1
|
Bowman B. Distribution and dynamics of hyphal organelles. Fungal Genet Biol 2025; 178:103982. [PMID: 40154940 DOI: 10.1016/j.fgb.2025.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Filamentous fungi have been very useful organisms for the investigation of organelles in eukaryotic cells. The structure and function of fungal organelles is generally very similar to that observed in animal cells. However, the nature of a "cell" in many filamentous fungi is unusual, because in many of these organisms the filaments are structured as a large syncytium. In the Ascomycota hyphae are typically a very long tube divided into different compartments by an incomplete cell wall called the septum. The pore in the middle of the septum is large enough to allow virtually all organelles to move from one hyphal compartment to another. In this review, I will look at the dynamics of this movement of organelles and describe what we know about how the structure and distribution of organelles varies from one hyphal compartment to another.
Collapse
Affiliation(s)
- Barry Bowman
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States..
| |
Collapse
|
2
|
Li X, Wang C, Liu J, Deng G, Deng Y, Hu F, Wang Y, Zhou D. Tailoring Tumor Cell Golgi Apparatus-Targeting Self-Assembled Peptide for Effective Immunotherapy via Reshaping MIF-Mediated Immunosuppressive Network. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415133. [PMID: 39908165 PMCID: PMC11948030 DOI: 10.1002/advs.202415133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/12/2025] [Indexed: 02/07/2025]
Abstract
The immunosuppressive network formed by the enhanced crosstalk between tumor cells and various types of immune cells may ultimately lead to the formation of tumor immunosuppressive microenvironment (TIME). The Golgi apparatus (GA) of tumor cells is a key organelle in the formation of a tumor immunosuppressive network. However, there are no studies to show whether interfering with the GA of tumor cells can reshape the immunosuppressive network to enhance the effectiveness of immunotherapy. Therefore, the tumor cell GA-targeting self-assembled peptide (NF-1) is tailored, and confirmed that NF-1 treatment can achieve an effective immunotherapy and found that tumor cell-derived GA-dependent migration inhibitory factor (MIF) mediates the formation of immunosuppressive network in breast cancer (BRCA) through multi-omics analysis, in vivo, and in vitro experiments. NF-1 treatment-induced MIF reduction can reshape the immunosuppressive network and convert a "cold" tumor into a "hot" tumor, thus enabling immunotherapy in BRCA and enhancing the ICB efficacy in colon adenocarcinoma (COAD). This study presents a general strategy for interfering with tumor GA for effective immunotherapy in BRCA, COAD, and other cancers characterized by a "cold" immune microenvironment.
Collapse
Affiliation(s)
- Xiang Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong‐Hongkong‐Macao Joint Laboratory for New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510 515P. R. China
| | - Chengxinqiao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong‐Hongkong‐Macao Joint Laboratory for New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510 515P. R. China
- Department of Ultrasonic Diagnosis & Orthopedic and TraumatologyZhujiang HospitalSouthern Medical UniversityGuangzhou510 515P. R. China
| | - Junhan Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong‐Hongkong‐Macao Joint Laboratory for New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510 515P. R. China
| | - Guifang Deng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong‐Hongkong‐Macao Joint Laboratory for New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510 515P. R. China
| | - Yongqiang Deng
- Department of PathophysiologyGuangdong Provincial Key Laboratory of ProteomicsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510 515P. R. China
| | - Fang Hu
- Biomaterials Research CenterSchool of Biomedical EngineeringSouthern Medical UniversityGuangzhou510 515P. R. China
| | - Yupeng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong‐Hongkong‐Macao Joint Laboratory for New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510 515P. R. China
| | - Dongfang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong‐Hongkong‐Macao Joint Laboratory for New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510 515P. R. China
- Department of Ultrasonic Diagnosis & Orthopedic and TraumatologyZhujiang HospitalSouthern Medical UniversityGuangzhou510 515P. R. China
- Key Laboratory of Mental Health of the Ministry of EducationSouthern Medical UniversityGuangzhou510 515P. R. China
| |
Collapse
|
3
|
González-Téllez SV, Riquelme M. CSE-8, a filamentous fungus-specific Shr3-like chaperone, facilitates endoplasmic reticulum exit of chitin synthase CHS-3 (class I) in Neurospora crassa. FRONTIERS IN FUNGAL BIOLOGY 2025; 5:1505388. [PMID: 39926406 PMCID: PMC11803449 DOI: 10.3389/ffunb.2024.1505388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
Chitin is a crucial structural polysaccharide in fungal cell walls, essential for maintaining cellular plasticity and integrity. Its synthesis is orchestrated by chitin synthases (CHS), a major family of transmembrane proteins. In Saccharomyces cerevisiae, the cargo receptor Chs7, belonging to the Shr3-like chaperone family, plays a pivotal role in the exit of Chs3 from the endoplasmic reticulum (ER) and its subsequent activity in the plasma membrane (PM). However, the auxiliary machinery responsible for CHS trafficking in filamentous fungi remains poorly understood. The Neurospora crassa genome encodes two orthologues of Chs7: chitin synthase export (CSE) proteins CSE-7 (NCU05720) and CSE-8 (NCU01814), both of which are highly conserved among filamentous fungi. In contrast, yeast forms only possess a single copy CHS export receptor. Previous research highlighted the crucial role of CSE-7 in the localization of CHS-4 at sites of cell wall synthesis, including the Spitzenkörper (SPK) and septa. In this study, CSE-8 was identified as an export protein for CHS-3 (class I). In the Δcse-8 knockout strain of N. crassa, CHS-3-GFP fluorescence was absent from the SPK or septa, indicating that CSE-8 is required for the exit of CHS-3 from the ER. Additionally, sexual development was disrupted in the Δcse-8 strain, with 20% of perithecia from homozygous crosses exhibiting two ostioles. A Δcse-7;Δcse-8 double mutant strain showed reduced N-acetylglucosamine (GlcNAc) content and decreased radial growth. Furthermore, the loss of cell polarity and the changes in subcellular distribution of CSE-8-GFP and CHS-3-GFP observed in hyphae under ER stress induced by the addition of tunicamycin and dithiothreitol reinforce the hypothesis that CSE-8 functions as an ER protein. The current evidence suggests that the biogenesis of CHS exclusive to filamentous fungi may involve pathways independent of CSE-mediated receptors.
Collapse
Affiliation(s)
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| |
Collapse
|
4
|
Sabatke B, Rossi IV, Sana A, Bonato LB, Ramirez MI. Extracellular vesicles biogenesis and uptake concepts: A comprehensive guide to studying host-pathogen communication. Mol Microbiol 2024; 122:613-629. [PMID: 37758682 DOI: 10.1111/mmi.15168] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
The study of host-pathogen interactions has increased considerably in recent decades. This intercellular communication has been mediated by extracellular vesicles (EVs) that play an important role during the interaction. EVs are particles of lipid bilayer and described in different types of cells, eukaryotic or prokaryotic. Depending on their biogenesis they are described as exosomes (derived from multivesicular bodies) and microvesicles (derived from the plasma membrane). The EVs carry biomolecules, including nucleic acids, lipids, and proteins that can be released or internalized by other cells in different pathways (endocytosis, macropinocytosis, phagocytosis, or membrane fusion) in the process described as uptake. The balance between biogenesis and uptake of EVs could modify physiological and pathophysiological processes of the cell. This review is focusing on the dynamic roles of release and capture of EVs during host-pathogen interaction. We also do a critical analysis of methodologies for obtaining and analyzing EVs. Finally, we draw attention to critical points to be considered in EV biogenesis and uptake studies.
