1
|
Apostol AJ, Bragagnolo NJ, Rodriguez CS, Audette GF. Structural insights into the disulfide isomerase and chaperone activity of TrbB of the F plasmid type IV secretion system. Curr Res Struct Biol 2024; 8:100156. [PMID: 39131116 PMCID: PMC11315126 DOI: 10.1016/j.crstbi.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Bacteria have evolved elaborate mechanisms to thrive in stressful environments. F-like plasmids in gram-negative bacteria encode for a multi-protein Type IV Secretion System (T4SSF) that is functional for bacterial proliferation and adaptation through the process of conjugation. The periplasmic protein TrbB is believed to have a stabilizing chaperone role in the T4SSF assembly, with TrbB exhibiting disulfide isomerase (DI) activity. In the current report, we demonstrate that the deletion of the disordered N-terminus of TrbBWT, resulting in a truncation construct TrbB37-161, does not affect its catalytic in vitro activity compared to the wild-type protein (p = 0.76). Residues W37-K161, which include the active thioredoxin motif, are sufficient for DI activity. The N-terminus of TrbBWT is disordered as indicated by a structural model of GST-TrbBWT based on ColabFold-AlphaFold2 and Small Angle X-Ray Scattering data and 1H-15N Heteronuclear Single Quantum Correlation (HSQC) spectroscopy of the untagged protein. This disordered region likely contributes to the protein's dynamicity; removal of this region results in a more stable protein based on 1H-15N HSQC and Circular Dichroism Spectroscopies. Lastly, size exclusion chromatography analysis of TrbBWT in the presence of TraW, a T4SSF assembly protein predicted to interact with TrbBWT, does not support the inference of a stable complex forming in vitro. This work advances our understanding of TrbB's structure and function, explores the role of structural disorder in protein dynamics in the context of a T4SSF accessory protein, and highlights the importance of redox-assisted protein folding in the T4SSF.
Collapse
Affiliation(s)
- Arnold J. Apostol
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
- Centre for Research on Biomolecular Interactions, York University, Canada
| | - Nicholas J. Bragagnolo
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
- Centre for Research on Biomolecular Interactions, York University, Canada
| | - Christina S. Rodriguez
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
- Centre for Research on Biomolecular Interactions, York University, Canada
| | - Gerald F. Audette
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
- Centre for Research on Biomolecular Interactions, York University, Canada
| |
Collapse
|
2
|
Daniels BN, Nurge J, De Smet C, Sleeper O, White C, Davidson JM, Fidopiastis P. Microbiome composition and function within the Kellet's whelk perivitelline fluid. Microbiol Spectr 2024; 12:e0351423. [PMID: 38334378 PMCID: PMC10913743 DOI: 10.1128/spectrum.03514-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Microbiomes have gained significant attention in ecological research, owing to their diverse interactions and essential roles within different organismal ecosystems. Microorganisms, such as bacteria, archaea, and viruses, have profound impact on host health, influencing digestion, metabolism, immune function, tissue development, and behavior. This study investigates the microbiome diversity and function of Kellet's whelk (Kelletia kelletii) perivitelline fluid (PVF), which sustains thousands of developing K. kelletii embryos within a polysaccharide and protein matrix. Our core microbiome analysis reveals a diverse range of bacteria, with the Roseobacter genus being the most abundant. Additionally, genes related to host-microbe interactions, symbiosis, and quorum sensing were detected, indicating a potential symbiotic relationship between the microbiome and Kellet's whelk embryos. Furthermore, the microbiome exhibits gene expression related to antibiotic biosynthesis, suggesting a defensive role against pathogenic bacteria and potential discovery of novel antibiotics. Overall, this study sheds light on the microbiome's role in Kellet's whelk development, emphasizing the significance of host-microbe interactions in vulnerable life history stages. To our knowledge, ours is the first study to use 16S sequencing coupled with RNA sequencing (RNA-seq) to profile the microbiome of an invertebrate PVF.IMPORTANCEThis study provides novel insight to an encapsulated system with strong evidence of symbiosis between the microbial inhabitants and developing host embryos. The Kellet's whelk perivitelline fluid (PVF) contains microbial organisms of interest that may be providing symbiotic functions and potential antimicrobial properties during this vulnerable life history stage. This study, the first to utilize a comprehensive approach to investigating Kellet's whelk PVF microbiome, couples 16S rRNA gene long-read sequencing with RNA-seq. This research contributes to and expands our knowledge on the roles of beneficial host-associated microbes.
