1
|
Hernandez-Aristizabal D, Garzon-Alvarado DA, Duque-Daza CA, Madzvamuse A. A bulk-surface mechanobiochemical modelling approach for single cell migration in two-space dimensions. J Theor Biol 2024; 595:111966. [PMID: 39419349 DOI: 10.1016/j.jtbi.2024.111966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
In this work, we present a mechanobiochemical model for two-dimensional cell migration which couples mechanical properties of the cell cytosol with biochemical processes taking place near or on the cell plasma membrane. The modelling approach is based on a recently developed mathematical formalism of evolving bulk-surface partial differential equations of reaction-diffusion type. We solve these equations using finite element methods within a moving-mesh framework derived from the weak formulation of the evolving bulk-surface PDEs. In the present work, the cell cytosol interior (bulk) dynamics are coupled to the cell membrane (surface) dynamics through non-homogeneous Dirichlet boundary conditions. The modelling approach exhibits both directed cell migration in response to chemical cues as well as spontaneous migration in the absence of such cues. As a by-product, the approach shows fundamental characteristics associated with single cell migration such as: (i) cytosolic and membrane polarisation, (ii) actin dependent protrusions, and (iii) continuous shape deformation of the cell during migration. Cell migration is an ubiquitous process in life that is mainly triggered by the dynamics of the actin cytoskeleton and therefore is driven by both mechanical and biochemical processes. It is a multistep process essential for mammalian organisms and is closely linked to a vast diversity of processes; from embryonic development to cancer invasion. Experimental, theoretical and computational studies have been key to elucidate the mechanisms underlying cell migration. On one hand, rapid advances in experimental techniques allow for detailed experimental measurements of cell migration pathways, while, on the other, computational approaches allow for the modelling, analysis and understanding of such observations. The bulk-surface mechanobiochemical modelling approach presented in this work, set premises to study single cell migration through complex non-isotropic environments in two- and three-space dimensions.
Collapse
Affiliation(s)
- David Hernandez-Aristizabal
- Universidad Nacional de Colombia, Department of Mechanical and Mechatronics Engineering, Bogotá, Colombia; Aix-Marseille Univ, CNRS, ISM, Marseille, France.
| | | | - Carlos-Alberto Duque-Daza
- Universidad Nacional de Colombia, Department of Mechanical and Mechatronics Engineering, Bogotá, Colombia.
| | - Anotida Madzvamuse
- University of British Columbia, Department of Mathematics, 1984 Mathematics Road, Vancouver, V6T 1Z2, British Columbia, Canada; University of Pretoria, Department of Mathematics, Pretoria, South Africa; University of Johannesburg, Department of Mathematics, Johannesburg, South Africa; University of Zimbabwe, Department of Mathematics and Computational Science, Mt Pleasant, Harare, Zimbabwe.
| |
Collapse
|
2
|
Fang B, Wang C, Du X, Sun G, Jia B, Liu X, Qu Y, Zhang Q, Yang Y, Li YQ, Li W. Structure-dependent destructive adsorption of organophosphate flame retardants on lipid membranes. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135494. [PMID: 39141940 DOI: 10.1016/j.jhazmat.2024.135494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The widespread use of organophosphate flame retardants (OPFRs), a serious type of pervasive environmental contaminants, has led to a global concern regarding their diverse toxicities to living beings. Using a combination of experimental and theoretical approaches, we systematically studied the adsorption, accumulation, and influence of a series of OPFRs on the lipid membranes of bacteria and cells. Our results revealed that OPFRs can aggregate in lipid membranes, leading to the destruction of membrane integrity. During this process, the molecular structure of the OPFRs is a dominant factor that significantly influences the strength of their interaction with the lipid membrane, resulting in varying degrees of biotoxicity. Triphenyl phosphate (TPHP), owing to its large molecular size and strong hydrophobicity, causes severe membrane disruption through the formation of nanoclusters. The corresponding severe toxicity originates from the phase transitions of the lipid membranes. In contrast, smaller OPFRs such as triethyl phosphate (TEP) and tris(2-chloroethyl) phosphate (TCEP) have weaker hydrophobicity and induce minimal membrane disturbance and ineffective damage. In vivo, gavage of TPHP induced more severe barrier damage and inflammatory infiltration in mice than TEP or TCEP, confirming the higher toxicity of TPHP. Overall, our study elucidates the structure-dependent adsorption of OPFRs onto lipid membranes, highlighting their destructive interactions with membranes as the origin of OPFR toxicity.
Collapse
Affiliation(s)
- Bing Fang
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Chunzhen Wang
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Xuancheng Du
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Guochao Sun
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Bingqing Jia
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Xiangdong Liu
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Yuanyuan Qu
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Qingmeng Zhang
- Department of Orthopaedics Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yong-Qiang Li
- School of Physics, Shandong University, Jinan, Shandong 250100, China.
| | - Weifeng Li
- School of Physics, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
3
|
Weerakoon D, Marzinek JK, Pedebos C, Bond PJ, Khalid S. Polymyxin B1 in the Escherichia coli inner membrane: A complex story of protein and lipopolysaccharide-mediated insertion. J Biol Chem 2024; 300:107754. [PMID: 39260694 PMCID: PMC11497408 DOI: 10.1016/j.jbc.2024.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
The rise in multi-drug resistant Gram-negative bacterial infections has led to an increased need for "last-resort" antibiotics such as polymyxins. However, the emergence of polymyxin-resistant strains threatens to bring about a post-antibiotic era. Thus, there is a need to develop new polymyxin-based antibiotics, but a lack of knowledge of the mechanism of action of polymyxins hinders such efforts. It has recently been suggested that polymyxins induce cell lysis of the Gram-negative bacterial inner membrane (IM) by targeting trace amounts of lipopolysaccharide (LPS) localized there. We use multiscale molecular dynamics (MD), including long-timescale coarse-grained (CG) and all-atom (AA) simulations, to investigate the interactions of polymyxin B1 (PMB1) with bacterial IM models containing phospholipids (PLs), small quantities of LPS, and IM proteins. LPS was observed to (transiently) phase separate from PLs at multiple LPS concentrations, and associate with proteins in the IM. PMB1 spontaneously inserted into the IM and localized at the LPS-PL interface, where it cross-linked lipid headgroups via hydrogen bonds, sampling a wide range of interfacial environments. In the presence of membrane proteins, a small number of PMB1 molecules formed interactions with them, in a manner that was modulated by local LPS molecules. Electroporation-driven translocation of PMB1 via water-filled pores was favored at the protein-PL interface, supporting the 'destabilizing' role proteins may have within the IM. Overall, this in-depth characterization of PMB1 modes of interaction reveals how small amounts of mislocalized LPS may play a role in pre-lytic targeting and provides insights that may facilitate rational improvement of polymyxin-based antibiotics.
Collapse
Affiliation(s)
- Dhanushka Weerakoon
- School of Chemistry, University of Southampton, Southampton, UK; Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Jan K Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Conrado Pedebos
- Department of Biochemistry, University of Oxford, Porto Alegre, UK; Programa de Pós-Graduação em Biociências (PPGBio), Universidade Federal de Ciências da Saudé de Porto Alegre - UFCSPA, Brazil
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore.
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Porto Alegre, UK.
| |
Collapse
|
4
|
Mitchison-Field LM, Belin BJ. Bacterial lipid biophysics and membrane organization. Curr Opin Microbiol 2023; 74:102315. [PMID: 37058914 PMCID: PMC10523990 DOI: 10.1016/j.mib.2023.102315] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
The formation of lateral microdomains is emerging as a central organizing principle in bacterial membranes. These microdomains are targets of antibiotic development and have the potential to enhance natural product synthesis, but the rules governing their assembly are unclear. Previous studies have suggested that microdomain formation is promoted by lipid phase separation, particularly by cardiolipin (CL) and isoprenoid lipids, and there is strong evidence that CL biosynthesis is required for recruitment of membrane proteins to cell poles and division sites. New work demonstrates that additional bacterial lipids may mediate membrane protein localization and function, opening the field for mechanistic evaluation of lipid-driven membrane organization in vivo.