Collapse
Affiliation(s)
- Bruna Sabatke
- Graduate Program in Microbiology, Pathology and Parasitology, Federal University of Paraná, Curitiba, Brazil
- EVAHPI - Extracellular Vesicles and Host-Parasite Interactions Research Group, Carlos Chagas Institute (Fiocruz-PR), Curitiba, Brazil
| | - Izadora Volpato Rossi
- EVAHPI - Extracellular Vesicles and Host-Parasite Interactions Research Group, Carlos Chagas Institute (Fiocruz-PR), Curitiba, Brazil
- Graduate Program in Cell and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Abel Sana
- EVAHPI - Extracellular Vesicles and Host-Parasite Interactions Research Group, Carlos Chagas Institute (Fiocruz-PR), Curitiba, Brazil
- Graduate Program in Cell and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Leticia Bassani Bonato
- Graduate Program in Microbiology, Pathology and Parasitology, Federal University of Paraná, Curitiba, Brazil
- EVAHPI - Extracellular Vesicles and Host-Parasite Interactions Research Group, Carlos Chagas Institute (Fiocruz-PR), Curitiba, Brazil
| | - Marcel I Ramirez
- EVAHPI - Extracellular Vesicles and Host-Parasite Interactions Research Group, Carlos Chagas Institute (Fiocruz-PR), Curitiba, Brazil
| |
Collapse
|
5
|
Kourkoulou A, Martzoukou O, Fischer R, Amillis S. A type II phosphatidylinositol-4-kinase coordinates sorting of cargo polarizing by endocytic recycling. Commun Biol 2024; 7:855. [PMID: 38997419 PMCID: PMC11245547 DOI: 10.1038/s42003-024-06553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Depending on their phosphorylation status, derivatives of phosphatidylinositol play important roles in vesicle identity, recognition and intracellular trafficking processes. In eukaryotic cells, phosphatidylinositol-4 phosphate pools generated by specific kinases are key determinants of the conventional secretion pathways. Earlier work in yeast has classified phosphatidylinositol-4 kinases in two types, Stt4p and Pik1p belonging to type III and Lsb6p to type II, with distinct cellular localizations and functions. Eurotiomycetes appear to lack Pik1p homologues. In Aspergillus nidulans, unlike homologues in other fungi, AnLsb6 is associated to late Golgi membranes and when heterologously overexpressed, it compensates for the thermosensitive phenotype in a Saccharomyces cerevisiae pik1 mutant, whereas its depletion leads to disorganization of Golgi-associated PHOSBP-labelled membranes, that tend to aggregate dependent on functional Rab5 GTPases. Evidence provided herein, indicates that the single type II phosphatidylinositol-4 kinase AnLsb6 is the main contributor for decorating secretory vesicles with relevant phosphatidylinositol-phosphate species, which navigate essential cargoes following the route of apical polarization via endocytic recycling.
Collapse
Affiliation(s)
- Anezia Kourkoulou
- National and Kapodistrian University of Athens, Department of Biology, Athens, Hellas, Greece
| | - Olga Martzoukou
- National and Kapodistrian University of Athens, Department of Biology, Athens, Hellas, Greece
| | - Reinhard Fischer
- Karlsruhe Institute of Technology - South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Sotiris Amillis
- National and Kapodistrian University of Athens, Department of Biology, Athens, Hellas, Greece.
- Karlsruhe Institute of Technology - South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany.
| |
Collapse
|
6
|
Li P, Zhu H, Wang C, Zeng F, Jia J, Feng S, Han X, Shen S, Wang Y, Hao Z, Dong J. StRAB4 gene is required for filamentous growth, conidial development, and pathogenicity in Setosphaeria turcica. Front Microbiol 2024; 14:1302081. [PMID: 38264490 PMCID: PMC10804457 DOI: 10.3389/fmicb.2023.1302081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Setosphaeria turcica, the fungal pathogen responsible for northern corn leaf blight in maize, forms specialized infectious structures called appressoria that are critical for fungal penetration of maize epidermal cells. The Rab family of proteins play a crucial role in the growth, development, and pathogenesis of many eukaryotic species. Rab4, in particular, is a key regulator of endocytosis and vesicle trafficking, essential for filamentous growth and successful infection by other fungal pathogens. In this study, we silenced StRAB4 in S. turcica to gain a better understanding the function of Rab4 in this plant pathogen. Phenotypically, the mutants exhibited a reduced growth rate, a significant decline in conidia production, and an abnormal conidial morphology. These phenotypes indicate that StRab4 plays an instrumental role in regulating mycelial growth and conidial development in S. turcica. Further investigations revealed that StRab4 is a positive regulator of cell wall integrity and melanin secretion. Functional enrichment analysis of differentially expressed genes highlighted primary enrichments in peroxisome pathways, oxidoreductase and catalytic activities, membrane components, and cell wall organization processes. Collectively, our findings emphasize the significant role of StRab4 in S. turcica infection and pathogenicity in maize and provide valuable insights into fungal behavior and disease mechanisms.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, China
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Hang Zhu
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, China
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Chengze Wang
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, China
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Fanli Zeng
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jingzhe Jia
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shang Feng
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xinpeng Han
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shen Shen
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yanhui Wang
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, China
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhimin Hao
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, China
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, China
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
7
|
Jesmin R, Cary JW, Lebar MD, Majumdar R, Gummadidala PM, Dias T, Chandler S, Basu P, Decho AW, Keller NP, Chanda A. Vibrio gazogenes-dependent disruption of aflatoxin biosynthesis in Aspergillus flavus: the connection with endosomal uptake and hyphal morphogenesis. Front Microbiol 2023; 14:1208961. [PMID: 37744918 PMCID: PMC10516221 DOI: 10.3389/fmicb.2023.1208961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
Aflatoxins, a family of fungal secondary metabolites, are toxic and carcinogenic compounds that pose an enormous threat to global food safety and agricultural sustainability. Specifically agricultural products in African, Southeast Asian and hot and humid regions of American countries suffer most damage from aflatoxin producing molds due to the ideal climate conditions promoting their growth. Our recent studies suggest that Vibrio gazogenes (Vg), an estuarine bacterium non-pathogenic to plants and humans, can significantly inhibit aflatoxin biosynthesis in the producers. In this study, we investigated the mechanism underlying Vg-dependent aflatoxin inhibition using the prominent aflatoxin producer, Aspergillus flavus. We show that aflatoxin inhibition upon Vg treatment was associated with fungal uptake of Vg-prodigiosin, a red pigment, which was consistently visible inside fungal hyphae during treatment. The association of prodigiosin with aflatoxin inhibition was further evident as Serratia marcescens, another prodigiosin producer, significantly inhibited aflatoxin, while non-producers like Escherichia coli, Staphylococcus aureus, Vibrio harveyi, and Vibrio fischeri did not. Also, pure prodigiosin significantly inhibited aflatoxin biosynthesis. Endocytosis inhibitors, filipin and natamycin, reduced the Vg-prodigiosin uptake by the fungus leading to a significant increase in aflatoxin production, suggesting that uptake is endocytosis-dependent. The Vg treatment also reduced hyphal fusion (>98% inhibition) and branching, which are both endosome-dependent processes. Our results, therefore, collectively support our theory that Vg-associated aflatoxin inhibition is mediated by an endocytosis-dependent uptake of Vg-prodigiosin, which possibly leads to a disruption of normal endosomal functions.
