1
|
Fong SA, Bouras G, Houtak G, Nepal R, Feizi S, Morales S, Psaltis AJ, Wormald PJ, Vreugde S. Genomic variation in Pseudomonas aeruginosa clinical respiratory isolates with de novo resistance to a bacteriophage cocktail. Microbiol Spectr 2025; 13:e0214924. [PMID: 40162801 PMCID: PMC12054119 DOI: 10.1128/spectrum.02149-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/20/2025] [Indexed: 04/02/2025] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause sinus infections and pneumonia in cystic fibrosis (CF) patients. Bacteriophage therapy is being investigated as a treatment for antibiotic-resistant P. aeruginosa infections. Although virulent bacteriophages have shown promise in treating P. aeruginosa infections, the development of bacteriophage-insensitive mutants (BIMs) in the presence of bacteriophages has been described. The aim of this study was to examine the genetic changes associated with the BIM phenotype. Biofilms of three genetically distinct P. aeruginosa strains, including PAO1 (ATCC 15692), and two clinical respiratory isolates (one CF and one non-CF) were grown for 7 days and treated with either a cocktail of four bacteriophages or a vehicle control for 7 consecutive days. BIMs isolated from the biofilms were detected by streak assays, and resistance to the phage cocktail was confirmed using spot test assays. Comparison of whole genome sequencing between the recovered BIMs and their respective vehicle control-treated phage-sensitive isolates revealed structural variants in two strains, and several small variants in all three strains. These variations involved a TonB-dependent outer membrane receptor in one strain, and mutations in lipopolysaccharide synthesis genes in two strains. Prophage deletion and induction were also noted in two strains, as well as mutations in several genes associated with virulence factors. Mutations in genes involved in susceptibility to conventional antibiotics were also identified in BIMs, with both decreased and increased antibiotic sensitivity to various antibiotics being observed. These findings may have implications for future applications of lytic phage therapy.IMPORTANCELytic bacteriophages are viruses that infect and kill bacteria and can be used to treat difficult-to-treat bacterial infections, including biofilm-associated infections and multidrug-resistant bacteria. Pseudomonas aeruginosa is a bacterium that can cause life-threatening infections. Lytic bacteriophage therapy has been trialed in the treatment of P. aeruginosa infections; however, sometimes bacteria develop resistance to the bacteriophages. This study sheds light on the genetic mechanisms of such resistance, and how this might be harnessed to restore the sensitivity of multidrug-resistant P. aeruginosa to conventional antibiotics.
Collapse
Affiliation(s)
- Stephanie A. Fong
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - George Bouras
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Ghais Houtak
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Roshan Nepal
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Sholeh Feizi
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Sandra Morales
- AmpliPhi Australia, Brookvale, New South Wales, Australia
| | - Alkis J. Psaltis
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Peter-John Wormald
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Sarah Vreugde
- Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| |
Collapse
|
2
|
Park S, Jeon WJ, Lee Y, Lim CL, Lee E, Oh HB, Lee GS, Kwon OH, Ryu B, Cho YJ, Kim CS, Yoon SI, Chung JM, Cho H. A periplasmic protein modulates the proteolysis of peptidoglycan hydrolases to maintain cell wall homeostasis in Escherichia coli. Proc Natl Acad Sci U S A 2025; 122:e2418854122. [PMID: 39841140 PMCID: PMC11789061 DOI: 10.1073/pnas.2418854122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/06/2024] [Indexed: 01/30/2025] Open
Abstract
Bacterial cell wall assembly and remodeling require activities of peptidoglycan (PG) hydrolases as well as PG synthases. In particular, the activity of DD-endopeptidases, which cleave the 4-3 peptide crosslinks in PG, is essential for PG expansion in gram-negative bacteria. Maintaining optimal levels of DD-endopeptidases is critical for expanding PG without compromising its integrity. In Escherichia coli, the levels of major DD-endopeptidases, MepS and MepH, along with the lytic transglycosylase MltD, are controlled by the periplasmic protease Prc and its outer membrane adaptor NlpI. However, the mechanisms regulating the turnover of these PG hydrolases have remained unclear. In this study, we identified a periplasmic protein, BipP (formerly YhjJ), that negatively controls the NlpI-Prc system. Further analyses indicate that BipP exerts this control by interacting with NlpI and inhibiting its substrate recognition in response to low DD-endopeptidase activity, providing insight into the homeostatic control of PG hydrolysis and cell wall expansion.
Collapse
Affiliation(s)
- Sohee Park
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Wook-Jong Jeon
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Yeseul Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon14662, Republic of Korea
| | - Chae Lim Lim
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Eunyeong Lee
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Han Byeol Oh
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon24341, Republic of Korea
| | - Gyu Sung Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Oh Hyun Kwon
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Bumhan Ryu
- Research Solution Center, Institute for Basic Science, Daejeon34126, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, Kangwon National University, Chuncheon24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon24341, Republic of Korea
| | - Chung Sub Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Sung-il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon24341, Republic of Korea
| | - Jeong Min Chung
- Department of Biotechnology, The Catholic University of Korea, Bucheon14662, Republic of Korea
| | - Hongbaek Cho
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| |
Collapse
|
3
|
Michetti E, Mandava TA, Secli V, Pacello F, Battistoni A, Ammendola S. Modelling host-pathogen interactions: Galleria mellonella as a platform to study Pseudomonas aeruginosa response to host-imposed zinc starvation. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001524. [PMID: 39841126 PMCID: PMC11753293 DOI: 10.1099/mic.0.001524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
Nutritional immunity, a key component of the vertebrate innate immune response, involves the modulation of zinc availability to limit the growth of pathogens. Pseudomonas aeruginosa counteracts host-imposed zinc starvation through metabolic adaptations, including reprogramming of gene expression and activating efficient metal uptake systems. To unravel how zinc shortage contributes to the complexity of bacterial adaptation to the host environment, it is critical to use model systems that mimic fundamental features of P. aeruginosa-related diseases in humans. Among available animal models, Galleria mellonella has recently emerged as a promising alternative to mammalian hosts. This study aims to evaluate whether G. mellonella can recapitulate the zinc-related nutritional immunity responses observed in mammalian infections. Our results show that, upon P. aeruginosa infection, the larvae upregulate several zinc transporters, suggesting an active redistribution of the metal in response to the pathogen. Additionally, P. aeruginosa colonizing the larvae induces Zn uptake regulator-controlled genes, consistent with bacterial adaptation to zinc starvation. Disruption of bacterial zinc uptake capability significantly reduces P. aeruginosa virulence, underscoring the importance of zinc acquisition in pathogenesis also within this model host. As a proof of concept, we also demonstrate that this in vivo model can serve as a viable preliminary screening tool to unveil novel players involved in P. aeruginosa response to zinc starvation, offering valuable insights into the host-pathogen battle for micronutrients.
