1
|
Savinov A, Swanson S, Keating AE, Li GW. High-throughput discovery of inhibitory protein fragments with AlphaFold. Proc Natl Acad Sci U S A 2025; 122:e2322412122. [PMID: 39899719 PMCID: PMC11831152 DOI: 10.1073/pnas.2322412122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
Peptides can bind to specific sites on larger proteins and thereby function as inhibitors and regulatory elements. Peptide fragments of larger proteins are particularly attractive for achieving these functions due to their inherent potential to form native-like binding interactions. Recently developed experimental approaches allow for high-throughput measurement of protein fragment inhibitory activity in living cells. However, it has thus far not been possible to predict de novo which of the many possible protein fragments bind to protein targets, let alone act as inhibitors. We have developed a computational method, FragFold, that employs AlphaFold to predict protein fragment binding to full-length proteins in a high-throughput manner. Applying FragFold to thousands of fragments tiling across diverse proteins revealed peaks of predicted binding along each protein sequence. Comparisons with experimental measurements establish that our approach is a sensitive predictor of fragment function: Evaluating inhibitory fragments from known protein-protein interaction interfaces, we find 87% are predicted by FragFold to bind in a native-like mode. Across full protein sequences, 68% of FragFold-predicted binding peaks match experimentally measured inhibitory peaks. Deep mutational scanning experiments support the predicted binding modes and uncover superior inhibitory peptides in high throughput. Further, FragFold is able to predict previously unknown protein binding modes, explaining prior genetic and biochemical data. The success rate of FragFold demonstrates that this computational approach should be broadly applicable for discovering inhibitory protein fragments across proteomes.
Collapse
Affiliation(s)
- Andrew Savinov
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Sebastian Swanson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Amy E. Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Koch Center for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
2
|
Naha A, Cameron TA, Margolin W. A Predicted Helix-Turn-Helix Core Is Critical for Bacteriophage Kil Peptide to Disrupt Escherichia coli Cell Division. Antibiotics (Basel) 2025; 14:52. [PMID: 39858338 PMCID: PMC11762379 DOI: 10.3390/antibiotics14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Background/objectives: FtsZ, a eukaryotic tubulin homolog and an essential component of the bacterial divisome, is the target of numerous antimicrobial compounds as well as proteins and peptides, most of which inhibit FtsZ polymerization dynamics. We previously showed that the Kil peptide from bacteriophage λ inhibits Escherichia coli cell division by disrupting FtsZ ring assembly, and this inhibition requires the presence of the essential FtsZ membrane anchor protein ZipA. Methods: To investigate Kil's molecular mechanism further, we employed deletions, truncations, and molecular modeling to identify the minimal residues necessary for its activity. Results: Modeling suggested that Kil's core segment folds into a helix-turn-helix (HTH) structure. Deleting either the C-terminal 11 residues or the N-terminal 5 residues of Kil still allowed the inhibition of E. coli cell division, but removing both termini nearly abolished this activity, indicating that a minimal region within the Kil HTH core is essential for its structure and function. Another Kil-like peptide from a closely related enterobacterial phage also disrupted FtsZ ring assembly and required ZipA for this activity. Consistent with its broader activity against FtsZ, λ Kil was able to efficiently inhibit cell division of a uropathogenic E. coli (UPEC) strain. Conclusions: Understanding the structure and function of Kil and similar peptides can potentially reveal additional ways to target FtsZ for antimicrobial therapies and elucidate how FtsZ functions in bacterial cell division.
Collapse
Affiliation(s)
| | | | - William Margolin
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA; (A.N.); (T.A.C.)
| |
Collapse
|
3
|
Radler P, Loose M. A dynamic duo: Understanding the roles of FtsZ and FtsA for Escherichia coli cell division through in vitro approaches. Eur J Cell Biol 2024; 103:151380. [PMID: 38218128 DOI: 10.1016/j.ejcb.2023.151380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024] Open
Abstract
Bacteria divide by binary fission. The protein machine responsible for this process is the divisome, a transient assembly of more than 30 proteins in and on the surface of the cytoplasmic membrane. Together, they constrict the cell envelope and remodel the peptidoglycan layer to eventually split the cell into two. For Escherichia coli, most molecular players involved in this process have probably been identified, but obtaining the quantitative information needed for a mechanistic understanding can often not be achieved from experiments in vivo alone. Since the discovery of the Z-ring more than 30 years ago, in vitro reconstitution experiments have been crucial to shed light on molecular processes normally hidden in the complex environment of the living cell. In this review, we summarize how rebuilding the divisome from purified components - or at least parts of it - have been instrumental to obtain the detailed mechanistic understanding of the bacterial cell division machinery that we have today.
Collapse
Affiliation(s)
- Philipp Radler
- Institute for Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria; University of Vienna, Djerassiplatz 1, 1030 Wien, Austria.
| | - Martin Loose
- Institute for Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
4
|
Morrison JJ, Camberg JL. Building the Bacterial Divisome at the Septum. Subcell Biochem 2024; 104:49-71. [PMID: 38963483 DOI: 10.1007/978-3-031-58843-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Across living organisms, division is necessary for cell survival and passing heritable information to the next generation. For this reason, cell division is highly conserved among eukaryotes and prokaryotes. Among the most highly conserved cell division proteins in eukaryotes are tubulin and actin. Tubulin polymerizes to form microtubules, which assemble into cytoskeletal structures in eukaryotes, such as the mitotic spindle that pulls chromatids apart during mitosis. Actin polymerizes to form a morphological framework for the eukaryotic cell, or cytoskeleton, that undergoes reorganization during mitosis. In prokaryotes, two of the most highly conserved cell division proteins are the tubulin homolog FtsZ and the actin homolog FtsA. In this chapter, the functions of the essential bacterial cell division proteins FtsZ and FtsA and their roles in assembly of the divisome at the septum, the site of cell division, will be discussed. In most bacteria, including Escherichia coli, the tubulin homolog FtsZ polymerizes at midcell, and this step is crucial for recruitment of many other proteins to the division site. For this reason, both FtsZ abundance and polymerization are tightly regulated by a variety of proteins. The actin-like FtsA protein polymerizes and tethers FtsZ polymers to the cytoplasmic membrane. Additionally, FtsA interacts with later stage cell division proteins, which are essential for division and for building the new cell wall at the septum. Recent studies have investigated how actin-like polymerization of FtsA on the lipid membrane may impact division, and we will discuss this and other ways that division in bacteria is regulated through FtsZ and FtsA.
Collapse
Affiliation(s)
- Josiah J Morrison
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA
| | - Jodi L Camberg
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
5
|
Carrasco V, Berríos-Pastén C, Canales N, Órdenes A, Wilson CAM, Monasterio O. Bioinformatics, thermodynamics, and mechanical resistance of the FtsZ-ZipA complex of Escherichia coli supports a highly dynamic protein interaction in the divisome. Biochim Biophys Acta Gen Subj 2023; 1867:130471. [PMID: 37806464 DOI: 10.1016/j.bbagen.2023.130471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/05/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
In most microorganisms, cell division is guided by the divisome, a multiprotein complex that assembles at the equator of the cell and is responsible for the synthesis of new cell wall material. FtsZ, the first protein to assemble into this complex forms protofilaments in the cytosol which are anchored to the inner side of the cytosolic membrane by the proteins ZipA and FtsA. FtsZ protofilaments generate a force that deforms the cytosolic membrane and may contribute to the constriction force that leads to the septation of the cell. It has not been studied yet how the membrane protein anchors respond to this force generated by FtsZ. Here we studied the effect of force in the FtsZ-ZipA interaction. We used SMD and obtained the distance to the transition state of key interacting amino acids and SASA of FtsZ and ZipA through the dissociation. The SMD mechanism was corroborated by ITC, and the thermodynamic parameters ΔG0, ΔH0 and ΔS0 were obtained. Finally, we used force spectroscopy by optical tweezers to determine the lifetime of the interaction and rupture probability and their dependence on force at single molecule level. We also obtained the transition state distance, and free energy of the interaction. With the gathering of structural, thermodynamic, kinetic and force parameters we conclude that interaction between FtsZ and ZipA proteins is consistence with the highly dynamic treadmilling process and at least seven ZipA molecules are required to bind to a FtsZ protofilaments to transduce a significant force.
