1
|
Loffreda A, Schlame M, Bütikofer P. StaR-related lipid transfer-like domain-containing protein CLDP43 affects cardiolipin synthesis and mitochondrial function in Trypanosoma brucei. PLoS One 2022; 17:e0259752. [PMID: 35452450 PMCID: PMC9032421 DOI: 10.1371/journal.pone.0259752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/26/2022] [Indexed: 11/19/2022] Open
Abstract
Cardiolipin is known to interact with bacterial and mitochondrial proteins and protein complexes. Unlike in Escherichia coli and Saccharomyces cerevisiae, the synthesis of cardiolipin is essential for growth of Trypanosoma brucei parasites in culture. Inhibition of cardiolipin production has been shown to result in major changes in the T. brucei proteome and energy metabolism, with CLDP43, a mitochondrial protein containing a StaR-related lipid transfer (START)-like domain, being depleted in a cardiolipin-dependent way. We now show that in T. brucei procyclic forms lacking CLDP43, cardiolipin metabolism and mitochondrial function are affected. Using quantitative and qualitative lipid analyses, we found that while steady-state levels of cardiolipin were elevated in CLDP43 knock-out parasites compared to parental cells, de novo formation of cardiolipin was down-regulated. In addition, depletion of CLDP43 resulted in partial loss of mitochondrial membrane potential and decreased ATP production via substrate level phosphorylation. Recombinant CLDP43 was found to bind cardiolipin and phosphatidic acid in lipid overlay experiments, suggesting that it may be involved in transport or synthesis of cardiolipin or its precursors in T. brucei.
Collapse
Affiliation(s)
- Alessio Loffreda
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biochemical Studies, University of Bern, Bern, Switzerland
| | - Michael Schlame
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States of America
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Cowton A, Bütikofer P, Häner R, Menon AK. Identification of TbPBN1 in Trypanosoma brucei reveals a conserved heterodimeric architecture for glycosylphosphatidylinositol-mannosyltransferase-I. Mol Microbiol 2021; 117:450-461. [PMID: 34875117 PMCID: PMC9306709 DOI: 10.1111/mmi.14859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022]
Abstract
Glycosylphosphatidylinositol (GPI)‐anchored proteins are found in all eukaryotes and are especially abundant on the surface of protozoan parasites such as Trypanosoma brucei. GPI‐mannosyltransferase‐I (GPI‐MT‐I) catalyzes the addition of the first of three mannoses that make up the glycan core of GPI. Mammalian and yeast GPI‐MT‐I consist of two essential subunits, the catalytic subunit PIG‐M/Gpi14 and the accessory subunit PIG‐X/Pbn1(mammals/yeast). T. brucei GPI‐MT‐I has been highlighted as a potential antitrypanosome drug target but has not been fully characterized. Here, we show that T. brucei GPI‐MT‐I also has two subunits, TbGPI14 and TbPBN1. Using TbGPI14 deletion, and TbPBN1 RNAi‐mediated depletion, we show that both proteins are essential for the mannosyltransferase activity needed for GPI synthesis and surface expression of GPI‐anchored proteins. In addition, using native PAGE and co‐immunoprecipitation analyses, we demonstrate that TbGPI14 and TbPBN1 interact to form a higher‐order complex. Finally, we show that yeast Gpi14 does not restore GPI‐MT‐I function in TbGPI14 knockout trypanosomes, consistent with previously demonstrated species specificity within GPI‐MT‐I subunit associations. The identification of an essential trypanosome GPI‐MT‐I subcomponent indicates wide conservation of the heterodimeric architecture unusual for a glycosyltransferase, leaving open the question of the role of the noncatalytic TbPBN1 subunit in GPI‐MT‐I function.
Collapse
Affiliation(s)
- Andrew Cowton
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Robert Häner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
3
|
Serricchio M, Bütikofer P. A Conserved Mitochondrial Chaperone-Protease Complex Involved in Protein Homeostasis. Front Mol Biosci 2021; 8:767088. [PMID: 34859054 PMCID: PMC8630662 DOI: 10.3389/fmolb.2021.767088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
Mitochondria are essential organelles involved in cellular energy production. The inner mitochondrial membrane protein stomatin-like protein 2 (SLP-2) is a member of the SPFH (stomatin, prohibitin, flotilin, and HflK/C) superfamily and binds to the mitochondrial glycerophospholipid cardiolipin, forming cardiolipin-enriched membrane domains to promote the assembly and/or stabilization of protein complexes involved in oxidative phosphorylation. In addition, human SLP-2 anchors a mitochondrial processing complex required for proteolytic regulation of proteins involved in mitochondrial dynamics and quality control. We now show that deletion of the gene encoding the Trypanosoma brucei homolog TbSlp2 has no effect on respiratory protein complex stability and mitochondrial functions under normal culture conditions and is dispensable for growth of T. brucei parasites. In addition, we demonstrate that TbSlp2 binds to the metalloprotease TbYme1 and together they form a large mitochondrial protein complex. The two proteins negatively regulate each other's expression levels by accelerating protein turnover. Furthermore, we show that TbYme1 plays a role in heat-stress resistance, as TbYme1 knock-out parasites displayed mitochondrial fragmentation and loss of viability when cultured at elevated temperatures. Unbiased interaction studies uncovered putative TbYme1 substrates, some of which were differentially affected by the absence of TbYme1. Our results support emerging evidence for the presence of mitochondrial quality control pathways in this ancient eukaryote.