Collapse
Affiliation(s)
- Emma Michetti
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | | | - Valerio Secli
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | | | | | - Serena Ammendola
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| |
Collapse
|
4
|
Farr AD, Vasileiou C, Lind PA, Rainey PB. An extreme mutational hotspot in nlpD depends on transcriptional induction of rpoS. PLoS Genet 2025; 21:e1011572. [PMID: 39888938 PMCID: PMC11838912 DOI: 10.1371/journal.pgen.1011572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/19/2025] [Accepted: 01/13/2025] [Indexed: 02/02/2025] Open
Abstract
Mutation rate varies within and between genomes. Within genomes, tracts of nucleotides, including short sequence repeats and palindromes, can cause localised elevation of mutation rate. Additional mechanisms remain poorly understood. Here we report an instance of extreme mutational bias in Pseudomonas fluorescens SBW25 associated with a single base-pair change in nlpD. These mutants frequently evolve in static microcosms, and have a cell-chaining (CC) phenotype. Analysis of 153 replicate populations revealed 137 independent instances of a C565T loss-of-function mutation at codon 189 (CAG to TAG (Q189*)). Fitness measures of alternative nlpD mutants did not explain the deterministic evolution of C565T mutants. Recognising that transcription can be mutagenic, and that codon 189 overlaps with a predicted promoter (rpoSp) for the adjacent stationary phase sigma factor, rpoS, transcription across this promoter region was measured. This confirmed rpoSp is induced in stationary phase and that C565T mutation caused significant elevation of transcription. The latter provided opportunity to determine the C565T mutation rate using a reporter-gene fused to rpoSp. Fluctuation assays estimate the C565T mutation rate to be ~5,000-fold higher than expected. In Pseudomonas, transcription of rpoS requires the positive activator PsrA, which we show also holds for SBW25. Fluctuation assays performed in a ∆psrA background showed a ~60-fold reduction in mutation rate confirming that the elevated rate of mutation at C565T mutation rate is dependent on induction of transcription. This hotspot suggests a generalisable phenomenon where the induction of transcription causes elevated mutation rates within defining regions of promoters.
Collapse
Affiliation(s)
- Andrew D. Farr
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
| | - Christina Vasileiou
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Peter A. Lind
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Paul B. Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
- Laboratoire Biophysique et Évolution, CBI, ESPCI Paris, Université PSL, CNRS, Paris, France
| |
Collapse
|
5
|
Ciemniecki JA, Ho CL, Horak RD, Okamoto A, Newman DK. Mechanistic study of a low-power bacterial maintenance state using high-throughput electrochemistry. Cell 2024; 187:6882-6895.e8. [PMID: 39447571 PMCID: PMC11606744 DOI: 10.1016/j.cell.2024.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/03/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Mechanistic studies of life's lower metabolic limits have been limited due to a paucity of tractable experimental systems. Here, we show that redox-cycling of phenazine-1-carboxamide (PCN) by Pseudomonas aeruginosa supports cellular maintenance in the absence of growth with a low mass-specific metabolic rate of 8.7 × 10-4 W (g C)-1 at 25°C. Leveraging a high-throughput electrochemical culturing device, we find that non-growing cells cycling PCN tolerate conventional antibiotics but are susceptible to those that target membrane components. Under these conditions, cells conserve energy via a noncanonical, facilitated fermentation that is dependent on acetate kinase and NADH dehydrogenases. Across PCN concentrations that limit cell survival, the cell-specific metabolic rate is constant, indicating the cells are operating near their bioenergetic limit. This quantitative platform opens the door to further mechanistic investigations of maintenance, a physiological state that underpins microbial survival in nature and disease.
Collapse
Affiliation(s)
- John A Ciemniecki
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chia-Lun Ho
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; School of Chemical Sciences and Engineering, Hokkaido University, 13 Kita, 8 Nishi, Kita-ku, Sapporo 060-8628, Hokkaido, Japan
| | - Richard D Horak
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Akihiro Okamoto
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan; School of Chemical Sciences and Engineering, Hokkaido University, 13 Kita, 8 Nishi, Kita-ku, Sapporo 060-8628, Hokkaido, Japan; Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, Yokohama 226-8501, Kanagawa, Japan.
| | - Dianne K Newman
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
6
|
Simpson BW, McLean AB, Trent MS. A conserved hub protein for coordinating peptidoglycan turnover that activates cell division amidases in Acinetobacter baumannii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612460. [PMID: 39314424 PMCID: PMC11419085 DOI: 10.1101/2024.09.11.612460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Gram-negative bacteria produce a multilayered cell envelope in which their peptidoglycan is sandwiched between two membranes, an inner membrane made of glycerophospholipids and an asymmetric outer membrane with glycerophospholipids in the inner leaflet and lipopolysaccharide (LPS) in the outer leaflet. The Acinetobacter baumannii outer membrane contains lipooligosaccharide (LOS), a variant of LPS lacking O-antigen. LPS/LOS is typically essential, but A. baumannii can survive without LOS. Previously, we found that the peptidoglycan biogenesis protein NlpD becomes essential during LOS-deficiency. NlpD is typically redundant and is one of the cell's amidase activators for regulating peptidoglycan degradation, a process critical for cell division. We found that NlpD is essential under these conditions because a second putative amidase activator, termed WthA (cell w all turnover h ub protein A ), no longer functions in LOS-deficient cells. Mutants lacking WthA had severe cell division defects and were synthetically sick with loss of NlpD. Both Acinetobacter WthA and NlpD were found to activate an amidase activity of Oxa51, a chromosomally encoded β -lactamase. Further, WthA is homologous to Pseudomonas LbcA that impacts two other classes of peptidoglycan degradation enzymes, endopeptidases and lytic transglycosylases. WthA/LbcA homologs were identified across Proteobacteria, Bacteroidota, and Chlorobiota, suggesting they belong to a conserved family involved in regulation of peptidoglycan turnover. While Acinetobacter WthA may share functions of Pseudomonas LbcA, we found no evidence that LbcA is an amidase activator. Altogether, we have identified a missing player in Acinetobacter peptidoglycan biogenesis, a conserved hub protein that regulates multiple peptidoglycan turnover enzymes including cell division amidases. Significance Statement Peptidoglycan is a rigid layer that provides structural support to bacterial cells. Peptidoglycan must be degraded to make room for new synthesis and for cells to divide, a process termed turnover. Turnover enzymes are tightly regulated to prevent their activities from lysing the cell. The critical pathogen Acinetobacter baumannii was missing known peptidoglycan amidases, a class of turnover enzymes, and the key activator that controls their activity during cell division. We have identified WthA as having a role in cell division most likely as an amidase activator. WthA homologs were widely distributed in bacteria and the closely related LbcA in Pseudomonas impacts two other types of turnover enzymes. We explore the possible functions of this new family of proteins that serves as a hub for impacting peptidoglycan turnover.