Collapse
Affiliation(s)
- Valentina Carrasco
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, 3425 Ñuñoa, Región Metropolitana, Chile; Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Región Metropolitana, Santiago, Chile..
| | - Camilo Berríos-Pastén
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, 3425 Ñuñoa, Región Metropolitana, Chile.
| | - Nicolás Canales
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, 3425 Ñuñoa, Región Metropolitana, Chile.
| | - Alexis Órdenes
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, 3425 Ñuñoa, Región Metropolitana, Chile
| | - Christian A M Wilson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Región Metropolitana, Santiago, Chile..
| | - Octavio Monasterio
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, 3425 Ñuñoa, Región Metropolitana, Chile.
| |
Collapse
|
6
|
Valladares A, Picossi S, Corrales-Guerrero L, Herrero A. The role of SepF in cell division and diazotrophic growth in the multicellular cyanobacterium Anabaena sp. strain PCC 7120. Microbiol Res 2023; 277:127489. [PMID: 37716126 DOI: 10.1016/j.micres.2023.127489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
The cyanobacterium Anabaena forms filaments of cells that grow by intercalary cell division producing adjoined daughter cells connected by septal junction protein complexes that provide filament cohesion and intercellular communication, representing a genuine case of bacterial multicellularity. In spite of their diderm character, cyanobacterial genomes encode homologs of SepF, a protein normally found in Gram-positive bacteria. In Anabaena, SepF is an essential protein that localized to the cell division ring and the intercellular septa. Overexpression of sepF had detrimental effects on growth, provoking conspicuous alterations in cell morphology that resemble the phenotype of mutants impaired in cell division, and altered the localization of the division-ring. SepF interacted with FtsZ and with the essential FtsZ tether ZipN. Whereas SepF from unicellular bacteria generally induces the bundling of FtsZ filaments, Anabaena SepF inhibited FtsZ bundling, reducing the thickness of the toroidal aggregates formed by FtsZ alone and eventually preventing FtsZ polymerization. Thus, in Anabaena SepF appears to have an essential role in cell division by limiting the polymerization of FtsZ to allow the correct formation and localization of the Z-ring. Expression of sepF is downregulated during heterocyst differentiation, likely contributing to the inhibition of Z-ring formation in heterocysts. Finally, the localization of SepF in intercellular septa and its interaction with the septal-junction related proteins SepJ and SepI suggest a role of SepF in the formation or stability of the septal complexes that mediate cell-cell adhesion and communication, processes that are key for the multicellular behavior of Anabaena.
Collapse
Affiliation(s)
- A Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - S Picossi
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - L Corrales-Guerrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - A Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
7
|
Mallik S, Dodia H, Ghosh A, Srinivasan R, Good L, Raghav SK, Beuria TK. FtsE, the Nucleotide Binding Domain of the ABC Transporter Homolog FtsEX, Regulates Septal PG Synthesis in E. coli. Microbiol Spectr 2023; 11:e0286322. [PMID: 37014250 PMCID: PMC10269673 DOI: 10.1128/spectrum.02863-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/11/2023] [Indexed: 04/05/2023] Open
Abstract
The peptidoglycan (PG) layer, a crucial component of the tripartite E.coli envelope, is required to maintain cellular integrity, protecting the cells from mechanical stress resulting from intracellular turgor pressure. Thus, coordinating synthesis and hydrolysis of PG during cell division (septal PG) is crucial for bacteria. The FtsEX complex directs septal PG hydrolysis through the activation of amidases; however, the mechanism and regulation of septal PG synthesis are unclear. In addition, how septal PG synthesis and hydrolysis are coordinated has remained unclear. Here, we have shown that overexpression of FtsE leads to a mid-cell bulging phenotype in E.coli, which is different from the filamentous phenotype observed during overexpression of other cell division proteins. Silencing of the common PG synthesis genes murA and murB reduced bulging, confirming that this phenotype is due to excess PG synthesis. We further demonstrated that septal PG synthesis is independent of FtsE ATPase activity and FtsX. These observations and previous results suggest that FtsEX plays a role during septal PG hydrolysis, whereas FtsE alone coordinates septal PG synthesis. Overall, our study findings support a model in which FtsE plays a role in coordinating septal PG synthesis with bacterial cell division. IMPORTANCE The peptidoglycan (PG) layer is an essential component of the E.coli envelope that is required to maintain cellular shape and integrity. Thus, coordinating PG synthesis and hydrolysis at the mid-cell (septal PG) is crucial during bacterial division. The FtsEX complex directs septal PG hydrolysis through the activation of amidases; however, its role in regulation of septal PG synthesis is unclear. Here, we demonstrate that overexpression of FtsE in E.coli leads to a mid-cell bulging phenotype due to excess PG synthesis. This phenotype was reduced upon silencing of common PG synthesis genes murA and murB. We further demonstrated that septal PG synthesis is independent of FtsE ATPase activity and FtsX. These observations suggest that the FtsEX complex plays a role during septal PG hydrolysis, whereas FtsE alone coordinates septal PG synthesis. Our study indicates that FtsE plays a role in coordinating septal PG synthesis with bacterial cell division.
Collapse
Affiliation(s)
- Sunanda Mallik
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Hiren Dodia
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Arup Ghosh
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Ramanujam Srinivasan
- National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| | - Liam Good
- The Royal Veterinary College, University of London, London, United Kingdom
| | | | | |
Collapse
|
8
|
Brunet YR, Habib C, Brogan AP, Artzi L, Rudner DZ. Intrinsically disordered protein regions are required for cell wall homeostasis in Bacillus subtilis. Genes Dev 2022; 36:970-984. [PMID: 36265902 PMCID: PMC9732909 DOI: 10.1101/gad.349895.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 01/07/2023]
Abstract
Intrinsically disordered protein regions (IDRs) have been implicated in diverse nuclear and cytoplasmic functions in eukaryotes, but their roles in bacteria are less clear. Here, we report that extracytoplasmic IDRs in Bacillus subtilis are required for cell wall homeostasis. The B. subtilis σI transcription factor is activated in response to envelope stress through regulated intramembrane proteolysis (RIP) of its membrane-anchored anti-σ factor, RsgI. Unlike canonical RIP pathways, we show that ectodomain (site-1) cleavage of RsgI is constitutive, but the two cleavage products remain stably associated, preventing intramembrane (site-2) proteolysis. The regulated step in this pathway is their dissociation, which is triggered by impaired cell wall synthesis and requires RsgI's extracytoplasmic IDR. Intriguingly, the major peptidoglycan polymerase PBP1 also contains an extracytoplasmic IDR, and we show that this region is important for its function. Disparate IDRs can replace the native IDRs on both RsgI and PBP1, arguing that these unstructured regions function similarly. Our data support a model in which the RsgI-σI signaling system and PBP1 represent complementary pathways to repair gaps in the PG meshwork. The IDR on RsgI senses these gaps and activates σI, while the IDR on PBP1 directs the synthase to these sites to fortify them.
Collapse
Affiliation(s)
- Yannick R. Brunet
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Cameron Habib
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Anna P. Brogan
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Lior Artzi
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
9
|
Viola MG, Perdikari TM, Trebino CE, Rahmani N, Mathews KL, Pena CM, Chua XY, Xuan B, LaBreck CJ, Fawzi NL, Camberg JL. An enhancer sequence in the intrinsically disordered region of FtsZ promotes polymer-guided substrate processing by ClpXP protease. Protein Sci 2022; 31:e4306. [PMID: 35481648 PMCID: PMC8996474 DOI: 10.1002/pro.4306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/09/2022]
Abstract
The essential bacterial division protein in Escherichia coli, FtsZ, assembles into the FtsZ-ring at midcell and recruits other proteins to the division site to promote septation. A region of the FtsZ amino acid sequence that links the conserved polymerization domain to a C-terminal protein interaction site was predicted to be intrinsically disordered and has been implicated in modulating spacing and architectural arrangements of FtsZ filaments. While the majority of cell division proteins that directly bind to FtsZ engage either the polymerization domain or the C-terminal interaction site, ClpX, the recognition and unfolding component of the bacterial ClpXP proteasome, has a secondary interaction with the predicted intrinsically disordered region (IDR) of FtsZ when FtsZ is polymerized. Here, we use NMR spectroscopy and reconstituted degradation reactions in vitro to demonstrate that this linker region is indeed disordered in solution and, further, that amino acids in the IDR of FtsZ enhance the degradation in polymer-guided interactions.