Collapse
Affiliation(s)
- Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | | |
Collapse
|
4
|
Jenni A, Knüsel S, Nagar R, Benninger M, Häner R, Ferguson MAJ, Roditi I, Menon AK, Bütikofer P. Elimination of GPI2 suppresses glycosylphosphatidylinositol GlcNAc transferase activity and alters GPI glycan modification in Trypanosoma brucei. J Biol Chem 2021; 297:100977. [PMID: 34284059 PMCID: PMC8358704 DOI: 10.1016/j.jbc.2021.100977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/20/2021] [Accepted: 07/16/2021] [Indexed: 01/14/2023] Open
Abstract
Many eukaryotic cell-surface proteins are post-translationally modified by a glycosylphosphatidylinositol (GPI) moiety that anchors them to the cell membrane. The biosynthesis of GPI anchors is initiated in the endoplasmic reticulum by transfer of GlcNAc from UDP-GlcNAc to phosphatidylinositol. This reaction is catalyzed by GPI GlcNAc transferase, a multisubunit complex comprising the catalytic subunit Gpi3/PIG-A as well as at least five other subunits, including the hydrophobic protein Gpi2, which is essential for the activity of the complex in yeast and mammals, but the function of which is not known. To investigate the role of Gpi2, we exploited Trypanosoma brucei (Tb), an early diverging eukaryote and important model organism that initially provided the first insights into GPI structure and biosynthesis. We generated insect-stage (procyclic) trypanosomes that lack TbGPI2 and found that in TbGPI2-null parasites, (i) GPI GlcNAc transferase activity is reduced, but not lost, in contrast with yeast and human cells, (ii) the GPI GlcNAc transferase complex persists, but its architecture is affected, with loss of at least the TbGPI1 subunit, and (iii) the GPI anchors of procyclins, the major surface proteins, are underglycosylated when compared with their WT counterparts, indicating the importance of TbGPI2 for reactions that occur in the Golgi apparatus. Immunofluorescence microscopy localized TbGPI2 not only to the endoplasmic reticulum but also to the Golgi apparatus, suggesting that in addition to its expected function as a subunit of the GPI GlcNAc transferase complex, TbGPI2 may have an enigmatic noncanonical role in Golgi-localized GPI anchor modification in trypanosomes.
Collapse
Affiliation(s)
- Aurelio Jenni
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland; Graduate School for Chemical and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sebastian Knüsel
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Rupa Nagar
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | - Robert Häner
- Department for Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Cueto-Díaz EJ, Ebiloma GU, Alfayez IA, Ungogo MA, Lemgruber L, González-García MC, Giron MD, Salto R, Fueyo-González FJ, Shiba T, González-Vera JA, Ruedas Rama MJ, Orte A, de Koning HP, Dardonville C. Synthesis, biological, and photophysical studies of molecular rotor-based fluorescent inhibitors of the trypanosome alternative oxidase. Eur J Med Chem 2021; 220:113470. [PMID: 33940464 DOI: 10.1016/j.ejmech.2021.113470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 11/28/2022]
Abstract
We have recently reported on the development and trypanocidal activity of a class of inhibitors of Trypanosome Alternative Oxidase (TAO) that are targeted to the mitochondrial matrix by coupling to lipophilic cations via C14 linkers to enable optimal interaction with the enzyme's active site. This strategy resulted in a much-enhanced anti-parasite effect, which we ascribed to the greater accumulation of the compound at the location of the target protein, i.e. the mitochondrion, but to date this localization has not been formally established. We therefore synthesized a series of fluorescent analogues to visualize accumulation and distribution within the cell. The fluorophore chosen, julolidine, has the remarkable extra feature of being able to function as a viscosity sensor and might thus additionally act as a probe of the cellular glycerol that is expected to be produced when TAO is inhibited. Two series of fluorescent inhibitor conjugates incorporating a cationic julolidine-based viscosity sensor were synthesized and their photophysical and biological properties were studied. These probes display a red emission, with a high signal-to-noise ratio (SNR), using both single- and two-photon excitation. Upon incubation with T. brucei and mammalian cells, the fluorescent inhibitors 1a and 2a were taken up selectively in the mitochondria as shown by live-cell imaging. Efficient partition of 1a in functional isolated (rat liver) mitochondria was estimated to 66 ± 20% of the total. The compounds inhibited recombinant TAO enzyme in the submicromolar (1a, 2c, 2d) to low nanomolar range (2a) and were effective against WT and multidrug-resistant trypanosome strains (B48, AQP1-3 KO) in the submicromolar range. Good selectivity (SI > 29) over mammalian HEK cells was observed. However, no viscosity-related shift could be detected, presumably because the glycerol was produced cytosolically, and released through aquaglyceroporins, whereas the probe was located, virtually exclusively, in the trypanosome's mitochondrion.