Collapse
|
7
|
George M, Narayanan S, Tejada-Arranz A, Plack A, Basler M. Initiation of H1-T6SS dueling between Pseudomonas aeruginosa. mBio 2024; 15:e0035524. [PMID: 38990002 PMCID: PMC11323562 DOI: 10.1128/mbio.00355-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
The Type VI secretion system (T6SS) is a multicomponent apparatus, present in many Gram-negative bacteria, which can inhibit bacterial prey in various ecological niches. Pseudomonas aeruginosa assembles one of its three T6SS (H1-T6SS) to respond to attacks from adjacent competing bacteria. Surprisingly, repeated assemblies of the H1-T6SS, termed dueling, were described in a monoculture in the absence of an attacker strain; however, the underlying mechanism was unknown. Here, we explored the role of H2-T6SS of P. aeruginosa in triggering H1-T6SS assembly. We show that H2-T6SS inactivation in P. aeruginosa causes a significant reduction in H1-T6SS dueling and that H2-T6SS activity directly triggers retaliation by the H1-T6SS. Intraspecific competition experiments revealed that elimination of H2-T6SS in non-immune prey cells conferred protection from H1-T6SS. Moreover, we show that the H1-T6SS response is triggered independently of the characterized lipase effectors of the H2-T6SS, as well as those of Acinetobacter baylyi and Vibrio cholerae. Our results suggest that H1-T6SS response to H2-T6SS in P. aeruginosa can impact intraspecific competition, particularly when the H1-T6SS effector-immunity pairs differ between strains, and could determine the outcome of multistrain colonization.IMPORTANCEThe opportunistic pathogen Pseudomonas aeruginosa harbors three different Type VI secretion systems (H1, H2, and H3-T6SS), which can translocate toxins that can inhibit bacterial competitors or inflict damage to eukaryotic host cells. Unlike the unregulated T6SS assembly in other Gram-negative bacteria, the H1-T6SS in P. aeruginosa is precisely assembled as a response to various cell damaging attacks from neighboring bacterial cells. Surprisingly, it was observed that neighboring P. aeruginosa cells repeatedly assemble their H1-T6SS toward each other. Mechanisms triggering this "dueling" behavior between sister cells were unknown. In this report, we used a combination of microscopy, genetic and intraspecific competition experiments to show that H2-T6SS initiates H1-T6SS dueling. Our study highlights the interplay between different T6SS clusters in P. aeruginosa, which may influence the outcomes of multistrain competition in various ecological settings such as biofilm formation and colonization of cystic fibrosis lungs.
Collapse
Affiliation(s)
- M. George
- Biozentrum, University of Basel, Basel, Switzerland
| | - S. Narayanan
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - A. Plack
- Biozentrum, University of Basel, Basel, Switzerland
| | - M. Basler
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Meng Q, Xu Y, Dai L, Ge X, Qiao P. Regulation of fadR on the ROS defense mechanism in Shewanalla oneidensis. Biotechnol Lett 2024; 46:691-698. [PMID: 38705963 DOI: 10.1007/s10529-024-03487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 05/07/2024]
Abstract
Protein FadR is known as a fatty acid metabolism global regulator that sustains cell envelope integrity by changing the profile of fatty acid. Here, we present its unique participation in the defense against reactive oxygen species (ROS) in the bacterium. FadR contributes to defending extracellular ROS by maintaining the permeability of the cell membrane. It also facilitates the ROS detoxification process by increasing the expression of ROS neutralizers (KatB, KatG, and AhpCF). FadR also represses the leakage of ROS by alleviating the respiratory action conducted by terminal cytochrome cbb3-type heme-copper oxidases (ccoNOQP). These findings suggest that FadR plays a comprehensive role in modulating the bacterial oxidative stress response, instead of merely strengthening the cellular barrier against the environment. This study sheds light on the complex mechanisms of bacterial ROS defense and offers FadR as a novel target for ROS control research.
Collapse
Affiliation(s)
- Qiu Meng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yinming Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liming Dai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuzhe Ge
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Pei Qiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
9
|
Son JE, Park SH, Choi U, Lee CR. Lytic transglycosylase repertoire diversity enables intrinsic antibiotic resistance and daughter cell separation in Escherichia coli under acidic stress. Antimicrob Agents Chemother 2024; 68:e0037224. [PMID: 38884456 PMCID: PMC11232391 DOI: 10.1128/aac.00372-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Peptidoglycan (PG) is an important architectural element that imparts physical toughness and rigidity to the bacterial envelope. It is also a dynamic structure that undergoes continuous turnover or autolysis. Escherichia coli possesses redundant PG degradation enzymes responsible for PG turnover; however, the advantage afforded by the existence of numerous PG degradation enzymes remains incompletely understood. In this study, we elucidated the physiological roles of MltE and MltC, members of the lytic transglycosylase (LTG) family that catalyze the cleavage of glycosidic bonds between disaccharide subunits within PG strands. MltE and MltC are acidic LTGs that exhibit increased enzymatic activity and protein levels under acidic pH conditions, respectively, and deletion of these two LTGs results in a pronounced growth defect at acidic pH. Furthermore, inactivation of these two LTGs induces increased susceptibility at acidic pH against various antibiotics, particularly vancomycin, which seems to be partially caused by elevated membrane permeability. Intriguingly, inactivation of these LTGs induces a chaining morphology, indicative of daughter cell separation defects, only under acidic pH conditions. Simultaneous deletion of PG amidases, known contributors to daughter cell separation, exacerbates the chaining phenotype at acidic pH. This suggests that the two LTGs may participate in the cleavage of glycan strands between daughter cells under acidic pH conditions. Collectively, our findings highlight the role of LTG repertoire diversity in facilitating bacterial survival and antibiotic resistance under stressful conditions.
