1
|
Peng W, Jiang Q, Wu Y, He L, Li B, Bei W, Yang X. The role of glutathione for oxidative stress and pathogenicity of Streptococcus suis. Virulence 2025; 16:2474866. [PMID: 40048653 PMCID: PMC11901377 DOI: 10.1080/21505594.2025.2474866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Streptococcus suis is an important zoonotic pathogen that threatens human and pig health. During infection, the host can impose oxidative stress to resist pathogen invasion. Resistance to oxidative toxicity is an important factor for pathogens. Glutathione synthesis contributes to reactive oxygen species (ROS) detoxification in bacterial cells. Little is known about the roles of glutathione synthesis and transport in S. suis. In this study, we demonstrated that glutathione treatment increased oxidative stress tolerance in S. suis. GshAB and GshT were found in S. suis glutathione synthesis and import by bioinformatics. In vitro, inactivation of gshAB and gshT led to increased sensitivity to oxidative stress. Inactivation of gshT led to growth defects in the medium. The intracellular glutathione content of gshAB or gshT deletion mutants was lower than that of wild type (WT) strain. The phagocytic resistance of gshAB and gshT mutants was lower than that of the WT strain. Moreover, the virulence of gshAB and gshT deletion mutants was significantly lower than that of the WT strain in mouse survival and tissue loading experiments. In conclusion, these results revealed the functions of GshAB and GshT in the pathogenesis of S. suis. These findings enhance our understanding of bacterial virulence mechanisms and may provide a new avenue for therapeutic intervention aimed at curbing S. suis infections.
Collapse
Affiliation(s)
- Wei Peng
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qinggen Jiang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yuting Wu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Li He
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Bei Li
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
| | - Weicheng Bei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xia Yang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
2
|
Zhang M, Li Z, Hu H, Liu J, Qi C. Two HbpA-like proteins HbpA1 and HbpA2 from Actinobacillus pleuropneumoniae protect bacteria from sulfur source limitation, oxidative and cold stresses, but not essential to virulence. Gene 2024; 931:148875. [PMID: 39173979 DOI: 10.1016/j.gene.2024.148875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Porcine pleuropneumonia is one of the respiratory diseases that pigs are susceptible to Actinobacillus pleuropneumoniae (A. pleuropneumoniae), poses a great threat to the global pig industry. Glutathione (GSH) is an important sulfur source, cellular antioxidant and virulence determinant of many pathogenic bacteria. In this study, roles of two HbpA-like proteins HbpA1 and HbpA2 of A. pleuropneumoniae were analyzed. A. pleuropneumoniae mutants without HbpA2 were basically unable to grow in chemically defined medium (CDM) with GSH as the sole sulfur source and had significantly reduced oxidative tolerance; whereas mutation in hbpA1 led to reduced survival under low-temperature environments. Neither HbpA1 nor HbpA2 affects utilization of heme. These two HbpA-like proteins are not associated with the virulence of A. pleuropneumoniae. Our results reveal the correlation of A. pleuropneumoniae HbpA1 and HbpA2 in GSH utilization, highlight the roles of HbpA1 in the cold stress resistance and HbpA2 in the anti-oxidative response. GSH limitation is not a way to attenuate colonization and pathogenicity of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Miao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Zhuo Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Hanwen Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Jinlin Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China.
| | - Chao Qi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China.
| |
Collapse
|
3
|
Berude JC, Kennouche P, Reniere ML, Portnoy DA. Listeria monocytogenes utilizes glutathione and limited inorganic sulfur compounds as sources of essential cysteine. Infect Immun 2024; 92:e0042223. [PMID: 38289071 PMCID: PMC10929415 DOI: 10.1128/iai.00422-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/13/2023] [Indexed: 02/13/2024] Open
Abstract
Listeria monocytogenes (Lm) is a Gram-positive facultative intracellular pathogen that leads a biphasic lifecycle, transitioning its metabolism and selectively inducing virulence genes when it encounters mammalian hosts. Virulence gene expression is controlled by the master virulence regulator PrfA, which is allosterically activated by the host- and bacterially derived glutathione (GSH). The amino acid cysteine is the rate-limiting substrate for GSH synthesis in bacteria and is essential for bacterial growth. Unlike many bacteria, Lm is auxotrophic for cysteine and must import exogenous cysteine for growth and virulence. GSH is enriched in the host cytoplasm, and previous work suggests that Lm utilizes exogenous GSH for PrfA activation. Despite these observations, the import mechanism(s) for GSH remains elusive. Analysis of known GSH importers predicted a homologous importer in Lm comprised of the Ctp ABC transporter and the OppDF ATPases of the Opp oligopeptide importer. Here, we demonstrated that the Ctp complex is a high-affinity GSH/GSSG importer that is required for Lm growth at physiologically relevant concentrations. Furthermore, we demonstrated that OppDF is required for GSH/GSSG import in an Opp-independent manner. These data support a model where Ctp and OppDF form a unique complex for GSH/GSSG import that supports growth and pathogenesis. In addition, we show that Lm utilizes the inorganic sulfur sources thiosulfate and H2S for growth in a CysK-dependent manner in the absence of other cysteine sources. These findings suggest a pathoadaptive role for partial cysteine auxotrophy in Lm, where locally high GSH/GSSG or inorganic sulfur concentrations may signal arrival to distinct host niches.
Collapse
Affiliation(s)
- John C. Berude
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Paul Kennouche
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Michelle L. Reniere
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
4
|
Choi A, Dong K, Williams E, Pia L, Batagower J, Bending P, Shin I, Peters DI, Kaspar JR. Human saliva modifies growth, biofilm architecture, and competitive behaviors of oral streptococci. mSphere 2024; 9:e0077123. [PMID: 38319113 PMCID: PMC10900908 DOI: 10.1128/msphere.00771-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
The bacteria within supragingival biofilms participate in complex exchanges with other microbes inhabiting the same niche. One example is the mutans group streptococci (Streptococcus mutans), implicated in the development of tooth decay, and other health-associated commensal streptococci species. Previously, our group transcriptomically characterized intermicrobial interactions between S. mutans and several species of oral bacteria. However, these experiments were carried out in a medium without human saliva. To better mimic their natural environment, we first evaluated how inclusion of saliva affected growth and biofilm formation of eight Streptococcus species individually and found saliva to positively benefit growth rates while negatively influencing biofilm biomass accumulation and altering spatial arrangement. These results carried over during evaluation of 29 saliva-derived isolates of various species. Surprisingly, we also found that addition of saliva increased the competitive behaviors of S. mutans in coculture competitions against commensal streptococci that led to increases in biofilm microcolony volumes. Through transcriptomically characterizing mono- and cocultures of S. mutans and Streptococcus oralis with and without saliva, we determined that each species developed a nutritional niche under mixed-species growth, with S. mutans upregulating carbohydrate uptake and utilization pathways while S. oralis upregulated genome features related to peptide uptake and glycan foraging. S. mutans also upregulated genes involved in oxidative stress tolerance, particularly manganese uptake, which we could artificially manipulate by supplementing in manganese leading to an advantage over its opponent. Our report highlights observable changes in microbial behaviors through leveraging environmental- and host-supplied resources over their competitors. IMPORTANCE Dental caries (tooth decay) is the most prevalent disease for both children and adults nationwide. Caries are initiated from demineralization of the enamel due to organic acid production through the metabolic activity of oral bacteria growing in biofilm communities attached to the tooth's surface. Mutans group streptococci are closely associated with caries development and initiation of the cariogenic cycle, which decreases the amount of acid-sensitive, health-associated commensal bacteria while selecting for aciduric and acidogenic species that then further drives the disease process. Defining the exchanges that occur between mutans group streptococci and oral commensals in a condition that closely mimics their natural environment is of critical need toward identifying factors that can influence odontopathogen establishment, persistence, and outgrowth. The goal of our research is to develop strategies, potentially through manipulation of microbial interactions characterized here, that prevent the emergence of mutans group streptococci while keeping the protective flora intact.