Collapse
Affiliation(s)
- Eduardo J Cueto-Díaz
- Instituto de Química Médica, IQM-CSIC, Juan de la Cierva 3, E-28006, Madrid, Spain
| | - Godwin U Ebiloma
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | - Ibrahim A Alfayez
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Marzuq A Ungogo
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Leandro Lemgruber
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - M Carmen González-García
- Departamento de Fisicoquimica, Facultad de Farmacia, Universidad de Granada, C. U. Cartuja, E-18071, Granada, Spain
| | - Maria D Giron
- Departamento de Bioquimica y Biologia Molecular II. Facultad de Farmacia, Universidad de Granada, C. U. Cartuja, E-18071, Granada, Spain
| | - Rafael Salto
- Departamento de Bioquimica y Biologia Molecular II. Facultad de Farmacia, Universidad de Granada, C. U. Cartuja, E-18071, Granada, Spain
| | | | - Tomoo Shiba
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Juan A González-Vera
- Departamento de Fisicoquimica, Facultad de Farmacia, Universidad de Granada, C. U. Cartuja, E-18071, Granada, Spain
| | - Maria José Ruedas Rama
- Departamento de Fisicoquimica, Facultad de Farmacia, Universidad de Granada, C. U. Cartuja, E-18071, Granada, Spain
| | - Angel Orte
- Departamento de Fisicoquimica, Facultad de Farmacia, Universidad de Granada, C. U. Cartuja, E-18071, Granada, Spain
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
6
|
Serricchio M, Hierro-Yap C, Schädeli D, Ben Hamidane H, Hemphill A, Graumann J, Zíková A, Bütikofer P. Depletion of cardiolipin induces major changes in energy metabolism in Trypanosoma brucei bloodstream forms. FASEB J 2020; 35:e21176. [PMID: 33184899 DOI: 10.1096/fj.202001579rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
The mitochondrial inner membrane glycerophospholipid cardiolipin (CL) associates with mitochondrial proteins to regulate their activities and facilitate protein complex and supercomplex formation. Loss of CL leads to destabilized respiratory complexes and mitochondrial dysfunction. The role of CL in an organism lacking a conventional electron transport chain (ETC) has not been elucidated. Trypanosoma brucei bloodstream forms use an unconventional ETC composed of glycerol-3-phosphate dehydrogenase and alternative oxidase (AOX), while the mitochondrial membrane potential (ΔΨm) is generated by the hydrolytic action of the Fo F1 -ATP synthase (aka Fo F1 -ATPase). We now report that the inducible depletion of cardiolipin synthase (TbCls) is essential for survival of T brucei bloodstream forms. Loss of CL caused a rapid drop in ATP levels and a decline in the ΔΨm. Unbiased proteomic analyses revealed a reduction in the levels of many mitochondrial proteins, most notably of Fo F1 -ATPase subunits and AOX, resulting in a strong decline of glycerol-3-phosphate-stimulated oxygen consumption. The changes in cellular respiration preceded the observed decrease in Fo F1 -ATPase stability, suggesting that the AOX-mediated ETC is the first pathway responding to the decline in CL. Select proteins and pathways involved in glucose and amino acid metabolism were upregulated to counteract the CL depletion-induced drop in cellular ATP.
Collapse
Affiliation(s)
- Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Carolina Hierro-Yap
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - David Schädeli
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Johannes Graumann
- Weill Cornell Medicine - Qatar, Doha, State of Qatar.,Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alena Zíková
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Booth LA, Smith TK. Lipid metabolism in Trypanosoma cruzi: A review. Mol Biochem Parasitol 2020; 240:111324. [PMID: 32961207 DOI: 10.1016/j.molbiopara.2020.111324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/08/2023]
Abstract
The cellular membranes of Trypanosoma cruzi, like all eukaryotes, contain varying amounts of phospholipids, sphingolipids, neutral lipids and sterols. A multitude of pathways exist for the de novo synthesis of these lipid families but Trypanosoma cruzi has also become adapted to scavenge some of these lipids from the host. Completion of the TriTryp genomes has led to the identification of many putative genes involved in lipid synthesis, revealing some interesting differences to higher eukaryotes. Although many enzymes involved in lipid synthesis have yet to be characterised, completed experiments have shown the indispensability of some lipid metabolic pathways. Furthermore, the bioactive lipids of Trypanosoma cruzi and their effects on the host are becoming increasingly studied. Further studies on lipid metabolism in Trypanosoma cruzi will no doubt reveal some attractive targets for therapeutic intervention as well as reveal the interplay between parasite lipids, host response and pathogenesis.
Collapse
Affiliation(s)
- Leigh-Ann Booth
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, United Kingdom
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, United Kingdom.
| |
Collapse
|
8
|
Dawoody Nejad L, Stumpe M, Rauch M, Hemphill A, Schneiter R, Bütikofer P, Serricchio M. Mitochondrial sphingosine-1-phosphate lyase is essential for phosphatidylethanolamine synthesis and survival of Trypanosoma brucei. Sci Rep 2020; 10:8268. [PMID: 32427974 PMCID: PMC7237492 DOI: 10.1038/s41598-020-65248-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/29/2020] [Indexed: 01/18/2023] Open
Abstract
Sphingosine-1-phosphate is a signaling molecule involved in the control of cell migration, differentiation, survival and other physiological processes. This sphingolipid metabolite can be degraded by the action of sphingosine-1-phosphate lyase (SPL) to form hexadecenal and ethanolamine phosphate. The importance of SPL-mediated ethanolamine phosphate formation has been characterized in only few cell types. We show that in the protozoan parasite Trypanosoma brucei, expression of TbSpl is essential for cell survival. Ablation of TbSpl expression increased sphingosine-1-phosphate levels and reduced de novo formation and steady-state levels of the glycerophospholipid phosphatidylethanolamine (PE). Growth of TbSpl-depleted parasites could be in part rescued by ethanolamine supplementation to the growth medium, indicating that the main function of TbSpl is to provide ethanolamine phosphate for PE synthesis. In contrast to most cell types analyzed, where SPL localizes to the endoplasmic reticulum, we found by high-resolution microscopy that TbSpl is a mitochondrial protein. In spite of its mitochondrial localization, TbSpl depletion had no apparent effect on mitochondrial morphology but resulted in aggregation of acidocalcisomes. Our results link mitochondria to sphingolipid metabolism and suggest possible roles for PE in acidocalcisome function.