Collapse
Affiliation(s)
- Benjamin N. Daniels
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| | - Jenna Nurge
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| | - Chanel De Smet
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| | - Olivia Sleeper
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| | - Crow White
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| | - Jean M. Davidson
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| | - Pat Fidopiastis
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| |
Collapse
|
3
|
Diversity of Contact-Dependent Growth Inhibition Systems of Pseudomonas aeruginosa. J Bacteriol 2019; 201:JB.00776-18. [PMID: 31036723 DOI: 10.1128/jb.00776-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) systems are used in bacterial competition to hinder the growth of neighboring microbes. These systems utilize a two-partner secretion mechanism to display the CdiA exoprotein at the bacterial cell surface. CdiA forms a long filamentous stalk that facilitates binding to a target cell and delivery of a C-terminal toxin (CT) domain. This CT domain is processed and delivered into the cytoplasm of a target cell upon contact. CDI systems also encode a cognate immunity protein (CdiI) that protects siblings and resistant targeted cells from intoxication by high-affinity binding to the CT. CdiA CT domains vary among strains within a species, and many alleles encode enzymatic functions that target nucleic acids. This variation is thought to help drive diversity and adaptation within a species. CdiA diversity is well studied in Escherichia coli and several other bacteria, but little is known about the extent of this diversity in Pseudomonas aeruginosa. The purpose of this review is to highlight the variability that exists in CDI systems of P. aeruginosa. We show that this diversity is apparent even among strains isolated from a single geographical region, suggesting that CDI systems play an important role in the ecology of P. aeruginosa.
Collapse
|
4
|
Villa TG, Feijoo-Siota L, Sánchez-Pérez A, Rama JLR, Sieiro C. Horizontal Gene Transfer in Bacteria, an Overview of the Mechanisms Involved. HORIZONTAL GENE TRANSFER 2019:3-76. [DOI: 10.1007/978-3-030-21862-1_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Chen H, Fang Q, Tu Q, Liu C, Yin J, Yin Y, Xia L, Bian X, Zhang Y. Identification of a contact-dependent growth inhibition system in the probiotic Escherichia coli Nissle 1917. FEMS Microbiol Lett 2018; 365:4980907. [PMID: 29688444 DOI: 10.1093/femsle/fny102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/19/2018] [Indexed: 01/02/2023] Open
Abstract
Contact-dependent growth inhibition (CDI) is a type of competitive mechanisms and has been identified in various strains including Burkholderia, Dickeya, E. coli and Yersinia. Classical CDI systems contain three genes, cdiB, cdiA and cdiI. CdiB encoded by cdiB gene is a conserved β-barrel protein and required for export of CdiA. CdiA protein encoded by cdiA gene includes a conserved N-terminal domain and variable C-terminal toxic domain (CdiA-CT). Immunity protein CdiI binds and inactivates toxin protein CdiA-CT. Here, we identified two CDI systems, an intact cdiBAI operon with a truncated CdiB due to an unexpected mutation and an 'orphan' cdiA-CT/cdiI module in the probiotic Escherichia coli Nissle 1917 (EcN) genome. Both CdiA-CTs from EcN showed auto-inhibition activity when transferring into E. coli DH5α, as well the sequential deletion of amino acid residues resulted in the generation of the most potent mutant of CdiA-CT. CdiI neutralized the toxicity activity of CdiA and was immunity protein as previous report. In conclusion, this is the first report that the functional CDI system is in probiotic EcN and might provide a potential competitive mechanism for probiotic EcN in intestinal microenvironment.