Collapse
Affiliation(s)
- Lorna My Mitchison-Field
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Brittany J Belin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Chuang S, Ghoshal M, McLandsborough L. Efficacy of acidified water-in-oil emulsions against desiccated Salmonella as a function of acid carbon chain-length and membrane viscosity. Front Microbiol 2023; 14:1197473. [PMID: 37378296 PMCID: PMC10291884 DOI: 10.3389/fmicb.2023.1197473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Sanitizing low-moisture food (LMF) processing equipment is challenging due to the increased heat resistance of Salmonella spp. in low-water activity (aw) environments. Food-grade oils mixed with acetic acid have been shown effective against desiccated Salmonella. In this study, different hydrocarbon chain-length (Cn) organic acids were tested against desiccated Salmonella by using 1% v/v water-in-oil (W/O) emulsion as the delivery system for 200 mM acid. Fluorescence lifetime imaging microscopy (FLIM) was utilized with a BODIPY-based molecular rotor to evaluate membrane viscosity under environmental conditions such as desiccation and temperature elevation. Drying hydrated Salmonella cells to 75% equilibrium relative humidity (ERH) increased the membrane viscosity from 1,199 to 1,309 mPa·s (cP) at 22°C. Heating to 45°C decreased the membrane viscosity of hydrated cells from 1,199 to 1,082 mPa·s, and decreased that of the desiccated cells from 1,309 to 1,245 mPa·s. At both 22°C and 45°C, desiccated Salmonella was highly susceptible (>6.5 microbial log reduction (MLR) per stainless-steel coupon) to a 30-min treatment with the W/O emulsions formulated with short carbon chain acids (C1-3). By comparison, the emulsion formulations with longer carbon chain acids (C4-12) showed little to no MLR at 22°C, but achieved >6.5 MLR at 45°C. Based upon the decreased Salmonella membrane viscosity and the increased antimicrobial efficacy of C4-12 W/O emulsions with increasing temperature, we propose that heating can make the membrane more fluid which may allow the longer carbon chain acids (C4-12) to permeate or disrupt membrane structures.
Collapse
Affiliation(s)
- Shihyu Chuang
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Mrinalini Ghoshal
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States
| | - Lynne McLandsborough
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
6
|
Ginez LD, Osorio A, Vázquez-Ramírez R, Arenas T, Mendoza L, Camarena L, Poggio S. Changes in fluidity of the E. coli outer membrane in response to temperature, divalent cations and polymyxin-B show two different mechanisms of membrane fluidity adaptation. FEBS J 2022; 289:3550-3567. [PMID: 35038363 DOI: 10.1111/febs.16358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/23/2021] [Accepted: 01/13/2022] [Indexed: 12/28/2022]
Abstract
The outer membrane (OM) is an essential component of the Gram-negative bacterial cell envelope. Restricted diffusion of integral OM proteins and lipopolysaccharide (LPS) that constitute the outer leaflet of the OM support a model in which the OM is in a semi-crystalline state. The low fluidity of the OM has been suggested to be an important property of this membrane that even contributes to cell rigidity. The LPS characteristics strongly determine the properties of the OM and the LPS layer fluidity has been measured using different techniques that require specific conditions or are technically challenging. Here, we characterize the Escherichia coli LPS fluidity by evaluating the lateral diffusion of the styryl dye FM4-64FX in fluorescence recovery after photobleaching experiments. This technique allowed us to determine the effect of different conditions and genetic backgrounds on the LPS fluidity. Our results show that a fraction of the LPS can slowly diffuse and that the fluidity of the LPS layer adapts by modifying the diffusion of the LPS and the fraction of mobile LPS molecules.
Collapse
Affiliation(s)
- Luis David Ginez
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Aurora Osorio
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Ricardo Vázquez-Ramírez
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Thelma Arenas
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Luis Mendoza
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Laura Camarena
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Sebastian Poggio
- Departamento Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| |
Collapse
|
7
|
Vélez M. How Does the Spatial Confinement of FtsZ to a Membrane Surface Affect Its Polymerization Properties and Function? Front Microbiol 2022; 13:757711. [PMID: 35592002 PMCID: PMC9111741 DOI: 10.3389/fmicb.2022.757711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/27/2022] [Indexed: 11/15/2022] Open
Abstract
FtsZ is the cytoskeletal protein that organizes the formation of the septal ring and orchestrates bacterial cell division. Its association to the membrane is essential for its function. In this mini-review I will address the question of how this association can interfere with the structure and dynamic properties of the filaments and argue that its dynamics could also remodel the underlying lipid membrane through its activity. Thus, lipid rearrangement might need to be considered when trying to understand FtsZ’s function. This new element could help understand how FtsZ assembly coordinates positioning and recruitment of the proteins forming the septal ring inside the cell with the activity of the machinery involved in peptidoglycan synthesis located in the periplasmic space.
Collapse
Affiliation(s)
- Marisela Vélez
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
8
|
Dahal D, Ojha KR, Pokhrel S, Paruchuri S, Konopka M, Liu Q, Pang Y. NIR-emitting styryl dyes with large Stokes' shifts for imaging application: From cellular plasma membrane, mitochondria to Zebrafish neuromast. DYES AND PIGMENTS : AN INTERNATIONAL JOURNAL 2021; 194:109629. [PMID: 34366501 PMCID: PMC8345024 DOI: 10.1016/j.dyepig.2021.109629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Near-infrared (NIR) emitting probes with very large Stokes' shifts play a crucial role in bioimaging applications, as the optical signals in this region exhibit high signal to background ratio and allow deeper tissue penetration. Herein we illustrate NIR-emitting probe 2 with very large Stokes' shifts (Δλ ≈ 260 - 272 nm) by integrating the excited-state intramolecular proton transfer (ESIPT) unit 2-(2'-hydroxyphenyl)benzoxazole (HBO) into a pyridinium derived cyanine. The ESIPT not only enhances the Stokes' shifts but also improves the quantum efficiency of the probe 2 (фfl = 0.27 - 0.40 in DCM). The application of 2 in live cells imaging reveals that compound 2 stains mitochondria in eukaryotic cells, normal human lungs fibroblast (NHLF), Zebrafish's neuromast hair cells, and support cells, and inner plasma membrane in prokaryotic cells, Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Dipendra Dahal
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Krishna R Ojha
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Sabita Pokhrel
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Sailaja Paruchuri
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Michael Konopka
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Qin Liu
- Department of Biology, The University of Akron, Akron, OH 44325, USA
| | - Yi Pang
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
- Maurice Morton Institute of Polymer Science, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
9
|
Shepherd JW, Higgins EJ, Wollman AJ, Leake MC. PySTACHIO: Python Single-molecule TrAcking stoiCHiometry Intensity and simulatiOn, a flexible, extensible, beginner-friendly and optimized program for analysis of single-molecule microscopy data. Comput Struct Biotechnol J 2021; 19:4049-4058. [PMID: 34377369 PMCID: PMC8327484 DOI: 10.1016/j.csbj.2021.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/18/2022] Open
Abstract
As camera pixel arrays have grown larger and faster, and optical microscopy techniques ever more refined, there has been an explosion in the quantity of data acquired during routine light microscopy. At the single-molecule level, analysis involves multiple steps and can rapidly become computationally expensive, in some cases intractable on office workstations. Complex bespoke software can present high activation barriers to entry for new users. Here, we redevelop our quantitative single-molecule analysis routines into an optimized and extensible Python program, with GUI and command-line implementations to facilitate use on local machines and remote clusters, by beginners and advanced users alike. We demonstrate that its performance is on par with previous MATLAB implementations but runs an order of magnitude faster. We tested it against challenge data and demonstrate its performance is comparable to state-of-the-art analysis platforms. We show the code can extract fluorescence intensity values for single reporter dye molecules and, using these, estimate molecular stoichiometries and cellular copy numbers of fluorescently-labeled biomolecules. It can evaluate 2D diffusion coefficients for the characteristically short single-particle tracking data. To facilitate benchmarking we include data simulation routines to compare different analysis programs. Finally, we show that it works with 2-color data and enables colocalization analysis based on overlap integration, to infer interactions between differently labelled biomolecules. By making this freely available we aim to make complex light microscopy single-molecule analysis more democratized.