Collapse
Affiliation(s)
- Allen Choi
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Kevin Dong
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Emily Williams
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Lindsey Pia
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Jordan Batagower
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Paige Bending
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Iris Shin
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Daniel I. Peters
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Justin R. Kaspar
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| |
Collapse
|
5
|
Verma M, Nisha A, Bathla M, Acharya A. Resveratrol-Encapsulated Glutathione-Modified Robust Mesoporous Silica Nanoparticles as an Antibacterial and Antibiofilm Coating Agent for Medical Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58212-58229. [PMID: 38060572 DOI: 10.1021/acsami.3c13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The emergence of various lethal bacterial infections and their adherence to medical devices are major public health concerns. The increased bacterial exposure and titer are accompanied by the inappropriate use of antibiotics that sometimes lead to antibiotic resistance, and therefore, a drug-free antibacterial approach is required. Several nanoparticles (NPs) have been developed as antibacterial and antibiofilm coating agents, which can overcome different drug resistance mechanisms by inhibiting the important processes related to bacterial virulence potential. However, developing safe and biocompatible nanomaterials (NMs) for these applications has remained a major challenge due to their poorly understood mechanism of action. In this work, biogenic silica NPs were modified with glutathione (GSH) to form GSH@SNP (∼80 ± 15 nm) for targeting the bacterial cell surface and biofilm. GSH@SNP was loaded with resveratrol to obtain Res_GSH@SNP (∼124 ± 15 nm) that enhances the antibacterial activity of the NPs against Staphylococcus aureus and Escherichia coli by ∼51 and ∼49%, respectively, compared to GSH@SNP. Res_GSH@SNP is responsible for binding to the bacterial cell surface receptors that interrupt the cell membrane potential, leading to reactive oxygen species (ROS) generation, membrane disruption, and DNA damage and eventually resulting in antibacterial activity. Moreover, the antibiofilm activity of Res_GSH@SNP has been found to result from the interaction of the NPs with the abundant carbohydrates present on the biofilm surface. To check the practical utility of Res_GSH@SNP, these were further evaluated as an antibacterial and antibiofilm coating agent for urinary catheters and were found to be effective even after multiple washes. Res_GSH@SNP has been found to exhibit ∼80 ± 1.4% cytocompatibility toward fibroblast NIH-3T3 cells. Overall, this study is expected to pave the way for the development of biocompatible NP-based coating agents for medical devices.
Collapse
Affiliation(s)
- Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjali Nisha
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manik Bathla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Cheng X, Xu X, Zhou X, Ning J. Oxidative stress response: a critical factor affecting the ecological competitiveness of Streptococcus mutans. J Oral Microbiol 2023; 16:2292539. [PMID: 38405599 PMCID: PMC10885835 DOI: 10.1080/20002297.2023.2292539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/05/2023] [Indexed: 02/27/2024] Open
Abstract
Oral microecological balance is closely associated with the development of dental caries. Oxidative stress is one of the important factors regulating the composition and structure of the oral microbial community. Streptococcus mutans is linked to the occurrence and development of dental caries. The ability of S. mutans to withstand oxidative stress affects its survival competitiveness in biofilms. The oxidative stress regulatory mechanisms of S. mutans include synthesis of reductase, regulation of metal ions uptake, regulator PerR, transcription regulator Spx, extracellular uptake of glutathione, and other related signal transduction systems. Here, we provide an overview of how S. mutans adapts to oxidative stress and its influence on oral microecology, which may offer novel options to investigate the cariogenic mechanisms of S. mutans in the oral microenvironment, and new targets for the ecological prevention and treatment of dental caries.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia Ning
- Department of General Dentistry, School & Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Loi VV, Busche T, Schnaufer F, Kalinowski J, Antelmann H. The neutrophil oxidant hypothiocyanous acid causes a thiol-specific stress response and an oxidative shift of the bacillithiol redox potential in Staphylococcus aureus. Microbiol Spectr 2023; 11:e0325223. [PMID: 37930020 PMCID: PMC10715087 DOI: 10.1128/spectrum.03252-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Staphylococcus aureus colonizes the skin and the airways but can also lead to life-threatening systemic and chronic infections. During colonization and phagocytosis by immune cells, S. aureus encounters the thiol-reactive oxidant HOSCN. The understanding of the adaptation mechanisms of S. aureus toward HOSCN stress is important to identify novel drug targets to combat multi-resistant S. aureus isolates. As a defense mechanism, S. aureus uses the flavin disulfide reductase MerA, which functions as HOSCN reductase and protects against HOSCN stress. Moreover, MerA homologs have conserved functions in HOSCN detoxification in other bacteria, including intestinal and respiratory pathogens. In this work, we studied the comprehensive thiol-reactive mode of action of HOSCN and its effect on the reversible shift of the E BSH to discover new defense mechanisms against the neutrophil oxidant. These findings provide new leads for future drug design to fight the pathogen at the sites of colonization and infections.
Collapse
Affiliation(s)
- Vu Van Loi
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Franziska Schnaufer
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Haike Antelmann
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Berude JC, Kennouche P, Reniere ML, Portnoy DA. Listeria monocytogenes utilizes glutathione and limited inorganic sulfur compounds as a source of essential L-cysteine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562582. [PMID: 37905006 PMCID: PMC10614801 DOI: 10.1101/2023.10.16.562582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Listeria monocytogenes ( Lm ) is a Gram-positive facultative intracellular pathogen that leads a biphasic lifecycle, transitioning its metabolism and selectively inducing virulence genes when it encounters mammalian hosts. Virulence gene expression is controlled by the master virulence regulator PrfA, which is allosterically activated by host- and bacterially-derived glutathione (GSH). The amino acid L-cysteine is the rate-limiting substrate for GSH synthesis in bacteria and is essential for bacterial growth. Unlike many bacteria, Lm is auxotrophic for L-cysteine and must import exogenous cysteine for growth and virulence. GSH is enriched in the host cytoplasm, and previous work suggests that Lm utilizes exogenous GSH for PrfA activation. Despite these observations, the import mechanism(s) for GSH remains elusive. Analysis of known GSH importers predicted a homologous importer in Lm comprised of the Ctp ABC transporter and the OppDF ATPases of the Opp oligopeptide importer. Here, we demonstrated that the Ctp complex is a high-affinity GSH/GSSG importer that is required for Lm growth at physiologically relevant concentrations. Further, we demonstrated that OppDF are required for GSH/GSSG import in an Opp-independent manner. These data support a model where Ctp and OppDF form a unique complex for GSH/GSSG import that supports growth and pathogenesis. Additionally, we show that Lm utilizes the inorganic sulfur sources thiosulfate and H 2 S for growth in a CysK-dependent manner in the absence of other L-cysteine sources. These findings suggest a pathoadaptive role for partial cysteine auxotrophy in Lm , where locally high GSH/GSSG or inorganic sulfur concentrations may signal arrival to distinct host niches.