Collapse
Affiliation(s)
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, LA, United States
| | - Matthew D. Lebar
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, LA, United States
| | - Rajtilak Majumdar
- Northwest Irrigation and Soils Research, United States Department of Agriculture, Kimberly, ID, United States
| | - Phani M. Gummadidala
- University of North Carolina School of Medicine, Chapell Hill, NC, United States
| | - Travis Dias
- University of South Carolina School of Medicine, Greenville, NC, United States
| | - Savannah Chandler
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Paramita Basu
- New York College of Podiatric Medicine, New York, NY, United States
| | - Alan W. Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | | |
Collapse
|
8
|
Bravo-Plaza I, Tagua VG, Arst HN, Alonso A, Pinar M, Monterroso B, Galindo A, Peñalva MA. The Uso1 globular head interacts with SNAREs to maintain viability even in the absence of the coiled-coil domain. eLife 2023; 12:e85079. [PMID: 37249218 PMCID: PMC10275640 DOI: 10.7554/elife.85079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/29/2023] [Indexed: 05/31/2023] Open
Abstract
Uso1/p115 and RAB1 tether ER-derived vesicles to the Golgi. Uso1/p115 contains a globular-head-domain (GHD), a coiled-coil (CC) mediating dimerization/tethering, and a C-terminal region (CTR) interacting with golgins. Uso1/p115 is recruited to vesicles by RAB1. Genetic studies placed Uso1 paradoxically acting upstream of, or in conjunction with RAB1 (Sapperstein et al., 1996). We selected two missense mutations in uso1 resulting in E6K and G540S in the GHD that rescued lethality of rab1-deficient Aspergillus nidulans. The mutations are phenotypically additive, their combination suppressing the complete absence of RAB1, which emphasizes the key physiological role of the GHD. In living hyphae Uso1 recurs on puncta (60 s half-life) colocalizing partially with the Golgi markers RAB1, Sed5, and GeaA/Gea1/Gea2, and totally with the retrograde cargo receptor Rer1, consistent with Uso1 dwelling in a very early Golgi compartment from which ER residents reaching the Golgi recycle back to the ER. Localization of Uso1, but not of Uso1E6K/G540S, to puncta is abolished by compromising RAB1 function, indicating that E6K/G540S creates interactions bypassing RAB1. That Uso1 delocalization correlates with a decrease in the number of Gea1 cisternae supports that Uso1-and-Rer1-containing puncta are where the protein exerts its physiological role. In S-tag-coprecipitation experiments, Uso1 is an associate of the Sed5/Bos1/Bet1/Sec22 SNARE complex zippering vesicles with the Golgi, with Uso1E6K/G540S showing a stronger association. Using purified proteins, we show that Bos1 and Bet1 bind the Uso1 GHD directly. However, Bet1 is a strong E6K/G540S-independent binder, whereas Bos1 is weaker but becomes as strong as Bet1 when the GHD carries E6K/G540S. G540S alone markedly increases GHD binding to Bos1, whereas E6K causes a weaker effect, correlating with their phenotypic contributions. AlphaFold2 predicts that G540S increases the binding of the GHD to the Bos1 Habc domain. In contrast, E6K lies in an N-terminal, potentially alpha-helical, region that sensitive genetic tests indicate as required for full Uso1 function. Remarkably, this region is at the end of the GHD basket opposite to the end predicted to interact with Bos1. We show that, unlike dimeric full-length and CTR∆ Uso1 proteins, the GHD lacking the CC/CTR dimerization domain, whether originating from bacteria or Aspergillus extracts and irrespective of whether it carries or not E6K/G540S, would appear to be monomeric. With the finding that overexpression of E6K/G540S and wild-type GHD complement uso1∆, our data indicate that the GHD monomer is capable of providing, at least partially, the essential Uso1 functions, and that long-range tethering activity is dispensable. Rather, these findings strongly suggest that the essential role of Uso1 involves the regulation of SNAREs.
Collapse
Affiliation(s)
- Ignacio Bravo-Plaza
- Department of Cellular and Molecular Biology, CSIC Centro de Investigaciones BiológicasMadridSpain
| | - Victor G Tagua
- Instituto de Tecnologías Biomédicas, Hospital Universitario Nuestra Señora de CandelariaSanta Cruz de TenerifeSpain
| | - Herbert N Arst
- Department of Infectious Diseases, Faculty of Medicine, Flowers Building, Imperial CollegeLondonUnited Kingdom
| | - Ana Alonso
- Department of Cellular and Molecular Biology, CSIC Centro de Investigaciones BiológicasMadridSpain
| | - Mario Pinar
- Department of Cellular and Molecular Biology, CSIC Centro de Investigaciones BiológicasMadridSpain
| | - Begoña Monterroso
- Department of Structural and Chemical Biology, CSIC Centro de Investigaciones BiológicasMadridSpain
| | - Antonio Galindo
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, CSIC Centro de Investigaciones BiológicasMadridSpain
| |
Collapse
|
9
|
Liu Y, Shen S, Hao Z, Wang Q, Zhang Y, Zhao Y, Tong Y, Zeng F, Dong J. Protein kinase A participates in hyphal and appressorial development by targeting Efg1-mediated transcription of a Rab GTPase in Setosphaeria turcica. MOLECULAR PLANT PATHOLOGY 2022; 23:1608-1619. [PMID: 35929228 PMCID: PMC9562828 DOI: 10.1111/mpp.13253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The cyclic adenosine monophosphate (cAMP) signalling pathway plays an important role in the regulation of the development and pathogenicity of filamentous fungi. cAMP-dependent protein kinase A (PKA) is the conserved element downstream of cAMP, and its diverse mechanisms in multiple filamentous fungi are not well known yet. In the present study, gene knockout mutants of two catalytic subunits of PKA (PKA-C) in Setosphaeria turcica were created to illustrate the regulatory mechanisms of PKA-Cs on the development and pathogenicity of S. turcica. As a result, StPkaC2 was proved to be the main contributor of PKA activity in S. turcica. In addition, it was found that both StPkaC1 and StPkaC2 were necessary for conidiation and invasive growth, while only StPkaC2 played a negative role in the regulation of filamentous growth. We reveal that only StPkaC2 could interact with the transcription factor StEfg1, and it inhibited the transcription of StRAB1, a Rab GTPase homologue coding gene in S. turcica, whereas StPkaC1 could specifically interact with a transcriptional regulator StFlo8, which could rescue the transcriptional inhibition of StEfg1 on StRAB1. We also demonstrated that StRAB1 could positively influence the biosynthesis of chitin in hyphae, thus changing the filamentous growth. Our findings clarify that StPkaC2 participates in chitin biosynthesis to modulate mycelium development by targeting the Efg1-mediated transcription of StRAB1, while StFlo8, interacting with StPkaC1, acts as a negative regulator during this process.
Collapse
Affiliation(s)
- Yuwei Liu
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Shen Shen
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Zhimin Hao
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Qing Wang
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Yumei Zhang
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Yulan Zhao
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Yameng Tong
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
- College of Plant ProtectionHebei Agricultural UniversityBaodingChina
| |
Collapse
|
10
|
Abstract
In a number of elongated cells, such as fungal hyphae, a vesicle cluster is observed at the growing tip. This cluster, called a Spitzenkörper, has been suggested to act as a vesicle supply center, yet analysis of its function is challenging, as a majority of components identified thus far are essential for growth. Here, we probe the function of the Spitzenkörper in the human fungal pathogen Candida albicans, using genetics and synthetic physical interactions (SPI). We show that the C. albicans Spitzenkörper is comprised principally of secretory vesicles. Mutant strains lacking the Spitzenkörper component myosin light chain 1 (Mlc1) or having a SPI between Mlc1 and either another Spitzenkörper component, the Rab GTPase Sec4, or prenylated green fluorescent protein (GFP), are viable and still exhibit a Spitzenkörper during filamentous growth. Strikingly, all of these mutants formed filaments with increased diameters and extension rates, indicating that Mlc1 negatively regulates myosin V, Myo2, activity. The results of our quantitative studies reveal a strong correlation between filament diameter and extension rate, which is consistent with the vesicle supply center model for fungal tip growth. Together, our results indicate that the Spitzenkörper protein Mlc1 is important for growth robustness and reveal a critical link between filament morphology and extension rate. IMPORTANCE Hyphal tip growth is critical in a range of fungal pathogens, in particular for invasion into animal and plant tissues. In Candida albicans, as in many filamentous fungi, a cluster of vesicles, called a Spitzenkörper, is observed at the tip of growing hyphae that is thought to function as a vesicle supply center. A central prediction of the vesicle supply center model is that the filament diameter is proportional to the extension rate. Here, we show that mutants lacking the Spitzenkörper component myosin light chain 1 (Mlc1) or having synthetic physical interactions between Mlc1 and either another Spitzenkörper component or prenylated GFP, are defective in filamentous growth regulation, exhibiting a range of growth rates and sizes, with a strong correlation between diameter and extension rate. These results suggest that the Spitzenkörper is important for growth robustness and reveal a critical link between filament morphology and extension rate.