Collapse
Affiliation(s)
- Marissa G. Viola
- Department of Cell and Molecular BiologyUniversity of Rhode IslandKingstonRhode IslandUSA
| | | | - Catherine E. Trebino
- Department of Cell and Molecular BiologyUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Negar Rahmani
- Department of Cell and Molecular BiologyUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Kaylee L. Mathews
- Molecular Biology, Cell Biology, & Biochemistry Graduate ProgramBrown UniversityProvidenceRhode IslandUSA
| | - Carolina Mejia Pena
- Molecular Biology, Cell Biology, & Biochemistry Graduate ProgramBrown UniversityProvidenceRhode IslandUSA
| | - Xien Yu Chua
- Department of Molecular Pharmacology, Physiology & BiotechnologyBrown UniversityProvidenceRhode IslandUSA
| | - Botai Xuan
- Department of Molecular Pharmacology, Physiology & BiotechnologyBrown UniversityProvidenceRhode IslandUSA
| | - Christopher J. LaBreck
- Department of Cell and Molecular BiologyUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Nicolas L. Fawzi
- Department of Molecular Pharmacology, Physiology & BiotechnologyBrown UniversityProvidenceRhode IslandUSA
| | - Jodi L. Camberg
- Department of Cell and Molecular BiologyUniversity of Rhode IslandKingstonRhode IslandUSA
| |
Collapse
|
10
|
Abstract
In most bacteria, cell division is centrally organized by the FtsZ protein, which assembles into dynamic filaments at the division site along the cell membrane that interact with other key cell division proteins. In gammaproteobacteria such as Escherichia coli, FtsZ filaments are anchored to the cell membrane by two essential proteins, FtsA and ZipA. Canonically, this interaction was believed to be mediated solely by the FtsZ C-terminal peptide (CTP) domain that interacts with these and several other regulatory proteins. However, we now provide evidence of a second interaction between FtsZ and ZipA. Using site-specific photoactivated cross-linking, we identified a noncanonical FtsZ-binding site on ZipA on the opposite side from the FtsZ CTP-binding pocket. Cross-linking at this site was unaffected by the truncation of the FtsZ linker and CTP domains, indicating that this noncanonical site must interact directly with the globular core domain of FtsZ. Mutations introduced into either the canonical or noncanonical binding sites on ZipA disrupted photo-cross-linking with FtsZ and normal ZipA function in cell division, suggesting that both binding modes are important for normal cell growth and division. One mutation at the noncanonical face was also found to suppress defects of several other canonical and noncanonical site mutations in ZipA, suggesting there is some interdependence between the two sites. Taken together, these results suggest that ZipA employs a two-pronged FtsZ-binding mechanism. IMPORTANCE The tubulin homolog FtsZ plays a central early role in organizing bacterial cell division proteins at the cytoplasmic membrane. However, FtsZ does not directly interact with the membrane itself, instead relying on proteins such as FtsA to tether it to the membrane. In gammaproteobacteria, ZipA serves as a second essential membrane anchor along with FtsA. Although FtsA has a unique role in activating synthesis of the cell division septum, and ZipA may in turn activate FtsA, it was thought that both proteins interacted only with the conserved C terminus of FtsZ and were essentially interchangeable in their ability to tether FtsZ to the membrane. Here we challenge this view, providing evidence that ZipA directly contacts both the C terminus and the core domain of FtsZ. Such a two-pronged interaction between ZipA and FtsZ suggests that ZipA and FtsA may serve distinct membrane-anchoring roles for FtsZ.
Collapse
|
11
|
McCausland JW, Yang X, Squyres GR, Lyu Z, Bruce KE, Lamanna MM, Söderström B, Garner EC, Winkler ME, Xiao J, Liu J. Treadmilling FtsZ polymers drive the directional movement of sPG-synthesis enzymes via a Brownian ratchet mechanism. Nat Commun 2021; 12:609. [PMID: 33504807 PMCID: PMC7840769 DOI: 10.1038/s41467-020-20873-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023] Open
Abstract
The FtsZ protein is a central component of the bacterial cell division machinery. It polymerizes at mid-cell and recruits more than 30 proteins to assemble into a macromolecular complex to direct cell wall constriction. FtsZ polymers exhibit treadmilling dynamics, driving the processive movement of enzymes that synthesize septal peptidoglycan (sPG). Here, we combine theoretical modelling with single-molecule imaging of live bacterial cells to show that FtsZ's treadmilling drives the directional movement of sPG enzymes via a Brownian ratchet mechanism. The processivity of the directional movement depends on the binding potential between FtsZ and the sPG enzyme, and on a balance between the enzyme's diffusion and FtsZ's treadmilling speed. We propose that this interplay may provide a mechanism to control the spatiotemporal distribution of active sPG enzymes, explaining the distinct roles of FtsZ treadmilling in modulating cell wall constriction rate observed in different bacteria.
Collapse
Affiliation(s)
- Joshua W McCausland
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Georgia R Squyres
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Zhixin Lyu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Kevin E Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Melissa M Lamanna
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Bill Söderström
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| | - Jian Liu
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
12
|
Abstract
Successful bacterial proliferation relies on the spatial and temporal precision of cytokinesis and its regulation by systems that protect the integrity of the nucleoid. In Escherichia coli, one of these protectors is SlmA protein, which binds to specific DNA sites around the nucleoid and helps to shield the nucleoid from inappropriate bisection by the cell division septum. Here, we discovered that SlmA not only interacts with the nucleoid and septum-associated cell division proteins but also binds directly to cytomimetic lipid membranes, adding a novel putative mechanism for regulating the local activity of these cell division proteins. We find that interaction between SlmA and lipid membranes is regulated by SlmA’s DNA binding sites and protein binding partners as well as chemical conditions, suggesting that the SlmA-membrane interactions are important for fine-tuning the regulation of nucleoid integrity during cytokinesis. Protection of the chromosome from scission by the division machinery during cytokinesis is critical for bacterial survival and fitness. This is achieved by nucleoid occlusion, which, in conjunction with other mechanisms, ensures formation of the division ring at midcell. In Escherichia coli, this mechanism is mediated by SlmA, a specific DNA binding protein that antagonizes assembly of the central division protein FtsZ into a productive ring in the vicinity of the chromosome. Here, we provide evidence supporting direct interaction of SlmA with lipid membranes, tuned by its binding partners FtsZ and SlmA binding sites (SBS) on chromosomal DNA. Reconstructions in minimal membrane systems that mimic cellular environments show that SlmA binds to lipid-coated microbeads or locates at the edge of microfluidic-generated microdroplets, inside which the protein is encapsulated. DNA fragments containing SBS sequences do not seem to be recruited to the membrane by SlmA but instead compete with SlmA’s ability to bind lipids. The interaction of SlmA with FtsZ modulates this behavior, ultimately triggering membrane localization of the SBS sequences alongside the two proteins. The ability of SlmA to bind lipids uncovered in this work extends the interaction network of this multivalent regulator beyond its well-known protein and nucleic acid recognition, which may have implications in the overall spatiotemporal control of division ring assembly.
Collapse
|
13
|
Silber N, Matos de Opitz CL, Mayer C, Sass P. Cell division protein FtsZ: from structure and mechanism to antibiotic target. Future Microbiol 2020; 15:801-831. [DOI: 10.2217/fmb-2019-0348] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance to virtually all clinically applied antibiotic classes severely limits the available options to treat bacterial infections. Hence, there is an urgent need to develop and evaluate new antibiotics and targets with resistance-breaking properties. Bacterial cell division has emerged as a new antibiotic target pathway to counteract multidrug-resistant pathogens. New approaches in antibiotic discovery and bacterial cell biology helped to identify compounds that either directly interact with the major cell division protein FtsZ, thereby perturbing the function and dynamics of the cell division machinery, or affect the structural integrity of FtsZ by inducing its degradation. The impressive antimicrobial activities and resistance-breaking properties of certain compounds validate the inhibition of bacterial cell division as a promising strategy for antibiotic intervention.
Collapse
Affiliation(s)
- Nadine Silber
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Cruz L Matos de Opitz
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Christian Mayer
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Peter Sass
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen 72076, Germany
| |
Collapse
|
14
|
Peptide Linkers within the Essential FtsZ Membrane Tethers ZipA and FtsA Are Nonessential for Cell Division. J Bacteriol 2020; 202:JB.00720-19. [PMID: 31871036 DOI: 10.1128/jb.00720-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Bacteria such as Escherichia coli divide by organizing filaments of FtsZ, a tubulin homolog that assembles into dynamic treadmilling membrane-associated protein filaments at the cell midpoint. FtsA and ZipA proteins are required to tether these filaments to the inner face of the cytoplasmic membrane, and loss of either tether is lethal. ZipA from E. coli and other closely related species harbors a long linker region that connects the essential N-terminal transmembrane domain to the C-terminal globular FtsZ-binding domain, and part of this linker includes a P/Q-rich peptide that is predicted to be intrinsically disordered. We found unexpectedly that several large deletions of the ZipA linker region, including the entire P/Q rich peptide, had no effect on cell division under normal conditions. However, we found that the loss of the P/Q region made cells more resistant to excess levels of FtsA and more sensitive to conditions that displaced FtsA from FtsZ. FtsA also harbors a short ∼20-residue peptide linker that connects the main globular domain with the C-terminal amphipathic helix that is important for membrane binding. In analogy with ZipA, deletion of 11 of the central residues in the FtsA linker had little effect on FtsA function in cell division.IMPORTANCE Escherichia coli cells divide using a cytokinetic ring composed of polymers of the tubulin-like FtsZ. To function properly, these polymers must attach to the inner surface of the cytoplasmic membrane via two essential membrane-associated tethers, FtsA and ZipA. Both FtsA and ZipA contain peptide linkers that connect their membrane-binding domains with their FtsZ-binding domains. Although they are presumed to be crucial for cell division activity, the importance of these linkers has not yet been rigorously tested. Here, we show that large segments of these linkers can be removed with few consequences for cell division, although several subtle defects were uncovered. Our results suggest that ZipA, in particular, can function in cell division without an extended linker.