Collapse
Affiliation(s)
- Jack W. Shepherd
- Department of Physics, University of York, York YO10 5DD, United Kingdom
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Ed J. Higgins
- Department of Physics, University of York, York YO10 5DD, United Kingdom
- IT Services, University of York, York YO10 5DD, United Kingdom
| | - Adam J.M. Wollman
- Biosciences Institute, Newcastle University, Newcastle NE1 7RU, United Kingdom
| | - Mark C. Leake
- Department of Physics, University of York, York YO10 5DD, United Kingdom
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
10
|
mem-iLID, a fast and economic protein purification method. Biosci Rep 2021; 41:229021. [PMID: 34142112 PMCID: PMC8239496 DOI: 10.1042/bsr20210800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Protein purification is the vital basis to study the function, structure and interaction of proteins. Widely used methods are affinity chromatography-based purifications, which require different chromatography columns and harsh conditions, such as acidic pH and/or adding imidazole or high salt concentration, to elute and collect the purified proteins. Here we established an easy and fast purification method for soluble proteins under mild conditions, based on the light-induced protein dimerization system improved light-induced dimer (iLID), which regulates protein binding and release with light. We utilize the biological membrane, which can be easily separated by centrifugation, as the port to anchor the target proteins. In Xenopus laevis oocyte and Escherichia coli, the blue light-sensitive part of iLID, AsLOV2-SsrA, was targeted to the plasma membrane by different membrane anchors. The other part of iLID, SspB, was fused with the protein of interest (POI) and expressed in the cytosol. The SspB-POI can be captured to the membrane fraction through light-induced binding to AsLOV2-SsrA and then released purely to fresh buffer in the dark after simple centrifugation and washing. This method, named mem-iLID, is very flexible in scale and economic. We demonstrate the quickly obtained yield of two pure and fully functional enzymes: a DNA polymerase and a light-activated adenylyl cyclase. Furthermore, we also designed a new SspB mutant for better dissociation and less interference with the POI, which could potentially facilitate other optogenetic manipulations of protein-protein interaction.
Collapse
|
11
|
Kim D, Rahhal N, Rademacher C. Elucidating Carbohydrate-Protein Interactions Using Nanoparticle-Based Approaches. Front Chem 2021; 9:669969. [PMID: 34046397 PMCID: PMC8144316 DOI: 10.3389/fchem.2021.669969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Carbohydrates are present on every living cell and coordinate important processes such as self/non-self discrimination. They are amongst the first molecular determinants to be encountered when cellular interactions are initiated. In particular, they resemble essential molecular fingerprints such as pathogen-, danger-, and self-associated molecular patterns guiding key decision-making in cellular immunology. Therefore, a deeper understanding of how cellular receptors of the immune system recognize incoming particles, based on their carbohydrate signature and how this information is translated into a biological response, will enable us to surgically manipulate them and holds promise for novel therapies. One approach to elucidate these early recognition events of carbohydrate interactions at cellular surfaces is the use of nanoparticles coated with defined carbohydrate structures. These particles are captured by carbohydrate receptors and initiate a cellular cytokine response. In the case of endocytic receptors, the capturing enables the engulfment of exogenous particles. Thereafter, the particles are sorted and degraded during their passage in the endolysosomal pathway. Overall, these processes are dependent on the nature of the endocytic carbohydrate receptors and consequently reflect upon the carbohydrate patterns on the exogenous particle surface. This interplay is still an under-studied subject. In this review, we summarize the application of nanoparticles as a promising tool to monitor complex carbohydrate-protein interactions in a cellular context and their application in areas of biomedicine.
Collapse
Affiliation(s)
- Dongyoon Kim
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Nowras Rahhal
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, Vienna, Austria
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, Vienna, Austria
| |
Collapse
|
12
|
Tran BM, Prabha H, Iyer A, O'Byrne C, Abee T, Poolman B. Measurement of Protein Mobility in Listeria monocytogenes Reveals a Unique Tolerance to Osmotic Stress and Temperature Dependence of Diffusion. Front Microbiol 2021; 12:640149. [PMID: 33679676 PMCID: PMC7925416 DOI: 10.3389/fmicb.2021.640149] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/21/2021] [Indexed: 11/18/2022] Open
Abstract
Protein mobility in the cytoplasm is essential for cellular functions, and slow diffusion may limit the rates of biochemical reactions in the living cell. Here, we determined the apparent lateral diffusion coefficient (DL) of GFP in Listeria monocytogenes as a function of osmotic stress, temperature, and media composition. We find that DL is much less affected by hyperosmotic stress in L. monocytogenes than under similar conditions in Lactococcus lactis and Escherichia coli. We find a temperature optimum for protein diffusion in L. monocytogenes at 30°C, which deviates from predicted trends from the generalized Stokes-Einstein equation under dilute conditions and suggests that the structure of the cytoplasm and macromolecular crowding vary as a function of temperature. The turgor pressure of L. monocytogenes is comparable to other Gram-positive bacteria like Bacillus subtilis and L. lactis but higher in a knockout strain lacking the stress-inducible sigma factor SigB. We discuss these findings in the context of how L. monocytogenes survives during environmental transmission and interaction with the human host.
Collapse
Affiliation(s)
- Buu Minh Tran
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| | - Haritha Prabha
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| | - Aditya Iyer
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| | - Conor O'Byrne
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University Research, Wageningen, Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| |
Collapse
|
13
|
Kurita K, Kato F, Shiomi D. Alteration of Membrane Fluidity or Phospholipid Composition Perturbs Rotation of MreB Complexes in Escherichia coli. Front Mol Biosci 2020; 7:582660. [PMID: 33330621 PMCID: PMC7719821 DOI: 10.3389/fmolb.2020.582660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/30/2020] [Indexed: 11/28/2022] Open
Abstract
Gram-negative bacteria such as Escherichia coli are surrounded by inner and outer membranes and peptidoglycan in between, protecting the cells from turgor pressure and maintaining cell shape. The Rod complex, which synthesizes peptidoglycan, is composed of various proteins such as a cytoplasmic protein MreB, a transmembrane protein RodZ, and a transpeptidase PBP2. The Rod complex is a highly motile complex that rotates around the long axis of a cell. Previously, we had reported that anionic phospholipids (aPLs; phosphatidylglycerol and cardiolipin) play a role in the localization of MreB. In this study, we identified that cells lacking aPLs slow down Rod complex movement. We also found that at higher temperatures, the speed of movement increased in cells lacking aPLs, suggesting that membrane fluidity is important for movement. Consistent with this idea, Rod complex motion was reduced, and complex formation was disturbed in the cells depleted of FabA or FabB, which are essential for unsaturated fatty acid synthesis. These cells also showed abnormal morphology. Therefore, membrane fluidity is important for maintaining cell shape through the regulation of Rod complex formation and motility.
Collapse
Affiliation(s)
| | | | - Daisuke Shiomi
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| |
Collapse
|
14
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
15
|
Tsai YT, Moore W, Kim H, Budin I. Bringing rafts to life: Lessons learned from lipid organization across diverse biological membranes. Chem Phys Lipids 2020; 233:104984. [PMID: 33203526 DOI: 10.1016/j.chemphyslip.2020.104984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/13/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
The ability of lipids to drive lateral organization is a remarkable feature of membranes and has been hypothesized to underlie the architecture of cells. Models for lipid rafts and related domains were originally based on the mammalian plasma membrane, but the nature of heterogeneity in this system is still not fully resolved. However, the concept of lipid-driven organization has been highly influential across biology, and has led to discoveries in organisms that feature a diversity of lipid chemistries and physiological needs. Here we review several emerging and instructive cases of membrane organization in non-mammalian systems. In bacteria, several types of membrane domains that act in metabolism and signaling have been elucidated. These widen our view of what constitutes a raft, but also introduce new questions about the relationship between organization and function. In yeast, observable membrane organization is found in both the plasma membrane and the vacuole. The latter serves as the best example of classic membrane phase partitioning in a living system to date, suggesting that internal organelles are important membranes to investigate across eukaryotes. Finally, we highlight plants as powerful model systems for complex membrane interactions in multicellular organisms. Plant membranes are organized by unique glycosphingolipids, supporting the importance of carbohydrate interactions in organizing lateral domains. These examples demonstrate that membrane organization is a potentially universal phenonenon in biology and argue for the continued broadening of lipid physical chemistry research into a wide range of systems.
Collapse
Affiliation(s)
- Yi-Ting Tsai
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - William Moore
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Hyesoo Kim
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Itay Budin
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States.
| |
Collapse
|
16
|
Juan-Colás J, Dresser L, Morris K, Lagadou H, Ward RH, Burns A, Tear S, Johnson S, Leake MC, Quinn SD. The Mechanism of Vesicle Solubilization by the Detergent Sodium Dodecyl Sulfate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11499-11507. [PMID: 32870686 DOI: 10.1021/acs.langmuir.0c01810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Membrane solubilization by sodium dodecyl sulfate (SDS) is indispensable for many established biotechnological applications, including viral inactivation and protein extraction. Although the ensemble thermodynamics have been thoroughly explored, the underlying molecular dynamics have remained inaccessible, owing to major limitations of traditional measurement tools. Here, we integrate multiple advanced biophysical approaches to gain multiangle insight into the time-dependence and fundamental kinetic steps associated with the solubilization of single submicron sized vesicles in response to SDS. We find that the accumulation of SDS molecules on intact vesicles triggers biphasic solubilization kinetics comprising an initial vesicle expansion event followed by rapid lipid loss and micellization. Our findings support a general mechanism of detergent-induced membrane solubilization, and we expect that the framework of correlative biophysical technologies presented here will form a general platform for elucidating the complex kinetics of membrane perturbation induced by a wide variety of surfactants and disrupting agents.