Collapse
|
11
|
Pinar M, Peñalva MA. The fungal RABOME: RAB GTPases acting in the endocytic and exocytic pathways of Aspergillus nidulans (with excursions to other filamentous fungi). Mol Microbiol 2021; 116:53-70. [PMID: 33724562 DOI: 10.1111/mmi.14716] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
RAB GTPases are major determinants of membrane identity that have been exploited as highly specific reporters to study intracellular traffic in vivo. A score of fungal papers have considered individual RABs, but systematic, integrated studies on the localization and physiological role of these regulators and their effectors have been performed only with Aspergillus nidulans. These studies have influenced the intracellular trafficking field beyond fungal specialists, leading to findings such as the maturation of trans-Golgi (TGN) cisternae into post-Golgi RAB11 secretory vesicles, the concept that these RAB11 secretory carriers are loaded with three molecular nanomotors, the understanding of the role of endocytic recycling mediated by RAB6 and RAB11 in determining the hyphal mode of life, the discovery that early endosome maturation and the ESCRT pathway are essential, the identification of specific adaptors of dynein-dynactin to RAB5 endosomes, the exquisite dependence that autophagy displays on RAB1 activity, the role of TRAPPII as a GEF for RAB11, or the conclusion that the RAB1-to-RAB11 transition is not mediated by TRAPP maturation. A remarkable finding was that the A. nidulans Spitzenkörper contains four RABs: RAB11, Sec4, RAB6, and RAB1. How these RABs cooperate during exocytosis represents an as yet outstanding question.
Collapse
Affiliation(s)
- Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
12
|
Silva PM, Puerner C, Seminara A, Bassilana M, Arkowitz RA. Secretory Vesicle Clustering in Fungal Filamentous Cells Does Not Require Directional Growth. Cell Rep 2020; 28:2231-2245.e5. [PMID: 31433995 DOI: 10.1016/j.celrep.2019.07.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/22/2019] [Accepted: 07/18/2019] [Indexed: 11/27/2022] Open
Abstract
During symmetry breaking, the highly conserved Rho GTPase Cdc42 becomes stabilized at a defined site via an amplification process. However, little is known about how a new polarity site is established in an already asymmetric cell-a critical process in a changing environment. The human fungal pathogen Candida albicans switches from budding to filamentous growth in response to external cues, a transition controlled by Cdc42. Here, we have used optogenetic manipulation of cell polarity to reset growth in asymmetric filamentous C. albicans cells. We show that increasing the level of active Cdc42 on the plasma membrane results in disruption of the exocyst subunit Sec3 localization and a striking de novo clustering of secretory vesicles. This new cluster of secretory vesicles is highly dynamic, moving by hops and jumps, until a new growth site is established. Our results reveal that secretory vesicle clustering can occur in the absence of directional growth.
Collapse
Affiliation(s)
- Patrícia M Silva
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Charles Puerner
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Agnese Seminara
- Université Côte d'Azur, CNRS, Institute Physics of Nice (INPHYNI), Ave. J. Vallot, Nice, France
| | - Martine Bassilana
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Robert A Arkowitz
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.
| |
Collapse
|
13
|
Hassing B, Eaton CJ, Winter D, Green KA, Brandt U, Savoian MS, Mesarich CH, Fleissner A, Scott B. Phosphatidic acid produced by phospholipase D is required for hyphal cell-cell fusion and fungal-plant symbiosis. Mol Microbiol 2020; 113:1101-1121. [PMID: 32022309 DOI: 10.1111/mmi.14480] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
Although lipid signaling has been shown to serve crucial roles in mammals and plants, little is known about this process in filamentous fungi. Here we analyze the contribution of phospholipase D (PLD) and its product phosphatidic acid (PA) in hyphal morphogenesis and growth of Epichloë festucae and Neurospora crassa, and in the establishment of a symbiotic interaction between E. festucae and Lolium perenne. Growth of E. festucae and N. crassa PLD deletion strains in axenic culture, and for E. festucae in association with L. perenne, were analyzed by light-, confocal- and electron microscopy. Changes in PA distribution were analyzed in E. festucae using a PA biosensor and the impact of these changes on the endocytic recycling and superoxide production investigated. We found that E. festucae PldB, and the N. crassa ortholog, PLA-7, are required for polarized growth and cell fusion and contribute to ascospore development, whereas PldA/PLA-8 are dispensable for these functions. Exogenous addition of PA rescues the cell-fusion phenotype in E. festucae. PldB is also crucial for E. festucae to establish a symbiotic association with L. perenne. This study identifies a new component of the cell-cell communication and cell fusion signaling network for hyphal morphogenesis and growth of filamentous fungi.
Collapse
Affiliation(s)
- Berit Hassing
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Carla J Eaton
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - David Winter
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Kimberly A Green
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Ulrike Brandt
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Matthew S Savoian
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Carl H Mesarich
- Bio-Protection Research Centre, Lincoln, New Zealand.,School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Andre Fleissner
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| |
Collapse
|
14
|
Schuster M, Guiu-Aragones C, Steinberg G. Class V chitin synthase and β(1,3)-glucan synthase co-travel in the same vesicle in Zymoseptoria tritici. Fungal Genet Biol 2019; 135:103286. [PMID: 31672687 PMCID: PMC7967022 DOI: 10.1016/j.fgb.2019.103286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/03/2022]
Abstract
Native chitin (Chs5) and glucan synthase (Gsc1) visualised in the pathogen Zymoseptoria tritici. Chs5 and Gsc1 are transported along microtubules. Chs5 and Gsc1 do localise to the apical plasma membrane, but not the Spitzenkörper. Light and electron microscopy how co-travel of Chs5 and Gsc1 in the same secretory vesicle. Enzyme delivery in Z. tritici is different from Neurospora crassa, but similar to Ustilago maydis.
The fungal cell wall consists of proteins and polysaccharides, formed by the co-ordinated activity of enzymes, such as chitin or glucan synthases. These enzymes are delivered via secretory vesicles to the hyphal tip. In the ascomycete Neurospora crassa, chitin synthases and β(1,3)-glucan synthase are transported in different vesicles, whereas they co-travel along microtubules in the basidiomycete Ustilago maydis. This suggests fundamental differences in wall synthesis between taxa. Here, we visualize the class V chitin synthase ZtChs5 and the β(1,3)-glucan synthase ZtGcs1 in the ascomycete Zymoseptoria tritici. Live cell imaging demonstrate that both enzymes co-locate to the apical plasma membrane, but are not concentrated in the Spitzenkörper. Delivery involves co-transport along microtubules of the chitin and glucan synthase. Live cell imaging and electron microscopy suggest that both cell wall synthases locate in the same vesicle. Thus, microtubule-dependent co-delivery of cell wall synthases in the same vesicle is found in asco- and basidiomycetes.
Collapse
Affiliation(s)
- Martin Schuster
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | | | - Gero Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
15
|
Callejas-Negrete OA, Castro-Longoria E. The role of GYP-3 in cellular morphogenesis of Neurospora crassa: Analyzing its relationship with the polarisome. Fungal Genet Biol 2019; 128:49-59. [DOI: 10.1016/j.fgb.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/18/2022]
|
16
|
Verdín J, Sánchez-León E, Rico-Ramírez AM, Martínez-Núñez L, Fajardo-Somera RA, Riquelme M. Off the wall: The rhyme and reason of Neurospora crassa hyphal morphogenesis. ACTA ACUST UNITED AC 2019; 5:100020. [PMID: 32743136 PMCID: PMC7389182 DOI: 10.1016/j.tcsw.2019.100020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022]
Abstract
Chitin and β-1,3-glucan synthases are transported separately in chitosomes and macrovesicles. Chitin synthases occupy the core of the SPK; β-1,3-glucan synthases the outer layer. CHS-4 arrival to the SPK and septa is CSE-7 dependent. Rabs YPT-1 and YPT-31 localization at the SPK mimics that of chitosomes and macrovesicles. The exocyst acts as a tether between the SPK outer layer vesicles and the apical PM.
The fungal cell wall building processes are the ultimate determinants of hyphal shape. In Neurospora crassa the main cell wall components, β-1,3-glucan and chitin, are synthesized by enzymes conveyed by specialized vesicles to the hyphal tip. These vesicles follow different secretory routes, which are delicately coordinated by cargo-specific Rab GTPases until their accumulation at the Spitzenkörper. From there, the exocyst mediates the docking of secretory vesicles to the plasma membrane, where they ultimately get fused. Although significant progress has been done on the cellular mechanisms that carry cell wall synthesizing enzymes from the endoplasmic reticulum to hyphal tips, a lot of information is still missing. Here, the current knowledge on N. crassa cell wall composition and biosynthesis is presented with an emphasis on the underlying molecular and cellular secretory processes.