Collapse
|
15
|
Schumacher MA, Ohashi T, Corbin L, Erickson HP. High-resolution crystal structures of Escherichia coli FtsZ bound to GDP and GTP. Acta Crystallogr F Struct Biol Commun 2020; 76:94-102. [PMID: 32039891 PMCID: PMC7010359 DOI: 10.1107/s2053230x20001132] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/27/2020] [Indexed: 12/05/2022] Open
Abstract
Bacterial cytokinesis is mediated by the Z-ring, which is formed by the prokaryotic tubulin homolog FtsZ. Recent data indicate that the Z-ring is composed of small patches of FtsZ protofilaments that travel around the bacterial cell by treadmilling. Treadmilling involves a switch from a relaxed (R) state, favored for monomers, to a tense (T) conformation, which is favored upon association into filaments. The R conformation has been observed in numerous monomeric FtsZ crystal structures and the T conformation in Staphylococcus aureus FtsZ crystallized as assembled filaments. However, while Escherichia coli has served as a main model system for the study of the Z-ring and the associated divisome, a structure has not yet been reported for E. coli FtsZ. To address this gap, structures were determined of the E. coli FtsZ mutant FtsZ(L178E) with GDP and GTP bound to 1.35 and 1.40 Å resolution, respectively. The E. coli FtsZ(L178E) structures both crystallized as straight filaments with subunits in the R conformation. These high-resolution structures can be employed to facilitate experimental cell-division studies and their interpretation in E. coli.
Collapse
Affiliation(s)
- Maria A. Schumacher
- Department of Biochemistry, Duke University School of Medicine, Box 3711, DUMC, Durham, NC 27710, USA
| | - Tomoo Ohashi
- Department of Cell Biology, Duke University School of Medicine, Box 3711, DUMC, Durham, NC 27710, USA
| | - Lauren Corbin
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Harold P. Erickson
- Department of Biochemistry, Duke University School of Medicine, Box 3711, DUMC, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Box 3711, DUMC, Durham, NC 27710, USA
| |
Collapse
|
16
|
Transient Membrane-Linked FtsZ Assemblies Precede Z-Ring Formation in Escherichia coli. Curr Biol 2020; 30:499-508.e6. [PMID: 31978334 DOI: 10.1016/j.cub.2019.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/06/2019] [Accepted: 12/06/2019] [Indexed: 11/22/2022]
Abstract
During the early stages of cytokinesis, FtsZ protofilaments form a ring-like structure, the Z-ring, in most bacterial species. This cytoskeletal scaffold recruits downstream proteins essential for septal cell wall synthesis. Despite progress in understanding the dynamic nature of the Z-ring and its role in coordinating septal cell wall synthesis, the early stages of protofilament formation and subsequent assembly into the Z-ring are still not understood. Here we investigate a sequence of assembly steps that lead to the formation of the Z-ring in Escherichia coli using high temporal and spatial resolution imaging. Our data show that formation of the Z-ring is preceded by transient membrane-linked FtsZ assemblies. These assemblies form after attachment of short cytosolic protofilaments, which we estimate to be less than 20 monomers long, to the membrane. The attachments occur at random locations along the length of the cell. The filaments treadmill and show periods of rapid growth and shrinkage. Their dynamic properties imply that protofilaments are bundled in these assemblies. Furthermore, we establish that the size of assemblies is sensitively controlled by the availability of FtsZ molecules and by the presence of ZapA proteins. The latter has been implicated in cross-linking the protofilaments. The likely function of these dynamic FtsZ assemblies is to sample the cell surface for the proper location for the Z-ring.
Collapse
|
17
|
Sobrinos-Sanguino M, Vélez M, Richter RP, Rivas G. Reversible Membrane Tethering by ZipA Determines FtsZ Polymerization in Two and Three Dimensions. Biochemistry 2019; 58:4003-4015. [PMID: 31390865 DOI: 10.1021/acs.biochem.9b00378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In most bacteria, the early step of septum formation implies the association of soluble FtsZ polymers with the cytoplasmic membrane. ZipA, together with FtsA, provides membrane tethering to FtsZ in Escherichia coli, forming a dynamic proto-ring that serves as an assembly scaffold for the remaining elements of the divisome. Despite their importance for bacterial cell division, multivalent interactions between proto-ring elements at membrane surfaces remain poorly characterized in quantitative terms. We measured the binding of FtsZ to ZipA incorporated in supported lipid bilayers at controlled densities by using a combination of biophysical surface-sensitive techniques (quartz crystal microbalance and spectroscopic ellipsometry) and analyzed how ZipA density and FtsZ concentration control the state of assembly of FtsZ. We found that ZipA attachment enables FtsZ-GMPCPP (where GMPCPP is a GTP analogue with a reduced level of hydrolysis) to assemble in several distinct ways: (i) two-dimensional polymerization at the membrane and (ii) three-dimensional polymerization from the membrane into the solution phase where this may be associated with the formation of higher-order complexes. In these processes, ZipA is required to enrich FtsZ at the surface but the FtsZ bulk concentration defines which morphology is being formed. Moreover, we report a strong effect of the nucleotide (GDP vs GMPCPP/GTP) on the kinetics of ZipA association/dissociation of FtsZ. These results provide insights into the mode of interaction of proto-ring elements in minimal membrane systems and contribute to the completion of our understanding of the initial events of bacterial division.
Collapse
Affiliation(s)
- Marta Sobrinos-Sanguino
- Centro de Investigaciones Biológicas , Consejo Superior de Investigaciones Científicas (CSIC) , 28040 Madrid , Spain.,School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, and Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Marisela Vélez
- Instituto de Catálisis y Petroleoquímica , CSIC , 28049 Madrid , Spain
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, and Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,Biosurfaces Lab , CIC biomaGUNE , 20014 San Sebastian , Spain
| | - Germán Rivas
- Centro de Investigaciones Biológicas , Consejo Superior de Investigaciones Científicas (CSIC) , 28040 Madrid , Spain
| |
Collapse
|
18
|
At the Heart of Bacterial Cytokinesis: The Z Ring. Trends Microbiol 2019; 27:781-791. [PMID: 31171437 DOI: 10.1016/j.tim.2019.04.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 11/20/2022]
Abstract
Bacterial cell division is mediated by the divisome which is organized by the Z ring, a cytoskeletal element formed by the polymerization of the tubulin homologue FtsZ. Despite billions of years of bacterial evolution, the Z ring is nearly universal among bacteria that have a cell wall and divide by binary fission. Recent studies have revealed the mechanism of cooperative assembly of FtsZ and that the Z ring consists of patches of FtsZ filaments tethered to the membrane that treadmill to distribute the septal biosynthetic machinery. Here, we summarize these advances and discuss questions raised by these new findings.
Collapse
|
19
|
Corrales-Guerrero L, Camargo S, Valladares A, Picossi S, Luque I, Ochoa de Alda JAG, Herrero A. FtsZ of Filamentous, Heterocyst-Forming Cyanobacteria Has a Conserved N-Terminal Peptide Required for Normal FtsZ Polymerization and Cell Division. Front Microbiol 2018; 9:2260. [PMID: 30333801 PMCID: PMC6175996 DOI: 10.3389/fmicb.2018.02260] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/05/2018] [Indexed: 12/03/2022] Open
Abstract
Filamentous cyanobacteria grow by intercalary cell division, which should involve distinct steps compared to those producing separate daughter cells. The N-terminal region of FtsZ is highly conserved in the clade of filamentous cyanobacteria capable of cell differentiation. A derivative of the model strain Anabaena sp. PCC 7120 expressing only an FtsZ lacking the amino acids 2–51 of the N-terminal peptide (ΔN-FtsZ) could not be segregated. Strain CSL110 expresses both ΔN-FtsZ, from the endogenous ftsZ gene promoter, and the native FtsZ from a synthetic regulated promoter. Under conditions of ΔN-FtsZ predominance, cells of strain CSL110 progressively enlarge, reflecting reduced cell division, and show instances of asymmetric cell division and aberrant Z-structures notably differing from the Z-ring formed by FtsZ in the wild type. In bacterial 2-hybrid assays FtsZ interacted with ΔN-FtsZ. However, ΔN-FtsZ-GFP appeared impaired for incorporation into Z-rings when expressed together with FtsZ. FtsZ, but not ΔN-FtsZ, interacted with the essential protein SepF. Both FtsZ and ΔN-FtsZ polymerize in vitro exhibiting comparable GTPase activities. However, filaments of FtsZ show a distinct curling forming toroids, whereas ΔN-FtsZ form thick bundles of straight filaments. Thus, the N-terminal FtsZ sequence appears to contribute to a distinct FtsZ polymerization mode that is essential for cell division and division plane location in Anabaena.