Collapse
Affiliation(s)
- José Juan-Colás
- Department of Electronic Engineering, University of York, Heslington, York YO10 5DD, U.K
| | - Lara Dresser
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
| | - Katie Morris
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
| | - Hugo Lagadou
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
| | - Rebecca H Ward
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
| | - Amy Burns
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
| | - Steve Tear
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
| | - Steven Johnson
- Department of Electronic Engineering, University of York, Heslington, York YO10 5DD, U.K
- York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K
| | - Mark C Leake
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
- Department of Biology, University of York, Heslington, York YO10 5DD, U.K
- York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K
| | - Steven D Quinn
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
- York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
17
|
Yang W, Yaggie RE, Schaeffer AJ, Klumpp DJ. AOAH remodels arachidonic acid-containing phospholipid pools in a model of interstitial cystitis pain: A MAPP Network study. PLoS One 2020; 15:e0235384. [PMID: 32925915 PMCID: PMC7489500 DOI: 10.1371/journal.pone.0235384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 06/15/2020] [Indexed: 01/10/2023] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC) is a debilitating condition of chronic pelvic pain with unknown etiology. Recently, we used a genetic approach in a murine model of IC to identify the lipase acyloxyacyl hydrolase (AOAH) as a modulator of pelvic pain. We found that AOAH-deficient mice have elevated pelvic pain responses, and AOAH immunoreactivity was detected along the bladder-brain axis. Lipidomic analyses identified arachidonic acid (AA) and its metabolite PGE2 as significantly elevated in the sacral spinal cord of AOAH-deficient mice, suggesting AA is a substrate for AOAH. Here, we quantified the effects of AOAH on phospholipids containing AA. Spinal cord lipidomics revealed increased AA-containing phosphatidylcholine in AOAH-deficient mice and concomitantly decreased AA-phosphatidylethanolamine, consistent with decreased CoA-independent transferase activity (CoIT). Overexpression of AOAH in cell cultures similarly altered distribution of AA in phospholipid pools, promoted AA incorporation, and resulted in decreased membrane fluidity. Finally, administration of a PGE2 receptor antagonist reduced pelvic pain in AOAH-deficient mice. Together, these findings suggest that AOAH represents a potential CoA-independent AA transferase that modulates CNS pain pathways at the level of phospholipid metabolism.
Collapse
Affiliation(s)
- Wenbin Yang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Ryan E. Yaggie
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Anthony J. Schaeffer
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - David J. Klumpp
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
18
|
Cao P, Wall D. The Fluidity of the Bacterial Outer Membrane Is Species Specific: Bacterial Lifestyles and the Emergence of a Fluid Outer Membrane. Bioessays 2020; 42:e1900246. [PMID: 32363627 PMCID: PMC7392792 DOI: 10.1002/bies.201900246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/23/2020] [Indexed: 01/17/2023]
Abstract
The outer membrane (OM) is an essential barrier that guards Gram-negative bacteria from diverse environmental insults. Besides functioning as a chemical gatekeeper, the OM also contributes towards the strength and stiffness of cells and allows them to sustain mechanical stress. Largely influenced by studies of Escherichia coli, the OM is viewed as a rigid barrier where OM proteins and lipopolysaccharides display restricted mobility. Here the discussion is extended to other bacterial species, with a focus on Myxococcus xanthus. In contrast to the rigid OM paradigm, myxobacteria possess a relatively fluid OM. It is concluded that the fluidity of the OM varies across environmental species, which is likely linked to their evolution and adaptation to specific ecological niches. Importantly, a fluid OM can endow bacteria with distinct functions for cell-cell and cell-environment interactions.
Collapse
Affiliation(s)
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA
| |
Collapse
|
19
|
Montis C, Joseph P, Magnani C, Marín-Menéndez A, Barbero F, Estrada AR, Nepravishta R, Angulo J, Checcucci A, Mengoni A, Morris CJ, Berti D. Multifunctional nanoassemblies target bacterial lipopolysaccharides for enhanced antimicrobial DNA delivery. Colloids Surf B Biointerfaces 2020; 195:111266. [PMID: 32739771 DOI: 10.1016/j.colsurfb.2020.111266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/10/2020] [Accepted: 07/19/2020] [Indexed: 10/23/2022]
Abstract
The development of new therapeutic strategies against multidrug resistant Gram-negative bacteria is a major challenge for pharmaceutical research. In this respect, it is increasingly recognized that an efficient treatment for resistant bacterial infections should combine antimicrobial and anti-inflammatory effects. Here, we explore the multifunctional therapeutic potential of nanostructured self-assemblies from a cationic bolaamphiphile, which target bacterial lipopolysaccharides (LPSs) and associates with an anti-bacterial nucleic acid to form nanoplexes with therapeutic efficacy against Gram-negative bacteria. To understand the mechanistic details of these multifunctional antimicrobial-anti-inflammatory properties, we performed a fundamental study, comparing the interaction of these nanostructured therapeutics with synthetic biomimetic bacterial membranes and live bacterial cells. Combining a wide range of experimental techniques (Confocal Microscopy, Fluorescence Correlation Spectroscopy, Microfluidics, NMR, LPS binding assays), we demonstrate that the LPS targeting capacity of the bolaamphiphile self-assemblies, comparable to that exerted by Polymixin B, is a key feature of these nanoplexes and one that permits entry of therapeutic nucleic acids in Gram-negative bacteria. These findings enable a new approach to the design of efficient multifunctional therapeutics with combined antimicrobial and anti-inflammatory effects and have therefore the potential to broadly impact fundamental and applied research on self-assembled nano-sized antibacterials for antibiotic resistant infections.
Collapse
Affiliation(s)
- Costanza Montis
- Department of Chemistry and CSGI, University of Florence, Florence, Italy
| | - Pierre Joseph
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Chiara Magnani
- Department of Chemistry and CSGI, University of Florence, Florence, Italy
| | | | | | | | | | - Jesus Angulo
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - Alice Checcucci
- Department of Biology, University of Florence, Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| | | | - Debora Berti
- Department of Chemistry and CSGI, University of Florence, Florence, Italy.
| |
Collapse
|
20
|
Horne JE, Brockwell DJ, Radford SE. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J Biol Chem 2020; 295:10340-10367. [PMID: 32499369 PMCID: PMC7383365 DOI: 10.1074/jbc.rev120.011473] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/03/2020] [Indexed: 01/09/2023] Open
Abstract
β-Barrel outer membrane proteins (OMPs) represent the major proteinaceous component of the outer membrane (OM) of Gram-negative bacteria. These proteins perform key roles in cell structure and morphology, nutrient acquisition, colonization and invasion, and protection against external toxic threats such as antibiotics. To become functional, OMPs must fold and insert into a crowded and asymmetric OM that lacks much freely accessible lipid. This feat is accomplished in the absence of an external energy source and is thought to be driven by the high thermodynamic stability of folded OMPs in the OM. With such a stable fold, the challenge that bacteria face in assembling OMPs into the OM is how to overcome the initial energy barrier of membrane insertion. In this review, we highlight the roles of the lipid environment and the OM in modulating the OMP-folding landscape and discuss the factors that guide folding in vitro and in vivo We particularly focus on the composition, architecture, and physical properties of the OM and how an understanding of the folding properties of OMPs in vitro can help explain the challenges they encounter during folding in vivo Current models of OMP biogenesis in the cellular environment are still in flux, but the stakes for improving the accuracy of these models are high. OMP folding is an essential process in all Gram-negative bacteria, and considering the looming crisis of widespread microbial drug resistance it is an attractive target. To bring down this vital OMP-supported barrier to antibiotics, we must first understand how bacterial cells build it.