Collapse
Affiliation(s)
- Ladan Dawoody Nejad
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Michael Stumpe
- Division of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Monika Rauch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Roger Schneiter
- Division of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| | - Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
9
|
Schädeli D, Serricchio M, Ben Hamidane H, Loffreda A, Hemphill A, Beneke T, Gluenz E, Graumann J, Bütikofer P. Cardiolipin depletion–induced changes in theTrypanosoma bruceiproteome. FASEB J 2019; 33:13161-13175. [DOI: 10.1096/fj.201901184rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David Schädeli
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | | | - Alessio Loffreda
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Kong P, Lehmann MJ, Helms JB, Brouwers JF, Gupta N. Lipid analysis of Eimeria sporozoites reveals exclusive phospholipids, a phylogenetic mosaic of endogenous synthesis, and a host-independent lifestyle. Cell Discov 2018; 4:24. [PMID: 29844921 PMCID: PMC5964319 DOI: 10.1038/s41421-018-0023-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/16/2022] Open
Abstract
Successful inter-host transmission of most apicomplexan parasites requires the formation of infective sporozoites within the oocysts. Unlike all other infective stages that are strictly intracellular and depend on host resources, the sporozoite stage develops outside the host cells, but little is known about its self-governing metabolism. This study deployed Eimeria falciformis, a parasite infecting the mouse as its natural host, to investigate the process of phospholipid biogenesis in sporozoites. Lipidomic analyses demonstrated the occurrence of prototypical phospholipids along with abundant expression of at least two exclusive lipids, phosphatidylthreonine (PtdThr) and inositol phosphorylceramide with a phytosphingosine backbone, in sporozoites. To produce them de novo, the parasite harbors nearly the entire biogenesis network, which is an evolutionary mosaic of eukaryotic-type and prokaryotic-type enzymes. Notably, many have no phylogenetic counterpart or functional equivalent in the mammalian host. Using Toxoplasma gondii as a gene-tractable surrogate to examine Eimeria enzymes, we show a highly compartmentalized network of lipid synthesis spread primarily in the apicoplast, endoplasmic reticulum, mitochondrion, and Golgi complex. Likewise, trans-genera complementation of a Toxoplasma mutant with the PtdThr synthase from Eimeria reveals a convergent role of PtdThr in fostering the lytic cycle of coccidian parasites. Taken together, our work establishes a model of autonomous membrane biogenesis involving significant inter-organelle cooperation and lipid trafficking in sporozoites. Phylogenetic divergence of certain pathways offers attractive drug targets to block the sporulation and subsequent transmission. Not least, our results vindicate the possession of an entire de novo lipid synthesis network in a representative protist adapted to an obligate intracellular parasitic lifestyle.
Collapse
Affiliation(s)
- Pengfei Kong
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, 10115 Germany
| | - Maik J. Lehmann
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, 10115 Germany
- Present Address: Department of Life Sciences and Engineering, University of Applied Sciences, Bingen, 55411 Germany
| | - J. Bernd Helms
- Department of Biochemistry and Cell Biology, Institute of Biomembranes, Utrecht University, Utrecht, 3584CM The Netherlands
| | - Jos F. Brouwers
- Department of Biochemistry and Cell Biology, Institute of Biomembranes, Utrecht University, Utrecht, 3584CM The Netherlands
| | - Nishith Gupta
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, 10115 Germany
| |
Collapse
|
11
|
Serricchio M, Vissa A, Kim PK, Yip CM, McQuibban GA. Cardiolipin synthesizing enzymes form a complex that interacts with cardiolipin-dependent membrane organizing proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:447-457. [DOI: 10.1016/j.bbalip.2018.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 12/22/2022]
|
12
|
Steinmann ME, Schmidt RS, Macêdo JP, Kunz Renggli C, Bütikofer P, Rentsch D, Mäser P, Sigel E. Identification and characterization of the three members of the CLC family of anion transport proteins in Trypanosoma brucei. PLoS One 2017; 12:e0188219. [PMID: 29244877 PMCID: PMC5731698 DOI: 10.1371/journal.pone.0188219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/02/2017] [Indexed: 11/19/2022] Open
Abstract
CLC type anion transport proteins are homo-dimeric or hetero-dimeric with an integrated transport function in each subunit. We have identified and partially characterized three members of this family named TbVCL1, TbVCL2 and TbVCL3 in Trypanosoma brucei. Among the human CLC family members, the T. brucei proteins display highest similarity to CLC-6 and CLC-7. TbVCL1, but not TbVCL2 and TbVCL3 is able to complement growth of a CLC-deficient Saccharomyces cerevisiae mutant. All TbVCL-HA fusion proteins localize intracellulary in procyclic form trypanosomes. TbVCL1 localizes close to the Golgi apparatus and TbVCL2 and TbVCL3 to the endoplasmic reticulum. Upon expression in Xenopus oocytes, all three proteins induce similar outward rectifying chloride ion currents. Currents are sensitive to low concentrations of DIDS, insensitive to the pH in the range 5.4 to 8.4 and larger in nitrate than in chloride medium.