Collapse
|
9
|
Choi A, Dong K, Williams E, Pia L, Batagower J, Bending P, Shin I, Peters DI, Kaspar JR. Human Saliva Modifies Growth, Biofilm Architecture and Competitive Behaviors of Oral Streptococci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554151. [PMID: 37662325 PMCID: PMC10473590 DOI: 10.1101/2023.08.21.554151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The bacteria within supragingival biofilms participate in complex exchanges with other microbes inhabiting the same niche. One example are the mutans group streptococci (Streptococcus mutans), implicated in the development of tooth decay, and other health-associated commensal streptococci species. Previously, our group transcriptomically characterized intermicrobial interactions between S. mutans and several species of oral bacteria. However, these experiments were carried out in a medium that was absent of human saliva. To better mimic their natural environment, we first evaluated how inclusion of saliva affected growth and biofilm formation of eight streptococci species individually, and found saliva to positively benefit growth rates while negatively influencing biomass accumulation and altering spatial arrangement. These results carried over during evaluation of 29 saliva-derived isolates of various species. Surprisingly, we also found that addition of saliva increased the competitive behaviors of S. mutans in coculture competitions against commensal streptococci that led to increases in biofilm microcolony volumes. Through transcriptomically characterizing mono- and cocultures of S. mutans and Streptococcus oralis with and without saliva, we determined that each species developed a nutritional niche under mixed-species growth, with S. mutans upregulating carbohydrate uptake and utilization pathways while S. oralis upregulated genome features related to peptide uptake and glycan foraging. S. mutans also upregulated genes involved in oxidative stress tolerance, particularly manganese uptake, which we could artificially manipulate by supplementing in manganese to give it an advantage over its opponent. Our report highlights observable changes in microbial behaviors via leveraging environmental- and host-supplied resources over their competitors.
Collapse
Affiliation(s)
- Allen Choi
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Kevin Dong
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Emily Williams
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Lindsey Pia
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Jordan Batagower
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Paige Bending
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Iris Shin
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Daniel I Peters
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Justin R Kaspar
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| |
Collapse
|
10
|
Lensmire JM, Wischer MR, Kraemer-Zimpel C, Kies PJ, Sosinski L, Ensink E, Dodson JP, Shook JC, Delekta PC, Cooper CC, Havlichek DH, Mulks MH, Lunt SY, Ravi J, Hammer ND. The glutathione import system satisfies the Staphylococcus aureus nutrient sulfur requirement and promotes interspecies competition. PLoS Genet 2023; 19:e1010834. [PMID: 37418503 PMCID: PMC10355420 DOI: 10.1371/journal.pgen.1010834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Sulfur is an indispensable element for bacterial proliferation. Prior studies demonstrated that the human pathogen Staphylococcus aureus utilizes glutathione (GSH) as a source of nutrient sulfur; however, mechanisms of GSH acquisition are not defined. Here, we identify a five-gene locus comprising a putative ABC-transporter and predicted γ-glutamyl transpeptidase (ggt) that promotes S. aureus proliferation in medium supplemented with either reduced or oxidized GSH (GSSG) as the sole source of nutrient sulfur. Based on these phenotypes, we name this transporter operon the glutathione import system (gisABCD). Ggt is encoded within the gisBCD operon, and we show that the enzyme is capable of liberating glutamate using either GSH or GSSG as substrates, demonstrating it is a bona fide γ-glutamyl transpeptidase. We also determine that Ggt is expressed in the cytoplasm, representing only the second example of cytoplasmic Ggt localization, the other being Neisseria meningitidis. Bioinformatic analyses revealed that Staphylococcus species closely related to S. aureus encode GisABCD-Ggt homologs. However, homologous systems were not detected in Staphylococcus epidermidis. Consequently, we establish that GisABCD-Ggt provides a competitive advantage for S. aureus over S. epidermidis in a GSH- and GSSG-dependent manner. Overall, this study describes the discovery of a nutrient sulfur acquisition system in S. aureus that targets GSSG in addition to GSH and promotes competition against other staphylococci commonly associated with the human microbiota.
Collapse
Affiliation(s)
- Joshua M Lensmire
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Michael R Wischer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Cristina Kraemer-Zimpel
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Paige J Kies
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Lo Sosinski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States of America
| | - Elliot Ensink
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jack P Dodson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - John C Shook
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Phillip C Delekta
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Christopher C Cooper
- Department of Medicine, Division of Infectious Disease, Michigan State University, East Lansing, Michigan, United States of America
| | - Daniel H Havlichek
- Department of Medicine, Division of Infectious Disease, Michigan State University, East Lansing, Michigan, United States of America
| | - Martha H Mulks
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Janani Ravi
- Department of Biomedical Informatics, Center for Health Artificial Intelligence, University of Colorado Anschutz, Aurora, Colorado, United States of America
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
11
|
Cai DS, Yang XY, Yang YQ, Gao F, Cheng XH, Zhao YJ, Qi R, Zhang YZ, Lu JH, Lin XY, Liu YJ, Xu B, Wang PL, Lei HM. Design and synthesis of novel anti-multidrug-resistant staphylococcus aureus derivatives of glycyrrhetinic acid by blocking arginine biosynthesis, metabolic and H 2S biogenesis. Bioorg Chem 2023; 131:106337. [PMID: 36603244 DOI: 10.1016/j.bioorg.2022.106337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
With the soaring number of multidrug-resistant bacteria, it is imperative to develop novel efficient antibacterial agents and discovery new antibacterial pathways. Herein, we designed and synthesized a series of structurally novel glycyrrhetinic acid (GA) derivatives against multidrug-resistant Staphylococcus aureus (MRSA). The in vitro antibacterial activity of these compounds was evaluated using the microbroth dilution method, agar plate coating experiments and real-time growth curves, respectively. Most of the target derivatives showed moderate antibacterial activity against Staphylococcus aureus (S. aureus) and MRSA (MIC = 3.125-25 μM), but inactivity against Escherichia coli (E. Coli) and Pseudomonas aeruginosa (P. aeruginosa) (MIC > 200 μM). Among them, compound 11 had the strongest antibacterial activity against MRSA, with an MIC value of 3.125 μM, which was 32 times and 64 times than the first-line antibiotics penicillin and norfloxacin, respectively. Additionally, transcriptomic (RNA-seq) and quantitative polymerase chain reaction (qPCR) analysis revealed that the antibacterial mechanism of compound 11 was through blocking the arginine biosynthesis and metabolic and the H2S biogenesis. Importantly, compound 11 was confirmed to have good biocompatibility through the in vitro hemolysis tests, cytotoxicity assays and the in vivo quail chicken chorioallantoic membrane (qCAM) experiments. Current study provided new potential antibacterial candidates from glycyrrhetinic acid derivatives for clinical treatment of MRSA infections.
Collapse
Affiliation(s)
- De-Sheng Cai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Xiao-Yun Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yu-Qin Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Xue-Hao Cheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Ya-Juan Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Rui Qi
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yao-Zhi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Ji-Hui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Xiao-Yu Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yi-Jing Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Peng-Long Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Hai-Min Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| |
Collapse
|
12
|
Yu S, Ma Q, Li Y, Zou J. Molecular and regulatory mechanisms of oxidative stress adaptation in Streptococcus mutans. Mol Oral Microbiol 2023; 38:1-8. [PMID: 36088636 DOI: 10.1111/omi.12388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022]
Abstract
Dental caries is a chronic progressive disease, which destructs dental hard tissues under the influence of multiple factors, mainly bacteria. Streptococcus mutans is the main cariogenic bacteria. However, its cariogenic virulence is affected by environmental stress such as oxidative stress, nutrient deficiency, and low pH to some extent. Oxidative stress is one of the main stresses that S. mutans faces in oral cavity. But there are a variety of protective molecules to resist oxidative stress in S. mutans, including superoxide dismutase, nicotinamide adenine dinucleotide oxidase, Dps-like peroxide resistance protein, alkyl-hydrogen peroxide reductase, thioredoxin, glutamate-reducing protein system, and some metabolic substances. Additionally, some transcriptional regulatory factors (SloR, PerR, Rex, Spx, etc.) and two-component systems are also closely related to oxidative stress adaptation by modulating the expression of protective molecules. This review summarizes the research progress of protective molecules and regulatory mechanisms (mainly transcription factors) of oxidative stress adaptation of S. mutans.