Collapse
Key Words
- BGT, β-1,3-glucan transferases
- CHS, chitin synthase
- CLSM, confocal laser scanning microscopy
- CWI, cell wall integrity
- CWP, cell wall proteins
- Cell wall
- ER, endoplasmic reticulum
- FRAP, fluorescence recovery after photobleaching
- GEF, guanine nucleotide exchange factor
- GFP, green fluorescent protein
- GH, glycosyl hydrolases
- GPI, glycosylphosphatidylinositol
- GSC, β-1,3-glucan synthase complex
- MMD, myosin-like motor domain
- MS, mass spectrometry
- MT, microtubule
- NEC, network of elongated cisternae
- PM, plasma membrane
- SPK, Spitzenkörper
- Spitzenkörper
- TIRFM, total internal reflection fluorescence microscopy
- TM, transmembrane
- Tip growth
- Vesicles
Collapse
Affiliation(s)
- Jorge Verdín
- Industrial Biotechnology, CIATEJ-Jalisco State Scientific Research and Technology Assistance Center, Mexico National Council for Science and Technology, Zapopan, Jalisco, Mexico
| | - Eddy Sánchez-León
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adriana M Rico-Ramírez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE Ensenada, Baja California, Mexico
| | - Leonora Martínez-Núñez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rosa A Fajardo-Somera
- Karlsruhe Institute of Technology (KIT) South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE Ensenada, Baja California, Mexico
| |
Collapse
|
17
|
Fiedler MRM, Barthel L, Kubisch C, Nai C, Meyer V. Construction of an improved Aspergillus niger platform for enhanced glucoamylase secretion. Microb Cell Fact 2018; 17:95. [PMID: 29908567 PMCID: PMC6004097 DOI: 10.1186/s12934-018-0941-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/08/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The lifestyle of filamentous fungi depends on the secretion of hydrolytic enzymes into the surrounding medium, which degrade polymeric substances into monomers that are then taken up to sustain metabolism. This feature has been exploited in biotechnology to establish platform strains with high secretory capacity including Aspergillus niger. The accepted paradigm is that proteins become mainly secreted at the tips of fungal hyphae. However, it is still a matter of debate if the amount of growing hyphal tips in filamentous fungi correlates with an increase in secretion, with previous studies showing either a positive or no correlation. RESULTS Here, we followed a systematic approach to study protein secretion in A. niger. First, we put the glaA gene encoding for glucoamylase (GlaA), the most abundant secreted protein of A. niger, under control of the tunable Tet-on system. Regulation of glaA gene expression by omitting or adding the inducer doxycycline to cultivation media allowed us to study the effect of glaA under- or overexpression in the same isolate. By inducing glaA expression in a fluorescently tagged v-SNARE reporter strain expressing GFP-SncA, we could demonstrate that the amount of post-Golgi carriers indeed depends on and correlates with glaA gene expression. By deleting the racA gene, encoding the Rho-GTPase RacA in this isolate, we generated a strain which is identical to the parental strain with respect to biomass formation but produces about 20% more hyphal tips. This hyperbranching phenotype caused a more compact macromorphology in shake flask cultivations. When ensuring continuous high-level expression of glaA by repeated addition of doxycycline, this hyperbranching strain secreted up to four times more GlaA into the culture medium compared to its parental strain. CONCLUSION The data obtained in this study strongly indicate that A. niger responds to forced transcription of secretory enzymes with increased formation of post-Golgi carriers to efficiently accommodate the incoming cargo load. This physiological adaptation can be rationally exploited to generate hypersecretion platforms based on a hyperbranching phenotype. We propose that a racA deletion background serves as an excellent chassis for such hypersecretion strains.
Collapse
Affiliation(s)
- Markus R. M. Fiedler
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Lars Barthel
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Christin Kubisch
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Corrado Nai
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Vera Meyer
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
18
|
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiol Mol Biol Rev 2018; 82:e00068-17. [PMID: 29643171 PMCID: PMC5968459 DOI: 10.1128/mmbr.00068-17] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salomon Bartnicki-García
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Ursula Fleig
- Institute for Functional Genomics of Microorganisms, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilhelm Hansberg
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Jörg Kämper
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ulrich Kück
- Ruhr University Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Bochum, Germany
| | - Rosa R Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Norio Takeshita
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
19
|
Hernández-González M, Bravo-Plaza I, Pinar M, de los Ríos V, Arst HN, Peñalva MA. Endocytic recycling via the TGN underlies the polarized hyphal mode of life. PLoS Genet 2018; 14:e1007291. [PMID: 29608571 PMCID: PMC5880334 DOI: 10.1371/journal.pgen.1007291] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
Intracellular traffic in Aspergillus nidulans hyphae must cope with the challenges that the high rates of apical extension (1μm/min) and the long intracellular distances (>100 μm) impose. Understanding the ways in which the hyphal tip cell coordinates traffic to meet these challenges is of basic importance, but is also of considerable applied interest, as fungal invasiveness of animals and plants depends critically upon maintaining these high rates of growth. Rapid apical extension requires localization of cell-wall-modifying enzymes to hyphal tips. By combining genetic blocks in different trafficking steps with multidimensional epifluorescence microscopy and quantitative image analyses we demonstrate that polarization of the essential chitin-synthase ChsB occurs by indirect endocytic recycling, involving delivery/exocytosis to apices followed by internalization by the sub-apical endocytic collar of actin patches and subsequent trafficking to TGN cisternae, where it accumulates for ~1 min before being re-delivered to the apex by a RAB11/TRAPPII-dependent pathway. Accordingly, ChsB is stranded at the TGN by Sec7 inactivation but re-polarizes to the apical dome if the block is bypassed by a mutation in geaAgea1 that restores growth in the absence of Sec7. That polarization is independent of RAB5, that ChsB predominates at apex-proximal cisternae, and that upon dynein impairment ChsB is stalled at the tips in an aggregated endosome indicate that endocytosed ChsB traffics to the TGN via sorting endosomes functionally located upstream of the RAB5 domain and that this step requires dynein-mediated basipetal transport. It also requires RAB6 and its effector GARP (Vps51/Vps52/Vps53/Vps54), whose composition we determined by MS/MS following affinity chromatography purification. Ablation of any GARP component diverts ChsB to vacuoles and impairs growth and morphology markedly, emphasizing the important physiological role played by this pathway that, we propose, is central to the hyphal mode of growth. Filamentous fungi form long tubular cells, called hyphae, which grow rapidly by apical extension, enabling these sessile organisms to explore substrates and facilitating tissue invasion in the case of pathogenic species. Because the shape of the hyphae is determined by an external cell wall, hyphal growth requires that cell-wall sculpting enzymes polarize to the tips. Endocytosis is essential for hyphal growth, and it was suspected that this results from its participation in a recycling pathway that takes up cell-wall enzymes from the plasma membrane and re-delivers them to the apex. Here we track the trafficking of a chitin synthase (a cell-wall modifying enzyme) to demonstrate that it is polarized by endocytic recycling. This chitin synthase is delivered by exocytosis to the apex, but diffuses away until being captured by a subapical collar of actin patches (sites of endocytosis) from where it reaches a sorting endosome before undergoing transport to the nearest trans-Golgi cisternae and incorporating into secretory vesicles that re-deliver the enzyme to the apex. Because impairing transit across this pathway compromises apical extension markedly and results in severe morphological defects, the pathway could be manipulated to prevent fungal pathogenicity of plants and humans, an enormous burden on human welfare.