Collapse
Affiliation(s)
- Ji Eun Son
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| | - Si Hyoung Park
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| | - Umji Choi
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| | - Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea
| |
Collapse
|
10
|
Wei K, Ding JL, Feng MG, Ying SH. Comparative Transcriptomics of the Entomopathogenic Fungus Beauveria bassiana Grown on Aerial Surface and in Liquid Environment. Curr Microbiol 2024; 81:249. [PMID: 38951199 DOI: 10.1007/s00284-024-03783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024]
Abstract
Beauveria bassiana, the causative agent of arthropod, proliferates in the host hemolymph (liquid environment) and shits to saprotrophic growth on the host cadaver (aerial surface). In this study, we used transcriptomic analysis to compare the gene expression modes between these two growth phases. Of 10,366 total predicted genes in B. bassiana, 10,026 and 9985 genes were expressed in aerial (AM) and submerged (SM) mycelia, respectively, with 9853 genes overlapped. Comparative analysis between two transcriptomes indicated that there were 1041 up-regulated genes in AM library when compared with SM library, and 1995 genes were down-regulated, in particular, there were 7085 genes without significant change in expression between two transcriptomes. Furthermore, of 25 amidase genes (AMD), BbAMD5 has high expression level in both transcriptomes, and its protein product was associated with cell wall in aerial and submerged mycelia. Disruption of BbAMD5 significantly reduced mycelial hydrophobicity, hydrophobin translocation, and conidiation on aerial plate. Functional analysis also indicated that BbAmd5 was involved in B. bassiana blastospore formation in broth, but dispensable for fungal virulence. This study revealed the high similarity in global expression mode between mycelia grown under two cultivation conditions.
Collapse
Affiliation(s)
- Kang Wei
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Breen SKJ, Harper M, López-Causapé C, Rogers KE, Tait JR, Smallman TR, Lang Y, Lee WL, Zhou J, Zhang Y, Bulitta JB, Nation RL, Oliver A, Boyce JD, Landersdorfer CB. Synergistic effects of inhaled aztreonam plus tobramycin on hypermutable cystic fibrosis Pseudomonas aeruginosa isolates in a dynamic biofilm model evaluated by mechanism-based modelling and whole genome sequencing. Int J Antimicrob Agents 2024; 63:107161. [PMID: 38561094 DOI: 10.1016/j.ijantimicag.2024.107161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Hypermutable Pseudomonas aeruginosa strains are highly prevalent in chronic lung infections of patients with cystic fibrosis (CF). Acute exacerbations of these infections have limited treatment options. This study aimed to investigate inhaled aztreonam and tobramycin against clinical hypermutable P. aeruginosa strains using the CDC dynamic in vitro biofilm reactor (CBR), mechanism-based mathematical modelling (MBM) and genomic studies. METHODS Two CF multidrug-resistant strains were investigated in a 168 h CBR (n = 2 biological replicates). Regimens were inhaled aztreonam (75 mg 8-hourly) and tobramycin (300 mg 12-hourly) in monotherapies and combination. The simulated pharmacokinetic profiles of aztreonam and tobramycin (t1/2 = 3 h) were based on published lung fluid concentrations in patients with CF. Total viable and resistant counts were determined for planktonic and biofilm bacteria. MBM of total and resistant bacterial counts and whole genome sequencing were completed. RESULTS Both isolates showed reproducible bacterial regrowth and resistance amplification for the monotherapies by 168 h. The combination performed synergistically, with minimal resistant subpopulations compared to the respective monotherapies at 168 h. Mechanistic synergy appropriately described the antibacterial effects of the combination regimen in the MBM. Genomic analysis of colonies recovered from monotherapy regimens indicated noncanonical resistance mechanisms were likely responsible for treatment failure. CONCLUSION The combination of aztreonam and tobramycin was required to suppress the regrowth and resistance of planktonic and biofilm bacteria in all biological replicates of both hypermutable multidrug-resistant P. aeruginosa CF isolates. The developed MBM could be utilised for future investigations of this promising inhaled combination.
Collapse
Affiliation(s)
- Siobhonne K J Breen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Marina Harper
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Carla López-Causapé
- Servicio de Microbiología, Hospital Universitario Son Espases-IdISBa, Palma de Mallorca, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Kate E Rogers
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jessica R Tait
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Thomas R Smallman
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yinzhi Lang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Wee L Lee
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jieqiang Zhou
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yongzhen Zhang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Jurgen B Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases-IdISBa, Palma de Mallorca, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - John D Boyce
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
12
|
Rajguru V, Chatterjee S, Garde S, Reddy M. Crosslink cleaving enzymes: the smart autolysins that remodel the bacterial cell wall. Trends Microbiol 2024; 32:494-506. [PMID: 38072724 DOI: 10.1016/j.tim.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 05/12/2024]
Abstract
Peptidoglycan (PG) is a protective mesh-like polymer in bacterial cell walls that enables their survival in almost every ecological niche. PG is formed by crosslinking of several glycan strands through short peptides, conferring a characteristic structure and elasticity, distinguishing it from other polymeric exoskeletons. The significance of PG crosslink formation has been known for decades, as some of the most widely used antibiotics, namely β-lactams, target the enzymes that catalyze this step. However, the importance of crosslink hydrolysis in PG biology remained largely underappreciated. Recent advances demonstrate the functions of crosslink cleavage in diverse physiological processes, including an indispensable role in PG expansion during the cell cycle, thereby making crosslink cleaving enzymes an untapped target for novel drugs. Here, we elaborate on the fundamental roles of crosslink-specific endopeptidases and their regulation across the bacterial kingdom.
Collapse
Affiliation(s)
- Vaidehi Rajguru
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Stuti Chatterjee
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shambhavi Garde
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Manjula Reddy
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Pena MM, Martins TZ, Teper D, Zamuner C, Alves HA, Ferreira H, Wang N, Ferro MIT, Ferro JA. EnvC Homolog Encoded by Xanthomonas citri subsp. citri Is Necessary for Cell Division and Virulence. Microorganisms 2024; 12:691. [PMID: 38674634 PMCID: PMC11051873 DOI: 10.3390/microorganisms12040691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Peptidoglycan hydrolases are enzymes responsible for breaking the peptidoglycan present in the bacterial cell wall, facilitating cell growth, cell division and peptidoglycan turnover. Xanthomonas citri subsp. citri (X. citri), the causal agent of citrus canker, encodes an Escherichia coli M23 peptidase EnvC homolog. EnvC is a LytM factor essential for cleaving the septal peptidoglycan, thereby facilitating the separation of daughter cells. In this study, the investigation focused on EnvC contribution to the virulence and cell separation of X. citri. It was observed that disruption of the X. citri envC gene (ΔenvC) led to a reduction in virulence. Upon inoculation into leaves of Rangpur lime (Citrus limonia Osbeck), the X. citri ΔenvC exhibited a delayed onset of citrus canker symptoms compared with the wild-type X. citri. Mutant complementation restored the wild-type phenotype. Sub-cellular localization confirmed that X. citri EnvC is a periplasmic protein. Moreover, the X. citri ΔenvC mutant exhibited elongated cells, indicating a defect in cell division. These findings support the role of EnvC in the regulation of cell wall organization, cell division, and they clarify the role of this peptidase in X. citri virulence.