Collapse
Affiliation(s)
- Hanna Chen
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Qian Fang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Qiang Tu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China.,Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266237, People's Republic of China
| | - Chenlang Liu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Jia Yin
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Xiaoying Bian
- Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266237, People's Republic of China
| | - Youming Zhang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China.,Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
6
|
Benoni R, Beck CM, Garza-Sánchez F, Bettati S, Mozzarelli A, Hayes CS, Campanini B. Activation of an anti-bacterial toxin by the biosynthetic enzyme CysK: mechanism of binding, interaction specificity and competition with cysteine synthase. Sci Rep 2017; 7:8817. [PMID: 28821763 PMCID: PMC5562914 DOI: 10.1038/s41598-017-09022-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) is a wide-spread mechanism of inter-bacterial competition. CDI+ bacteria deliver CdiA-CT toxins into neighboring bacteria and produce specific immunity proteins that protect against self-intoxication. The CdiA-CT toxin from uropathogenic Escherichia coli 536 is a latent tRNase that is only active when bound to the cysteine biosynthetic enzyme CysK. Remarkably, the CysK:CdiA-CT binding interaction mimics the ‘cysteine synthase’ complex of CysK:CysE. The C-terminal tails of CysE and CdiA-CT each insert into the CysK active-site cleft to anchor the respective complexes. The dissociation constant for CysK:CdiA-CT (Kd ~ 11 nM) is comparable to that of the E. coli cysteine synthase complex (Kd ~ 6 nM), and both complexes bind through a two-step mechanism with a slow isomerization phase after the initial encounter. However, the second-order rate constant for CysK:CdiA-CT binding is two orders of magnitude slower than that of the cysteine synthase complex, suggesting that CysE should outcompete the toxin for CysK occupancy. However, we find that CdiA-CT can effectively displace CysE from pre-formed cysteine synthase complexes, enabling toxin activation even in the presence of excess competing CysE. This adventitious binding, coupled with the very slow rate of CysK:CdiA-CT dissociation, ensures robust nuclease activity in target bacteria.
Collapse
Affiliation(s)
- Roberto Benoni
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic
| | - Christina M Beck
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA.,Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Stefano Bettati
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
| | - Andrea Mozzarelli
- Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy.,Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA. .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA, USA.
| | - Barbara Campanini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy.
| |
Collapse
|
7
|
Guérin J, Bigot S, Schneider R, Buchanan SK, Jacob-Dubuisson F. Two-Partner Secretion: Combining Efficiency and Simplicity in the Secretion of Large Proteins for Bacteria-Host and Bacteria-Bacteria Interactions. Front Cell Infect Microbiol 2017; 7:148. [PMID: 28536673 PMCID: PMC5422565 DOI: 10.3389/fcimb.2017.00148] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022] Open
Abstract
Initially identified in pathogenic Gram-negative bacteria, the two-partner secretion (TPS) pathway, also known as Type Vb secretion, mediates the translocation across the outer membrane of large effector proteins involved in interactions between these pathogens and their hosts. More recently, distinct TPS systems have been shown to secrete toxic effector domains that participate in inter-bacterial competition or cooperation. The effects of these systems are based on kin vs. non-kin molecular recognition mediated by specific immunity proteins. With these new toxin-antitoxin systems, the range of TPS effector functions has thus been extended from cytolysis, adhesion, and iron acquisition, to genome maintenance, inter-bacterial killing and inter-bacterial signaling. Basically, a TPS system is made up of two proteins, the secreted TpsA effector protein and its TpsB partner transporter, with possible additional factors such as immunity proteins for protection against cognate toxic effectors. Structural studies have indicated that TpsA proteins mainly form elongated β helices that may be followed by specific functional domains. TpsB proteins belong to the Omp85 superfamily. Open questions remain on the mechanism of protein secretion in the absence of ATP or an electrochemical gradient across the outer membrane. The remarkable dynamics of the TpsB transporters and the progressive folding of their TpsA partners at the bacterial surface in the course of translocation are thought to be key elements driving the secretion process.