Collapse
Affiliation(s)
- Shuxing Yu
- State key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qizhao Ma
- State key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Jing Zou
- State key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Host-Mediated Copper Stress Is Not Protective against Streptococcus pneumoniae D39 Infection. Microbiol Spectr 2022; 10:e0249522. [PMID: 36413018 PMCID: PMC9769658 DOI: 10.1128/spectrum.02495-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Metal ions are required by all organisms for the chemical processes that support life. However, in excess they can also exert toxicity within biological systems. During infection, bacterial pathogens such as Streptococcus pneumoniae are exposed to host-imposed metal intoxication, where the toxic properties of metals, such as copper, are exploited to aid in microbial clearance. However, previous studies investigating the antimicrobial efficacy of copper in vivo have reported variable findings. Here, we use a highly copper-sensitive strain of S. pneumoniae, lacking both copper efflux and intracellular copper buffering by glutathione, to investigate how copper stress is managed and where it is encountered during infection. We show that this strain exhibits highly dysregulated copper homeostasis, leading to the attenuation of growth and hyperaccumulation of copper in vitro. In a murine infection model, whole-tissue copper quantitation and elemental bioimaging of the murine lung revealed that infection with S. pneumoniae resulted in increased copper abundance in specific tissues, with the formation of spatially discrete copper hot spots throughout the lung. While the increased copper was able to reduce the viability of the highly copper-sensitive strain in a pneumonia model, copper levels in professional phagocytes and in a bacteremic model were insufficient to prosecute bacterial clearance. Collectively, this study reveals that host copper is redistributed to sites of infection and can impact bacterial viability in a hypersusceptible strain. However, in wild-type S. pneumoniae, the concerted actions of the copper homeostatic mechanisms are sufficient to facilitate continued viability and virulence of the pathogen. IMPORTANCE Streptococcus pneumoniae (the pneumococcus) is one of the world's foremost bacterial pathogens. Treatment of both localized and systemic pneumococcal infection is becoming complicated by increasing rates of multidrug resistance globally. Copper is a potent antimicrobial agent used by the mammalian immune system in the defense against bacterial pathogens. However, unlike other bacterial species, this copper stress is unable to prosecute pneumococcal clearance. This study determines how the mammalian host inflicts copper stress on S. pneumoniae and the bacterial copper tolerance mechanisms that contribute to maintenance of viability and virulence in vitro and in vivo. This work has provided insight into the chemical biology of the host-pneumococcal interaction and identified a potential avenue for novel antimicrobial development.
Collapse
|
14
|
A newly identified flavoprotein disulfide reductase Har protects Streptococcus pneumoniae against hypothiocyanous acid. J Biol Chem 2022; 298:102359. [PMID: 35952759 PMCID: PMC9483559 DOI: 10.1016/j.jbc.2022.102359] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Hypothiocyanous acid (HOSCN) is an antimicrobial oxidant produced from hydrogen peroxide and thiocyanate anions by heme peroxidases in secretory fluids such as in the human respiratory tract. Some respiratory tract pathogens display tolerance to this oxidant, which suggests that there might be therapeutic value in targeting HOSCN defense mechanisms. However, surprisingly little is known about how bacteria protect themselves from HOSCN. We hypothesized that tolerant pathogens have a flavoprotein disulfide reductase that uses NAD(P)H to directly reduce HOSCN, similar to thioredoxin reductase in mammalian cells. Here, we report the discovery of a previously uncharacterized flavoprotein disulfide reductase with HOSCN reductase activity, which we term Har (hypothiocyanous acid reductase), in Streptococcus pneumoniae, a bacterium previously found to be tolerant of HOSCN. S. pneumoniae generates large amounts of hydrogen peroxide that can be converted to HOSCN in the respiratory tract. Using deletion mutants, we demonstrate that the HOSCN reductase is dispensable for growth of S. pneumoniae in the presence of lactoperoxidase and thiocyanate. However, bacterial growth in the HOSCN-generating system was completely crippled when deletion of HOSCN reductase activity was combined with disruption of GSH import or recycling. Our findings identify a new bacterial HOSCN reductase and demonstrate a role for this protein in combination with GSH utilization to protect S. pneumoniae from HOSCN.
Collapse
|
15
|
Abstract
The nasopharynx and the skin are the major oxygen-rich anatomical sites for colonization by the human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]). To establish infection, GAS must survive oxidative stress generated during aerobic metabolism and the release of reactive oxygen species (ROS) by host innate immune cells. Glutathione is the major host antioxidant molecule, while GAS is glutathione auxotrophic. Here, we report the molecular characterization of the ABC transporter substrate binding protein GshT in the GAS glutathione salvage pathway. We demonstrate that glutathione uptake is critical for aerobic growth of GAS and that impaired import of glutathione induces oxidative stress that triggers enhanced production of the reducing equivalent NADPH. Our results highlight the interrelationship between glutathione assimilation, carbohydrate metabolism, virulence factor production, and innate immune evasion. Together, these findings suggest an adaptive strategy employed by extracellular bacterial pathogens to exploit host glutathione stores for their own benefit.
Collapse
|
16
|
Listeria monocytogenes TcyKLMN Cystine/Cysteine Transporter Facilitates Glutathione Synthesis and Virulence Gene Expression. mBio 2022; 13:e0044822. [PMID: 35435705 PMCID: PMC9239247 DOI: 10.1128/mbio.00448-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial pathogens sense the repertoire of metabolites in the mammalian niche and use this information to shift into the pathogenic state to accomplish a successful infection. Glutathione is a virulence-activating signal that is synthesized by
L. monocytogenes
during infection of mammalian cells.
Collapse
|
17
|
Xu ZS, Wang Z, Cui X, Liang Y, Wang T, Kong J. Peptide transporter-related protein 2 plays an important role in glutathione transport of Streptococcus thermophilus. J Dairy Sci 2021; 104:3990-4001. [PMID: 33589257 DOI: 10.3168/jds.2020-19234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/18/2020] [Indexed: 01/19/2023]
Abstract
Streptococcus thermophilus is widely used as a starter culture in the fermentation of yogurt. Glutathione (GSH; γ-glutamyl-cysteinyl-glycine), as a tripeptide, has an important physiological role for Strep. thermophilus. However, the scope of the GSH transport proteins is still unexplored in this species. In the present study, 5 peptide transporter-related proteins (Ptrp) of Strep. thermophilus strain ST-1 were selected and then inactivated by gene insertion, respectively. Through detection and comparison of intracellular GSH content of mutant strain and wild strain, we identified 2 proteins, named Ptrp-2 and Ptrp-4, that might be related to GSH transport. Reverse-transcriptase quantitative PCR was performed to verify the gene expressions of these 2 possible GSH transport-related proteins, and it was finally determined that Ptrp-2 plays an important role in GSH transport of Strep. thermophilus. Milk fermentation experiments were further conducted to test the effect of Ptrp-2 on the characteristics of yogurt. The results showed that the fermented milk hardly curds using the mutant strain, indicating that Ptrp-2 is important for Strep. thermophilus as a yogurt starter.