Collapse
Affiliation(s)
- Michelle M. Pena
- Agricultural and Livestock Microbiology Graduation Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (M.M.P.); (T.Z.M.)
| | - Thaisa Z. Martins
- Agricultural and Livestock Microbiology Graduation Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (M.M.P.); (T.Z.M.)
| | - Doron Teper
- Department of Plant Pathology and Weed Research, Institute of Plant Protection Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel;
| | - Caio Zamuner
- Biochemistry Building, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (C.Z.); (H.F.)
| | - Helen A. Alves
- Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (H.A.A.); (M.I.T.F.)
| | - Henrique Ferreira
- Biochemistry Building, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (C.Z.); (H.F.)
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA;
| | - Maria Inês T. Ferro
- Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (H.A.A.); (M.I.T.F.)
| | - Jesus A. Ferro
- Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (H.A.A.); (M.I.T.F.)
| |
Collapse
|
14
|
Santiago-Collazo G, Brown PJB, Randich AM. The divergent early divisome: is there a functional core? Trends Microbiol 2024; 32:231-240. [PMID: 37741788 DOI: 10.1016/j.tim.2023.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/25/2023]
Abstract
The bacterial divisome is a complex nanomachine that drives cell division and separation. The essentiality of these processes leads to the assumption that proteins with core roles will be strictly conserved across all bacterial genomes. However, recent studies in diverse proteobacteria have revealed considerable variation in the early divisome compared with Escherichia coli. While some proteins are highly conserved, their specific functions and interacting partners vary. Meanwhile, different subphyla use clade-specific proteins with analogous functions. Thus, instead of focusing on gene conservation, we must also explore how key functions are maintained during early division by diverging protein networks. An enhanced awareness of these complex genetic networks will clarify the physical and evolutionary constraints of bacterial division.
Collapse
Affiliation(s)
- Gustavo Santiago-Collazo
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Pamela J B Brown
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | - Amelia M Randich
- Department of Biology, College of Arts and Sciences, University of Scranton, Scranton, PA, USA.
| |
Collapse
|
15
|
Izquierdo-Martinez A, Billini M, Miguel-Ruano V, Hernández-Tamayo R, Richter P, Biboy J, Batuecas MT, Glatter T, Vollmer W, Graumann PL, Hermoso JA, Thanbichler M. DipM controls multiple autolysins and mediates a regulatory feedback loop promoting cell constriction in Caulobacter crescentus. Nat Commun 2023; 14:4095. [PMID: 37433794 DOI: 10.1038/s41467-023-39783-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Proteins with a catalytically inactive LytM-type endopeptidase domain are important regulators of cell wall-degrading enzymes in bacteria. Here, we study their representative DipM, a factor promoting cell division in Caulobacter crescentus. We show that the LytM domain of DipM interacts with multiple autolysins, including the soluble lytic transglycosylases SdpA and SdpB, the amidase AmiC and the putative carboxypeptidase CrbA, and stimulates the activities of SdpA and AmiC. Its crystal structure reveals a conserved groove, which is predicted to represent the docking site for autolysins by modeling studies. Mutations in this groove indeed abolish the function of DipM in vivo and its interaction with AmiC and SdpA in vitro. Notably, DipM and its targets SdpA and SdpB stimulate each other's recruitment to midcell, establishing a self-reinforcing cycle that gradually increases autolytic activity as cytokinesis progresses. DipM thus coordinates different peptidoglycan-remodeling pathways to ensure proper cell constriction and daughter cell separation.
Collapse
Affiliation(s)
- Adrian Izquierdo-Martinez
- Department of Biology, University of Marburg, Marburg, Germany
- Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Maria Billini
- Department of Biology, University of Marburg, Marburg, Germany
| | - Vega Miguel-Ruano
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Rogelio Hernández-Tamayo
- Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Pia Richter
- Department of Biology, University of Marburg, Marburg, Germany
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - María T Batuecas
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Peter L Graumann
- Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, Germany.
- Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| |
Collapse
|
16
|
Brogan AP, Rudner DZ. Regulation of peptidoglycan hydrolases: localization, abundance, and activity. Curr Opin Microbiol 2023; 72:102279. [PMID: 36812681 PMCID: PMC10031507 DOI: 10.1016/j.mib.2023.102279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/22/2023]
Abstract
Most bacteria are surrounded by a cell wall composed of peptidoglycan (PG) that specifies shape and protects the cell from osmotic rupture. Growth, division, and morphogenesis are intimately linked to the synthesis of this exoskeleton but also its hydrolysis. The enzymes that cleave the PG meshwork require careful control to prevent aberrant hydrolysis and loss of envelope integrity. Bacteria employ diverse mechanisms to control the activity, localization, and abundance of these potentially autolytic enzymes. Here, we discuss four examples of how cells integrate these control mechanisms to finely tune cell wall hydrolysis. We highlight recent advances and exciting avenues for future investigation.
Collapse
Affiliation(s)
- Anna P Brogan
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Salvà-Serra F, Jaén-Luchoro D, Marathe NP, Adlerberth I, Moore ERB, Karlsson R. Responses of carbapenemase-producing and non-producing carbapenem-resistant Pseudomonas aeruginosa strains to meropenem revealed by quantitative tandem mass spectrometry proteomics. Front Microbiol 2023; 13:1089140. [PMID: 36845973 PMCID: PMC9948630 DOI: 10.3389/fmicb.2022.1089140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen with increasing incidence of multidrug-resistant strains, including resistance to last-resort antibiotics, such as carbapenems. Resistances are often due to complex interplays of natural and acquired resistance mechanisms that are enhanced by its large regulatory network. This study describes the proteomic responses of two carbapenem-resistant P. aeruginosa strains of high-risk clones ST235 and ST395 to subminimal inhibitory concentrations (sub-MICs) of meropenem by identifying differentially regulated proteins and pathways. Strain CCUG 51971 carries a VIM-4 metallo-β-lactamase or 'classical' carbapenemase; strain CCUG 70744 carries no known acquired carbapenem-resistance genes and exhibits 'non-classical' carbapenem-resistance. Strains were cultivated with different sub-MICs of meropenem and analyzed, using quantitative shotgun proteomics based on tandem mass tag (TMT) isobaric labeling, nano-liquid chromatography tandem-mass spectrometry and complete genome sequences. Exposure of strains to sub-MICs of meropenem resulted in hundreds of differentially regulated proteins, including β-lactamases, proteins associated with transport, peptidoglycan metabolism, cell wall organization, and regulatory proteins. Strain CCUG 51971 showed upregulation of intrinsic β-lactamases and VIM-4 carbapenemase, while CCUG 70744 exhibited a combination of upregulated intrinsic β-lactamases, efflux pumps, penicillin-binding proteins and downregulation of porins. All components of the H1 type VI secretion system were upregulated in strain CCUG 51971. Multiple metabolic pathways were affected in both strains. Sub-MICs of meropenem cause marked changes in the proteomes of carbapenem-resistant strains of P. aeruginosa exhibiting different resistance mechanisms, involving a wide range of proteins, many uncharacterized, which might play a role in the susceptibility of P. aeruginosa to meropenem.