Collapse
Affiliation(s)
- Jeremy Guérin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, USA
| | - Sarah Bigot
- Molecular Microbiology and Structural Biochemistry, Centre National de La Recherche Scientifique UMR 5086-Université Lyon 1, Institute of Biology and Chemistry of ProteinsLyon, France
| | - Robert Schneider
- NMR and Molecular Interactions, Université de Lille, Centre National de La Recherche Scientifique, UMR 8576-Unité de Glycobiologie Structurale et FonctionnelleLille, France
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, USA
| | - Françoise Jacob-Dubuisson
- Université de Lille, Centre National de La Recherche Scientifique, Institut National de La Santé et de La Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-Centre d'Infection et d'Immunité de LilleLille, France
| |
Collapse
|
8
|
Can't you hear me knocking: contact-dependent competition and cooperation in bacteria. Emerg Top Life Sci 2017; 1:75-83. [PMID: 29085916 DOI: 10.1042/etls20160019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microorganisms are in constant competition for growth niches and environmental resources. In Gram-negative bacteria, contact-dependent growth inhibition (CDI) systems link the fate of one cell with its immediate neighbor through touch-dependent, receptor-mediated toxin delivery. Though discovered for their ability to confer a competitive growth advantage, CDI systems also play significant roles in inter-sibling cooperation, promoting both auto-aggregation and biofilm formation. In this review, we detail the mechanisms of CDI toxin delivery and consider how toxin exchange between isogenic sibling cells could regulate gene expression.
Collapse
|
9
|
Benoni R, De Bei O, Paredi G, Hayes CS, Franko N, Mozzarelli A, Bettati S, Campanini B. Modulation of Escherichia coli serine acetyltransferase catalytic activity in the cysteine synthase complex. FEBS Lett 2017; 591:1212-1224. [PMID: 28337759 DOI: 10.1002/1873-3468.12630] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/20/2017] [Accepted: 03/16/2017] [Indexed: 11/09/2022]
Abstract
In bacteria and plants, serine acetyltransferase (CysE) and O-acetylserine sulfhydrylase-A sulfhydrylase (CysK) collaborate to synthesize l-Cys from l-Ser. CysE and CysK bind one another with high affinity to form the cysteine synthase complex (CSC). We demonstrate that bacterial CysE is activated when bound to CysK. CysE activation results from the release of substrate inhibition, with the Ki for l-Ser increasing from 4 mm for free CysE to 16 mm for the CSC. Feedback inhibition of CysE by l-Cys is also relieved in the bacterial CSC. These findings suggest that the CysE active site is allosterically altered by CysK to alleviate substrate and feedback inhibition in the context of the CSC.
