - Eliana Martino
- Department of Internal Medicine, Anaesthesiology, and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Francesco Barilla'
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Ornella Guardamagna
- Department of Public Health and Paediatric Sciences, University of Turin, Turin, Italy
| | - Vincenzo Paravati
- Department of Internal Medicine, Anaesthesiology, and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Pier Paolo Bassareo
- School of Medicine, University College of Dublin, Mater Misericordiae University Hospital and Children's Health Ireland at Crumlin, Dublin, Ireland.
| |
Collapse
|
2
|
Chen J, Wei Y, Zhou J, Cao X, Yuan R, Lu Y, Guo Y, Shao X, Sun W, Jia M, Chen X. Tributyltin-induced oxidative stress causes developmental damage in the cardiovascular system of zebrafish (Danio rerio). ENVIRONMENTAL RESEARCH 2024; 252:118811. [PMID: 38555090 DOI: 10.1016/j.envres.2024.118811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Tributyltin (TBT) can be used as an antifouling agent with anticorrosive, antiseptic and antifungal properties and is widely used in wood preservation and ship painting. However, it has recently been found that TBT can be harmful to aquatic organisms. In this study, to gain insight into the effects of TBT with respect to the development of the cardiovascular system in zebrafish embryos, zebrafish embryos were exposed to different concentrations of TBT solutions (0.2 μg/L, 1 μg/L, and 2 μg/L) at 2 h post-fertilization (hpf) TBT exposure resulted in decreased hatchability and heart rate, deformed features such as pericardial edema, yolk sac edema, and spinal curvature in zebrafish embryos, and impaired heart development. Expression of cardiac development-related genes (vmhc, myh6, nkx2.5, tbx5a, gata4, tbx2b, nppa) is dysregulated. Transgenic zebrafish Tg (fli1: EGFP) were used to explore the effects of TBT exposure on vascular development. It was found that TBT exposure could lead to impaired development of intersegmental vessels (ISVs), common cardinal vein (CCV), subintestinal vessels (SIVs) and cerebrovascular. The expression of vascular endothelial growth factor (VEGF) signaling pathway-related genes (flt1, flt4, kdr, vegfa) was downregulated. Biochemical indices showed that ROS and MDA levels were significantly elevated and that SOD and CAT activities were significantly reduced. The expression of key genes for prostacyclin synthesis (pla2, ptgs2a, ptgs2b, ptgis, ptgs1) is abnormal. Therefore, it is possible that oxidative stress induced by TBT exposure leads to the blockage of arachidonic acid (AA) production in zebrafish embryos, which affects prostacyclin synthesis and consequently the normal development of the heart and blood vessels in zebrafish embryos.
Collapse
Affiliation(s)
- Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yinyin Wei
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Jiameng Zhou
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Rongjie Yuan
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yaoyajie Lu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yi Guo
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Xue Shao
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Weidi Sun
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Mengtao Jia
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Xiuli Chen
- Ecological Environment College, Baotou Teachers' College, Baotou, 014030, China.
| |
Collapse
|
3
|
Faa G, Fanos V, Manchia M, Van Eyken P, Suri JS, Saba L. The fascinating theory of fetal programming of adult diseases: A review of the fundamentals of the Barker hypothesis. J Public Health Res 2024; 13:22799036241226817. [PMID: 38434579 PMCID: PMC10908242 DOI: 10.1177/22799036241226817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/27/2023] [Indexed: 03/05/2024] Open
Abstract
The theory of fetal programming of adult diseases was first proposed by David J.P. Barker in the eighties of the previous century, to explain the higher susceptibility of some people toward the development of ischemic heart disease. According to his hypothesis, poor maternal living conditions during gestation represent an important risk factor for the onset of atherosclerotic heart disease later in life. The analysis of the early phases of fetal development is a fundamental tool for the risk stratification of children and adults, allowing the identification of susceptible or resistant subjects to multiple diseases later in life. Here, we provide a narrative summary of the most relevant evidence supporting the Barker hypothesis in multiple fields of medicine, including neuropsychiatric disorders, such as Parkinson disease and Alzheimer disease, kidney failure, atherosclerosis, coronary heart disease, stroke, diabetes, cancer onset and progression, metabolic syndrome, and infectious diseases including COVID-19. Given the consensus on the role of body weight at birth as a practical indicator of the fetal nutritional status during gestation, every subject with a low birth weight should be considered an "at risk" subject for the development of multiple diseases later in life. The hypothesis of the "physiological regenerative medicine," able to improve fetal organs' development in the perinatal period is discussed, in the light of recent experimental data indicating Thymosin Beta-4 as a powerful growth promoter when administered to pregnant mothers before birth.