Collapse
Affiliation(s)
- Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
21
|
Arai K, Ohtake A, Daikoku S, Suzuki K, Ito Y, Kabayama K, Fukase K, Kanie Y, Kanie O. Discrimination of cellular developmental states focusing on glycan transformation and membrane dynamics by using BODIPY-tagged lactosyl ceramides. Org Biomol Chem 2020; 18:3724-3733. [PMID: 32364197 DOI: 10.1039/d0ob00547a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glycosphingolipids (GSLs) are a group of molecules composed of a hydrophilic glycan part and a hydrophobic ceramide creating a diverse family. GSLs are de novo synthesised from ceramides at the endoplasmic reticulum and Golgi apparatus, and transported to the outer surface of the plasma membrane. It has been known that the glycan structures of GSLs change reflecting disease states. We envisioned that analysing the glycan pattern of GSLs enables distinguishing diseases. For this purpose, we utilised a fluorescently tagged compound, LacCerBODIPY (1). At first, compound 1 was taken up by cultured PC12D cells and transformed into various GSLs. As a result, changes in the GSL patterns of differentiation states of the cells were successfully observed by using an analysis platform, nano-liquid chromatography (LC)-fluorescence detection (FLD)-electrospray ionisation (ESI)-mass spectrometry (MS), which could quantify and provide molecular ions simultaneously. We found that compound 1 remained for about 10 min on the plasma membrane before it was converted into other GSLs. We therefore investigated a more rapid way to discriminate different cellular states by fluorescence recovery after photobleaching, which revealed that it is possible to distinguish the differentiation states as well.
Collapse
Affiliation(s)
- Kenta Arai
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Atsuko Ohtake
- Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Satama 351-0198, Japan
| | - Shusaku Daikoku
- Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Satama 351-0198, Japan
| | - Katsuhiko Suzuki
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kohbata, Aomori 030-0943, Japan
| | - Yukishige Ito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan and Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Satama 351-0198, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan and Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan.
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yoshimi Kanie
- Research promotion division, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Osamu Kanie
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan. and Department of Applied Biochemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
22
|
Shashkova S, Andersson M, Hohmann S, Leake MC. Correlating single-molecule characteristics of the yeast aquaglyceroporin Fps1 with environmental perturbations directly in living cells. Methods 2020; 193:46-53. [PMID: 32387484 DOI: 10.1016/j.ymeth.2020.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 01/09/2023] Open
Abstract
Membrane proteins play key roles at the interface between the cell and its environment by mediating selective import and export of molecules via plasma membrane channels. Despite a multitude of studies on transmembrane channels, understanding of their dynamics directly within living systems is limited. To address this, we correlated molecular scale information from living cells with real time changes to their microenvironment. We employed super-resolved millisecond fluorescence microscopy with a single-molecule sensitivity, to track labelled molecules of interest in real time. We use as example the aquaglyceroporin Fps1 in the yeast Saccharomyces cerevisiae to dissect and correlate its stoichiometry and molecular turnover kinetics with various extracellular conditions. We show that Fps1 resides in multi tetrameric clusters while hyperosmotic and oxidative stress conditions cause Fps1 reorganization. Moreover, we demonstrate that rapid exposure to hydrogen peroxide causes Fps1 degradation. In this way we shed new light on aspects of architecture and dynamics of glycerol-permeable plasma membrane channels.
Collapse
Affiliation(s)
| | - Mikael Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Stefan Hohmann
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| | - Mark C Leake
- Department of Physics, University of York, YO10 5DD York, UK.
| |
Collapse
|
23
|
Shepherd JW, Greenall RJ, Probert M, Noy A, Leake M. The emergence of sequence-dependent structural motifs in stretched, torsionally constrained DNA. Nucleic Acids Res 2020; 48:1748-1763. [PMID: 31930331 PMCID: PMC7038985 DOI: 10.1093/nar/gkz1227] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 11/26/2022] Open
Abstract
The double-helical structure of DNA results from canonical base pairing and stacking interactions. However, variations from steady-state conformations resulting from mechanical perturbations in cells have physiological relevance but their dependence on sequence remains unclear. Here, we use molecular dynamics simulations showing sequence differences result in markedly different structural motifs upon physiological twisting and stretching. We simulate overextension on different sequences of DNA ((AA)12, (AT)12, (CC)12 and (CG)12) with supercoiling densities at 200 and 50 mM salt concentrations. We find that DNA denatures in the majority of stretching simulations, surprisingly including those with over-twisted DNA. GC-rich sequences are observed to be more stable than AT-rich ones, with the specific response dependent on the base pair order. Furthermore, we find that (AT)12 forms stable periodic structures with non-canonical hydrogen bonds in some regions and non-canonical stacking in others, whereas (CG)12 forms a stacking motif of four base pairs independent of supercoiling density. Our results demonstrate that 20-30% DNA extension is sufficient for breaking B-DNA around and significantly above cellular supercoiling, and that the DNA sequence is crucial for understanding structural changes under mechanical stress. Our findings have important implications for the activities of protein machinery interacting with DNA in all cells.
Collapse
Affiliation(s)
- Jack W Shepherd
- Department of Physics, University of York, York YO10 5DD, UK
| | | | | | - Agnes Noy
- Department of Physics, University of York, York YO10 5DD, UK
| | - Mark C Leake
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York,YO10 5NG, UK
| |
Collapse
|
24
|
Cao P, Wall D. Direct visualization of a molecular handshake that governs kin recognition and tissue formation in myxobacteria. Nat Commun 2019; 10:3073. [PMID: 31300643 PMCID: PMC6626042 DOI: 10.1038/s41467-019-11108-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
Many organisms regulate their social life through kin recognition, but the underlying mechanisms are poorly understood. Here, we use a social bacterium, Myxococcus xanthus, to investigate kin recognition at the molecular level. By direct visualization of a cell surface receptor, TraA, we show how these myxobacteria identify kin and transition towards multicellularity. TraA is fluid on the cell surface, and homotypic interactions between TraA from juxtaposed cells trigger the receptors to coalesce, representing a ‘molecular handshake’. Polymorphisms within TraA govern social recognition such that receptors cluster only between individuals bearing compatible alleles. TraA clusters, which resemble eukaryotic gap junctions, direct the robust exchange of cellular goods that allows heterogeneous populations to transition towards homeostasis. This work provides a conceptual framework for how microbes use a fluid outer membrane receptor to recognize and assemble kin cells into a cooperative multicellular community that resembles a tissue. Many organisms, including the bacterium Myxococcus xanthus, regulate their social life through kin recognition. Here, Cao and Wall show that these bacteria use a polymorphic and fluid cell-surface receptor to recognize and assemble kin cells into a cooperative multicellular community that resembles a tissue.
Collapse
Affiliation(s)
- Pengbo Cao
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA.
| |
Collapse
|
25
|
Qiu K, Fato TP, Yuan B, Long YT. Toward Precision Measurement and Manipulation of Single-Molecule Reactions by a Confined Space. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805426. [PMID: 30924293 DOI: 10.1002/smll.201805426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/28/2019] [Indexed: 06/09/2023]
Abstract
All chemical reactions can be divided into a series of single molecule reactions (SMRs), the elementary steps that involve only isomerization of, dissociation from, and addition to an individual molecule. Analyzing SMRs is of paramount importance to identify the intrinsic molecular mechanism of a complex chemical reaction, which is otherwise implausible to reveal in an ensemble fashion, owing to the significant static and dynamic heterogeneity of real-world chemical systems. The single-molecule measurement and manipulation methods developed recently are playing an increasingly irreplaceable role to detect and recognize short-lived intermediates, visualize their transient existence, and determinate the kinetics and dynamics of single bond breaking and formation. Notably, none of the above SMRs characterizations can be realized without the aid of a confined space. Therefore, this Review aims to highlight the recent progress in the development of confined space enabled single-molecule sensing, imaging, and tuning methods to study chemical reactions. Future prospects of SMRs research are also included, including a push toward the physical limit on transduction of information to signals and vice versa, transmission and recording of signals, computational modeling and simulation, and rational design of a confined space for precise SMRs.