Collapse
Affiliation(s)
- Roberto Benoni
- Dipartimento di Medicina e Chirurgia, Università di Parma, Italy
| | - Omar De Bei
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Italy
| | - Gianluca Paredi
- Centro Interdipartimentale SITEIA.PARMA, Università di Parma, Italy
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| | - Nina Franko
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Italy.,INBB (Istituto Nazionale Biostrutture e Biosistemi), Roma, Italy.,Istituto di Biofisica, CNR, Pisa, Italy
| | - Stefano Bettati
- Dipartimento di Medicina e Chirurgia, Università di Parma, Italy.,INBB (Istituto Nazionale Biostrutture e Biosistemi), Roma, Italy
| | - Barbara Campanini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Italy
| |
Collapse
|
10
|
CdiA Effectors from Uropathogenic Escherichia coli Use Heterotrimeric Osmoporins as Receptors to Recognize Target Bacteria. PLoS Pathog 2016; 12:e1005925. [PMID: 27723824 PMCID: PMC5056734 DOI: 10.1371/journal.ppat.1005925] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/10/2016] [Indexed: 12/28/2022] Open
Abstract
Many Gram-negative bacterial pathogens express contact-dependent growth inhibition (CDI) systems that promote cell-cell interaction. CDI+ bacteria express surface CdiA effector proteins, which transfer their C-terminal toxin domains into susceptible target cells upon binding to specific receptors. CDI+ cells also produce immunity proteins that neutralize the toxin domains delivered from neighboring siblings. Here, we show that CdiAEC536 from uropathogenic Escherichia coli 536 (EC536) uses OmpC and OmpF as receptors to recognize target bacteria. E. coli mutants lacking either ompF or ompC are resistant to CDIEC536-mediated growth inhibition, and both porins are required for target-cell adhesion to inhibitors that express CdiAEC536. Experiments with single-chain OmpF fusions indicate that the CdiAEC536 receptor is heterotrimeric OmpC-OmpF. Because the OmpC and OmpF porins are under selective pressure from bacteriophages and host immune systems, their surface-exposed loops vary between E. coli isolates. OmpC polymorphism has a significant impact on CDIEC536 mediated competition, with many E. coli isolates expressing alleles that are not recognized by CdiAEC536. Analyses of recombinant OmpC chimeras suggest that extracellular loops L4 and L5 are important recognition epitopes for CdiAEC536. Loops L4 and L5 also account for much of the sequence variability between E. coli OmpC proteins, raising the possibility that CDI contributes to the selective pressure driving OmpC diversification. We find that the most efficient CdiAEC536 receptors are encoded by isolates that carry the same cdi gene cluster as E. coli 536. Thus, it appears that CdiA effectors often bind preferentially to "self" receptors, thereby promoting interactions between sibling cells. As a consequence, these effector proteins cannot recognize nor suppress the growth of many potential competitors. These findings suggest that self-recognition and kin selection are important functions of CDI. Bacterial pathogens often live in crowded communities where cells reside in close contact with one another. Many of these bacteria possess contact-dependent growth inhibition (CDI) systems, which allow cells to touch and inhibit each other using toxic CdiA proteins. CDI+ bacteria also produce immunity proteins that specifically protect the cell from the CdiA toxins of neighboring sibling cells. The CDI system from Escherichia coli EC93 was the first to be characterized and its CdiA toxin recognizes a receptor (BamA) that is identical in virtually all E. coli isolates. Here, we describe a different CDI system from uropathogenic E. coli 536, which causes urinary tract infections. In contrast to E. coli EC93, CdiA from E. coli 536 binds to receptor proteins (OmpC/OmpF) that vary widely between different E. coli isolates. Thus, uropathogenic E. coli preferentially bind and deliver toxins into sibling cells and other closely related E. coli strains. These results suggest that CDI systems distinguish between "self" and "non-self" cells. Moreover, because sibling cells are immune to CdiA-mediated growth inhibition, these findings raise the possibility that toxin exchange may be used for communication and cooperative behavior between genetically identical bacteria.