Collapse
Affiliation(s)
- Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Vassilios Fanos
- Unit of Neonatology and NICU Center, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Peter Van Eyken
- Department of Pathology, UZ Genk Regional Hospital, Genk, Belgium
| | - Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, Atheropoint, Roseville, CA, USA
| | - Luca Saba
- Unit of Radiology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
4
|
Dela Justina V, Dos Passos Júnior RR, Lima VV, Giachini FR. Evidence of Nitric Oxide Impairment During Hypertensive Pregnancies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:99-125. [PMID: 37466771 DOI: 10.1007/978-3-031-32554-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Hypertensive disorders of pregnancy complicate up to 10% of pregnancies worldwide, and they can be classified into (1) gestational hypertension, (2) preeclampsia, (3) chronic hypertension and (4) chronic hypertension with preeclampsia. Nitric oxide (NO) plays an essential role in the haemodynamic adaptations observed during pregnancy. It has been shown that the nitric oxide pathway's dysfunction during pregnancy is associated with placental- and vascular-related diseases such as hypertensive disorders of pregnancy. This review aims to present a brief definition of hypertensive disorders of pregnancy and physiological maternal cardiovascular adaptations during pregnancy. We also detail how NO signalling is altered in the (a) systemic vasculature, (b) uterine artery/spiral arteries, (c) implantation and (d) placenta of hypertensive disorders during pregnancy. We conclude by summarizing the anti-hypertensive therapy of hypertensive disorders of pregnancy as a specific management strategy.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Rinaldo Rodrigues Dos Passos Júnior
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
- Institute of Health Sciences and Health, Universidad Federal De Mato Grosso, Barra do Garcas, Brazil
| | - Victor Vitorino Lima
- Institute of Health Sciences and Health, Universidad Federal De Mato Grosso, Barra do Garcas, Brazil
| | - Fernanda Regina Giachini
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
- Institute of Health Sciences and Health, Universidad Federal De Mato Grosso, Barra do Garcas, Brazil
| |
Collapse
|
5
|
Clarke K, Rivas AC, Milletich S, Sabo-Attwood T, Coker ES. Prenatal Exposure to Ambient PM 2.5 and Early Childhood Growth Impairment Risk in East Africa. TOXICS 2022; 10:705. [PMID: 36422914 PMCID: PMC9699051 DOI: 10.3390/toxics10110705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Height for age is an important and widely used population-level indicator of children's health. Morbidity trends show that stunting in young children is a significant public health concern. Recent studies point to environmental factors as an understudied area of child growth failure in Africa. Data on child measurements of height-for-age and confounders were obtained from fifteen waves of the Demographic and Health Surveys (DHS) for six countries in East Africa. Monthly ambient PM2.5 concentration data was retrieved from the Atmospheric Composition Analysis Group (ACAG) global surface PM2.5 estimates and spatially integrated with DHS data. Generalized additive models with linear and logistic regression were used to estimate the exposure-response relationship between prenatal PM2.5 and height-for-age and stunting among children under five in East Africa (EA). Fully adjusted models showed that for each 10 µg/m3 increase in PM2.5 concentration there is a 0.069 (CI: 0.097, 0.041) standard deviation decrease in height-for-age and 9% higher odds of being stunted. Our study identified ambient PM2.5 as an environmental risk factor for lower height-for-age among young children in EA. This underscores the need to address emissions of harmful air pollutants in EA as adverse health effects are attributable to ambient PM2.5 air pollution.