Collapse
Affiliation(s)
- Kaipei Qiu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Tano Patrice Fato
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Bo Yuan
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yi-Tao Long
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
26
|
Rcs Phosphorelay Activation in Cardiolipin-Deficient Escherichia coli Reduces Biofilm Formation. J Bacteriol 2019; 201:JB.00804-18. [PMID: 30782633 DOI: 10.1128/jb.00804-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 02/07/2019] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation is a complex process that requires a number of transcriptional, proteomic, and physiological changes to enable bacterial survival. The lipid membrane presents a barrier to communication between the machinery within bacteria and the physical and chemical features of their extracellular environment, and yet little is known about how the membrane influences biofilm development. We found that depleting the anionic phospholipid cardiolipin reduces biofilm formation in Escherichia coli cells by as much as 50%. The absence of cardiolipin activates the regulation of colanic acid synthesis (Rcs) envelope stress response, which represses the production of flagella, disrupts initial biofilm attachment, and reduces biofilm growth. We demonstrate that a reduction in the concentration of cardiolipin impairs translocation of proteins across the inner membrane, which we hypothesize activates the Rcs pathway through the outer membrane lipoprotein RcsF. Our study demonstrates a molecular connection between the composition of membrane phospholipids and biofilm formation in E. coli and suggests that altering lipid biosynthesis may be a viable approach for altering biofilm formation and possibly other multicellular phenotypes related to bacterial adaptation and survival.IMPORTANCE There is a growing interest in the role of lipid membrane composition in the physiology and adaptation of bacteria. We demonstrate that a reduction in the anionic phospholipid cardiolipin impairs biofilm formation in Escherichia coli cells. Depleting cardiolipin reduced protein translocation across the inner membrane and activated the Rcs envelope stress response. Consequently, cardiolipin depletion produced cells lacking assembled flagella, which impacted their ability to attach to surfaces and seed the earliest stage in biofilm formation. This study provides empirical evidence for the role of anionic phospholipid homeostasis in protein translocation and its effect on biofilm development and highlights modulation of the membrane composition as a potential method of altering bacterial phenotypes related to adaptation and survival.
Collapse
|
27
|
Budin I, de Rond T, Chen Y, Chan LJG, Petzold CJ, Keasling JD. Viscous control of cellular respiration by membrane lipid composition. Science 2018; 362:1186-1189. [PMID: 30361388 DOI: 10.1126/science.aat7925] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/11/2018] [Indexed: 12/15/2022]
Abstract
Lipid composition determines the physical properties of biological membranes and can vary substantially between and within organisms. We describe a specific role for the viscosity of energy-transducing membranes in cellular respiration. Engineering of fatty acid biosynthesis in Escherichia coli allowed us to titrate inner membrane viscosity across a 10-fold range by controlling the abundance of unsaturated or branched lipids. These fluidizing lipids tightly controlled respiratory metabolism, an effect that can be explained with a quantitative model of the electron transport chain (ETC) that features diffusion-coupled reactions between enzymes and electron carriers (quinones). Lipid unsaturation also modulated mitochondrial respiration in engineered budding yeast strains. Thus, diffusion in the ETC may serve as an evolutionary constraint for lipid composition in respiratory membranes.
Collapse
Affiliation(s)
- Itay Budin
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA. .,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tristan de Rond
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA.,Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Leanne Jade G Chan
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA.,Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA. .,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.,QB3 Institute, University of California, Berkeley, Berkeley, CA 94270, USA.,The Novo Nordisk Foundation Center for Sustainability, Technical University of Denmark, Denmark.,Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| |
Collapse
|
28
|
Leake MC. Transcription factors in eukaryotic cells can functionally regulate gene expression by acting in oligomeric assemblies formed from an intrinsically disordered protein phase transition enabled by molecular crowding. Transcription 2018; 9:298-306. [PMID: 29895219 PMCID: PMC6150617 DOI: 10.1080/21541264.2018.1475806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
High-speed single-molecule fluorescence microscopy in vivo shows that transcription factors in eukaryotes can act in oligomeric clusters mediated by molecular crowding and intrinsically disordered protein. This finding impacts on the longstanding puzzle of how transcription factors find their gene targets so efficiently in the complex, heterogeneous environment of the cell. Abbreviations CDF - cumulative distribution function; FRAP - fluorescence recovery after photobleaching; GFP - Green fluorescent protein; STORM - stochastic optical reconstruction microscopy; TF - Transcription factor; YFP - Yellow fluorescent protein
Collapse
Affiliation(s)
- Mark C Leake
- a Departments of Physics and Biology , Biological Physical Sciences Institute, University of York , York , UK
| |
Collapse
|
29
|
Vissers T, Brown AT, Koumakis N, Dawson A, Hermes M, Schwarz-Linek J, Schofield AB, French JM, Koutsos V, Arlt J, Martinez VA, Poon WCK. Bacteria as living patchy colloids: Phenotypic heterogeneity in surface adhesion. SCIENCE ADVANCES 2018; 4:eaao1170. [PMID: 29719861 PMCID: PMC5922800 DOI: 10.1126/sciadv.aao1170] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 03/07/2018] [Indexed: 05/22/2023]
Abstract
Understanding and controlling the surface adhesion of pathogenic bacteria is of urgent biomedical importance. However, many aspects of this process remain unclear (for example, microscopic details of the initial adhesion and possible variations between individual cells). Using a new high-throughput method, we identify and follow many single cells within a clonal population of Escherichia coli near a glass surface. We find strong phenotypic heterogeneities: A fraction of the cells remain in the free (planktonic) state, whereas others adhere with an adhesion strength that itself exhibits phenotypic heterogeneity. We explain our observations using a patchy colloid model; cells bind with localized, adhesive patches, and the strength of adhesion is determined by the number of patches: Nonadherers have no patches, weak adherers bind with a single patch only, and strong adherers bind via a single or multiple patches. We discuss possible implications of our results for controlling bacterial adhesion in biomedical and other applications.
Collapse
Affiliation(s)
- Teun Vissers
- Scottish Universities Physics Alliances and School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
- Corresponding author.
| | - Aidan T. Brown
- Scottish Universities Physics Alliances and School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Nick Koumakis
- Scottish Universities Physics Alliances and School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Angela Dawson
- Scottish Universities Physics Alliances and School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Michiel Hermes
- Scottish Universities Physics Alliances and School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
- Department of Physics, Soft Condensed Matter Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands
| | - Jana Schwarz-Linek
- Scottish Universities Physics Alliances and School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Andrew B. Schofield
- Scottish Universities Physics Alliances and School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Joseph M. French
- Scottish Universities Physics Alliances and School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Sanderson Building, Robert Stevenson Road, The King’s Buildings, Edinburgh EH9 3FB, UK
| | - Vasileios Koutsos
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Sanderson Building, Robert Stevenson Road, The King’s Buildings, Edinburgh EH9 3FB, UK
| | - Jochen Arlt
- Scottish Universities Physics Alliances and School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Vincent A. Martinez
- Scottish Universities Physics Alliances and School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Wilson C. K. Poon
- Scottish Universities Physics Alliances and School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| |
Collapse
|
30
|
Weihs F, Wacnik K, Turner RD, Culley S, Henriques R, Foster SJ. Heterogeneous localisation of membrane proteins in Staphylococcus aureus. Sci Rep 2018; 8:3657. [PMID: 29483609 PMCID: PMC5826919 DOI: 10.1038/s41598-018-21750-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/08/2018] [Indexed: 11/25/2022] Open
Abstract
The bacterial cytoplasmic membrane is the interface between the cell and its environment, with multiple membrane proteins serving its many functions. However, how these proteins are organised to permit optimal physiological processes is largely unknown. Based on our initial findings that 2 phospholipid biosynthetic enzymes (PlsY and CdsA) localise heterogeneously in the membrane of the bacterium Staphylococcus aureus, we have analysed the localisation of other key membrane proteins. A range of protein fusions were constructed and used in conjunction with quantitative image analysis. Enzymes involved in phospholipid biosynthesis as well as the lipid raft marker FloT exhibited a heterogeneous localisation pattern. However, the secretion associated SecY protein, was more homogeneously distributed in the membrane. A FRET-based system also identified novel colocalisation between phospholipid biosynthesis enzymes and the respiratory protein CydB revealing a likely larger network of partners. PlsY localisation was found to be dose dependent but not to be affected by membrane lipid composition. Disruption of the activity of the essential cell division organiser FtsZ, using the inhibitor PC190723 led to loss of PlsY localisation, revealing a link to cell division and a possible role for FtsZ in functions not strictly associated with septum formation.