Collapse
Affiliation(s)
- Z S Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - Z Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - X Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - Y Liang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - T Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China.
| | - J Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China.
| |
Collapse
|
18
|
Abstract
Copper (Cu) is an essential metal for bacterial physiology but in excess it is bacteriotoxic. To limit Cu levels in the cytoplasm, most bacteria possess a transcriptionally responsive system for Cu export. In the Gram-positive human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]), this system is encoded by the copYAZ operon. This study demonstrates that although the site of GAS infection represents a Cu-rich environment, inactivation of the copA Cu efflux gene does not reduce virulence in a mouse model of invasive disease. In vitro, Cu treatment leads to multiple observable phenotypes, including defects in growth and viability, decreased fermentation, inhibition of glyceraldehyde-3-phosphate dehydrogenase (GapA) activity, and misregulation of metal homeostasis, likely as a consequence of mismetalation of noncognate metal-binding sites by Cu. Surprisingly, the onset of these effects is delayed by ∼4 h even though expression of copZ is upregulated immediately upon exposure to Cu. Further biochemical investigations show that the onset of all phenotypes coincides with depletion of intracellular glutathione (GSH). Supplementation with extracellular GSH replenishes the intracellular pool of this thiol and suppresses all the observable effects of Cu treatment. These results indicate that GSH buffers excess intracellular Cu when the transcriptionally responsive Cu export system is overwhelmed. Thus, while the copYAZ operon is responsible for Cu homeostasis, GSH has a role in Cu tolerance and allows bacteria to maintain metabolism even in the presence of an excess of this metal ion.IMPORTANCE The control of intracellular metal availability is fundamental to bacterial physiology. In the case of copper (Cu), it has been established that rising intracellular Cu levels eventually fill the metal-sensing site of the endogenous Cu-sensing transcriptional regulator, which in turn induces transcription of a copper export pump. This response caps intracellular Cu availability below a well-defined threshold and prevents Cu toxicity. Glutathione, abundant in many bacteria, is known to bind Cu and has long been assumed to contribute to bacterial Cu handling. However, there is some ambiguity since neither its biosynthesis nor uptake is Cu-regulated. Furthermore, there is little experimental support for this physiological role of glutathione beyond measuring growth of glutathione-deficient mutants in the presence of Cu. Our work with group A Streptococcus provides new evidence that glutathione increases the threshold of intracellular Cu availability that can be tolerated by bacteria and thus advances fundamental understanding of bacterial Cu handling.
Collapse
|
19
|
Li Z, Zhang C, Li C, Zhou J, Xu X, Peng X, Zhou X. S-glutathionylation proteome profiling reveals a crucial role of a thioredoxin-like protein in interspecies competition and cariogenecity of Streptococcus mutans. PLoS Pathog 2020; 16:e1008774. [PMID: 32716974 PMCID: PMC7410335 DOI: 10.1371/journal.ppat.1008774] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 08/06/2020] [Accepted: 07/01/2020] [Indexed: 02/05/2023] Open
Abstract
S-glutathionylation is an important post-translational modification (PTM) process that targets protein cysteine thiols by the addition of glutathione (GSH). This modification can prevent proteolysis caused by the excessive oxidation of protein cysteine residues under oxidative or nitrosative stress conditions. Recent studies have suggested that protein S-glutathionylation plays an essential role in the control of cell-signaling pathways by affecting the protein function in bacteria and even humans. In this study, we investigated the effects of S-glutathionylation on physiological regulation within Streptococcus mutans, the primary etiological agent of human dental caries. To determine the S-glutathionylated proteins in bacteria, the Cys reactive isobaric reagent iodoacetyl Tandem Mass Tag (iodoTMT) was used to label the S-glutathionylated Cys site, and an anti-TMT antibody-conjugated resin was used to enrich the modified peptides. Proteome profiling identified a total of 357 glutathionylated cysteine residues on 239 proteins. Functional enrichment analysis indicated that these S-glutathionylated proteins were involved in diverse important biological processes, such as pyruvate metabolism and glycolysis. Furthermore, we studied a thioredoxin-like protein (Tlp) to explore the effect of S-glutathionylation on interspecies competition between oral streptococcal biofilms. Through site mutagenesis, it was proved that glutathionylation on Cys41 residue of Tlp is crucial to protect S. mutans from oxidative stress and compete with S. sanguinis and S. gordonii. An addition rat caries model showed that the loss of S-glutathionylation attenuated the cariogenicity of S. mutans. Taken together, our study provides an insight into the S-glutathionylation of bacterial proteins and the regulation of oxidative stress resistance and interspecies competition.
Collapse
Affiliation(s)
- Zhengyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenzi Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiajia Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Rawat M, Maupin-Furlow JA. Redox and Thiols in Archaea. Antioxidants (Basel) 2020; 9:antiox9050381. [PMID: 32380716 PMCID: PMC7278568 DOI: 10.3390/antiox9050381] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
Low molecular weight (LMW) thiols have many functions in bacteria and eukarya, ranging from redox homeostasis to acting as cofactors in numerous reactions, including detoxification of xenobiotic compounds. The LMW thiol, glutathione (GSH), is found in eukaryotes and many species of bacteria. Analogues of GSH include the structurally different LMW thiols: bacillithiol, mycothiol, ergothioneine, and coenzyme A. Many advances have been made in understanding the diverse and multiple functions of GSH and GSH analogues in bacteria but much less is known about distribution and functions of GSH and its analogues in archaea, which constitute the third domain of life, occupying many niches, including those in extreme environments. Archaea are able to use many energy sources and have many unique metabolic reactions and as a result are major contributors to geochemical cycles. As LMW thiols are major players in cells, this review explores the distribution of thiols and their biochemistry in archaea.
Collapse
Affiliation(s)
- Mamta Rawat
- Biology Department, California State University, Fresno, CA 93740, USA
- Correspondence: (M.R.); (J.A.M.-F.)
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (M.R.); (J.A.M.-F.)
| |
Collapse
|
21
|
The Staphylococcus aureus Cystine Transporters TcyABC and TcyP Facilitate Nutrient Sulfur Acquisition during Infection. Infect Immun 2020; 88:IAI.00690-19. [PMID: 31843961 DOI: 10.1128/iai.00690-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/06/2019] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a significant human pathogen due to its capacity to cause a multitude of diseases. As such, S. aureus efficiently pillages vital nutrients from the host; however, the molecular mechanisms that support sulfur acquisition during infection have not been established. One of the most abundant extracellular sulfur-containing metabolites within the host is cysteine, which acts as the major redox buffer in the blood by transitioning between reduced and oxidized (cystine) forms. We therefore hypothesized that S. aureus acquires host-derived cysteine and cystine as sources of nutrient sulfur during systemic infection. To test this hypothesis, we used the toxic cystine analogue selenocystine to initially characterize S. aureus homologues of the Bacillus subtilis cystine transporters TcyABC and TcyP. We found that genetic inactivation of both TcyA and TcyP induced selenocystine resistance. The double mutant also failed to proliferate in medium supplemented with cystine, cysteine, or N-acetyl cysteine as the sole sulfur source. However, only TcyABC was necessary for proliferation in defined medium containing homocystine as the sulfur source. Using a murine model of systemic infection, we observed tcyP-dependent competitive defects in the liver and heart, indicating that this sulfur acquisition strategy supports proliferation of S. aureus in these organs. Phylogenetic analyses identified TcyP homologues in many pathogenic species, implying that this sulfur procurement strategy is conserved. In total, this study is the first to experimentally validate sulfur acquisition systems in S. aureus and establish their importance during pathogenesis.