Collapse
Affiliation(s)
- Miguel Hernández-González
- Department of Cellular and Molecular Biology and Intradepartmental WhiteBiotech Unit, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| | - Ignacio Bravo-Plaza
- Department of Cellular and Molecular Biology and Intradepartmental WhiteBiotech Unit, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| | - Mario Pinar
- Department of Cellular and Molecular Biology and Intradepartmental WhiteBiotech Unit, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| | - Vivian de los Ríos
- Proteomics Facility, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| | - Herbert N. Arst
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, United Kingdom
| | - Miguel A. Peñalva
- Department of Cellular and Molecular Biology and Intradepartmental WhiteBiotech Unit, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
- * E-mail:
| |
Collapse
|
20
|
Rico-Ramírez AM, Roberson RW, Riquelme M. Imaging the secretory compartments involved in the intracellular traffic of CHS-4, a class IV chitin synthase, in Neurospora crassa. Fungal Genet Biol 2018; 117:30-42. [PMID: 29601947 DOI: 10.1016/j.fgb.2018.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 12/16/2022]
Abstract
In Neurospora crassa hyphae the localization of all seven chitin synthases (CHSs) at the Spitzenkörper (SPK) and at developing septa has been well analyzed. Hitherto, the mechanisms of CHSs traffic and sorting from synthesis to delivery sites remain largely unexplored. In Saccharomyces cerevisiae exit of Chs3p from the endoplasmic reticulum (ER) requires chaperone Chs7p. Here, we analyzed the role of CSE-7, N. crassa Chs7p orthologue, in the biogenesis of CHS-4 (orthologue of Chs3p). In a N. crassa Δcse-7 mutant, CHS-4-GFP no longer accumulated at the SPK and septa. Instead, fluorescence was retained in hyphal subapical regions in an extensive network of elongated cisternae (NEC) referred to previously as tubular vacuoles. In a complemented strain expressing a copy of cse-7 the localization of CHS-4-GFP at the SPK and septa was restored, providing evidence that CSE-7 is necessary for the localization of CHS-4 at hyphal tips and septa. CSE-7 was revealed at delimited regions of the ER at the immediacies of nuclei, at the NEC, and remarkably also at septa and the SPK. The organization of the NEC was dependent on the cytoskeleton. SEC-63, an extensively used ER marker, and NCA-1, a SERCA-type ATPase previously localized at the nuclear envelope, were used as markers to discern the nature of the membranes containing CSE-7. Both SEC-63 and NCA-1 were found at the nuclear envelope, but also at regions of the NEC. However, at the NEC only NCA-1 co-localized extensively with CSE-7. Observations by transmission electron microscopy revealed abundant rough ER sheets and distinct electron translucent smooth flattened cisternae, which could correspond collectively to the NEC, thorough the subapical cytoplasm. This study identifies CSE-7 as the putative ER receptor for its cognate cargo, the polytopic membrane protein CHS-4, and elucidates the complexity of the ER system in filamentous fungi.
Collapse
Affiliation(s)
- Adriana M Rico-Ramírez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, BC 22860, Mexico
| | | | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, BC 22860, Mexico.
| |
Collapse
|
21
|
Patiño-Medina JA, Maldonado-Herrera G, Pérez-Arques C, Alejandre-Castañeda V, Reyes-Mares NY, Valle-Maldonado MI, Campos-García J, Ortiz-Alvarado R, Jácome-Galarza IE, Ramírez-Díaz MI, Garre V, Meza-Carmen V. Control of morphology and virulence by ADP-ribosylation factors (Arf) in Mucor circinelloides. Curr Genet 2017; 64:853-869. [DOI: 10.1007/s00294-017-0798-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022]
|
22
|
Starr TL, Gonçalves AP, Meshgin N, Glass NL. The major cellulases CBH-1 and CBH-2 of Neurospora crassa rely on distinct ER cargo adaptors for efficient ER-exit. Mol Microbiol 2017; 107:229-248. [PMID: 29131484 DOI: 10.1111/mmi.13879] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2017] [Indexed: 12/17/2022]
Abstract
Filamentous fungi are native secretors of lignocellulolytic enzymes and are used as protein-producing factories in the industrial biotechnology sector. Despite the importance of these organisms in industry, relatively little is known about the filamentous fungal secretory pathway or how it might be manipulated for improved protein production. Here, we use Neurospora crassa as a model filamentous fungus to interrogate the requirements for trafficking of cellulase enzymes from the endoplasmic reticulum to the Golgi. We characterized the localization and interaction properties of the p24 and ERV-29 cargo adaptors, as well as their role in cellulase enzyme trafficking. We find that the two most abundantly secreted cellulases, CBH-1 and CBH-2, depend on distinct ER cargo adaptors for efficient exit from the ER. CBH-1 depends on the p24 proteins, whereas CBH-2 depends on the N. crassa homolog of yeast Erv29p. This study provides a first step in characterizing distinct trafficking pathways of lignocellulolytic enzymes in filamentous fungi.
Collapse
Affiliation(s)
- Trevor L Starr
- The Energy Biosciences Institute, The University of California, Berkeley, CA 94720, USA
| | - A Pedro Gonçalves
- The Energy Biosciences Institute, The University of California, Berkeley, CA 94720, USA.,Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720, USA
| | - Neeka Meshgin
- The Energy Biosciences Institute, The University of California, Berkeley, CA 94720, USA
| | - N Louise Glass
- The Energy Biosciences Institute, The University of California, Berkeley, CA 94720, USA.,Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720, USA.,Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Steinberg G, Peñalva MA, Riquelme M, Wösten HA, Harris SD. Cell Biology of Hyphal Growth. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0034-2016. [PMID: 28429675 PMCID: PMC11687463 DOI: 10.1128/microbiolspec.funk-0034-2016] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 12/30/2022] Open
Abstract
Filamentous fungi are a large and ancient clade of microorganisms that occupy a broad range of ecological niches. The success of filamentous fungi is largely due to their elongate hypha, a chain of cells, separated from each other by septa. Hyphae grow by polarized exocytosis at the apex, which allows the fungus to overcome long distances and invade many substrates, including soils and host tissues. Hyphal tip growth is initiated by establishment of a growth site and the subsequent maintenance of the growth axis, with transport of growth supplies, including membranes and proteins, delivered by motors along the cytoskeleton to the hyphal apex. Among the enzymes delivered are cell wall synthases that are exocytosed for local synthesis of the extracellular cell wall. Exocytosis is opposed by endocytic uptake of soluble and membrane-bound material into the cell. The first intracellular compartment in the endocytic pathway is the early endosomes, which emerge to perform essential additional functions as spatial organizers of the hyphal cell. Individual compartments within septated hyphae can communicate with each other via septal pores, which allow passage of cytoplasm or organelles to help differentiation within the mycelium. This article introduces the reader to more detailed aspects of hyphal growth in fungi.