Collapse
Affiliation(s)
- Felix Weihs
- The Krebs Institute. Department of Molecular Biology and Microbiology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Katarzyna Wacnik
- The Krebs Institute. Department of Molecular Biology and Microbiology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Robert D Turner
- The Krebs Institute. Department of Molecular Biology and Microbiology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Siân Culley
- Quantitative Imaging and Nanobiophysics Group, MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
- The Francis Crick Institute, 1 Midland Rd, Kings Cross, London, NW1 1AT, UK
| | - Ricardo Henriques
- Quantitative Imaging and Nanobiophysics Group, MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
- The Francis Crick Institute, 1 Midland Rd, Kings Cross, London, NW1 1AT, UK
| | - Simon J Foster
- The Krebs Institute. Department of Molecular Biology and Microbiology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
31
|
Miller H, Zhou Z, Shepherd J, Wollman AJM, Leake MC. Single-molecule techniques in biophysics: a review of the progress in methods and applications. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:024601. [PMID: 28869217 DOI: 10.1088/1361-6633/aa8a02] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Single-molecule biophysics has transformed our understanding of biology, but also of the physics of life. More exotic than simple soft matter, biomatter lives far from thermal equilibrium, covering multiple lengths from the nanoscale of single molecules to up to several orders of magnitude higher in cells, tissues and organisms. Biomolecules are often characterized by underlying instability: multiple metastable free energy states exist, separated by levels of just a few multiples of the thermal energy scale k B T, where k B is the Boltzmann constant and T absolute temperature, implying complex inter-conversion kinetics in the relatively hot, wet environment of active biological matter. A key benefit of single-molecule biophysics techniques is their ability to probe heterogeneity of free energy states across a molecular population, too challenging in general for conventional ensemble average approaches. Parallel developments in experimental and computational techniques have catalysed the birth of multiplexed, correlative techniques to tackle previously intractable biological questions. Experimentally, progress has been driven by improvements in sensitivity and speed of detectors, and the stability and efficiency of light sources, probes and microfluidics. We discuss the motivation and requirements for these recent experiments, including the underpinning mathematics. These methods are broadly divided into tools which detect molecules and those which manipulate them. For the former we discuss the progress of super-resolution microscopy, transformative for addressing many longstanding questions in the life sciences, and for the latter we include progress in 'force spectroscopy' techniques that mechanically perturb molecules. We also consider in silico progress of single-molecule computational physics, and how simulation and experimentation may be drawn together to give a more complete understanding. Increasingly, combinatorial techniques are now used, including correlative atomic force microscopy and fluorescence imaging, to probe questions closer to native physiological behaviour. We identify the trade-offs, limitations and applications of these techniques, and discuss exciting new directions.
Collapse
Affiliation(s)
- Helen Miller
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Peyret A, Ibarboure E, Le Meins J, Lecommandoux S. Asymmetric Hybrid Polymer-Lipid Giant Vesicles as Cell Membrane Mimics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700453. [PMID: 29375971 PMCID: PMC5770682 DOI: 10.1002/advs.201700453] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/17/2017] [Indexed: 05/29/2023]
Abstract
Lipid membrane asymmetry plays an important role in cell function and activity, being for instance a relevant signal of its integrity. The development of artificial asymmetric membranes thus represents a key challenge. In this context, an emulsion-centrifugation method is developed to prepare giant vesicles with an asymmetric membrane composed of an inner monolayer of poly(butadiene)-b-poly(ethylene oxide) (PBut-b-PEO) and outer monolayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). The formation of a complete membrane asymmetry is demonstrated and its stability with time is followed by measuring lipid transverse diffusion. From fluorescence spectroscopy measurements, the lipid half-life is estimated to be 7.5 h. Using fluorescence recovery after photobleaching technique, the diffusion coefficient of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (DOPE-rhod, inserted into the POPC leaflet) is determined to be about D = 1.8 ± 0.50 μm2 s-1 at 25 °C and D = 2.3 ± 0.7 μm2 s-1 at 37 °C, between the characteristic values of pure POPC and pure polymer giant vesicles and in good agreement with the diffusion of lipids in a variety of biological membranes. These results demonstrate the ability to prepare a cell-like model system that displays an asymmetric membrane with transverse and translational diffusion properties similar to that of biological cells.
Collapse
Affiliation(s)
- Ariane Peyret
- Laboratoire de Chimie des Polymères OrganiquesLCPOUniversité de BordeauxCNRSBordeaux INPUMR 562916 Avenue Pey BerlandF‐33600PessacFrance
| | - Emmanuel Ibarboure
- Laboratoire de Chimie des Polymères OrganiquesLCPOUniversité de BordeauxCNRSBordeaux INPUMR 562916 Avenue Pey BerlandF‐33600PessacFrance
| | - Jean‐François Le Meins
- Laboratoire de Chimie des Polymères OrganiquesLCPOUniversité de BordeauxCNRSBordeaux INPUMR 562916 Avenue Pey BerlandF‐33600PessacFrance
| | - Sebastien Lecommandoux
- Laboratoire de Chimie des Polymères OrganiquesLCPOUniversité de BordeauxCNRSBordeaux INPUMR 562916 Avenue Pey BerlandF‐33600PessacFrance
| |
Collapse
|
34
|
Shashkova S, Leake MC. Single-molecule fluorescence microscopy review: shedding new light on old problems. Biosci Rep 2017; 37:BSR20170031. [PMID: 28694303 PMCID: PMC5520217 DOI: 10.1042/bsr20170031] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 12/19/2022] Open
Abstract
Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called 'green revolution', has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called 'super-resolution' fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques.
Collapse
Affiliation(s)
- Sviatlana Shashkova
- Department of Physics, Biological Physical Sciences Institute (BPSI), University of York, York YO10 5DD, U.K
- Department of Biology, Biological Physical Sciences Institute (BPSI), University of York, York YO10 5DD, U.K
| | - Mark C Leake
- Department of Physics, Biological Physical Sciences Institute (BPSI), University of York, York YO10 5DD, U.K.
- Department of Biology, Biological Physical Sciences Institute (BPSI), University of York, York YO10 5DD, U.K
| |
Collapse
|
35
|
Measuring the Viscosity of the Escherichia coli Plasma Membrane Using Molecular Rotors. Biophys J 2017; 111:1528-1540. [PMID: 27705775 PMCID: PMC5052448 DOI: 10.1016/j.bpj.2016.08.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 11/20/2022] Open
Abstract
The viscosity is a highly important parameter within the cell membrane, affecting the diffusion of small molecules and, hence, controlling the rates of intracellular reactions. There is significant interest in the direct, quantitative assessment of membrane viscosity. Here we report the use of fluorescence lifetime imaging microscopy of the molecular rotor BODIPY C10 in the membranes of live Escherichia coli bacteria to permit direct quantification of the viscosity. Using this approach, we investigated the viscosity in live E. coli cells, spheroplasts, and liposomes made from E. coli membrane extracts. For live cells and spheroplasts, the viscosity was measured at both room temperature (23°C) and the E. coli growth temperature (37°C), while the membrane extract liposomes were studied over a range of measurement temperatures (5–40°C). At 37°C, we recorded a membrane viscosity in live E. coli cells of 950 cP, which is considerably higher than that previously observed in other live cell membranes (e.g., eukaryotic cells, membranes of Bacillus vegetative cells). Interestingly, this indicates that E. coli cells exhibit a high degree of lipid ordering within their liquid-phase plasma membranes.
Collapse
|
36
|
Adaptor protein mediates dynamic pump assembly for bacterial metal efflux. Proc Natl Acad Sci U S A 2017; 114:6694-6699. [PMID: 28607072 DOI: 10.1073/pnas.1704729114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multicomponent efflux complexes constitute a primary mechanism for Gram-negative bacteria to expel toxic molecules for survival. As these complexes traverse the periplasm and link inner and outer membranes, it remains unclear how they operate efficiently without compromising periplasmic plasticity. Combining single-molecule superresolution imaging and genetic engineering, we study in living Escherichia coli cells the tripartite efflux complex CusCBA of the resistance-nodulation-division family that is essential for bacterial resistance to drugs and toxic metals. We find that CusCBA complexes are dynamic structures and shift toward the assembled form in response to metal stress. Unexpectedly, the periplasmic adaptor protein CusB is a key metal-sensing element that drives the assembly of the efflux complex ahead of the transcription activation of the cus operon for defending against metals. This adaptor protein-mediated dynamic pump assembly allows the bacterial cell for efficient efflux upon cellular demand while still maintaining periplasmic plasticity; this could be broadly relevant to other multicomponent efflux systems.
Collapse
|
37
|
Kipper K, Lundius EG, Ćurić V, Nikić I, Wiessler M, Lemke EA, Elf J. Application of Noncanonical Amino Acids for Protein Labeling in a Genomically Recoded Escherichia coli. ACS Synth Biol 2017; 6:233-255. [PMID: 27775882 DOI: 10.1021/acssynbio.6b00138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small synthetic fluorophores are in many ways superior to fluorescent proteins as labels for imaging. A major challenge is to use them for a protein-specific labeling in living cells. Here, we report on our use of noncanonical amino acids that are genetically encoded via the pyrrolysyl-tRNA/pyrrolysyl-RNA synthetase pair at artificially introduced TAG codons in a recoded E. coli strain. The strain is lacking endogenous TAG codons and the TAG-specific release factor RF1. The amino acids contain bioorthogonal groups that can be clicked to externally supplied dyes, thus enabling protein-specific labeling in live cells. We find that the noncanonical amino acid incorporation into the target protein is robust for diverse amino acids and that the usefulness of the recoded E. coli strain mainly derives from the absence of release factor RF1. However, the membrane permeable dyes display high nonspecific binding in intracellular environment and the electroporation of hydrophilic nonmembrane permeable dyes severely impairs growth of the recoded strain. In contrast, proteins exposed on the outer membrane of E. coli can be labeled with hydrophilic dyes with a high specificity as demonstrated by labeling of the osmoporin OmpC. Here, labeling can be made sufficiently specific to enable single molecule studies as exemplified by OmpC single particle tracking.