Collapse
Affiliation(s)
- Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden,Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain,*Correspondence: Francisco Salvà-Serra, ✉
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | | | - Ingegerd Adlerberth
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden,Nanoxis Consulting AB, Gothenburg, Sweden,Roger Karlsson, ✉
| |
Collapse
|
18
|
Sloan R, Surber J, Roy EJ, Hartig E, Morgenstein RM. Enzyme 1 of the phosphoenolpyruvate:sugar phosphotransferase system is involved in resistance to MreB disruption in wild-type and ∆envC cells. Mol Microbiol 2022; 118:588-600. [PMID: 36199205 PMCID: PMC9671846 DOI: 10.1111/mmi.14988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2023]
Abstract
Cell wall synthesis in bacteria is determined by two protein complexes: the elongasome and divisome. The elongasome is coordinated by the actin homolog MreB while the divisome is organized by the tubulin homolog FtsZ. While these two systems must coordinate with each other to ensure that elongation and division are coregulated, this cross talk has been understudied. Using the MreB depolymerizing agent, A22, we found that multiple gene deletions result in cells exhibiting increased sensitivity to MreB depolymerization. One of those genes encodes for EnvC, a part of the divisome that is responsible for splitting daughter cells after the completion of cytokinesis through the activation of specific amidases. Here we show this increased sensitivity to A22 works through two known amidase targets of EnvC: AmiA and AmiB. In addition, suppressor analysis revealed that mutations in enzyme 1 of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) can suppress the effects of A22 in both wild-type and envC deletion cells. Together this work helps to link elongation, division, and metabolism.
Collapse
Affiliation(s)
- Ryan Sloan
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOklahomaUSA
| | - Jacob Surber
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOklahomaUSA
| | - Emma J. Roy
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOklahomaUSA
| | - Ethan Hartig
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOklahomaUSA
| | - Randy M. Morgenstein
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOklahomaUSA
| |
Collapse
|
19
|
Yahashiri A, Kaus GM, Popham DL, Houtman JCD, Weiss DS. Comparative Study of Bacterial SPOR Domains Identifies Functionally Important Differences in Glycan Binding Affinity. J Bacteriol 2022; 204:e0025222. [PMID: 36005810 PMCID: PMC9487507 DOI: 10.1128/jb.00252-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
Abstract
Bacterial SPOR domains target proteins to the divisome by binding septal peptidoglycan (PG) at sites where cell wall amidases have removed stem peptides. These PG structures are referred to as denuded glycans. Although all characterized SPOR domains bind denuded glycans, whether there are differences in affinity is not known. Here, we use isothermal titration calorimetry (ITC) to determine the relative PG glycan binding affinity (<i>K</i><sub>d</sub>) of four Escherichia coli SPOR domains and one Cytophaga hutchinsonii SPOR domain. We found that the <i>K</i><sub>d</sub> values ranged from approximately 1 μM for E. coli DamX<sup>SPOR</sup> and <i>C. hutchinsonii</i> CHU2221<sup>SPOR</sup> to about 10 μM for E. coli FtsN<sup>SPOR</sup>. To investigate whether these differences in PG binding affinity are important for SPOR domain protein function, we constructed and characterized a set of DamX and FtsN "swap" proteins. As expected, all SPOR domain swap proteins localized to the division site, and, in the case of FtsN, all of the heterologous SPOR domains supported cell division. However, for DamX, only the high-affinity SPOR domain from CHU2221 supported normal function in cell division. In summary, different SPOR domains bind denuded PG glycans with different affinities, which appears to be important for the functions of some SPOR domain proteins (e.g., DamX) but not for the functions of others (e.g., FtsN). <b>IMPORTANCE</b> SPOR domain proteins are prominent components of the cell division apparatus in a wide variety of bacteria. The primary function of SPOR domains is targeting proteins to the division site, which they accomplish by binding to septal peptidoglycan. However, whether SPOR domains have any functions beyond septal targeting is unknown. Here, we show that SPOR domains vary in their PG binding affinities and that, at least in the case of the E. coli cell division protein DamX, having a high-affinity SPOR domain contributes to proper function.
Collapse
Affiliation(s)
- Atsushi Yahashiri
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Gabriela M. Kaus
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Jon C. D. Houtman
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - David S. Weiss
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
20
|
Figueroa-Cuilan WM, Randich AM, Dunn CM, Santiago-Collazo G, Yowell A, Brown PJB. Diversification of LytM Protein Functions in Polar Elongation and Cell Division of Agrobacterium tumefaciens. Front Microbiol 2021; 12:729307. [PMID: 34489918 PMCID: PMC8416486 DOI: 10.3389/fmicb.2021.729307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 12/05/2022] Open
Abstract
LytM-domain containing proteins are LAS peptidases (lysostaphin-type enzymes, D-Ala-D-Ala metallopeptidases, and sonic hedgehog) and are known to play diverse roles throughout the bacterial cell cycle through direct or indirect hydrolysis of the bacterial cell wall. A subset of the LytM factors are catalytically inactive but regulate the activity of other cell wall hydrolases and are classically described as cell separation factors NlpD and EnvC. Here, we explore the function of four LytM factors in the alphaproteobacterial plant pathogen Agrobacterium tumefaciens. An LmdC ortholog (Atu1832) and a MepM ortholog (Atu4178) are predicted to be catalytically active. While Atu1832 does not have an obvious function in cell growth or division, Atu4178 is essential for polar growth and likely functions as a space-making endopeptidase that cleaves amide bonds in the peptidoglycan cell wall during elongation. The remaining LytM factors are degenerate EnvC and NlpD orthologs. Absence of these proteins results in striking phenotypes indicative of misregulation of cell division and growth pole establishment. The deletion of an amidase, AmiC, closely phenocopies the deletion of envC suggesting that EnvC might regulate AmiC activity. The NlpD ortholog DipM is unprecedently essential for viability and depletion results in the misregulation of early stages of cell division, contrasting with the canonical view of DipM as a cell separation factor. Finally, we make the surprising observation that absence of AmiC relieves the toxicity induced by dipM overexpression. Together, these results suggest EnvC and DipM may function as regulatory hubs with multiple partners to promote proper cell division and establishment of polarity.