Collapse
|
6
|
Mills A, Dakhlallah D, Robinson M, Kirk A, Llavina S, Boyd JW, Chantler PD, Olfert IM. Short-term effects of electronic cigarettes on cerebrovascular function: A time course study. Exp Physiol 2022; 107:994-1006. [PMID: 35661445 PMCID: PMC9357197 DOI: 10.1113/ep090341] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/31/2022] [Indexed: 01/12/2023]
Abstract
NEW FINDINGS What is the central question of this study? Acute exposure to electronic cigarettes (Ecigs) triggers abnormal vascular responses in systemic arteries; however, effects on cerebral vessels are poorly understood and time for recovery is not known. We hypothesized that exposure to cigarettes or Ecigs would trigger rapid (<4 h) impairment of the middle cerebral artery (MCA) but that this would resolve by 24 h. What is the main finding and its importance? Cigarettes and Ecigs caused similar degree and duration of MCA impairment. We find it takes ~72 hours after exposure for MCA function to return to normal. This suggests that Ecig use is likely to produce similar adverse vascular health outcomes to those seen with cigarette smoke. ABSTRACT Temporal influences of electronic cigarettes (Ecigs) on blood vessels are poorly understood. In this study, we evaluated a single episode of cigarette versus Ecig exposure on middle cerebral artery (MCA) reactivity and determined how long after the exposure MCA responses took to return to normal. We hypothesized that cigarette and Ecig exposure would induce rapid (<4 h) reduction in MCA endothelial function and would resolve within 24 h. Sprague-Dawley rats (4 months old) were exposed to either air (n = 5), traditional cigarettes (20 puffs, n = 16) or Ecigs (20-puff group, n = 16; or 60-puff group, n = 12). Thereafter, the cigarette and Ecig groups were randomly assigned for postexposure vessel myography testing on day 0 (D0, 1-4 h postexposure), day 1 (D1, 24-28 h postexposure), day 2 (D2, 48-52 h postexposure) and day 3 (72-76 h postexposure). The greatest effect on endothelium-dependent dilatation was observed within 24 h of exposure (∼50% decline between D0 and D1) for both cigarette and Ecig groups, and impairment persisted with all groups for up to 3 days. Changes in endothelium-independent dilatation responses were less severe (∼27%) and shorter lived (recovering by D2) compared with endothelium-dependent dilatation responses. Vasoconstriction in response to serotonin (5-HT) was similar to endothelium-independent dilatation, with greatest impairment (∼45% for all exposure groups) at D0-D1, returning to normal by D2. These data show that exposure to cigarettes and Ecigs triggers a similar level/duration of cerebrovascular dysfunction after a single exposure. The finding that Ecig (without nicotine) and cigarette (with nicotine) exposure produce the same effects suggesting that nicotine is not likely to be triggering MCA dysfunction, and that vaping (with/without nicotine) has potential to produce the same vascular harm and/or disease as smoking.
Collapse
Affiliation(s)
- Amber Mills
- Dept. of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Duaa Dakhlallah
- Dept. of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506,Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University of Cairo, Egypt
| | - Madison Robinson
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Ally Kirk
- Alderson Broaddus University, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Sam Llavina
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Jonathan W. Boyd
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506,Dept. of Orthopedics, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Paul D. Chantler
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506,Dept. of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
| | - I. Mark Olfert
- Dept. of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506,Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506,Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506
| |
Collapse
|
7
|
Shchurevska OD. "SMALL BABY SYNDROME" AS A PREGNANCY-ASSOCITED GENERAL ADAPTATION SYNDROME (REVIEW). WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:2146-2151. [PMID: 36256944 DOI: 10.36740/wlek202209118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The aim: To analyze the current research literature devoted to the study of the mechanisms of the realization of stress factors during pregnancy. PATIENTS AND METHODS Materials and methods: The article presents an analysis and summarizes the literature devoted to the study of the mechanisms of the realization of stress factors during the pregnancy, the pathogenetic aspects of violations of the feto-placental complex, "critical periods of vulnerability", the long-term consequences of the transferred prenatal stress. CONCLUSION Conclusions: The paper summarizes that the condition of the mother and the feto-placental complex play an important role in many aspects of fetal development, that determine baby's physical and emotional health, personality formation in the future.