Collapse
Affiliation(s)
- Kalle Kipper
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| | - Ebba G. Lundius
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| | - Vladimir Ćurić
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| | - Ivana Nikić
- Structural
and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117, Germany
| | - Manfred Wiessler
- Biological
Chemistry, Deutsche Krebsforschungszentrum, Heidelberg, 69120, Germany
| | - Edward A. Lemke
- Structural
and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117, Germany
| | - Johan Elf
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| |
Collapse
|
38
|
Calcium Enhances Bile Salt-Dependent Virulence Activation in Vibrio cholerae. Infect Immun 2016; 85:IAI.00707-16. [PMID: 27849180 DOI: 10.1128/iai.00707-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/04/2016] [Indexed: 12/17/2022] Open
Abstract
Vibrio cholerae is the causative bacteria of the diarrheal disease cholera, but it also persists in aquatic environments, where it displays an expression profile that is distinct from that during infection. Upon entry into the host, a tightly regulated circuit coordinates the induction of two major virulence factors: cholera toxin and a toxin-coregulated pilus (TCP). It has been shown that a set of bile salts, including taurocholate, serve as host signals to activate V. cholerae virulence through inducing the activity of the transmembrane virulence regulator TcpP. In this study, we investigated the role of calcium, an abundant mental ion in the gut, in the regulation of virulence. We show that whereas Ca2+ alone does not affect virulence, Ca2+ enhances bile salt-dependent virulence activation for V. cholerae The induction of TCP by murine intestinal contents is counteracted when Ca2+ is depleted by the high-affinity calcium chelator EGTA, suggesting that the calcium present in the gut is a relevant signal for V. cholerae virulence induction in vivo We further show that Ca2+ enhances virulence by promoting bile salt-induced TcpP-TcpP interaction. Moreover, fluorescence recovery after photobleaching (FRAP) analysis demonstrated that exposure to bile salts and Ca2+ together decreases the recovery rate for fluorescently labeled TcpP, but not for another inner membrane protein (TatA). Together, these data support a model in which physiological levels of Ca2+ may result in altered bile salt-induced TcpP protein movement and activity, ultimately leading to an increased expression of virulence.
Collapse
|
39
|
Oswald F, Varadarajan A, Lill H, Peterman EJG, Bollen YJM. MreB-Dependent Organization of the E. coli Cytoplasmic Membrane Controls Membrane Protein Diffusion. Biophys J 2016; 110:1139-49. [PMID: 26958890 PMCID: PMC4788719 DOI: 10.1016/j.bpj.2016.01.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 01/13/2023] Open
Abstract
The functional organization of prokaryotic cell membranes, which is essential for many cellular processes, has been challenging to analyze due to the small size and nonflat geometry of bacterial cells. Here, we use single-molecule fluorescence microscopy and three-dimensional quantitative analyses in live Escherichia coli to demonstrate that its cytoplasmic membrane contains microdomains with distinct physical properties. We show that the stability of these microdomains depends on the integrity of the MreB cytoskeletal network underneath the membrane. We explore how the interplay between cytoskeleton and membrane affects trans-membrane protein (TMP) diffusion and reveal that the mobility of the TMPs tested is subdiffusive, most likely caused by confinement of TMP mobility by the submembranous MreB network. Our findings demonstrate that the dynamic architecture of prokaryotic cell membranes is controlled by the MreB cytoskeleton and regulates the mobility of TMPs.
Collapse
Affiliation(s)
- Felix Oswald
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, the Netherlands; Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, the Netherlands; LaserLaB Amsterdam, the Netherlands
| | - Aravindan Varadarajan
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, the Netherlands; LaserLaB Amsterdam, the Netherlands
| | - Holger Lill
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, the Netherlands; LaserLaB Amsterdam, the Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, the Netherlands; LaserLaB Amsterdam, the Netherlands
| | - Yves J M Bollen
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, the Netherlands; LaserLaB Amsterdam, the Netherlands.
| |
Collapse
|
40
|
Wollman AJM, Miller H, Foster S, Leake MC. An automated image analysis framework for segmentation and division plane detection of single liveStaphylococcus aureuscells which can operate at millisecond sampling time scales using bespoke Slimfield microscopy. Phys Biol 2016; 13:055002. [DOI: 10.1088/1478-3975/13/5/055002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Mitra SD, Afonina I, Kline KA. Right Place, Right Time: Focalization of Membrane Proteins in Gram-Positive Bacteria. Trends Microbiol 2016; 24:611-621. [PMID: 27117048 DOI: 10.1016/j.tim.2016.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/03/2016] [Accepted: 03/24/2016] [Indexed: 11/25/2022]
Abstract
Membrane proteins represent a significant proportion of total bacterial proteins and perform vital cellular functions ranging from exchanging metabolites and genetic material, secretion and sorting, sensing signal molecules, and cell division. Many of these functions are carried out at distinct foci on the bacterial membrane, and this subcellular localization can be coordinated by a number of factors, including lipid microdomains, protein-protein interactions, and membrane curvature. Elucidating the mechanisms behind focal protein localization in bacteria informs not only protein structure-function correlation, but also how to disrupt the protein function to limit virulence. Here we review recent advances describing a functional role for subcellular localization of membrane proteins involved in genetic transfer, secretion and sorting, cell division and growth, and signaling.
Collapse
Affiliation(s)
- Sumitra D Mitra
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Irina Afonina
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
42
|
Sastre DE, Bisson-Filho A, de Mendoza D, Gueiros-Filho FJ. Revisiting the cell biology of the acyl-ACP:phosphate transacylase PlsX suggests that the phospholipid synthesis and cell division machineries are not coupled inBacillus subtilis. Mol Microbiol 2016; 100:621-34. [DOI: 10.1111/mmi.13337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Diego Emiliano Sastre
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo; São Paulo SP Brazil
| | - Alexandre Bisson-Filho
- Department of Molecular and Cellular Biology and Faculty of Arts and Sciences (FAS) Center for Systems Biology; Harvard University; Cambridge MA 02138 USA
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET Rosario; 2000 Rosario Argentina
| | | |
Collapse
|
43
|
Single-molecule studies of the dynamics and interactions of bacterial OXPHOS complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:224-31. [PMID: 26498189 DOI: 10.1016/j.bbabio.2015.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 12/29/2022]
Abstract
Although significant insight has been gained into biochemical, genetic and structural features of oxidative phosphorylation (OXPHOS) at the single-enzyme level, relatively little was known of how the component complexes function together in time and space until recently. Several pioneering single-molecule studies have emerged over the last decade in particular, which have illuminated our knowledge of OXPHOS, most especially on model bacterial systems. Here, we discuss these recent findings of bacterial OXPHOS, many of which generate time-resolved information of the OXPHOS machinery with the native physiological context intact. These new investigations are transforming our knowledge not only of the molecular arrangement of OXPHOS components in live bacteria, but also of the way components dynamically interact with each other in a functional state. These new discoveries have important implications towards putative supercomplex formation in bacterial OXPHOS in particular. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux.
Collapse
|
44
|
Mika JT, Schavemaker PE, Krasnikov V, Poolman B. Impact of osmotic stress on protein diffusion inLactococcus lactis. Mol Microbiol 2014; 94:857-70. [DOI: 10.1111/mmi.12800] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Jacek T. Mika
- Department of Biochemistry; Groningen Biomolecular Science and Biotechnology Institute; Netherlands Proteomics Centre & Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Department of Chemistry; Katholieke Universiteit Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Paul E. Schavemaker
- Department of Biochemistry; Groningen Biomolecular Science and Biotechnology Institute; Netherlands Proteomics Centre & Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Victor Krasnikov
- Department of Biochemistry; Groningen Biomolecular Science and Biotechnology Institute; Netherlands Proteomics Centre & Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Bert Poolman
- Department of Biochemistry; Groningen Biomolecular Science and Biotechnology Institute; Netherlands Proteomics Centre & Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|