Collapse
|
11
|
Kaundal S, Uttam M, Thakur KG. Dual Role of a Biosynthetic Enzyme, CysK, in Contact Dependent Growth Inhibition in Bacteria. PLoS One 2016; 11:e0159844. [PMID: 27458806 PMCID: PMC4961446 DOI: 10.1371/journal.pone.0159844] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/08/2016] [Indexed: 11/18/2022] Open
Abstract
Contact dependent growth inhibition (CDI) is the phenomenon where CDI+ bacterial strain (inhibitor) inhibits the growth of CDI-strain (target) by direct cell to cell contact. CDI is mediated by cdiBAI gene cluster where CdiB facilitates the export of CdiA, an exotoxin, on the cell surface and CdiI acts as an immunity protein to protect CDI+ cells from autoinhibition. CdiA-CT, the C-terminal region of the toxin CdiA, from uropathogenic Escherichia coli strain 536 (UPEC536) is a latent tRNase that requires binding of a biosynthetic enzyme CysK (O-acetylserine sulfyhydrylase) for activation in the target cells. CdiA-CT can also interact simultaneously with CysK and immunity protein, CdiI, to form a ternary complex in UPEC536. But the role of CysK in the ternary complex is not clear. We studied the hydrodynamic, thermodynamic and kinetic parameters of binary and ternary complexes using AUC, ITC and SPR respectively, to investigate the role of CysK in UPEC536. We report that CdiA-CT binds CdiI and CysK with nanomolar range affinity. We further report that binding of CysK to CdiA-CT improves its affinity towards CdiI by ~40 fold resulting in the formation of a more stable complex with over ~130 fold decrease in dissociation rate. Thermal melting experiments also suggest the role of CysK in stabilizing CdiA-CT/CdiI complex as Tm of the binary complex shifts ~10°C upon binding CysK. Hence, CysK acts a modulator of CdiA-CT/CdiI interactions by stabilizing CdiA-CT/CdiI complex and may play a crucial role in preventing autoinhibition in UPEC536. This study reports a new moonlighting function of a biosynthetic enzyme, CysK, as a modulator of toxin/immunity interactions in UPEC536 inhibitor cells.
Collapse
Affiliation(s)
- Soni Kaundal
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Manju Uttam
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- * E-mail:
| |
Collapse
|
12
|
Contact-Dependent Growth Inhibition (CDI) and CdiB/CdiA Two-Partner Secretion Proteins. J Mol Biol 2015; 427:3754-65. [PMID: 26388411 DOI: 10.1016/j.jmb.2015.09.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022]
Abstract
Bacteria have developed several strategies to communicate and compete with one another in complex environments. One important mechanism of inter-bacterial competition is contact-dependent growth inhibition (CDI), in which Gram-negative bacteria use CdiB/CdiA two-partner secretion proteins to suppress the growth of neighboring target cells. CdiB is an Omp85 outer-membrane protein that exports and assembles CdiA exoproteins onto the inhibitor cell surface. CdiA binds to receptors on susceptible bacteria and subsequently delivers its C-terminal toxin domain (CdiA-CT) into the target cell. CDI systems also encode CdiI immunity proteins, which specifically bind to the CdiA-CT and neutralize its toxin activity, thereby protecting CDI(+) cells from auto-inhibition. Remarkably, CdiA-CT sequences are highly variable between bacteria, as are the corresponding CdiI immunity proteins. Variations in CDI toxin/immunity proteins suggest that these systems function in bacterial self/non-self recognition and thereby play an important role in microbial communities. In this review, we discuss recent advances in the biochemistry, structural biology and physiology of CDI.