Collapse
Affiliation(s)
- Michael E. Steinmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Remo S. Schmidt
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Juan P. Macêdo
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Christina Kunz Renggli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Erwin Sigel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
13
|
Farine L, Jelk J, Choi J, Voelker DR, Nunes J, Smith TK, Bütikofer P. Phosphatidylserine synthase 2 and phosphatidylserine decarboxylase are essential for aminophospholipid synthesis in Trypanosoma brucei. Mol Microbiol 2017; 104:412-427. [PMID: 28142188 PMCID: PMC5413845 DOI: 10.1111/mmi.13637] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2017] [Indexed: 01/09/2023]
Abstract
Phosphatidylethanolamine (PE) and phosphatidylserine (PS) are ubiquitously expressed and metabolically interconnected glycerophospholipids in eukaryotes and prokaryotes. In Trypanosoma brucei, PE synthesis has been shown to occur mainly via the Kennedy pathway, one of the three routes leading to PE synthesis in eukaryotes, while PS synthesis has not been studied experimentally. We now reveal the importance of T. brucei PS synthase 2 (TbPSS2) and T. brucei PS decarboxylase (TbPSD), two key enzymes involved in aminophospholipid synthesis, for trypanosome viability. By using tetracycline-inducible down-regulation of gene expression and in vivo and in vitro metabolic labeling, we found that TbPSS2 (i) is necessary for normal growth of procyclic trypanosomes, (ii) localizes to the endoplasmic reticulum and (iii) represents the unique route for PS formation in T. brucei. In addition, we identified TbPSD as type I PS decarboxylase in the mitochondrion and found that it is processed proteolytically at a WGSS cleavage site into a heterodimer. Down-regulation of TbPSD expression affected mitochondrial integrity in both procyclic and bloodstream form trypanosomes, decreased ATP production via oxidative phosphorylation in procyclic form and affected parasite growth.
Collapse
Affiliation(s)
- Luce Farine
- Institute of Biochemistry and Molecular MedicineUniversity of BernBern3012Switzerland
| | - Jennifer Jelk
- Institute of Biochemistry and Molecular MedicineUniversity of BernBern3012Switzerland
| | - Jae‐Yeon Choi
- Department of MedicineNational Jewish HealthDenverCO80206USA
| | | | - Jon Nunes
- Biomedical Sciences Research ComplexUniversity of St. AndrewsSt. AndrewsScotland
| | - Terry K. Smith
- Biomedical Sciences Research ComplexUniversity of St. AndrewsSt. AndrewsScotland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular MedicineUniversity of BernBern3012Switzerland
| |
Collapse
|
14
|
Steinmann ME, Schmidt RS, Bütikofer P, Mäser P, Sigel E. TbIRK is a signature sequence free potassium channel from Trypanosoma brucei locating to acidocalcisomes. Sci Rep 2017; 7:656. [PMID: 28386071 PMCID: PMC5429665 DOI: 10.1038/s41598-017-00752-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/13/2017] [Indexed: 12/26/2022] Open
Abstract
Potassium channels from prokaryotes and eukaryotes are usually recognized by a typical amino acid sequence TXTGY(F)G representing the ionic selectivity filter. Using a screening approach with ion channel family profiles but without the above motif, we identified a gene in Trypanosoma brucei that exhibits homology to inward rectifying potassium channels. We report here cloning of this ion channel named TbIRK. The protein is localized to acidocalcisomes in procyclic and in bloodstream form parasites. Functional properties of this channel were established after expression in Xenopus oocytes. Currents recorded in potassium medium show inward rectification and little time dependence. Surprisingly, this channel retains selectivity for potassium ions over sodium ions >7, in spite of the lack of the classical selectivity filter. The sequence GGYVG was predicted in silico to replace this filter motif. Point mutations of the corresponding glycine residues confirmed this at the functional level. The channel is inhibited by caesium ions but remains unaffected by barium ions up to 10 mM. TbIRK is to our knowledge the first potassium channel in T. brucei that localizes to the acidocalcisomes, organelles involved in the storage of phosphates and the response to osmotic stress that occurs during the life cycle of trypanosomes.
Collapse
Affiliation(s)
- Michael E Steinmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Remo S Schmidt
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Erwin Sigel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
15
|
Kong P, Ufermann CM, Zimmermann DLM, Yin Q, Suo X, Helms JB, Brouwers JF, Gupta N. Two phylogenetically and compartmentally distinct CDP-diacylglycerol synthases cooperate for lipid biogenesis in Toxoplasma gondii. J Biol Chem 2017; 292:7145-7159. [PMID: 28314772 DOI: 10.1074/jbc.m116.765487] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/17/2017] [Indexed: 12/20/2022] Open
Abstract
Toxoplasma gondii is among the most prevalent protozoan parasites, which infects a wide range of organisms, including one-third of the human population. Its rapid intracellular replication within a vacuole requires efficient synthesis of glycerophospholipids. Cytidine diphosphate-diacylglycerol (CDP-DAG) serves as a major precursor for phospholipid synthesis. Given the peculiarities of lipid biogenesis, understanding the mechanism and physiological importance of CDP-DAG synthesis is particularly relevant in T. gondii Here, we report the occurrence of two phylogenetically divergent CDP-DAG synthase (CDS) enzymes in the parasite. The eukaryotic-type TgCDS1 and the prokaryotic-type TgCDS2 reside in the endoplasmic reticulum and apicoplast, respectively. Conditional knockdown of TgCDS1 severely attenuated the parasite growth and resulted in a nearly complete loss of virulence in a mouse model. Moreover, mice infected with the TgCDS1 mutant became fully resistant to challenge infection with a hyper-virulent strain of T. gondii The residual growth of the TgCDS1 mutant was abolished by consecutive deletion of TgCDS2. Lipidomic analyses of the two mutants revealed significant and specific declines in phosphatidylinositol and phosphatidylglycerol levels upon repression of TgCDS1 and after deletion of TgCDS2, respectively. Our data suggest a "division of labor" model of lipid biogenesis in T. gondii in which two discrete CDP-DAG pools produced in the endoplasmic reticulum and apicoplast are subsequently used for the synthesis of phosphatidylinositol in the Golgi bodies and phosphatidylglycerol in the mitochondria. The essential and divergent nature of CDP-DAG synthesis in the parasite apicoplast offers a potential drug target to inhibit the asexual reproduction of T. gondii.