Collapse
|
8
|
Burrage EN, Aboaziza E, Hare L, Reppert S, Moore J, Goldsmith WT, Kelley EE, Mills A, Dakhlallah D, Chantler PD, Olfert IM. Long-term cerebrovascular dysfunction in the offspring from maternal electronic cigarette use during pregnancy. Am J Physiol Heart Circ Physiol 2021; 321:H339-H352. [PMID: 34170194 DOI: 10.1152/ajpheart.00206.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electronic cigarettes (E-cigs) have been promoted as harm-free or less risky than smoking, even for women during pregnancy. These claims are made largely on E-cig aerosol having fewer number of toxic chemicals compared with cigarette smoke. Given that even low levels of smoking are found to produce adverse birth outcomes, we sought to test the hypothesis that vaping during pregnancy (with or without nicotine) would not be harm-free and would result in vascular dysfunction that would be evident in offspring during adolescent and/or adult life. Pregnant female Sprague Dawley rats were exposed to E-cig aerosol (1 h/day, 5 days/wk, starting on gestational day 2 until pups were weaned) using e-liquid with 0 mg/mL (E-cig0) or 18 mg/mL nicotine (E-cig18) and compared with ambient air-exposed controls. Body mass at birth and at weaning were not different between groups. Assessment of middle cerebral artery (MCA) reactivity revealed a 51%-56% reduction in endothelial-dependent dilation response to acetylcholine (ACh) for both E-cig0 and E-cig18 in 1-mo, 3-mo (adolescent), and 7-mo-old (adult) offspring (P < 0.05 compared with air, all time points). MCA responses to sodium nitroprusside (SNP) and myogenic tone were not different across groups, suggesting that endothelial-independent responses were not altered. The MCA vasoconstrictor response (5-hydroxytryptamine, 5-HT) was also not different across treatment and age groups. These data demonstrate that maternal vaping during pregnancy is not harm-free and confers significant cerebrovascular health risk/dysfunction to offspring that persists into adult life. NEW & NOTEWORTHY These data established that vaping electronic cigarettes during pregnancy, with or without nicotine, is not safe and confers significant risk potential to the cerebrovascular health of offspring in early and adult life. A key finding is that vaping without nicotine does not protect offspring from cerebrovascular dysfunction and results in the same level of cerebrovascular dysfunction (compared with maternal vaping with nicotine), indicating that the physical and/or chemical properties from the base solution (other than nicotine) are responsible for the cerebrovascular dysfunction that we observed. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/maternal-vaping-impairs-vascular-function-in-theoffspring/.
Collapse
Affiliation(s)
- E N Burrage
- West Virginia University School of Medicine, West Virginia University, Morgantown, West Virginia.,Department of Neuroscience, West Virginia University, Morgantown, West Virginia
| | - E Aboaziza
- West Virginia University School of Medicine, West Virginia University, Morgantown, West Virginia.,West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown, West Virginia
| | - L Hare
- West Virginia University School of Medicine, West Virginia University, Morgantown, West Virginia.,Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia
| | - S Reppert
- West Virginia University School of Medicine, West Virginia University, Morgantown, West Virginia.,Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia
| | - J Moore
- West Virginia University School of Medicine, West Virginia University, Morgantown, West Virginia
| | - W T Goldsmith
- Center for Inhalation Toxicology, West Virginia University, Morgantown, West Virginia.,Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - E E Kelley
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - A Mills
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - D Dakhlallah
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia
| | - P D Chantler
- West Virginia University School of Medicine, West Virginia University, Morgantown, West Virginia.,Department of Neuroscience, West Virginia University, Morgantown, West Virginia.,West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown, West Virginia.,Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia
| | - I M Olfert
- West Virginia University School of Medicine, West Virginia University, Morgantown, West Virginia.,West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown, West Virginia.,Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia.,Center for Inhalation Toxicology, West Virginia University, Morgantown, West Virginia.,Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