Collapse
Affiliation(s)
- Laura Corrales-Guerrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Sergio Camargo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Ana Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Silvia Picossi
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | | | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| |
Collapse
|
20
|
Abstract
FtsZ is the ancestral homolog of tubulin and assembles into the Z ring that organizes the division machinery to drive cell division in most bacteria. In contrast to tubulin that assembles into 13 stranded microtubules that undergo dynamic instability, FtsZ assembles into single-stranded filaments that treadmill to distribute the peptidoglycan synthetic machinery at the septum. Here, using longitudinal interface mutants of FtsZ, we demonstrate that the kinetic polarity of FtsZ filaments is opposite to that of microtubules. A conformational switch accompanying the assembly of FtsZ generates the kinetic polarity of FtsZ filaments, which explains the toxicity of interface mutants that function as a capper and reveals the mechanism of cooperative assembly. This approach can also be employed to determine the kinetic polarity of other filament-forming proteins.
Collapse
|
21
|
Escherichia coli ZipA Organizes FtsZ Polymers into Dynamic Ring-Like Protofilament Structures. mBio 2018; 9:mBio.01008-18. [PMID: 29921670 PMCID: PMC6016244 DOI: 10.1128/mbio.01008-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ZipA is an essential cell division protein in Escherichia coli. Together with FtsA, ZipA tethers dynamic polymers of FtsZ to the cytoplasmic membrane, and these polymers are required to guide synthesis of the cell division septum. This dynamic behavior of FtsZ has been reconstituted on planar lipid surfaces in vitro, visible as GTP-dependent chiral vortices several hundred nanometers in diameter, when anchored by FtsA or when fused to an artificial membrane binding domain. However, these dynamics largely vanish when ZipA is used to tether FtsZ polymers to lipids at high surface densities. This, along with some in vitro studies in solution, has led to the prevailing notion that ZipA reduces FtsZ dynamics by enhancing bundling of FtsZ filaments. Here, we show that this is not the case. When lower, more physiological levels of the soluble, cytoplasmic domain of ZipA (sZipA) were attached to lipids, FtsZ assembled into highly dynamic vortices similar to those assembled with FtsA or other membrane anchors. Notably, at either high or low surface densities, ZipA did not stimulate lateral interactions between FtsZ protofilaments. We also used E. coli mutants that are either deficient or proficient in FtsZ bundling to provide evidence that ZipA does not directly promote bundling of FtsZ filaments in vivo. Together, our results suggest that ZipA does not dampen FtsZ dynamics as previously thought, and instead may act as a passive membrane attachment for FtsZ filaments as they treadmill. Bacterial cells use a membrane-attached ring of proteins to mark and guide formation of a division septum at midcell that forms a wall separating the two daughter cells and allows cells to divide. The key protein in this ring is FtsZ, a homolog of tubulin that forms dynamic polymers. Here, we use electron microscopy and confocal fluorescence imaging to show that one of the proteins required to attach FtsZ polymers to the membrane during E. coli cell division, ZipA, can promote dynamic swirls of FtsZ on a lipid surface in vitro. Importantly, these swirls are observed only when ZipA is present at low, physiologically relevant surface densities. Although ZipA has been thought to enhance bundling of FtsZ polymers, we find little evidence for bundling in vitro. In addition, we present several lines of in vivo evidence indicating that ZipA does not act to directly bundle FtsZ polymers.
Collapse
|
22
|
Sung MW, Shaik R, TerBush AD, Osteryoung KW, Vitha S, Holzenburg A. The chloroplast division protein ARC6 acts to inhibit disassembly of GDP-bound FtsZ2. J Biol Chem 2018; 293:10692-10706. [PMID: 29769312 DOI: 10.1074/jbc.ra117.000999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/14/2018] [Indexed: 01/12/2023] Open
Abstract
Chloroplasts host photosynthesis and fulfill other metabolic functions that are essential to plant life. They have to divide by binary fission to maintain their numbers throughout cycles of cell division. Chloroplast division is achieved by a complex ring-shaped division machinery located on both the inner (stromal) and the outer (cytosolic) side of the chloroplast envelope. The inner division ring (termed the Z ring) is formed by the assembly of tubulin-like FtsZ1 and FtsZ2 proteins. ARC6 is a key chloroplast division protein that interacts with the Z ring. ARC6 spans the inner envelope membrane, is known to stabilize or maintain the Z ring, and anchors the Z ring to the inner membrane through interaction with FtsZ2. The underlying mechanism of Z ring stabilization is not well-understood. Here, biochemical and structural characterization of ARC6 was conducted using light scattering, sedimentation, and light and transmission EM. The recombinant protein was purified as a dimer. The results indicated that a truncated form of ARC6 (tARC6), representing the stromal portion of ARC6, affects FtsZ2 assembly without forming higher-order structures and exerts its effect via FtsZ2 dynamics. tARC6 prevented GDP-induced FtsZ2 disassembly and caused a significant net increase in FtsZ2 assembly when GDP was present. Single particle analysis and 3D reconstruction were performed to elucidate the structural basis of ARC6 activity. Together, the data reveal that a dimeric form of tARC6 binds to FtsZ2 filaments and does not increase FtsZ polymerization rates but rather inhibits GDP-associated FtsZ2 disassembly.
Collapse
Affiliation(s)
- Min Woo Sung
- From the Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Rahamthulla Shaik
- From the Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Allan D TerBush
- the Biochemistry and Molecular Biology Graduate Program and.,Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | | | - Stanislav Vitha
- the Microscopy and Imaging Center, Texas A&M University, College Station, Texas 77843, and
| | - Andreas Holzenburg
- From the Department of Biology, Texas A&M University, College Station, Texas 77843.,the Microscopy and Imaging Center, Texas A&M University, College Station, Texas 77843, and.,the Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Brownsville-Edinburg-Harlingen, Texas 78550
| |
Collapse
|
23
|
Park KT, Dajkovic A, Wissel M, Du S, Lutkenhaus J. MinC and FtsZ mutant analysis provides insight into MinC/MinD-mediated Z ring disassembly. J Biol Chem 2018; 293:5834-5846. [PMID: 29414773 DOI: 10.1074/jbc.m117.815894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/31/2018] [Indexed: 11/06/2022] Open
Abstract
The Min system negatively regulates the position of the Z ring, which serves as a scaffold for the divisome that mediates bacterial cytokinesis. In Escherichia coli, this system consists of MinC, which antagonizes assembly of the tubulin homologue FtsZ. MinC is recruited to the membrane by MinD and induced by MinE to oscillate between the cell poles. MinC is a dimer with each monomer consisting of functionally distinct MinCN and MinCC domains, both of which contact FtsZ. According to one model, MinCC/MinD binding to the FtsZ tail positions MinCN at the junction of two GDP-containing subunits in the filament, leading to filament breakage. Others posit that MinC sequesters FtsZ-GDP monomers or that MinCN caps the minus end of FtsZ polymers and that MinCC interferes with lateral interactions between FtsZ filaments. Here, we isolated minC mutations that impair MinCN function and analyzed FtsZ mutants resistant to MinC/MinD. Surprisingly, we found mutations in both minC and ftsZ that differentiate inhibition by MinC from inhibition by MinC/MinD. Analysis of these mutations suggests that inhibition of the Z ring by MinC alone is due to sequestration, whereas inhibition by MinC/MinD is not. In conclusion, our genetic and biochemical data support the model that MinC/MinD fragments FtsZ filaments.
Collapse
Affiliation(s)
- Kyung-Tae Park
- From the Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Alex Dajkovic
- From the Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Mark Wissel
- From the Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Shishen Du
- From the Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Joe Lutkenhaus
- From the Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
24
|
Sobrinos-Sanguino M, Zorrilla S, Monterroso B, Minton AP, Rivas G. Nucleotide and receptor density modulate binding of bacterial division FtsZ protein to ZipA containing lipid-coated microbeads. Sci Rep 2017; 7:13707. [PMID: 29057931 PMCID: PMC5651908 DOI: 10.1038/s41598-017-14160-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
ZipA protein from Escherichia coli is one of the essential components of the division proto-ring that provides membrane tethering to the septation FtsZ protein. A sedimentation assay was used to measure the equilibrium binding of FtsZ-GDP and FtsZ-GTP to ZipA immobilized at controlled densities on the surface of microbeads coated with a phospholipid mixture resembling the composition of E. coli membrane. We found that for both nucleotide-bound species, the amount of bound FtsZ exceeds the monolayer capacity of the ZipA immobilized beads at high concentrations of free FtsZ. In the case of FtsZ-GDP, equilibrium binding does not appear to be saturable, whereas in the case of FtsZ-GTP equilibrium binding appears to be saturable. The difference between the two modes of binding is attributed to the difference between the composition of oligomers of free FtsZ-GDP and free FtsZ-GTP formed in solution.