Collapse
Affiliation(s)
- Gero Steinberg
- Department of Biosciences, College of Live and Environmental Sciences, University of Exeter, EX1 1TE Exeter, United Kingdom
- Department of Biology, University of Utrecht, 3584 CH, Utrecht, The Netherlands
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Madrid, 28040, Spain
| | - Meritxell Riquelme
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada, CICESE, Ensenada, Baja California C.P. 22860, Mexico
| | - Han A Wösten
- Department of Biology, University of Utrecht, 3584 CH, Utrecht, The Netherlands
| | - Steven D Harris
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588-0660
| |
Collapse
|
24
|
Pantazopoulou A. The Golgi apparatus: insights from filamentous fungi. Mycologia 2017; 108:603-22. [DOI: 10.3852/15-309] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/01/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Areti Pantazopoulou
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| |
Collapse
|
25
|
Bartnicki-Garcia S. The evolution of fungal morphogenesis, a personal account. Mycologia 2017; 108:475-84. [DOI: 10.3852/15-272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/28/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Salomon Bartnicki-Garcia
- Departamento de Microbiología, Centro de Investigación Científica y Educación Superior de Ensenada, CICESE, Ensenada B.C. 22860 Mexico
| |
Collapse
|
26
|
Abstract
Filamentous fungi have proven to be a better-suited model system than unicellular yeasts in analyses of cellular processes such as polarized growth, exocytosis, endocytosis, and cytoskeleton-based organelle traffic. For example, the filamentous fungus
Neurospora crassa develops a variety of cellular forms. Studying the molecular basis of these forms has led to a better, yet incipient, understanding of polarized growth. Polarity factors as well as Rho GTPases, septins, and a localized delivery of vesicles are the central elements described so far that participate in the shift from isotropic to polarized growth. The growth of the cell wall by apical biosynthesis and remodeling of polysaccharide components is a key process in hyphal morphogenesis. The coordinated action of motor proteins and Rab GTPases mediates the vesicular journey along the hyphae toward the apex, where the exocyst mediates vesicle fusion with the plasma membrane. Cytoplasmic microtubules and actin microfilaments serve as tracks for the transport of vesicular carriers as well as organelles in the tubular cell, contributing to polarization. In addition to exocytosis, endocytosis is required to set and maintain the apical polarity of the cell. Here, we summarize some of the most recent breakthroughs in hyphal morphogenesis and apical growth in
N. crassa and the emerging questions that we believe should be addressed.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, 22860, Mexico
| | - Leonora Martínez-Núñez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, 22860, Mexico
| |
Collapse
|
27
|
Schultzhaus Z, Johnson TB, Shaw BD. Clathrin localization and dynamics in Aspergillus nidulans. Mol Microbiol 2016; 103:299-318. [PMID: 27741567 DOI: 10.1111/mmi.13557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Abstract
Cell growth necessitates extensive membrane remodeling events including vesicle fusion or fission, processes that are regulated by coat proteins. The hyphal cells of filamentous fungi concentrate both exocytosis and endocytosis at the apex. This investigation focuses on clathrin in Aspergillus nidulans, with the aim of understanding its role in membrane remodeling in growing hyphae. We examined clathrin heavy chain (ClaH-GFP) which localized to three distinct subcellular structures: late Golgi (trans-Golgi equivalents of filamentous fungi), which are concentrated just behind the hyphal tip but are intermittently present throughout all hyphal cells; the region of concentrated endocytosis just behind the hyphal apex (the "endocytic collar"); and small, rapidly moving puncta that were seen trafficking long distances in nearly all hyphal compartments. ClaH localized to distinct domains on late Golgi, and these clathrin "hubs" dispersed in synchrony after the late Golgi marker PHOSBP . Although clathrin was essential for growth, ClaH did not colocalize well with the endocytic patch marker fimbrin. Tests of FM4-64 internalization and repression of ClaH corroborated the observation that clathrin does not play an important role in endocytosis in A. nidulans. A minor portion of ClaH puncta exhibited bidirectional movement, likely along microtubules, but were generally distinct from early endosomes.
Collapse
Affiliation(s)
- Z Schultzhaus
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| | - T B Johnson
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| | - B D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| |
Collapse
|
28
|
Chemotropism and Cell Fusion in Neurospora crassa Relies on the Formation of Distinct Protein Complexes by HAM-5 and a Novel Protein HAM-14. Genetics 2016; 203:319-34. [PMID: 27029735 DOI: 10.1534/genetics.115.185348] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/08/2016] [Indexed: 01/10/2023] Open
Abstract
In filamentous fungi, communication is essential for the formation of an interconnected, multinucleate, syncytial network, which is constructed via hyphal fusion or fusion of germinated asexual spores (germlings). Anastomosis in filamentous fungi is comparable to other somatic cell fusion events resulting in syncytia, including myoblast fusion during muscle differentiation, macrophage fusion, and fusion of trophoblasts during placental development. In Neurospora crassa, fusion of genetically identical germlings is a highly dynamic and regulated process that requires components of a MAP kinase signal transduction pathway. The kinase pathway components (NRC-1, MEK-2 and MAK-2) and the scaffold protein HAM-5 are recruited to hyphae and germling tips undergoing chemotropic interactions. The MAK-2/HAM-5 protein complex shows dynamic oscillation to hyphae/germling tips during chemotropic interactions, and which is out-of-phase to the dynamic localization of SOFT, which is a scaffold protein for components of the cell wall integrity MAP kinase pathway. In this study, we functionally characterize HAM-5 by generating ham-5 truncation constructs and show that the N-terminal half of HAM-5 was essential for function. This region is required for MAK-2 and MEK-2 interaction and for correct cellular localization of HAM-5 to "fusion puncta." The localization of HAM-5 to puncta was not perturbed in 21 different fusion mutants, nor did these puncta colocalize with components of the secretory pathway. We also identified HAM-14 as a novel member of the HAM-5/MAK-2 pathway by mining MAK-2 phosphoproteomics data. HAM-14 was essential for germling fusion, but not for hyphal fusion. Colocalization and coimmunoprecipitation data indicate that HAM-14 interacts with MAK-2 and MEK-2 and may be involved in recruiting MAK-2 (and MEK-2) to complexes containing HAM-5.
Collapse
|
29
|
Guo M, Kilaru S, Schuster M, Latz M, Steinberg G. Fluorescent markers for the Spitzenkörper and exocytosis in Zymoseptoria tritici. Fungal Genet Biol 2016; 79:158-65. [PMID: 26092802 PMCID: PMC4502456 DOI: 10.1016/j.fgb.2015.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 11/25/2022]
Abstract
We establish Z. tritici polarity markers ZtSec4, ZtMlc1, ZtRab11, ZtExo70 and ZtSpa2. All markers localize correctly, labeling the Spitzenkörper and sites of polar exocytosis. We provide 5 carboxin-resistance conveying vectors for integration of all markers into the sdi1 locus. We provide 5 hygromycin B-resistance conveying vectors for random integration of all markers.
Fungal hyphae are highly polarized cells that invade their substrate by tip growth. In plant pathogenic fungi, hyphal growth is essential for host invasion. This makes polarity factors and secretion regulators potential new targets for novel fungicides. Polarization requires delivery of secretory vesicles to the apical Spitzenkörper, followed by polarized exocytosis at the expanding cell tip. Here, we introduce fluorescent markers to visualize the apical Spitzenkörper and the apical site of exocytosis in hyphae of the wheat pathogen Zymoseptoria tritici. We fused green fluorescent protein to the small GTPase ZtSec4, the myosin light chain ZtMlc1 and the small GTPase ZtRab11 and co-localize the fusion proteins with the dye FM4-64 in the hyphal apex, suggesting that the markers label the hyphal Spitzenkörper in Z. tritici. In addition, we localize GFP-fusions to the exocyst protein ZtExo70, the polarisome protein ZtSpa2. Consistent with results in the ascomycete Neurospora crassa, these markers did localize near the plasma membrane at the hyphal tip and only partially co-localize with FM4-64. Thus, these fluorescent markers are useful molecular tools that allow phenotypic analysis of mutants in Z. tritici. These tools will help develop new avenues of research in our quest to control STB infection in wheat.
Collapse
Affiliation(s)
- M Guo
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - S Kilaru
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Schuster
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Latz
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - G Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
30
|
Martínez-Núñez L, Riquelme M. Role of BGT-1 and BGT-2, two predicted GPI-anchored glycoside hydrolases/glycosyltransferases, in cell wall remodeling in Neurospora crassa. Fungal Genet Biol 2015; 85:58-70. [PMID: 26541633 DOI: 10.1016/j.fgb.2015.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/25/2015] [Accepted: 11/01/2015] [Indexed: 02/07/2023]
Abstract
Neurospora crassa BGT-1 (NCU06381) and BGT-2 (NCU09175) are two putative glycoside hydrolases (GHs) with additional predicted glycosyltransferase activity and binding sites for a glycosyl phosphatidyl inositol (GPI) anchor that would facilitate their attachment to the plasma membrane (PM). To discern their role in key morphogenetic events during vegetative development of N. crassa, BGT-1 and BGT-2 were labeled with the green fluorescent protein (GFP). The gfp was inserted immediately after the signal peptide sequence, within the bgt-1 encoding sequence, or directly before the GPI-binding site in the case of bgt-2. Both BGT-1-GFP and BGT-2-GFP were observed at the PM of the hyphal apical dome, excluding the foremost apical region and the Spitzenkörper (Spk), where chitin and β-1,3-glucan synthases have been previously found. These and previous studies suggest a division of labor of the cell wall synthesizing machinery at the hyphal dome: at the very tip, glucans are synthesized by enzymes that accumulate at the Spk, before getting incorporated into the PM, whereas at the subtending zone below the apex, glucans are presumably hydrolyzed, producing amenable ends for further branching and crosslinking with other cell wall polymers. Additionally, BGT-1-GFP and BGT-2-GFP were observed at the leading edge of new developing septa, at unreleased interconidial junctions, at conidial poles, at germling and hyphal fusion sites, and at sites of branch emergence, all of them processes that seemingly involve cell wall remodeling. Even though single and double mutant strains for the corresponding genes did not show a drastic reduction of growth rate, bgt-2Δ and bgt-1Δ::bgt-2Δ strains exhibited an increased resistance to the cell wall stressors calcofluor white (CW) and congo red (CR) than the reference strain, which suggests they present significant architectural changes in their cell wall. Furthermore, the conidiation defects observed in the mutants indicate a significant role of BGT-1 and BGT-2 on the re-arrangement of glucans needed at the conidiophore cell wall to allow conidial separation.