9
|
Hougaard KS. Next Generation Reproductive and Developmental Toxicology: Crosstalk Into the Future. FRONTIERS IN TOXICOLOGY 2021; 3:652571. [PMID: 35295122 PMCID: PMC8915852 DOI: 10.3389/ftox.2021.652571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Karin Sørig Hougaard
| |
Collapse
|
10
|
Shrestha N, Holland OJ, Kent NL, Perkins AV, McAinch AJ, Cuffe JSM, Hryciw DH. Maternal High Linoleic Acid Alters Placental Fatty Acid Composition. Nutrients 2020; 12:nu12082183. [PMID: 32717842 PMCID: PMC7468786 DOI: 10.3390/nu12082183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Fetal development is modulated by maternal nutrition during pregnancy. The dietary intake of linoleic acid (LA), an essential dietary n-6 polyunsaturated fatty acid (PUFA), has increased. We previously published that increased LA consumption during pregnancy does not alter offspring or placental weight but fetal plasma fatty acid composition; the developing fetus obtains their required PUFA from the maternal circulation. However, it is unknown if increased maternal linoleic acid alters placental fatty acid storage, metabolism, transport, and general placental function. Female Wistar-Kyoto rats were fed either a low LA diet (LLA; 1.44% of energy from LA) or high LA diet (HLA; 6.21% of energy from LA) for 10 weeks before pregnancy and during gestation. Rats were sacrificed at embryonic day 20 (E20, term = 22 days) and placentae collected. The labyrinth of placentae from one male and one female fetus from each litter were analyzed. High maternal LA consumption increased placental total n-6 and LA concentrations, and decreased total n-3 PUFA, alpha-linolenic acid (ALA), and docosahexaenoic acid (DHA). Fatty acid desaturase 1 (Fads1), angiopoietin-like 4 (Angptl4), and diacylglycerol lipase beta (Daglb) mRNA were downregulated in placentae from offspring from HLA dams. Maternal high LA downregulated the fatty acid transport protein 4 (Fatp4) and glucose transporter 1 (Slc2a1) mRNA in placentae. IL-7 and IL-10 protein were decreased in placentae from offspring from HLA dams. In conclusion, a high maternal LA diet alters the placental fatty acid composition, inflammatory proteins, and expressions of nutrient transporters, which may program deleterious outcomes in offspring.
Collapse
Affiliation(s)
- Nirajan Shrestha
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia; (N.S.); (O.J.H.); (A.V.P.)
| | - Olivia J. Holland
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia; (N.S.); (O.J.H.); (A.V.P.)
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Nykola L. Kent
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4067, Australia;
| | - Anthony V. Perkins
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia; (N.S.); (O.J.H.); (A.V.P.)
| | - Andrew J. McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3000, Australia;
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, VIC 3021, Australia
| | - James S. M. Cuffe
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4067, Australia;
- Correspondence: (J.S.M.C.); (D.H.H.); Tel.: +61-737-353-601 (D.H.H.)
| | - Deanne H. Hryciw
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3000, Australia;
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan, QLD 4111, Australia
- Correspondence: (J.S.M.C.); (D.H.H.); Tel.: +61-737-353-601 (D.H.H.)
| |
Collapse
|
11
|
Butcher JT, Murfee WL, Stapleton PA. Emerging topics in microvascular research: Advancing our understanding by interdisciplinary exploration. Microcirculation 2020; 26:e12558. [PMID: 31090984 PMCID: PMC6916537 DOI: 10.1111/micc.12558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/12/2019] [Indexed: 12/31/2022]
Abstract
Historically, major advances in microvascular research have been made by integrating physiology and bioengineering approaches. This Special Topics Issue focuses on providing a spotlight on emerging areas of microvascular research, showcasing how interdisciplinary collaborations and application of novel techniques can impact our understanding of tissue‐specific microvascular remodeling by integrating cell behaviors across scales. The authors in this issue investigate pericyte physiology, perturbations to uteroplacental blood flow, bone microvascular alterations in aging, molecular markers of revascularization, and microfluidic devices to mimic the lymphatic system. The articles highlight the continued importance of expanding our understanding of the microvascular system in health, and disease extends microvascular boundaries in the face of current paradigms, and illustrates how emerging leaders in the field are creating new scientific niches.