Collapse
|
13
|
Arenas J, de Maat V, Catón L, Krekorian M, Herrero JC, Ferrara F, Tommassen J. Fratricide activity of MafB protein of N. meningitidis strain B16B6. BMC Microbiol 2015; 15:156. [PMID: 26242409 PMCID: PMC4524018 DOI: 10.1186/s12866-015-0493-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neisseria meningitidis is an inhabitant of the mucosal surfaces of the human nasopharynx. We recently demonstrated that the secreted meningococcal Two-partner secretion protein A (TpsA) is involved in interbacterial competition. The C-terminal end of the large TpsA protein contains a small toxic domain that inhibits the growth of target bacteria. The producing cells are protected from this toxic activity by a small immunity protein that is encoded by the gene immediately downstream of the tpsA gene. Further downstream on the chromosome, a repertoire of toxic modules, designated tpsC cassettes, is encoded that could replace the toxic module of TpsA by recombination. Each tpsC cassette is associated with a gene encoding a cognate immunity protein. RESULTS Blast searchers using the toxic domains of TpsA and TpsC proteins as queries identified homologies with the C-terminal part of neisserial MafB proteins, which, for the rest, showed no sequence similarity to TpsA proteins. On the chromosome, mafB genes are part of genomic islands, which include cassettes for additional toxic modules as well as genes putatively encoding immunity proteins. We demonstrate that a MafB protein of strain B16B6 inhibits the growth of a strain that does not produce the corresponding immunity protein. Assays in E. coli confirmed that the C-terminal region of MafB is responsible for toxicity, which is inhibited by the cognate immunity protein. Pull-down assays revealed direct interaction between MafB toxic domains and the cognate immunity proteins. CONCLUSIONS The meningococcal MafB proteins are novel toxic proteins involved in interbacterial competition.
Collapse
Affiliation(s)
- Jesús Arenas
- Department of Molecular Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.
| | - Vincent de Maat
- Department of Molecular Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.
| | - Laura Catón
- Department of Molecular Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.
| | - Massis Krekorian
- Department of Molecular Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.
| | - Juan Cruz Herrero
- Department of Molecular Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.
| | - Flavio Ferrara
- Department of Molecular Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.
| | - Jan Tommassen
- Department of Molecular Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Koskiniemi S, Garza-Sánchez F, Edman N, Chaudhuri S, Poole SJ, Manoil C, Hayes CS, Low DA. Genetic analysis of the CDI pathway from Burkholderia pseudomallei 1026b. PLoS One 2015; 10:e0120265. [PMID: 25786241 PMCID: PMC4364669 DOI: 10.1371/journal.pone.0120265] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/21/2015] [Indexed: 12/03/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) is a mode of inter-bacterial competition mediated by the CdiB/CdiA family of two-partner secretion systems. CdiA binds to receptors on susceptible target bacteria, then delivers a toxin domain derived from its C-terminus. Studies with Escherichia coli suggest the existence of multiple CDI growth-inhibition pathways, whereby different systems exploit distinct target-cell proteins to deliver and activate toxins. Here, we explore the CDI pathway in Burkholderia using the CDIIIBp1026b system encoded on chromosome II of Burkholderia pseudomallei 1026b as a model. We took a genetic approach and selected Burkholderia thailandensis E264 mutants that are resistant to growth inhibition by CDIIIBp1026b. We identified mutations in three genes, BTH_I0359, BTH_II0599, and BTH_I0986, each of which confers resistance to CDIIIBp1026b. BTH_I0359 encodes a small peptide of unknown function, whereas BTH_II0599 encodes a predicted inner membrane transport protein of the major facilitator superfamily. The inner membrane localization of BTH_II0599 suggests that it may facilitate translocation of CdiA-CTIIBp1026b toxin from the periplasm into the cytoplasm of target cells. BTH_I0986 encodes a putative transglycosylase involved in lipopolysaccharide (LPS) synthesis. ∆BTH_I0986 mutants have altered LPS structure and do not interact with CDI+ inhibitor cells to the same extent as BTH_I0986+ cells, suggesting that LPS could function as a receptor for CdiAIIBp1026b. Although ∆BTH_I0359, ∆BTH_II0599, and ∆BTH_I0986 mutations confer resistance to CDIIIBp1026b, they provide no protection against the CDIE264 system deployed by B. thailandensis E264. Together, these findings demonstrate that CDI growth-inhibition pathways are distinct and can differ significantly even between closely related species.
Collapse
Affiliation(s)
- Sanna Koskiniemi
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Natasha Edman
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Swarnava Chaudhuri
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Stephen J. Poole
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Colin Manoil
- Department of Genome Sciences, Box 355065, University of Washington, Seattle, Washington, United States of America
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - David A. Low
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| |
Collapse
|