Collapse
Affiliation(s)
| | - Amelia M. Randich
- Department of Biology, University of Scranton, Scranton, PA, United States
| | - Caroline M. Dunn
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Gustavo Santiago-Collazo
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Molecular Pathogenesis and Therapeutics Graduate Program, University of Missouri, Columbia, MO, United States
| | - Andrew Yowell
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Pamela J. B. Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
21
|
Mueller EA, Iken AG, Ali Öztürk M, Winkle M, Schmitz M, Vollmer W, Di Ventura B, Levin PA. The active repertoire of Escherichia coli peptidoglycan amidases varies with physiochemical environment. Mol Microbiol 2021; 116:311-328. [PMID: 33666292 DOI: 10.1111/mmi.14711] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022]
Abstract
Nearly all bacteria are encased in peptidoglycan, an extracytoplasmic matrix of polysaccharide strands crosslinked through short peptide stems. In the Gram-negative model organism Escherichia coli, more than 40 synthases and autolysins coordinate the growth and division of the peptidoglycan sacculus in the periplasm. The precise contribution of many of these enzymes to peptidoglycan metabolism remains unclear due to significant apparent redundancy, particularly among the autolysins. E. coli produces three major LytC-type-N-acetylmuramoyl-L-alanine amidases, which share a role in separating the newly formed daughter cells during cytokinesis. Here, we reveal two of the three amidases that exhibit growth medium-dependent changes in activity. Specifically, we report acidic growth conditions stimulate AmiB-and to a lesser extent, AmiC-amidase activity. Combining genetic, biochemical, and computational analyses, we demonstrate that low pH-dependent stimulation of AmiB is mediated through the periplasmic amidase activators NlpD, EnvC, and ActS (formerly known as YgeR). Although NlpD and EnvC promote amidase activity across pH environments, ActS preferentially stimulates AmiB activity in acidic conditions. Altogether, our findings support partially overlapping roles for E. coli amidases and their regulators in cell separation and illuminate the physiochemical environment as an important mediator of cell wall enzyme activity.
Collapse
Affiliation(s)
- Elizabeth A Mueller
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.,Center for Science & Engineering of Living Systems (CSELS), McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Abbygail G Iken
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Mehmet Ali Öztürk
- Signalling Research Centers BIOSS and CIBSS, McKelvey School of Engineering, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Matthias Winkle
- The Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mirko Schmitz
- Signalling Research Centers BIOSS and CIBSS, McKelvey School of Engineering, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Barbara Di Ventura
- Signalling Research Centers BIOSS and CIBSS, McKelvey School of Engineering, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.,Center for Science & Engineering of Living Systems (CSELS), McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
22
|
Fidopiastis PM, Mariscal V, McPherson JM, McAnulty S, Dunn A, Stabb EV, Visick KL. Vibrio fischeri Amidase Activity Is Required for Normal Cell Division, Motility, and Symbiotic Competence. Appl Environ Microbiol 2021; 87:e02109-20. [PMID: 33187995 PMCID: PMC7848909 DOI: 10.1128/aem.02109-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/12/2020] [Indexed: 11/20/2022] Open
Abstract
N-Acetylmuramoyl-l-alanine amidases are periplasmic hydrolases that cleave the amide bond between N-acetylmuramic acid and alanine in peptidoglycan (PG). Unlike many Gram-negative bacteria that encode redundant periplasmic amidases, Vibrio fischeri appears to encode a single protein that is homologous to AmiB of Vibrio cholerae We screened a V. fischeri transposon mutant library for strains altered in biofilm production and discovered a biofilm-overproducing strain with an insertion in amiB (VF_2326). Further characterization of biofilm enhancement suggested that this phenotype was due to the overproduction of cellulose, and it was dependent on the bcsA cellulose synthase. Additionally, the amiB mutant was nonmotile, perhaps due to defects in its ability to septate during division. The amidase mutant was unable to compete with the wild type for the colonization of V. fischeri's symbiotic host, the squid Euprymna scolopes In single-strain inoculations, host squid inoculated with the mutant eventually became colonized but with a much lower efficiency than in squid inoculated with the wild type. This observation was consistent with the pleiotropic effects of the amiB mutation and led us to speculate that motile suppressors of the amiB mutant were responsible for the partially restored colonization. In culture, motile suppressor mutants carried point mutations in a single gene (VF_1477), resulting in a partial restoration of wild-type motility. In addition, these point mutations reversed the effect of the amiB mutation on cellulosic biofilm production. These data are consistent with V. fischeri AmiB possessing amidase activity; they also suggest that AmiB suppresses cellulosic biofilm formation but promotes successful host colonization.IMPORTANCE Peptidoglycan (PG) is a critical microbe-associated molecular pattern (MAMP) that is sloughed by cells of V. fischeri during symbiotic colonization of squid. Specifically, this process induces significant remodeling of a specialized symbiotic light organ within the squid mantle cavity. This phenomenon is reminiscent of the loss of ciliated epithelium in patients with whooping cough due to the production of PG monomers by Bordetella pertussis Furthermore, PG processing machinery can influence susceptibility to antimicrobials. In this study, we report roles for the V. fischeri PG amidase AmiB, including the beneficial colonization of squid, underscoring the urgency to more deeply understand PG processing machinery and the downstream consequences of their activities.
Collapse
Affiliation(s)
| | | | | | | | - Anne Dunn
- University of Oklahoma, Norman, Oklahoma, USA
| | | | | |
Collapse
|
23
|
Insights into bacterial cell division from a structure of EnvC bound to the FtsX periplasmic domain. Proc Natl Acad Sci U S A 2020; 117:28355-28365. [PMID: 33097670 PMCID: PMC7668044 DOI: 10.1073/pnas.2017134117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The peptidoglycan layer is a core component of the bacterial cell envelope that provides a barrier to the environment and protection from osmotic shock. During division, bacteria must break and rebuild the peptidoglycan layer to enable separation of daughter cells. In E. coli, two of the three amidases responsible (AmiA and AmiB) are regulated by a single periplasmic activator (EnvC) that is, itself, controlled by an atypical ABC transporter (FtsEX) tethered to the cytoplasmic septal Z-ring. Here we define the structural basis for the interaction of FtsEX with EnvC and suggest a molecular mechanism for amidase activation where EnvC autoinhibition is relieved by ATP-driven conformational changes transmitted through the FtsEX-EnvC complex. FtsEX is a bacterial ABC transporter that regulates the activity of periplasmic peptidoglycan amidases via its interaction with the murein hydrolase activator, EnvC. In Escherichia coli, FtsEX is required to separate daughter cells after cell division and for viability in low-osmolarity media. Both the ATPase activity of FtsEX and its periplasmic interaction with EnvC are required for amidase activation, but the process itself is poorly understood. Here we present the 2.1 Å structure of the FtsX periplasmic domain in complex with its periplasmic partner, EnvC. The EnvC-FtsX periplasmic domain complex has a 1-to-2 stoichiometry with two distinct FtsX-binding sites located within an antiparallel coiled coil domain of EnvC. Residues involved in amidase activation map to a previously identified groove in the EnvC LytM domain that is here found to be occluded by a “restraining arm” suggesting a self-inhibition mechanism. Mutational analysis, combined with bacterial two-hybrid screens and in vivo functional assays, verifies the FtsEX residues required for EnvC binding and experimentally test a proposed mechanism for amidase activation. We also define a predicted link between FtsEX and integrity of the outer membrane. Both the ATPase activity of FtsEX and its periplasmic interaction with EnvC are required for resistance to membrane-attacking antibiotics and detergents to which E. coli would usually be considered intrinsically resistant. These structural and functional data provide compelling mechanistic insight into FtsEX-mediated regulation of EnvC and its downstream control of periplasmic peptidoglycan amidases.