Collapse
Affiliation(s)
- Joshua T. Butcher
- Vascular Biology CenterMedical College of Georgia at Augusta UniversityAugustaGeorgia
| | - Walter L. Murfee
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaGainesvilleFlorida
| | - Phoebe A. Stapleton
- Department of Pharmacology and ToxicologyErnest Mario School of PharmacyRutgers UniversityPiscatawayNew Jersey
- Environmental and Occupational Health Sciences InstituteRutgers UniversityPiscatawayNew Jersey
| |
Collapse
|
12
|
Miller CN, Kodavanti UP, Stewart EJ, Schladweiler MC, Richards JH, Snow SJ, Henriquez AR, Oshiro WM, Farraj AK, Hazari MS, Dye JA. Fetal growth outcomes following peri-implantation exposure of Long-Evans rats to noise and ozone differ by sex. Biol Sex Differ 2019; 10:54. [PMID: 31791410 PMCID: PMC6889602 DOI: 10.1186/s13293-019-0270-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/19/2019] [Indexed: 12/29/2022] Open
Abstract
Background Exposure to air pollution and high levels of noise have both been independently associated with the development of adverse pregnancy outcomes including low birth weight. However, exposure to such environmental stressors rarely occurs in isolation and is often co-localized, especially in large urban areas. Methods The purpose of this study was to compare the effects of combined exposure to noise (N) or ozone (O3), compared to either exposure alone. Long-Evans dams were exposed to air or 0.4 ppm ozone for 4 h on gestation day (GD) 5 and 6, coinciding with implantation receptivity. A subset of dams from each exposure group was further exposed to intermittent white noise (~ 85 dB) throughout the dark cycle following each inhalation exposure (n = 14 − 16/group). Uterine artery ultrasound was performed on GD 15 and 21. Fetal growth characteristics and indicators of placental nutrient status were measured at GD 21. Results Exposure to ozone + quiet (O3 + Q) conditions reduced uterine arterial resistance at GD 15 compared to air + quiet (A + Q) exposure, with no further reduction by GD 21. By contrast, exposure to air + noise (A + N) significantly increased uterine arterial resistance at both GD 15 and 21. Notably, while peri-implantation exposure to O3 + Q conditions reduced male fetal weight at GD 21, this effect was not observed in the air + noise (A + N) or the ozone + noise (O3 + N) exposure groups. Fetal weight in female offspring was not reduced by ozone exposure alone (O3 + Q), nor was it affected by air + noise (A + N) or by combined ozone + noise (O3 + N) exposure. Conclusions These data indicate that exposure to ozone and noise differentially impact uterine blood flow, particularly at mid-gestation, with only ozone exposure being associated with sex-dependent fetal growth retardation in male offspring.