Collapse
Affiliation(s)
- Marta Sobrinos-Sanguino
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040, Madrid, Spain
| | - Silvia Zorrilla
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040, Madrid, Spain
| | - Begoña Monterroso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040, Madrid, Spain
| | - Allen P Minton
- Section on Physical Biochemistry, Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, MD, USA.
| | - Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040, Madrid, Spain.
| |
Collapse
|
25
|
CbtA toxin of Escherichia coli inhibits cell division and cell elongation via direct and independent interactions with FtsZ and MreB. PLoS Genet 2017; 13:e1007007. [PMID: 28931012 PMCID: PMC5624674 DOI: 10.1371/journal.pgen.1007007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/02/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022] Open
Abstract
The toxin components of toxin-antitoxin modules, found in bacterial plasmids, phages, and chromosomes, typically target a single macromolecule to interfere with an essential cellular process. An apparent exception is the chromosomally encoded toxin component of the E. coli CbtA/CbeA toxin-antitoxin module, which can inhibit both cell division and cell elongation. A small protein of only 124 amino acids, CbtA, was previously proposed to interact with both FtsZ, a tubulin homolog that is essential for cell division, and MreB, an actin homolog that is essential for cell elongation. However, whether or not the toxic effects of CbtA are due to direct interactions with these predicted targets is not known. Here, we genetically separate the effects of CbtA on cell elongation and cell division, showing that CbtA interacts directly and independently with FtsZ and MreB. Using complementary genetic approaches, we identify the functionally relevant target surfaces on FtsZ and MreB, revealing that in both cases, CbtA binds to surfaces involved in essential cytoskeletal filament architecture. We show further that each interaction contributes independently to CbtA-mediated toxicity and that disruption of both interactions is required to alleviate the observed toxicity. Although several other protein modulators are known to target FtsZ, the CbtA-interacting surface we identify represents a novel inhibitory target. Our findings establish CbtA as a dual function toxin that inhibits both cell division and cell elongation via direct and independent interactions with FtsZ and MreB. Bacterially encoded toxin-antitoxin systems, which consist of a small toxin protein that is co-produced with a neutralizing antitoxin, are a potential avenue for the identification of novel antibiotic targets. These toxins typically target essential cellular processes, causing growth arrest or cell death when unchecked by the antitoxin. Our study is focused on the CbtA toxin of E. coli, which was known to inhibit both bacterial cell division and also bacterial cell elongation (the process by which rod-shaped bacteria grow prior to cell division). We report that the effects of CbtA on cell division and cell elongation are genetically separable, and that they are due to direct and independent interactions with its targets FtsZ and MreB, essential cytoskeletal proteins that direct cell division and cell elongation, respectively. Our genetic analysis defines the functionally relevant target surfaces on FtsZ and MreB; in the case of FtsZ this surface represents a novel inhibitory target. As a dual-function toxin that independently targets two essential cytoskeletal elements, CbtA could guide the design of dual-function antibiotics whose ability to independently target more than one essential cellular process might impede the development of drug resistance, which is a growing public health threat.
Collapse
|
26
|
Márquez IF, Mateos-Gil P, Shin JY, Lagos R, Monasterio O, Vélez M. Mutations on FtsZ lateral helix H3 that disrupt cell viability hamper reorganization of polymers on lipid surfaces. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017. [PMID: 28642045 DOI: 10.1016/j.bbamem.2017.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
FtsZ filaments localize at the middle of the bacterial cell and participate in the formation of a contractile ring responsible for cell division. Previous studies demonstrated that the highly conserved negative charge of glutamate 83 and the positive charge of arginine 85 located in the lateral helix H3 bend of Escherichia coli FtsZ are required for in vivo cell division. In order to understand how these lateral mutations impair the formation of a contractile ring,we extend previous in vitro characterization of these mutants in solution to study their behavior on lipid modified surfaces. We study their interaction with ZipAand look at their reorganization on the surface. We found that the dynamic bundling capacity of the mutant proteins is deficient, and this impairment increases the more the composition and spatial arrangement of the reconstituted system resembles the situation inside the cell: mutant proteins completely fail to reorganize to form higher order aggregates when bound to an E.coli lipid surface through oriented ZipA.We conclude that these surface lateral point mutations affect the dynamic reorganization of FtsZ filaments into bundles on the cell membrane, suggesting that this event is relevant for generating force and completing bacterial division.
Collapse
Affiliation(s)
- Ileana F Márquez
- Instituto de Catálisis y Petroleoquímica, c/Marie Curie 2, Cantoblanco, Madrid 28049, Spain
| | - Pablo Mateos-Gil
- Instituto de Catálisis y Petroleoquímica, c/Marie Curie 2, Cantoblanco, Madrid 28049, Spain
| | - Jae Yen Shin
- Departamento de Biología, Facultad de Ciencias, Casilla 653, Santiago 1, Chile
| | - Rosalba Lagos
- Departamento de Biología, Facultad de Ciencias, Casilla 653, Santiago 1, Chile
| | - Octavio Monasterio
- Departamento de Biología, Facultad de Ciencias, Casilla 653, Santiago 1, Chile
| | - Marisela Vélez
- Instituto de Catálisis y Petroleoquímica, c/Marie Curie 2, Cantoblanco, Madrid 28049, Spain.
| |
Collapse
|
27
|
Viola MG, LaBreck CJ, Conti J, Camberg JL. Proteolysis-Dependent Remodeling of the Tubulin Homolog FtsZ at the Division Septum in Escherichia coli. PLoS One 2017; 12:e0170505. [PMID: 28114338 PMCID: PMC5256927 DOI: 10.1371/journal.pone.0170505] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/05/2017] [Indexed: 11/18/2022] Open
Abstract
During bacterial cell division a dynamic protein structure called the Z-ring assembles at the septum. The major protein in the Z-ring in Escherichia coli is FtsZ, a tubulin homolog that polymerizes with GTP. FtsZ is degraded by the two-component ATP-dependent protease ClpXP. Two regions of FtsZ, located outside of the polymerization domain in the unstructured linker and at the C-terminus, are important for specific recognition and degradation by ClpXP. We engineered a synthetic substrate containing green fluorescent protein (Gfp) fused to an extended FtsZ C-terminal tail (residues 317–383), including the unstructured linker and the C-terminal conserved region, but not the polymerization domain, and showed that it is sufficient to target a non-native substrate for degradation in vitro. To determine if FtsZ degradation regulates Z-ring assembly during division, we expressed a full length Gfp-FtsZ fusion protein in wild type and clp deficient strains and monitored fluorescent Z-rings. In cells deleted for clpX or clpP, or cells expressing protease-defective mutant protein ClpP(S97A), Z-rings appear normal; however, after photobleaching a region of the Z-ring, fluorescence recovers ~70% more slowly in cells without functional ClpXP than in wild type cells. Gfp-FtsZ(R379E), which is defective for degradation by ClpXP, also assembles into Z-rings that recover fluorescence ~2-fold more slowly than Z-rings containing Gfp-FtsZ. In vitro, ClpXP cooperatively degrades and disassembles FtsZ polymers. These results demonstrate that ClpXP is a regulator of Z-ring dynamics and that the regulation is proteolysis-dependent. Our results further show that FtsZ-interacting proteins in E. coli fine-tune Z-ring dynamics.
Collapse
Affiliation(s)
- Marissa G. Viola
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Christopher J. LaBreck
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Joseph Conti
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Jodi L. Camberg
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
28
|
Schumacher MA, Huang KH, Zeng W, Janakiraman A. Structure of the Z Ring-associated Protein, ZapD, Bound to the C-terminal Domain of the Tubulin-like Protein, FtsZ, Suggests Mechanism of Z Ring Stabilization through FtsZ Cross-linking. J Biol Chem 2017; 292:3740-3750. [PMID: 28100778 DOI: 10.1074/jbc.m116.773192] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/17/2017] [Indexed: 11/06/2022] Open
Abstract
Cell division in most bacteria is mediated by the tubulin-like FtsZ protein, which polymerizes in a GTP-dependent manner to form the cytokinetic Z ring. A diverse repertoire of FtsZ-binding proteins affects FtsZ localization and polymerization to ensure correct Z ring formation. Many of these proteins bind the C-terminal domain (CTD) of FtsZ, which serves as a hub for FtsZ regulation. FtsZ ring-associated proteins, ZapA-D (Zaps), are important FtsZ regulatory proteins that stabilize FtsZ assembly and enhance Z ring formation by increasing lateral assembly of FtsZ protofilaments, which then form the Z ring. There are no structures of a Zap protein bound to FtsZ; therefore, how these proteins affect FtsZ polymerization has been unclear. Recent data showed ZapD binds specifically to the FtsZ CTD. Thus, to obtain insight into the ZapD-CTD interaction and how it may mediate FtsZ protofilament assembly, we determined the Escherichia coli ZapD-FtsZ CTD structure to 2.67 Å resolution. The structure shows that the CTD docks within a hydrophobic cleft in the ZapD helical domain and adopts an unusual structure composed of two turns of helix separated by a proline kink. FtsZ CTD residue Phe-377 inserts into the ZapD pocket, anchoring the CTD in place and permitting hydrophobic contacts between FtsZ residues Ile-374, Pro-375, and Leu-378 with ZapD residues Leu-74, Trp-77, Leu-91, and Leu-174. The structural findings were supported by mutagenesis coupled with biochemical and in vivo studies. The combined data suggest that ZapD acts as a molecular cross-linking reagent between FtsZ protofilaments to enhance FtsZ assembly.