Collapse
|
22
|
Sasoni N, Ferrero DML, Guerrero SA, Iglesias AA, Arias DG. First evidence of glutathione metabolism in Leptospira interrogans. Free Radic Biol Med 2019; 143:366-374. [PMID: 31465831 DOI: 10.1016/j.freeradbiomed.2019.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/08/2019] [Accepted: 08/24/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Glutathione (GSH) plays a role as a main antioxidant metabolite in all eukaryotes and many prokaryotes. Most of the organisms synthesize GSH by a pathway involving two enzymatic reactions, each one consuming one molecule of ATP. In a first step mediated by glutamate-cysteine ligase (GCL), the carboxylate of l-glutamic acid reacts with l-cysteine to form the dipeptide γ-glutamylcysteine (γ-GC). The second step involves the addition of glycine to the C-terminal of γ-GC catalyzed by glutathione synthetase (GS). In many bacteria, such as in the pathogen Leptospira interrogans, the main intracellular thiol has not yet been identified and the presence of GSH is not clear. METHODS We performed the molecular cloning of the genes gshA and gshB from L. interrogans; which respectively code for GCL and GS. After heterologous expression of the cloned genes we recombinantly produced the respective proteins with high degree of purity. These enzymes were exhaustively characterized in their biochemical properties. In addition, we determined the contents of GSH and the activity of related enzymes (and proteins) in cell extracts of the bacterium. RESULTS We functionally characterized GCL and GS, the two enzymes putatively involved in GSH synthesis in L. interrogans serovar Copenhageni. LinGCL showed higher substrate promiscuity (was active in presence of l-glutamic acid, l-cysteine and ATP, and also with GTP, l-aspartic acid and l-serine in lower proportion) unlike LinGS (which was only active with γ-GC, l-glycine and ATP). LinGCL is significantly inhibited by γ-GC and GSH, the respective intermediate and final product of the synthetic pathway. GSH showed inhibitory effect over LinGS but with a lower potency than LinGCL. Going further, we detected the presence of GSH in L. interrogans cells grown under basal conditions and also determined enzymatic activity of several GSH-dependent/related proteins in cell extracts. CONCLUSIONS and General Significance. Our results contribute with novel insights concerning redox metabolism in L. interrogans, mainly supporting that GSH is part of the antioxidant defense in the bacterium.
Collapse
Affiliation(s)
- Natalia Sasoni
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas (FBCB), Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional Nº 168 km 0, Santa Fe, 3000, Argentina
| | - Danisa M L Ferrero
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas (FBCB), Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional Nº 168 km 0, Santa Fe, 3000, Argentina
| | - Sergio A Guerrero
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas (FBCB), Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional Nº 168 km 0, Santa Fe, 3000, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas (FBCB), Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional Nº 168 km 0, Santa Fe, 3000, Argentina
| | - Diego G Arias
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas (FBCB), Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional Nº 168 km 0, Santa Fe, 3000, Argentina.
| |
Collapse
|
23
|
Lensmire JM, Hammer ND. Nutrient sulfur acquisition strategies employed by bacterial pathogens. Curr Opin Microbiol 2019; 47:52-58. [DOI: 10.1016/j.mib.2018.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
|
24
|
Surya A, Liu X, Miller MJ. Glutathione Utilization in Lactobacillus fermentum CECT 5716. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12651-12656. [PMID: 30417643 DOI: 10.1021/acs.jafc.8b06136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glutathione, a tripeptide antioxidant, has recently been shown to be either utilized or synthesized by Gram-positive bacteria, such as lactic acid bacteria. Glutathione plays an important role in countering environmental stress, such as oxidative stress. In this study, cellular activity regarding glutathione in Lactobacillus fermentum CECT 5716 is characterized. We demonstrate that L. fermentum CECT 5716 has a better survival rate in the presence of glutathione under both oxidative and metal stress. As L. fermentum CECT 5716 does not possess the ability to synthesize glutathione under the conditions tested, it shows the ability to uptake both reduced and oxidized glutathione from the environment, regenerate reduced glutathione from oxidized glutathione, and perform secretion of glutathione to the environment.
Collapse
Affiliation(s)
- Agustian Surya
- Department of Food Science and Human Nutrition , University of Illinois at Urbana-Champaign , 1302 West Pennsylvania Avenue , Urbana , Illinois 61801 , United States
| | - Xiaoji Liu
- Department of Food Science and Human Nutrition , University of Illinois at Urbana-Champaign , 1302 West Pennsylvania Avenue , Urbana , Illinois 61801 , United States
| | - Michael J Miller
- Department of Food Science and Human Nutrition , University of Illinois at Urbana-Champaign , 1302 West Pennsylvania Avenue , Urbana , Illinois 61801 , United States
| |
Collapse
|
25
|
Tung QN, Linzner N, Loi VV, Antelmann H. Application of genetically encoded redox biosensors to measure dynamic changes in the glutathione, bacillithiol and mycothiol redox potentials in pathogenic bacteria. Free Radic Biol Med 2018; 128:84-96. [PMID: 29454879 DOI: 10.1016/j.freeradbiomed.2018.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/28/2022]
Abstract
Gram-negative bacteria utilize glutathione (GSH) as their major LMW thiol. However, most Gram-positive bacteria do not encode enzymes for GSH biosynthesis and produce instead alternative LMW thiols, such as bacillithiol (BSH) and mycothiol (MSH). BSH is utilized by Firmicutes and MSH is the major LMW thiol of Actinomycetes. LMW thiols are required to maintain the reduced state of the cytoplasm, but are also involved in virulence mechanisms in human pathogens, such as Staphylococcus aureus, Mycobacterium tuberculosis, Streptococcus pneumoniae, Salmonella enterica subsp. Typhimurium and Listeria monocytogenes. Infection conditions often cause perturbations of the intrabacterial redox balance in pathogens, which is further affected under antibiotics treatments. During the last years, novel glutaredoxin-fused roGFP2 biosensors have been engineered in many eukaryotic organisms, including parasites, yeast, plants and human cells for dynamic live-imaging of the GSH redox potential in different compartments. Likewise bacterial roGFP2-based biosensors are now available to measure the dynamic changes in the GSH, BSH and MSH redox potentials in model and pathogenic Gram-negative and Gram-positive bacteria. In this review, we present an overview of novel functions of the bacterial LMW thiols GSH, MSH and BSH in pathogenic bacteria in virulence regulation. Moreover, recent results about the application of genetically encoded redox biosensors are summarized to study the mechanisms of host-pathogen interactions, persistence and antibiotics resistance. In particularly, we highlight recent biosensor results on the redox changes in the intracellular food-borne pathogen Salmonella Typhimurium as well as in the Gram-positive pathogens S. aureus and M. tuberculosis during infection conditions and under antibiotics treatments. These studies established a link between ROS and antibiotics resistance with the intracellular LMW thiol-redox potential. Future applications should be directed to compare the redox potentials among different clinical isolates of these pathogens in relation to their antibiotics resistance and to screen for new ROS-producing drugs as promising strategy to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Quach Ngoc Tung
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Nico Linzner
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Vu Van Loi
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany.