Collapse
Affiliation(s)
- Colette N Miller
- Cardiopulmonary Immunotoxicology Branch, Public Health & Integrated Toxicology Division, Center for Public Health & Environmental Assessment U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Urmila P Kodavanti
- Cardiopulmonary Immunotoxicology Branch, Public Health & Integrated Toxicology Division, Center for Public Health & Environmental Assessment U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Erica J Stewart
- Oak Ridge Institute of Science and Education, Research Triangle Park, NC, USA
| | - Mette C Schladweiler
- Cardiopulmonary Immunotoxicology Branch, Public Health & Integrated Toxicology Division, Center for Public Health & Environmental Assessment U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Judy H Richards
- Cardiopulmonary Immunotoxicology Branch, Public Health & Integrated Toxicology Division, Center for Public Health & Environmental Assessment U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | - Andres R Henriquez
- Oak Ridge Institute of Science and Education, Research Triangle Park, NC, USA
| | - Wendy M Oshiro
- Cardiopulmonary Immunotoxicology Branch, Public Health & Integrated Toxicology Division, Center for Public Health & Environmental Assessment U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Aimen K Farraj
- Cardiopulmonary Immunotoxicology Branch, Public Health & Integrated Toxicology Division, Center for Public Health & Environmental Assessment U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mehdi S Hazari
- Cardiopulmonary Immunotoxicology Branch, Public Health & Integrated Toxicology Division, Center for Public Health & Environmental Assessment U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Janice A Dye
- Cardiopulmonary Immunotoxicology Branch, Public Health & Integrated Toxicology Division, Center for Public Health & Environmental Assessment U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
13
|
D'Errico JN, Doherty C, Fournier SB, Renkel N, Kallontzi S, Goedken M, Fabris L, Buckley B, Stapleton PA. Identification and quantification of gold engineered nanomaterials and impaired fluid transfer across the rat placenta via ex vivo perfusion. Biomed Pharmacother 2019; 117:109148. [PMID: 31347503 DOI: 10.1016/j.biopha.2019.109148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023] Open
Abstract
Development and implementation of products incorporating nanoparticles are occurring at a rapid pace. These particles are widely utilized in domestic, occupational, and biomedical applications. Currently, it is unclear if pregnant women will be able to take advantage of the potential biomedical nanoproducts out of concerns associated with placental transfer and fetal interactions. We recently developed an ex vivo rat placental perfusion technique to allow for the evaluation of xenobiotic transfer and placental physiological perturbations. In this study, a segment of the uterine horn and associated placenta was isolated from pregnant (gestational day 20) Sprague-Dawley rats and placed into a modified pressure myography vessel chamber. The proximal and distal ends of the maternal uterine artery and the vessels of the umbilical cord were cannulated, secured, and perfused with physiological salt solution (PSS). The proximal uterine artery and umbilical artery were pressurized at 80 mmHg and 50 mmHg, respectively, to allow countercurrent flow through the placenta. After equilibration, a single 900 μL bolus dose of 20 nm gold engineered nanoparticles (Au-ENM) was introduced into the proximal maternal artery. Distal uterine and umbilical vein effluents were collected every 10 min for 180 min to measure placental fluid dynamics. The quantification of Au-ENM transfer was conducted via inductively coupled plasma mass spectrometry (ICP-MS). Overall, we were able to measure Au-ENM within uterine and umbilical effluent with 20 min of material infusion. This novel methodology may be widely incorporated into studies of pharmacology, toxicology, and placental physiology.
Collapse
Affiliation(s)
- J N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - C Doherty
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - S B Fournier
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - N Renkel
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - S Kallontzi
- Department of Material Science and Engineering, School of Engineering, Rutgers University, 607 Taylor Rd., Piscataway, NJ 08854, USA
| | - M Goedken
- Research Pathology Services, Rutgers University, Piscataway, NJ 08854, USA
| | - L Fabris
- Department of Material Science and Engineering, School of Engineering, Rutgers University, 607 Taylor Rd., Piscataway, NJ 08854, USA
| | - B Buckley
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - P A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd., Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA.