Collapse
Affiliation(s)
- Pengfei Kong
- From the Department of Molecular Parasitology, Humboldt University, Berlin 10115, Germany
| | | | - Diana L M Zimmermann
- From the Department of Molecular Parasitology, Humboldt University, Berlin 10115, Germany
| | - Qing Yin
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100094, China, and
| | - Xun Suo
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100094, China, and
| | - J Bernd Helms
- Department of Biochemistry and Cell Biology, Institute of Biomembranes, Utrecht University, Utrecht 3584CM, Netherlands
| | - Jos F Brouwers
- Department of Biochemistry and Cell Biology, Institute of Biomembranes, Utrecht University, Utrecht 3584CM, Netherlands
| | - Nishith Gupta
- From the Department of Molecular Parasitology, Humboldt University, Berlin 10115, Germany,
| |
Collapse
|
16
|
Mathieu C, Macêdo JP, Hürlimann D, Wirdnam C, Haindrich AC, Suter Grotemeyer M, González-Salgado A, Schmidt RS, Inbar E, Mäser P, Bütikofer P, Zilberstein D, Rentsch D. Arginine and Lysine Transporters Are Essential for Trypanosoma brucei. PLoS One 2017; 12:e0168775. [PMID: 28045943 PMCID: PMC5207785 DOI: 10.1371/journal.pone.0168775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 12/06/2016] [Indexed: 12/14/2022] Open
Abstract
For Trypanosoma brucei arginine and lysine are essential amino acids and therefore have to be imported from the host. Heterologous expression in Saccharomyces cerevisiae mutants identified cationic amino acid transporters among members of the T. brucei AAAP (amino acid/auxin permease) family. TbAAT5-3 showed high affinity arginine uptake (Km 3.6 ± 0.4 μM) and high selectivity for L-arginine. L-arginine transport was reduced by a 10-times excess of L-arginine, homo-arginine, canavanine or arginine-β-naphthylamide, while lysine was inhibitory only at 100-times excess, and histidine or ornithine did not reduce arginine uptake rates significantly. TbAAT16-1 is a high affinity (Km 4.3 ± 0.5 μM) and highly selective L-lysine transporter and of the compounds tested, only L-lysine and thialysine were competing for L-lysine uptake. TbAAT5-3 and TbAAT16-1 are expressed in both procyclic and bloodstream form T. brucei and cMyc-tagged proteins indicate localization at the plasma membrane. RNAi-mediated down-regulation of TbAAT5 and TbAAT16 in bloodstream form trypanosomes resulted in growth arrest, demonstrating that TbAAT5-mediated arginine and TbAAT16-mediated lysine transport are essential for T. brucei. Growth of induced RNAi lines could partially be rescued by supplementing a surplus of arginine or lysine, respectively, while addition of both amino acids was less efficient. Single and double RNAi lines indicate that additional low affinity uptake systems for arginine and lysine are present in T. brucei.
Collapse
Affiliation(s)
| | - Juan P. Macêdo
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Daniel Hürlimann
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Corina Wirdnam
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | | | | | - Remo S. Schmidt
- Swiss Tropical and Public Health Institute and University of Basel, Basel, Switzerland
| | - Ehud Inbar
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute and University of Basel, Basel, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Dan Zilberstein
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
17
|
Serricchio M, Schmid AW, Steinmann ME, Sigel E, Rauch M, Julkowska D, Bonnefoy S, Fort C, Bastin P, Bütikofer P. Flagellar membranes are rich in raft-forming phospholipids. Biol Open 2015; 4:1143-53. [PMID: 26276100 PMCID: PMC4582118 DOI: 10.1242/bio.011957] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The observation that the membranes of flagella are enriched in sterols and sphingolipids has led to the hypothesis that flagella might be enriched in raft-forming lipids. However, a detailed lipidomic analysis of flagellar membranes is not available. Novel protocols to detach and isolate intact flagella from Trypanosoma brucei procyclic forms in combination with reverse-phase liquid chromatography high-resolution tandem mass spectrometry allowed us to determine the phospholipid composition of flagellar membranes relative to whole cells. Our analyses revealed that phosphatidylethanolamine, phosphatidylserine, ceramide and the sphingolipids inositol phosphorylceramide and sphingomyelin are enriched in flagella relative to whole cells. In contrast, phosphatidylcholine and phosphatidylinositol are strongly depleted in flagella. Within individual glycerophospholipid classes, we observed a preference for ether-type over diacyl-type molecular species in membranes of flagella. Our study provides direct evidence for a preferential presence of raft-forming phospholipids in flagellar membranes of T. brucei.