Collapse
Affiliation(s)
- Leonora Martínez-Núñez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada-CICESE, Ensenada, Baja California 22860, Mexico
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada-CICESE, Ensenada, Baja California 22860, Mexico.
| |
Collapse
|
31
|
Characterization of a Novel Prevacuolar Compartment in Neurospora crassa. EUKARYOTIC CELL 2015; 14:1253-63. [PMID: 26453652 DOI: 10.1128/ec.00128-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/03/2015] [Indexed: 12/22/2022]
Abstract
Using confocal microscopy, we observed ring-like organelles, similar in size to nuclei, in the hyphal tip of the filamentous fungus Neurospora crassa. These organelles contained a subset of vacuolar proteins. We hypothesize that they are novel prevacuolar compartments (PVCs). We examined the locations of several vacuolar enzymes and of fluorescent compounds that target the vacuole. Vacuolar membrane proteins, such as the vacuolar ATPase (VMA-1) and the polyphosphate polymerase (VTC-4), were observed in the PVCs. A pigment produced by adenine auxotrophs, used to visualize vacuoles, also accumulated in PVCs. Soluble enzymes of the vacuolar lumen, alkaline phosphatase and carboxypeptidase Y, were not observed in PVCs. The fluorescent molecule Oregon Green 488 carboxylic acid diacetate, succinimidyl ester (carboxy-DFFDA) accumulated in vacuoles and in a subset of PVCs, suggesting maturation of PVCs from the tip to distal regions. Three of the nine Rab GTPases in N. crassa, RAB-2, RAB-4, and RAB-7, localized to the PVCs. RAB-2 and RAB-4, which have similar amino acid sequences, are present in filamentous fungi but not in yeasts, and no function has previously been reported for these Rab GTPases in fungi. PVCs are highly pleomorphic, producing tubular projections that subsequently become detached. Dynein and dynactin formed globular clusters enclosed inside the lumen of PVCs. The size, structure, dynamic behavior, and protein composition of the PVCs appear to be significantly different from those of the well-studied prevacuolar compartment of yeasts.
Collapse
|
32
|
Live imaging of β-1,3-glucan synthase FKS-1 in Neurospora crassa hyphae. Fungal Genet Biol 2015; 82:104-7. [DOI: 10.1016/j.fgb.2015.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 11/16/2022]
|
33
|
Phosphatidylinositol-4-phosphate-dependent membrane traffic is critical for fungal filamentous growth. Proc Natl Acad Sci U S A 2015; 112:8644-9. [PMID: 26124136 DOI: 10.1073/pnas.1504259112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The phospholipid phosphatidylinositol-4-phosphate [PI(4)P], generated at the Golgi and plasma membrane, has been implicated in many processes, including membrane traffic, yet its role in cell morphology changes, such as the budding to filamentous growth transition, is unknown. We show that Golgi PI(4)P is required for such a transition in the human pathogenic fungus Candida albicans. Quantitative analyses of membrane traffic revealed that PI(4)P is required for late Golgi and secretory vesicle dynamics and targeting and, as a result, is important for the distribution of a multidrug transporter and hence sensitivity to antifungal drugs. We also observed that plasma membrane PI(4)P, which we show is functionally distinct from Golgi PI(4)P, forms a steep gradient concomitant with filamentous growth, despite uniform plasma membrane PI-4-kinase distribution. Mathematical modeling indicates that local PI(4)P generation and hydrolysis by phosphatases are crucial for this gradient. We conclude that PI(4)P-regulated membrane dynamics are critical for morphology changes.
Collapse
|
34
|
Peñalva MA. A lipid-managing program maintains a stout Spitzenkörper. Mol Microbiol 2015; 97:1-6. [PMID: 25921726 DOI: 10.1111/mmi.13044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2015] [Indexed: 01/09/2023]
Abstract
The Spitzenkörper (SPK) is an accumulation of vesicles interleaved with actin microfilaments present at the cytosolic side of the apical plasma membrane (PM) of hyphal tips of many species of filamentous fungi. The physiological role of the SPK has captivated fungal biologists over the years, but only very recently this 'organelle' is starting to be understood in the molecular terminology used for cell biological models. One aspect that has received little attention is the role of cellular membrane asymmetry in the organization of membrane traffic, in particular in the genetic and cell biological model Aspergillus nidulans. The paper by Schultzhaus et al. (2015) in this issue breaks the ice, providing original insight that may foster research in phospholipid composition in the context of intracellular traffic and the organization of the SPK. Notably, it shows that like the stout Neurospora crassa SPK, the much slimmer one of A. nidulans, appears to be formed by different strata, altogether suggesting that the SPK might be a mosaic of exocytic carriers with different functional specializations, and a major sorting hub for intracellular membranes.
Collapse
Affiliation(s)
- Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
35
|
Schultzhaus Z, Yan H, Shaw BD. Aspergillus nidulansflippase DnfA is cargo of the endocytic collar and plays complementary roles in growth and phosphatidylserine asymmetry with another flippase, DnfB. Mol Microbiol 2015; 97:18-32. [DOI: 10.1111/mmi.13019] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Zachary Schultzhaus
- Department of Plant Pathology and Microbiology; Texas A&M University; College Station TX USA
| | - Huijuan Yan
- Department of Plant Protection; Fujian Agricultural and Forestry University; Fuzhou Fujian China
| | - Brian D. Shaw
- Department of Plant Pathology and Microbiology; Texas A&M University; College Station TX USA
| |
Collapse
|
36
|
Functional Analysis of Developmentally Regulated Genes chs7 and sec22 in the Ascomycete Sordaria macrospora. G3-GENES GENOMES GENETICS 2015; 5:1233-45. [PMID: 25873638 PMCID: PMC4478551 DOI: 10.1534/g3.115.017681] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During sexual development, filamentous ascomycetes form complex, three-dimensional fruiting bodies for the generation and dispersal of spores. In previous studies, we identified genes with evolutionary conserved expression patterns during fruiting body formation in several fungal species. Here, we present the functional analysis of two developmentally up-regulated genes, chs7 and sec22, in the ascomycete Sordaria macrospora. The genes encode a class VII (division III) chitin synthase and a soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) protein, respectively. Deletion mutants of chs7 had normal vegetative growth and were fully fertile but showed sensitivity toward cell wall stress. Deletion of sec22 resulted in a reduced number of ascospores and in defects in ascospore pigmentation and germination, whereas vegetative growth was normal in the mutant. A SEC22-EGFP fusion construct under control of the native sec22 promoter and terminator regions was expressed during different stages of sexual development. Expression of several development-related genes was deregulated in the sec22 mutant, including three genes involved in melanin biosynthesis. Our data indicate that chs7 is dispensable for fruiting body formation in S. macrospora, whereas sec22 is required for ascospore maturation and germination and thus involved in late stages of sexual development.
Collapse
|
37
|
Fajardo-Somera RA, Jöhnk B, Bayram Ö, Valerius O, Braus GH, Riquelme M. Dissecting the function of the different chitin synthases in vegetative growth and sexual development in Neurospora crassa. Fungal Genet Biol 2015; 75:30-45. [DOI: 10.1016/j.fgb.2015.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/17/2014] [Accepted: 01/07/2015] [Indexed: 01/22/2023]
|