| |
Collapse
|
26
|
Pophaly SD, Poonam S, Pophaly SD, Kapila S, Nanda DK, Tomar SK, Singh R. Glutathione biosynthesis and activity of dependent enzymes in food-grade lactic acid bacteria harbouring multidomain bifunctional fusion gene (gshF). J Appl Microbiol 2017; 123:194-203. [PMID: 28403558 DOI: 10.1111/jam.13471] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/20/2016] [Accepted: 04/07/2017] [Indexed: 12/20/2022]
Abstract
AIMS To assess glutathione (GSH) biosynthesis ability and activity of dependent enzymes in food-grade lactic acid bacteria (LAB) and correlating with genomic information on GSH system in LAB. METHODS AND RESULTS Whole-genome sequences of 26 food-grade LAB were screened for the presence/absence of a set of genes involved in de novo GSH system. Multiple strains of Streptococcus thermophilus (37), Lactobacillus casei (37), Lactobacillus rhamnosus (4), Lactobacillus paracasei (8) Lactobacillus plantarum (23) and Lactobacillus fermentum (22) were screened for biochemical evidence of the GSH system. Multiple sequence analysis of GshF sequences was carried out for comparing the genomic signatures between GSH-producing and nonproducing species. CONCLUSIONS Streptococcus thermophilus was found to have de novo GSH biosynthesis as well as import ability. Lactobacillus sp. were negative for GSH synthesis but could import it from the medium. All the species exhibited prolific GSH reductase and peroxidase activity. Sequence analysis revealed the absence of key amino acid residues as well as a truncated N-terminal region in lactobacilli. SIGNIFICANCE AND IMPACT OF THE STUDY The study provides a comprehensive view on the status of an important antioxidative system (the GSH system) in LAB and is expected to serve as a primer for future work on the mechanistic role of GSH in the group.
Collapse
Affiliation(s)
- S D Pophaly
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India.,Department of Dairy Microbiology, College of Dairy Science and Food Technology, Chhattisgarh Kamdhenu Vishwavidyalaya, Raipur, Chhattisgarh, India
| | - S Poonam
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - S D Pophaly
- Section of Population Genetics, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - S Kapila
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - D K Nanda
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - S K Tomar
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - R Singh
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India.,Directorate of Knowledge Management in Agriculture, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
27
|
Margalef-Català M, Araque I, Bordons A, Reguant C. Genetic and transcriptional study of glutathione metabolism in Oenococcus oeni. Int J Food Microbiol 2017; 242:61-69. [DOI: 10.1016/j.ijfoodmicro.2016.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022]
|
28
|
Pal S, Ramu V, Taye N, Mogare DG, Yeware AM, Sarkar D, Reddy DS, Chattopadhyay S, Das A. GSH Induced Controlled Release of Levofloxacin from a Purpose-Built Prodrug: Luminescence Response for Probing the Drug Release in Escherichia coli and Staphylococcus aureus. Bioconjug Chem 2016; 27:2062-70. [PMID: 27506475 DOI: 10.1021/acs.bioconjchem.6b00324] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluoroquinolones are third-generation broad spectrum bactericidal antibiotics and work against both Gram-positive and Gram-negative bacteria. Levofloxacin (L), a fluoroquinolone, is widely used in anti-infective chemotherapy and treatment of urinary tract infection and pneumonia. The main pathogen for urinary tract infections is Escherichia coli, and Streptococcus pneumoniae is responsible for pneumonia, predominantly a lower respiratory tract infection. Poor permeability of L leads to the use of higher dose of this drug and excess drug in the outer cellular fluid leads to central nervous system (CNS) abnormality. One way to counter this is to improve the lipophilicity of the drug molecule, and accordingly, we have synthesized two new Levofloxacin derivatives, which participated in the spatiotemporal release of drug via disulfide bond cleavage induced by glutathione (GSH). Recent studies with Streptococcus mutants suggest that it is localized in epithelial lining fluid (ELF) of the normal lower respiratory tract and the effective [GSH] in ELF is ∼430 μM. E. coli typically cause urinary tract infections and the concentration of GSH in porcine bladder epithelium is reported as 0.6 mM for a healthy human. Thus, for the present study we have chosen two important bacteria (Gram + ve and Gram - ve), which are operational in regions having high extracellular GSH concentration. Interestingly, this supports our design of new lipophilic Levofloxacin based prodrugs, which released effective drug on reaction with GSH. Higher lipophilicity favored improved uptake of the prodrugs. Site specific release of the drug (L) could be achieved following a glutathione mediated biochemical transformation process through cleavage of a disulfide bond of these purpose-built prodrugs. Further, appropriate design helped us to demonstrate that it is possible also to control the kinetics of the drug release from respective prodrugs. Associated luminescence enhancement helps in probing the release of the drug from the prodrug in bacteria and helps in elucidating the mechanistic pathway of the transformation. Such an example is scarce in the contemporary literature.
Collapse
Affiliation(s)
- Suman Pal
- Organic Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Vadde Ramu
- Organic Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Nandaraj Taye
- Chromatin and Disease Biology Lab, National Centre for Cell Science , Ganeshkhind, Pune 411007, India
| | - Devraj G Mogare
- Chromatin and Disease Biology Lab, National Centre for Cell Science , Ganeshkhind, Pune 411007, India
| | - Amar M Yeware
- Organic Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Dhiman Sarkar
- Organic Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - D Srinivasa Reddy
- Organic Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Samit Chattopadhyay
- Chromatin and Disease Biology Lab, National Centre for Cell Science , Ganeshkhind, Pune 411007, India
| | - Amitava Das
- Organic Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India.,Central Salt and Marine Chemical Research Institute , G.B. Marg, Bhavnagar 364002, India
| |
Collapse
|
29
|
Galvão LCC, Miller JH, Kajfasz JK, Scott-Anne K, Freires IA, Franco GCN, Abranches J, Rosalen PL, Lemos JA. Transcriptional and Phenotypic Characterization of Novel Spx-Regulated Genes in Streptococcus mutans. PLoS One 2015; 10:e0124969. [PMID: 25905865 PMCID: PMC4408037 DOI: 10.1371/journal.pone.0124969] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/20/2015] [Indexed: 01/01/2023] Open
Abstract
In oral biofilms, two of the major environmental challenges encountered by the dental pathogen Streptococcus mutans are acid and oxidative stresses. Previously, we showed that the S. mutans transcriptional regulators SpxA1 and SpxA2 (formerly SpxA and SpxB, respectively) are involved in stress survival by activating the expression of classic oxidative stress genes such as dpr, nox, sodA and tpx. We reasoned that some of the uncharacterized genes under SpxA1/A2 control are potentially involved in oxidative stress management. Therefore, the goal of this study was to use Spx-regulated genes as a tool to identify novel oxidative stress genes in S. mutans. Quantitative real-time PCR was used to evaluate the responses of ten Spx-regulated genes during H2O2 stress in the parent and Δspx strains. Transcription activation of the H2O2-induced genes (8 out of 10) was strongly dependent on SpxA1 and, to a lesser extent, SpxA2. In vitro transcription assays revealed that one or both Spx proteins directly regulate three of these genes. The gene encoding the FeoB ferrous permease was slightly repressed by H2O2 but constitutively induced in strains lacking SpxA1. Nine genes were selected for downstream mutational analysis but inactivation of smu127, encoding a subunit of the acetoin dehydrogenase was apparently lethal. In vitro and in vivo characterization of the viable mutants indicated that, in addition to the transcriptional activation of reducing and antioxidant pathways, Spx performs an important role in iron homeostasis by regulating the intracellular availability of free iron. In particular, inactivation of the genes encoding the Fe-S biogenesis SUF system and the previously characterized iron-binding protein Dpr resulted in impaired growth under different oxidative stress conditions, increased sensitivity to iron and lower infectivity in rats. These results serve as an entryway into the characterization of novel genes and pathways that allow S. mutans to cope with oxidative stress.