| |
Collapse
|
14
|
Kunovac A, Hathaway QA, Pinti MV, Goldsmith WT, Durr AJ, Fink GK, Nurkiewicz TR, Hollander JM. ROS promote epigenetic remodeling and cardiac dysfunction in offspring following maternal engineered nanomaterial (ENM) exposure. Part Fibre Toxicol 2019; 16:24. [PMID: 31215478 PMCID: PMC6582485 DOI: 10.1186/s12989-019-0310-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nano-titanium dioxide (nano-TiO2) is amongst the most widely utilized engineered nanomaterials (ENMs). However, little is known regarding the consequences maternal ENM inhalation exposure has on growing progeny during gestation. ENM inhalation exposure has been reported to decrease mitochondrial bioenergetics and cardiac function, though the mechanisms responsible are poorly understood. Reactive oxygen species (ROS) are increased as a result of ENM inhalation exposure, but it is unclear whether they impact fetal reprogramming. The purpose of this study was to determine whether maternal ENM inhalation exposure influences progeny cardiac development and epigenomic remodeling. RESULTS Pregnant FVB dams were exposed to nano-TiO2 aerosols with a mass concentration of 12.09 ± 0.26 mg/m3 starting at gestational day five (GD 5), for 6 h over 6 non-consecutive days. Aerosol size distribution measurements indicated an aerodynamic count median diameter (CMD) of 156 nm with a geometric standard deviation (GSD) of 1.70. Echocardiographic imaging was used to assess cardiac function in maternal, fetal (GD 15), and young adult (11 weeks) animals. Electron transport chain (ETC) complex activities, mitochondrial size, complexity, and respiration were evaluated, along with 5-methylcytosine, Dnmt1 protein expression, and Hif1α activity. Cardiac functional analyses revealed a 43% increase in left ventricular mass and 25% decrease in cardiac output (fetal), with an 18% decrease in fractional shortening (young adult). In fetal pups, hydrogen peroxide (H2O2) levels were significantly increased (~ 10 fold) with a subsequent decrease in expression of the antioxidant enzyme, phospholipid hydroperoxide glutathione peroxidase (GPx4). ETC complex activity IV was decreased by 68 and 46% in fetal and young adult cardiac mitochondria, respectively. DNA methylation was significantly increased in fetal pups following exposure, along with increased Hif1α activity and Dnmt1 protein expression. Mitochondrial ultrastructure, including increased size, was observed at both fetal and young adult stages following maternal exposure. CONCLUSIONS Maternal inhalation exposure to nano-TiO2 results in adverse effects on cardiac function that are associated with increased H2O2 levels and dysregulation of the Hif1α/Dnmt1 regulatory axis in fetal offspring. Our findings suggest a distinct interplay between ROS and epigenetic remodeling that leads to sustained cardiac contractile dysfunction in growing and young adult offspring following maternal ENM inhalation exposure.
Collapse
Affiliation(s)
- Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV 26506 USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV USA
| | - Quincy A. Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV 26506 USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV USA
| | - Mark V. Pinti
- West Virginia University School of Pharmacy, Morgantown, WV USA
| | - William T. Goldsmith
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV USA
- Department of Physiology, Pharmacology, Morgantown, WV USA
| | - Andrya J. Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV 26506 USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV USA
| | - Garrett K. Fink
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV 26506 USA
| | - Timothy R. Nurkiewicz
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV USA
- Department of Physiology, Pharmacology, Morgantown, WV USA
| | - John M. Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV 26506 USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV USA
| |
Collapse
|
15
|
D'Errico JN, Stapleton PA. Developmental onset of cardiovascular disease-Could the proof be in the placenta? Microcirculation 2019; 26:e12526. [PMID: 30597690 PMCID: PMC6599488 DOI: 10.1111/micc.12526] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/03/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
The Barker Hypothesis states change to the maternal environment may have significant impacts on fetal development, setting the stage for adult disease to occur. The development of the maternofetal vasculature during implantation and maintenance during pregnancy is extremely precise, yet dynamic. Delays or dysfunction in the orchestration of anatomical remodeling, maintenance of blood pressure, or responsiveness to metabolic demand may have severe consequences to the developing fetus. While these intermissions may not be fatal to the developing fetus, an interruption, reduction, or an inability to meet fetal demand of blood flow during crucial stages of development may predispose young to disease later in life. Maternal inability to meet fetal demand can be attributed to improper placental development and vascular support through morphological change or physiological function will significantly limit nutrient delivery and waste exchange to the developing fetus. Therefore, we present an overview of the uteroplacental vascular network, maternal cardiovascular adaptations that occur during pregnancy, placental blood flow, and common maternal comorbidities and/or exposures that may perturb maternal homeostasis and affect fetal development. Overall, we examine uterine microvasculature pathophysiology contributing to a hostile gestational environment and fetal predisposition to disease as it relates to the Barker Hypothesis.
Collapse
Affiliation(s)
- Jeanine N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey.,Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey
| |
Collapse
|