Collapse
Affiliation(s)
- Maria A Schumacher
- From the Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710,
| | - Kuo-Hsiang Huang
- the Department of Biology, City College of City University of New York, New York, New York 10031, and.,the Graduate Center, City University of New York, New York, New York 10016
| | - Wenjie Zeng
- From the Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710
| | - Anuradha Janakiraman
- the Department of Biology, City College of City University of New York, New York, New York 10031, and .,the Graduate Center, City University of New York, New York, New York 10016
| |
Collapse
|
29
|
Abstract
Cytokinesis in E. coli is organized by a cytoskeletal element designated the Z ring. The Z ring is formed at midcell by the coalescence of FtsZ filaments tethered to the membrane by interaction of FtsZ's conserved C-terminal peptide (CCTP) with two membrane-associated proteins, FtsA and ZipA. Although interaction between an FtsZ monomer and either of these proteins is of low affinity, high affinity is achieved through avidity - polymerization linked CCTPs interacting with the membrane tethers. The placement of the Z ring at midcell is ensured by antagonists of FtsZ polymerization that are positioned within the cell and target FtsZ filaments through the CCTP. The placement of the ring is reinforced by a protein network that extends from the terminus (Ter) region of the chromosome to the Z ring. Once the Z ring is established, additional proteins are recruited through interaction with FtsA, to form the divisome. The assembled divisome is then activated by FtsN to carry out septal peptidoglycan synthesis, with a dynamic Z ring serving as a guide for septum formation. As the septum forms, the cell wall is split by spatially regulated hydrolases and the outer membrane invaginates in step with the aid of a transenvelope complex to yield progeny cells.
Collapse
Affiliation(s)
- Joe Lutkenhaus
- University of Kansas Medical Center, Kansas City, KS, USA.
| | - Shishen Du
- University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
30
|
Schumacher MA. Bacterial Nucleoid Occlusion: Multiple Mechanisms for Preventing Chromosome Bisection During Cell Division. Subcell Biochem 2017; 84:267-298. [PMID: 28500529 DOI: 10.1007/978-3-319-53047-5_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In most bacteria cell division is driven by the prokaryotic tubulin homolog, FtsZ, which forms the cytokinetic Z ring. Cell survival demands both the spatial and temporal accuracy of this process to ensure that equal progeny are produced with intact genomes. While mechanisms preventing septum formation at the cell poles have been known for decades, the means by which the bacterial nucleoid is spared from bisection during cell division, called nucleoid exclusion (NO), have only recently been deduced. The NO theory was originally posited decades ago based on the key observation that the cell division machinery appeared to be inhibited from forming near the bacterial nucleoid. However, what might drive the NO process was unclear. Within the last 10 years specific proteins have been identified as important mediators of NO. Arguably the best studied NO mechanisms are those employed by the Escherichia coli SlmA and Bacillus subtilis Noc proteins. Both proteins bind specific DNA sequences within selected chromosomal regions to act as timing devices. However, Noc and SlmA contain completely different structural folds and utilize distinct NO mechanisms. Recent studies have identified additional processes and factors that participate in preventing nucleoid septation during cell division. These combined data show multiple levels of redundancy as well as a striking diversity of mechanisms have evolved to protect cells against catastrophic bisection of the nucleoid. Here we discuss these recent findings with particular emphasis on what is known about the molecular underpinnings of specific NO machinery and processes.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, 243 Nanaline H. Duke, Durham, NC, 27710, USA.
| |
Collapse
|
31
|
Coltharp C, Xiao J. Beyond force generation: Why is a dynamic ring of FtsZ polymers essential for bacterial cytokinesis? Bioessays 2016; 39:1-11. [PMID: 28004447 DOI: 10.1002/bies.201600179] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We propose that the essential function of the most highly conserved protein in bacterial cytokinesis, FtsZ, is not to generate a mechanical force to drive cell division. Rather, we suggest that FtsZ acts as a signal-processing hub to coordinate cell wall synthesis at the division septum with a diverse array of cellular processes, ensuring that the cell divides smoothly at the correct time and place, and with the correct septum morphology. Here, we explore how the polymerization properties of FtsZ, which have been widely attributed to force generation, can also be advantageous in this signal processing role. We suggest mechanisms by which FtsZ senses and integrates both mechanical and biochemical signals, and conclude by proposing experiments to investigate how FtsZ contributes to the remarkable spatial and temporal precision of bacterial cytokinesis.
Collapse
Affiliation(s)
- Carla Coltharp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Herrero A, Stavans J, Flores E. The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microbiol Rev 2016; 40:831-854. [DOI: 10.1093/femsre/fuw029] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/10/2016] [Accepted: 07/09/2016] [Indexed: 11/13/2022] Open
|
33
|
Caulobacter PopZ forms an intrinsically disordered hub in organizing bacterial cell poles. Proc Natl Acad Sci U S A 2016; 113:12490-12495. [PMID: 27791060 DOI: 10.1073/pnas.1602380113] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite their relative simplicity, bacteria have complex anatomy at the subcellular level. At the cell poles of Caulobacter crescentus, a 177-amino acid (aa) protein called PopZ self-assembles into 3D polymeric superstructures. Remarkably, we find that this assemblage interacts directly with at least eight different proteins, which are involved in cell cycle regulation and chromosome segregation. The binding determinants within PopZ include 24 aa at the N terminus, a 32-aa region near the C-terminal homo-oligomeric assembly domain, and portions of an intervening linker region. Together, the N-terminal 133 aa of PopZ are sufficient for interacting with all binding partners, even in the absence of homo-oligomeric assembly. Structural analysis of this region revealed that it is intrinsically disordered, similar to p53 and other hub proteins that organize complex signaling networks in eukaryotic cells. Through live-cell photobleaching, we find rapid binding kinetics between PopZ and its partners, suggesting many pole-localized proteins become concentrated at cell poles through rapid cycles of binding and unbinding within the PopZ scaffold. We conclude that some bacteria, similar to their eukaryotic counterparts, use intrinsically disordered hub proteins for network assembly and subcellular organization.
Collapse
|
34
|
Sanyasi S, Majhi RK, Kumar S, Mishra M, Ghosh A, Suar M, Satyam PV, Mohapatra H, Goswami C, Goswami L. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Sci Rep 2016; 6:24929. [PMID: 27125749 PMCID: PMC4850392 DOI: 10.1038/srep24929] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/30/2016] [Indexed: 01/12/2023] Open
Abstract
Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20-40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells.
Collapse
Affiliation(s)
- Sridhar Sanyasi
- School of Biotechnology, KIIT University, Patia, Bhubaneswar 751024, India
| | - Rakesh Kumar Majhi
- School of Biological Sciences, National Institute of Science Education and Research, Institute of Physics Campus, Sachivalaya Marg, Bhubaneswar 751005, India
| | - Satish Kumar
- School of Biotechnology, KIIT University, Patia, Bhubaneswar 751024, India
| | - Mitali Mishra
- School of Biological Sciences, National Institute of Science Education and Research, Institute of Physics Campus, Sachivalaya Marg, Bhubaneswar 751005, India
| | - Arnab Ghosh
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Patia, Bhubaneswar 751024, India
| | | | - Harapriya Mohapatra
- School of Biological Sciences, National Institute of Science Education and Research, Institute of Physics Campus, Sachivalaya Marg, Bhubaneswar 751005, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, Institute of Physics Campus, Sachivalaya Marg, Bhubaneswar 751005, India
| | - Luna Goswami
- School of Biotechnology, KIIT University, Patia, Bhubaneswar 751024, India
| |
Collapse
|
35
|
Huang KH, Mychack A, Tchorzewski L, Janakiraman A. Characterization of the FtsZ C-Terminal Variable (CTV) Region in Z-Ring Assembly and Interaction with the Z-Ring Stabilizer ZapD in E. coli Cytokinesis. PLoS One 2016; 11:e0153337. [PMID: 27088231 PMCID: PMC4835091 DOI: 10.1371/journal.pone.0153337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/28/2016] [Indexed: 12/19/2022] Open
Abstract
Polymerization of a ring-like cytoskeletal structure, the Z-ring, at midcell is a highly conserved feature in virtually all bacteria. The Z-ring is composed of short protofilaments of the tubulin homolog FtsZ, randomly arranged and held together through lateral interactions. In vitro, lateral associations between FtsZ protofilaments are stabilized by crowding agents, high concentrations of divalent cations, or in some cases, low pH. In vivo, the last 4–10 amino acid residues at the C-terminus of FtsZ (the C-terminal variable region, CTV) have been implicated in mediating lateral associations between FtsZ protofilaments through charge shielding. Multiple Z-ring associated proteins (Zaps), also promote lateral interactions between FtsZ protofilaments to stabilize the FtsZ ring in vivo. Here we characterize the complementary role/s of the CTV of E. coli FtsZ and the FtsZ-ring stabilizing protein ZapD, in FtsZ assembly. We show that the net charge of the FtsZ CTV not only affects FtsZ protofilament bundling, confirming earlier observations, but likely also the length of the FtsZ protofilaments in vitro. The CTV residues also have important consequences for Z-ring assembly and interaction with ZapD in the cell. ZapD requires the FtsZ CTV region for interaction with FtsZ in vitro and for localization to midcell in vivo. Our data suggest a mechanism in which the CTV residues, particularly K380, facilitate a conformation for the conserved carboxy-terminal residues in FtsZ, that lie immediately N-terminal to the CTV, to enable optimal contact with ZapD. Further, phylogenetic analyses suggest a correlation between the nature of FtsZ CTV residues and the presence of ZapD in the β- γ-proteobacterial species.