Collapse
Affiliation(s)
- Lívia C. C. Galvão
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Physiological Sciences, Dentistry School of Piracicaba, State University of Campinas, Piracicaba, SP, Brazil
| | - James H. Miller
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jessica K. Kajfasz
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Kathy Scott-Anne
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Irlan A. Freires
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Physiological Sciences, Dentistry School of Piracicaba, State University of Campinas, Piracicaba, SP, Brazil
| | - Gilson C. N. Franco
- Department of General Biology, Laboratory of Physiology and Pathophysiology, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Jacqueline Abranches
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Pedro L. Rosalen
- Department of Physiological Sciences, Dentistry School of Piracicaba, State University of Campinas, Piracicaba, SP, Brazil
| | - José A. Lemos
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
Loi VV, Rossius M, Antelmann H. Redox regulation by reversible protein S-thiolation in bacteria. Front Microbiol 2015; 6:187. [PMID: 25852656 PMCID: PMC4360819 DOI: 10.3389/fmicb.2015.00187] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/20/2015] [Indexed: 12/31/2022] Open
Abstract
Low molecular weight (LMW) thiols function as thiol-redox buffers to maintain the reduced state of the cytoplasm. The best studied LMW thiol is the tripeptide glutathione (GSH) present in all eukaryotes and Gram-negative bacteria. Firmicutes bacteria, including Bacillus and Staphylococcus species utilize the redox buffer bacillithiol (BSH) while Actinomycetes produce the related redox buffer mycothiol (MSH). In eukaryotes, proteins are post-translationally modified to S-glutathionylated proteins under conditions of oxidative stress. S-glutathionylation has emerged as major redox-regulatory mechanism in eukaryotes and protects active site cysteine residues against overoxidation to sulfonic acids. First studies identified S-glutathionylated proteins also in Gram-negative bacteria. Advances in mass spectrometry have further facilitated the identification of protein S-bacillithiolations and S-mycothiolation as BSH- and MSH-mixed protein disulfides formed under oxidative stress in Firmicutes and Actinomycetes, respectively. In Bacillus subtilis, protein S-bacillithiolation controls the activities of the redox-sensing OhrR repressor and the methionine synthase MetE in vivo. In Corynebacterium glutamicum, protein S-mycothiolation was more widespread and affected the functions of the maltodextrin phosphorylase MalP and thiol peroxidase (Tpx). In addition, novel bacilliredoxins (Brx) and mycoredoxins (Mrx1) were shown to function similar to glutaredoxins in the reduction of BSH- and MSH-mixed protein disulfides. Here we review the current knowledge about the functions of the bacterial thiol-redox buffers glutathione, bacillithiol, and mycothiol and the role of protein S-thiolation in redox regulation and thiol protection in model and pathogenic bacteria.
Collapse
Affiliation(s)
- Vu Van Loi
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| | - Martina Rossius
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| | - Haike Antelmann
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| |
Collapse
|
31
|
Poirier I, Kuhn L, Caplat C, Hammann P, Bertrand M. The effect of cold stress on the proteome of the marine bacterium Pseudomonas fluorescens BA3SM1 and its ability to cope with metal excess. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:120-133. [PMID: 25456226 DOI: 10.1016/j.aquatox.2014.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 08/06/2014] [Accepted: 10/04/2014] [Indexed: 06/04/2023]
Abstract
This study examined the effect of cold stress on the proteome and metal tolerance of Pseudomonas fluorescens BA3SM1, a marine strain isolated from tidal flat sediments. When cold stress (+10 °C for 36 h) was applied before moderate metal stress (0.4 mM Cd, 0.6 mM Cd, 1.5 mM Zn, and 1.5 mM Cu), growth disturbances induced by metal, in comparison with respective controls, were reduced for Cd and Zn while they were pronounced for Cu. This marine strain was able to respond to cold stress through a number of changes in protein regulation. Analysis of the predicted differentially expressed protein functions demonstrated that some mechanisms developed under cold stress were similar to those developed in response to Cd, Zn, and Cu. Therefore, pre-cold stress could help this strain to better counteract toxicity of moderate concentrations of some metals. P. fluorescens BA3SM1 was able to remove up to 404.3 mg Cd/g dry weight, 172.5 mg Zn/g dry weight, and 11.3 mg Cu/g dry weight and its metal biosorption ability seemed to be related to the bacterial growth phase. Thus, P. fluorescens BA3SM1 appears as a promising agent for bioremediation processes, even at low temperatures.
Collapse
Affiliation(s)
- Isabelle Poirier
- Microorganismes Métaux et Toxicité, Institut National des Sciences et Techniques de la Mer, Conservatoire National des Arts et Métiers, BP 324, 50103 Cherbourg-Octeville Cedex, France.
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg Esplanade, CNRS FRC1589, Institut de Biologie Moléculaire et Cellulaire, 15 rue Descartes, 67084 Strasbourg Cedex, France
| | - Christelle Caplat
- UMR BOREA, Université de Caen Basse-Normandie, Esplanade de la Paix, BP 5186, 14032 Caen Cedex, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg Esplanade, CNRS FRC1589, Institut de Biologie Moléculaire et Cellulaire, 15 rue Descartes, 67084 Strasbourg Cedex, France
| | - Martine Bertrand
- Microorganismes Métaux et Toxicité, Institut National des Sciences et Techniques de la Mer, Conservatoire National des Arts et Métiers, BP 324, 50103 Cherbourg-Octeville Cedex, France
| |
Collapse
|
32
|
Vorwerk H, Mohr J, Huber C, Wensel O, Schmidt-Hohagen K, Gripp E, Josenhans C, Schomburg D, Eisenreich W, Hofreuter D. Utilization of host-derived cysteine-containing peptides overcomes the restricted sulphur metabolism of Campylobacter jejuni. Mol Microbiol 2014; 93:1224-45. [PMID: 25074326 DOI: 10.1111/mmi.12732] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 12/12/2022]
Abstract
The non-glycolytic food-borne pathogen Campylobacter jejuni successfully colonizes the intestine of various hosts in spite of its restricted metabolic properties. While several amino acids are known to be used by C. jejuni as energy sources, none of these have been found to be essential for growth. Here we demonstrated through phenotype microarray analysis that cysteine utilization increases the metabolic activity of C. jejuni. Furthermore, cysteine was crucial for its growth as C. jejuni was unable to synthesize it from sulphate or methionine. Our study showed that C. jejuni compensates this limited anabolic capacity by utilizing sulphide, thiosulphate, glutathione and the dipeptides γGlu-Cys, Cys-Gly and Gly-Cys as sulphur sources and cysteine precursors. A panel of C. jejuni mutants in putative peptidases and peptide transporters were generated and tested for their participation in the catabolism of the cysteine-containing peptides, and the predicted transporter protein CJJ81176_0236 was discovered to facilitate the growth with the dipeptide Cys-Gly, Ile-Arg and Ile-Trp. It was named Campylobacter peptide transporter A (CptA) and is the first representative of the oligopeptide transporter OPT family demonstrated to participate in the glutathione-derivative Cys-Gly catabolism in prokaryotes. Our study provides new insights into how host- and microbiota-derived substrates like sulphide, thiosulphate and short peptides are used by C. jejuni to compensate its restricted metabolic capacities.
Collapse
Affiliation(s)
- Hanne Vorwerk
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|