Collapse
Affiliation(s)
- Mauro Serricchio
- Institute of Biochemistry & Molecular Medicine, University of Bern, Bern 3012, Switzerland
| | - Adrien W Schmid
- Proteomics Core Facility, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Michael E Steinmann
- Institute of Biochemistry & Molecular Medicine, University of Bern, Bern 3012, Switzerland
| | - Erwin Sigel
- Institute of Biochemistry & Molecular Medicine, University of Bern, Bern 3012, Switzerland
| | - Monika Rauch
- Institute of Biochemistry & Molecular Medicine, University of Bern, Bern 3012, Switzerland
| | - Daria Julkowska
- Trypanosome Cell Biology Unit, Pasteur Institute and INSERM U1201, Paris 75015, France
| | - Serge Bonnefoy
- Trypanosome Cell Biology Unit, Pasteur Institute and INSERM U1201, Paris 75015, France
| | - Cécile Fort
- Trypanosome Cell Biology Unit, Pasteur Institute and INSERM U1201, Paris 75015, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Pasteur Institute and INSERM U1201, Paris 75015, France
| | - Peter Bütikofer
- Institute of Biochemistry & Molecular Medicine, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
18
|
Steinmann ME, González-Salgado A, Bütikofer P, Mäser P, Sigel E. A heteromeric potassium channel involved in the modulation of the plasma membrane potential is essential for the survival of African trypanosomes. FASEB J 2015; 29:3228-37. [DOI: 10.1096/fj.15-271353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/31/2015] [Indexed: 11/11/2022]
|
19
|
de Macêdo JP, Schumann Burkard G, Niemann M, Barrett MP, Vial H, Mäser P, Roditi I, Schneider A, Bütikofer P. An Atypical Mitochondrial Carrier That Mediates Drug Action in Trypanosoma brucei. PLoS Pathog 2015; 11:e1004875. [PMID: 25946070 PMCID: PMC4422618 DOI: 10.1371/journal.ppat.1004875] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 04/13/2015] [Indexed: 01/27/2023] Open
Abstract
Elucidating the mechanism of action of trypanocidal compounds is an important step in the development of more efficient drugs against Trypanosoma brucei. In a screening approach using an RNAi library in T. brucei bloodstream forms, we identified a member of the mitochondrial carrier family, TbMCP14, as a prime candidate mediating the action of a group of anti-parasitic choline analogs. Depletion of TbMCP14 by inducible RNAi in both bloodstream and procyclic forms increased resistance of parasites towards the compounds by 7-fold and 3-fold, respectively, compared to uninduced cells. In addition, down-regulation of TbMCP14 protected bloodstream form mitochondria from a drug-induced decrease in mitochondrial membrane potential. Conversely, over-expression of the carrier in procyclic forms increased parasite susceptibility more than 13-fold. Metabolomic analyses of parasites over-expressing TbMCP14 showed increased levels of the proline metabolite, pyrroline-5-carboxylate, suggesting a possible involvement of TbMCP14 in energy production. The generation of TbMCP14 knock-out parasites showed that the carrier is not essential for survival of T. brucei bloodstream forms, but reduced parasite proliferation under standard culture conditions. In contrast, depletion of TbMCP14 in procyclic forms resulted in growth arrest, followed by parasite death. The time point at which parasite proliferation stopped was dependent on the major energy source, i.e. glucose versus proline, in the culture medium. Together with our findings that proline-dependent ATP production in crude mitochondria from TbMCP14-depleted trypanosomes was reduced compared to control mitochondria, the study demonstrates that TbMCP14 is involved in energy production in T. brucei. Since TbMCP14 belongs to a trypanosomatid-specific clade of mitochondrial carrier family proteins showing very poor similarity to mitochondrial carriers of mammals, it may represent an interesting target for drug action or targeting. Human and animal trypanosomiases caused by Trypanosoma brucei parasites represent major burdens to human welfare and agricultural development in rural sub-Saharan Africa. Although the numbers of infected humans have decreased continuously during the last decades, emerging resistance and adverse side effects against commonly used drugs require an urgent need for the identification of novel drug targets and the development of new drugs. Using an unbiased genome-wide screen to search for genes involved in the mode of action of trypanocidal compounds, we identified a member of the mitochondrial carrier family, TbMCP14, as prime candidate to mediate the action of a group of anti-parasitic choline analogs against T. brucei. Ablation of TbMCP14 expression by RNA interference or gene deletion decreases the susceptibility of parasites towards the compounds while over-expression of the carrier shows the opposite effect. In addition, down-regulation of TbMCP14 protects mitochondria from drug-induced decrease in mitochondrial membrane potential and reduces proline-dependent ATP production. Together, the results demonstrate that TbMCP14 is involved in energy production in T. brucei, possibly by acting as a mitochondrial proline carrier, and reveal TbMCP14 as candidate protein for drug action or targeting.
Collapse
Affiliation(s)
- Juan P de Macêdo
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Moritz Niemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Michael P Barrett
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Henri Vial
- Dynamique Moléculaire des Interactions Membranaires, CNRS UMR 5235, Université Montpellier II, Montpellier, France
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Trypanosoma brucei Bloodstream Forms Depend upon Uptake of myo-Inositol for Golgi Complex Phosphatidylinositol Synthesis and Normal Cell Growth. EUKARYOTIC CELL 2015; 14:616-24. [PMID: 25888554 DOI: 10.1128/ec.00038-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/13/2015] [Indexed: 01/10/2023]
Abstract
myo-Inositol is a building block for all inositol-containing phospholipids in eukaryotes. It can be synthesized de novo from glucose-6-phosphate in the cytosol and endoplasmic reticulum. Alternatively, it can be taken up from the environment via Na(+)- or H(+)-linked myo-inositol transporters. While Na(+)-coupled myo-inositol transporters are found exclusively in the plasma membrane, H(+)-linked myo-inositol transporters are detected in intracellular organelles. In Trypanosoma brucei, the causative agent of human African sleeping sickness, myo-inositol metabolism is compartmentalized. De novo-synthesized myo-inositol is used for glycosylphosphatidylinositol production in the endoplasmic reticulum, whereas the myo-inositol taken up from the environment is used for bulk phosphatidylinositol synthesis in the Golgi complex. We now provide evidence that the Golgi complex-localized T. brucei H(+)-linked myo-inositol transporter (TbHMIT) is essential in bloodstream-form T. brucei. Downregulation of TbHMIT expression by RNA interference blocked phosphatidylinositol production and inhibited growth of parasites in culture. Characterization of the transporter in a heterologous expression system demonstrated a remarkable selectivity of TbHMIT for myo-inositol. It tolerates only a single modification on the inositol ring, such as the removal of a hydroxyl group or the inversion of stereochemistry at a single hydroxyl group relative to myo-inositol.