Collapse
Affiliation(s)
- Kuo-Hsiang Huang
- Department of Biology, City College of CUNY, 160 Convent Avenue, MR 526, New York, NY, United States of America
- The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY, United States of America
| | - Aaron Mychack
- Department of Biology, City College of CUNY, 160 Convent Avenue, MR 526, New York, NY, United States of America
- The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY, United States of America
| | - Lukasz Tchorzewski
- Department of Biology, City College of CUNY, 160 Convent Avenue, MR 526, New York, NY, United States of America
| | - Anuradha Janakiraman
- Department of Biology, City College of CUNY, 160 Convent Avenue, MR 526, New York, NY, United States of America
- The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
36
|
Structures of the nucleoid occlusion protein SlmA bound to DNA and the C-terminal domain of the cytoskeletal protein FtsZ. Proc Natl Acad Sci U S A 2016; 113:4988-93. [PMID: 27091999 DOI: 10.1073/pnas.1602327113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell division in most prokaryotes is mediated by FtsZ, which polymerizes to create the cytokinetic Z ring. Multiple FtsZ-binding proteins regulate FtsZ polymerization to ensure the proper spatiotemporal formation of the Z ring at the division site. The DNA-binding protein SlmA binds to FtsZ and prevents Z-ring formation through the nucleoid in a process called "nucleoid occlusion" (NO). As do most FtsZ-accessory proteins, SlmA interacts with the conserved C-terminal domain (CTD) that is connected to the FtsZ core by a long, flexible linker. However, SlmA is distinct from other regulatory factors in that it must be DNA-bound to interact with the FtsZ CTD. Few structures of FtsZ regulator-CTD complexes are available, but all reveal the CTD bound as a helix. To deduce the molecular basis for the unique SlmA-DNA-FtsZ CTD regulatory interaction and provide insight into FtsZ-regulator protein complex formation, we determined structures of Escherichia coli, Vibrio cholera, and Klebsiella pneumonia SlmA-DNA-FtsZ CTD ternary complexes. Strikingly, the FtsZ CTD does not interact with SlmA as a helix but binds as an extended conformation in a narrow, surface-exposed pocket formed only in the DNA-bound state of SlmA and located at the junction between the DNA-binding and C-terminal dimer domains. Binding studies are consistent with the structure and underscore key interactions in complex formation. Combined, these data reveal the molecular basis for the SlmA-DNA-FtsZ interaction with implications for SlmA's NO function and underscore the ability of the FtsZ CTD to adopt a wide range of conformations, explaining its ability to bind diverse regulatory proteins.
Collapse
|
37
|
Haeusser DP, Margolin W. Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nat Rev Microbiol 2016; 14:305-19. [PMID: 27040757 DOI: 10.1038/nrmicro.2016.26] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacteria must divide to increase in number and colonize their niche. Binary fission is the most widespread means of bacterial cell division, but even this relatively simple mechanism has many variations on a theme. In most bacteria, the tubulin homologue FtsZ assembles into a ring structure, termed the Z ring, at the site of cytokinesis and recruits additional proteins to form a large protein machine - the divisome - that spans the membrane. In this Review, we discuss current insights into the regulation of the assembly of the Z ring and how the divisome drives membrane invagination and septal cell wall growth while flexibly responding to various cellular inputs.
Collapse
Affiliation(s)
- Daniel P Haeusser
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA.,Biology Department, Canisius College, 2001 Main Street, Buffalo, New York 14208, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| |
Collapse
|
38
|
Park KT, Du S, Lutkenhaus J. MinC/MinD copolymers are not required for Min function. Mol Microbiol 2015; 98:895-909. [PMID: 26268537 DOI: 10.1111/mmi.13164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2015] [Indexed: 11/27/2022]
Abstract
In Escherichia coli, precise placement of the cytokinetic Z ring at midcell requires the concerted action of the three Min proteins. MinD activates MinC, an inhibitor of FtsZ, at least in part, by recruiting it to the membrane and targeting it to the Z ring, while MinE stimulates the MinD ATPase inducing an oscillation that directs MinC/MinD activity away from midcell. Recently, MinC and MinD were shown to form copolymers of alternating dimers of MinC and MinD, and it was suggested that these copolymers are the active form of MinC/MinD. Here, we use MinD mutants defective in binding MinC to generate heterodimers with wild-type MinD that are unable to form MinC/MinD copolymers. Similarly, MinC mutants defective in binding to MinD were used to generate heterodimers with wild-type MinC that are unable to form copolymers. Such heterodimers are active and in the case of MinC were shown to mediate spatial regulation of the Z ring demonstrating that MinC/MinD copolymer formation is not required. Our results are consistent with a model in which a membrane anchored MinC/MinD complex is targeted to the Z ring through the conserved carboxy tail of FtsZ leading to breakage of FtsZ filaments.
Collapse
Affiliation(s)
- Kyung-Tae Park
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Shishen Du
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
39
|
Ortiz C, Natale P, Cueto L, Vicente M. The keepers of the ring: regulators of FtsZ assembly. FEMS Microbiol Rev 2015; 40:57-67. [PMID: 26377318 DOI: 10.1093/femsre/fuv040] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2015] [Indexed: 11/13/2022] Open
Abstract
FtsZ, a GTPase distributed in the cytoplasm of most bacteria, is the major component of the machinery responsible for division (the divisome) in Escherichia coli. It interacts with additional proteins that contribute to its function forming a ring at the midcell that is essential to constrict the membrane. FtsZ is indirectly anchored to the membrane and it is prevented from polymerizing at locations where septation is undesired. Several properties of FtsZ are mediated by other proteins that function as keepers of the ring. ZipA and FtsA serve to anchor the ring, and together with a set of Zap proteins, they stabilize it. The MinCDE and SlmA proteins prevent the polymerization of FtsZ at sites other than the midcell. Finally, ClpP degrades FtsZ, an action prevented by ZipA. Many of the FtsZ keepers interact with FtsZ through a central hub located at its carboxy terminal end.
Collapse
Affiliation(s)
- Cristina Ortiz
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC), C/ Darwin 3, Madrid 28049, Spain
| | - Paolo Natale
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC), C/ Darwin 3, Madrid 28049, Spain
| | - Laura Cueto
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC), C/ Darwin 3, Madrid 28049, Spain
| | - Miguel Vicente
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC), C/ Darwin 3, Madrid 28049, Spain
| |
Collapse
|
40
|
Tsang MJ, Bernhardt TG. Guiding divisome assembly and controlling its activity. Curr Opin Microbiol 2015; 24:60-5. [PMID: 25636132 DOI: 10.1016/j.mib.2015.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/01/2015] [Accepted: 01/08/2015] [Indexed: 01/11/2023]
Abstract
Cell division in bacteria requires the construction of two new polar caps for the daughter cells. To constrict the cell membrane and build these new surface layers, bacteria employ a multiprotein machine called the divisome. Over the years, most of the essential division proteins have been identified and localized to the ring-like divisome apparatus. The challenge now is to determine the molecular function of these factors, how they cooperate to bring about the dramatic transformation of the mother cell envelope, and what coordinates their activity with other major cell cycle events. In this review, we discuss recent progress in these areas with an emphasis on results from the model organisms Escherichia coli and Bacillus subtilis.
Collapse
Affiliation(s)
- Mary-Jane Tsang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States
| | - Thomas G Bernhardt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|