Collapse
|
21
|
Lilley AC, Major L, Young S, Stark MJR, Smith TK. The essential roles of cytidine diphosphate-diacylglycerol synthase in bloodstream form Trypanosoma brucei. Mol Microbiol 2014; 92:453-70. [PMID: 24533860 PMCID: PMC4114554 DOI: 10.1111/mmi.12553] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2014] [Indexed: 12/23/2022]
Abstract
Lipid metabolism in Trypanosoma brucei, the causative agent of African sleeping sickness, differs from its human host in several fundamental ways. This has lead to the validation of a plethora of novel drug targets, giving hope of novel chemical intervention against this neglected disease. Cytidine diphosphate diacylglycerol (CDP‐DAG) is a central lipid intermediate for several pathways in both prokaryotes and eukaryotes, being produced by CDP‐DAG synthase (CDS). However, nothing is known about the single T. brucei CDS gene (Tb927.7.220/EC 2.7.7.41) or its activity. In this study we show TbCDS is functional by complementation of a non‐viable yeast CDS null strain and that it is essential in the bloodstream form of the parasite via a conditional knockout. The TbCDS conditional knockout showed morphological changes including a cell‐cycle arrest due in part to kinetoplast segregation defects. Biochemical phenotyping of TbCDS conditional knockout showed drastically altered lipid metabolism where reducing levels of phosphatidylinositol detrimentally impacted on glycoylphosphatidylinositol biosynthesis. These studies also suggest that phosphatidylglycerol synthesized via the phosphatidylglycerol‐phosphate synthase is not synthesized from CDP‐DAG, as was previously thought. TbCDS was shown to localized the ER and Golgi, probably to provide CDP‐DAG for the phosphatidylinositol synthases.
Collapse
Affiliation(s)
- Alison C Lilley
- Biomedical Sciences Research Centre, School of Biology, The University of St. Andrews, The North Haugh, St. Andrews, Fife Scotland, KY16 9ST, UK
| | | | | | | | | |
Collapse
|
22
|
Horvath SE, Daum G. Lipids of mitochondria. Prog Lipid Res 2013; 52:590-614. [PMID: 24007978 DOI: 10.1016/j.plipres.2013.07.002] [Citation(s) in RCA: 658] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 07/31/2013] [Indexed: 01/06/2023]
Abstract
A unique organelle for studying membrane biochemistry is the mitochondrion whose functionality depends on a coordinated supply of proteins and lipids. Mitochondria are capable of synthesizing several lipids autonomously such as phosphatidylglycerol, cardiolipin and in part phosphatidylethanolamine, phosphatidic acid and CDP-diacylglycerol. Other mitochondrial membrane lipids such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sterols and sphingolipids have to be imported. The mitochondrial lipid composition, the biosynthesis and the import of mitochondrial lipids as well as the regulation of these processes will be main issues of this review article. Furthermore, interactions of lipids and mitochondrial proteins which are highly important for various mitochondrial processes will be discussed. Malfunction or loss of enzymes involved in mitochondrial phospholipid biosynthesis lead to dysfunction of cell respiration, affect the assembly and stability of the mitochondrial protein import machinery and cause abnormal mitochondrial morphology or even lethality. Molecular aspects of these processes as well as diseases related to defects in the formation of mitochondrial membranes will be described.
Collapse
Affiliation(s)
- Susanne E Horvath
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010 Graz, Austria
| | | |
Collapse
|
23
|
Lipid synthesis in protozoan parasites: a comparison between kinetoplastids and apicomplexans. Prog Lipid Res 2013; 52:488-512. [PMID: 23827884 DOI: 10.1016/j.plipres.2013.06.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 12/22/2022]
Abstract
Lipid metabolism is of crucial importance for pathogens. Lipids serve as cellular building blocks, signalling molecules, energy stores, posttranslational modifiers, and pathogenesis factors. Parasites rely on a complex system of uptake and synthesis mechanisms to satisfy their lipid needs. The parameters of this system change dramatically as the parasite transits through the various stages of its life cycle. Here we discuss the tremendous recent advances that have been made in the understanding of the synthesis and uptake pathways for fatty acids and phospholipids in apicomplexan and kinetoplastid parasites, including Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania. Lipid synthesis differs in significant ways between parasites from both phyla and the human host. Parasites have acquired novel pathways through endosymbiosis, as in the case of the apicoplast, have dramatically reshaped substrate and product profiles, and have evolved specialized lipids to interact with or manipulate the host. These differences potentially provide opportunities for drug development. We outline the lipid pathways for key species in detail as they progress through the developmental cycle and highlight those that are of particular importance to the biology of the pathogens and/or are the most promising targets for parasite-specific treatment.
Collapse
|