Collapse
|
24
|
Adewunmi Y, Namjilsuren S, Walker WD, Amato DN, Amato DV, Mavrodi OV, Patton DL, Mavrodi DV. Antimicrobial Activity of, and Cellular Pathways Targeted by, p-Anisaldehyde and Epigallocatechin Gallate in the Opportunistic Human Pathogen Pseudomonas aeruginosa. Appl Environ Microbiol 2020; 86:e02482-19. [PMID: 31811038 PMCID: PMC6997733 DOI: 10.1128/aem.02482-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Plant-derived aldehydes are constituents of essential oils that possess broad-spectrum antimicrobial activity and kill microorganisms without promoting resistance. In our previous study, we incorporated p-anisaldehyde from star anise into a polymer network called proantimicrobial networks via degradable acetals (PANDAs) and used it as a novel drug delivery platform. PANDAs released p-anisaldehyde upon a change in pH and humidity and controlled the growth of the multidrug-resistant pathogen Pseudomonas aeruginosa PAO1. In this study, we identified the cellular pathways targeted by p-anisaldehyde by generating 10,000 transposon mutants of PAO1 and screened them for hypersensitivity to p-anisaldehyde. To improve the antimicrobial efficacy of p-anisaldehyde, we combined it with epigallocatechin gallate (EGCG), a polyphenol from green tea, and demonstrated that it acts synergistically with p-anisaldehyde in killing P. aeruginosa We then used transcriptome sequencing to profile the responses of P. aeruginosa to p-anisaldehyde, EGCG, and their combination. The exposure to p-anisaldehyde altered the expression of genes involved in modification of the cell envelope, membrane transport, drug efflux, energy metabolism, molybdenum cofactor biosynthesis, and the stress response. We also demonstrate that the addition of EGCG reversed many p-anisaldehyde-coping effects and induced oxidative stress. Our results provide insight into the antimicrobial activity of p-anisaldehyde and its interactions with EGCG and may aid in the rational identification of new synergistically acting combinations of plant metabolites. Our study also confirms the utility of the thiol-ene polymer platform for the sustained and effective delivery of hydrophobic and volatile antimicrobial compounds.IMPORTANCE Essential oils (EOs) are plant-derived products that have long been exploited for their antimicrobial activities in medicine, agriculture, and food preservation. EOs represent a promising alternative to conventional antibiotics due to their broad-range antimicrobial activity, low toxicity to human commensal bacteria, and capacity to kill microorganisms without promoting resistance. Despite the progress in the understanding of the biological activity of EOs, our understanding of many aspects of their mode of action remains inconclusive. The overarching aim of this work was to address these gaps by studying the molecular interactions between an antimicrobial plant aldehyde and the opportunistic human pathogen Pseudomonas aeruginosa The results of this study identify the microbial genes and associated pathways involved in the response to antimicrobial phytoaldehydes and provide insights into the molecular mechanisms governing the synergistic effects of individual constituents within essential oils.
Collapse
Affiliation(s)
- Yetunde Adewunmi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Sanchirmaa Namjilsuren
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - William D Walker
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Dahlia N Amato
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Douglas V Amato
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Olga V Mavrodi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
- South MS Branch Experiment Station, Mississippi State University, Poplarville, Mississippi, USA
| | - Derek L Patton
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Dmitri V Mavrodi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| |
Collapse
|
25
|
Anderson EM, Sychantha D, Brewer D, Clarke AJ, Geddes-McAlister J, Khursigara CM. Peptidoglycomics reveals compositional changes in peptidoglycan between biofilm- and planktonic-derived Pseudomonas aeruginosa. J Biol Chem 2019; 295:504-516. [PMID: 31771981 DOI: 10.1074/jbc.ra119.010505] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Peptidoglycan (PG) is a critical component of the bacterial cell wall and is composed of a repeating β-1,4-linked disaccharide of N-acetylglucosamine and N-acetylmuramic acid appended with a highly conserved stem peptide. In Gram-negative bacteria, PG is assembled in the cytoplasm and exported into the periplasm where it undergoes considerable maturation, modification, or degradation depending on the growth phase or presence of environmental stressors. These modifications serve important functions in diverse processes, including PG turnover, cell elongation/division, and antibiotic resistance. Conventional methods for analyzing PG composition are complex and time-consuming. We present here a streamlined MS-based method that combines differential analysis with statistical 1D annotation approaches to quantitatively compare PGs produced in planktonic- and biofilm-cultured Pseudomonas aeruginosa We identified a core assembly of PG that is present in high abundance and that does not significantly differ between the two growth states. We also identified an adaptive PG assembly that is present in smaller amounts and fluctuates considerably between growth states in response to physiological changes. Biofilm-derived adaptive PG exhibited significant changes compared with planktonic-derived PG, including amino acid substitutions of the stem peptide and modifications that indicate changes in the activity of amidases, deacetylases, and lytic transglycosylases. The results of this work also provide first evidence of de-N-acetylated muropeptides from P. aeruginosa The method developed here offers a robust and reproducible workflow for accurately determining PG composition in samples that can be used to assess global PG fluctuations in response to changing growth conditions or external stimuli.
Collapse
Affiliation(s)
- Erin M Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada
| | - David Sychantha
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada
| | - Dyanne Brewer
- Mass Spectrometry Facility, University of Guelph, Ontario N1G 2W1, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada
| | - Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada; Mass Spectrometry Facility, University of Guelph, Ontario N1G 2W1, Canada.
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada; Mass Spectrometry Facility, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
26
|
Hews CL, Cho T, Rowley G, Raivio TL. Maintaining Integrity Under Stress: Envelope Stress Response Regulation of Pathogenesis in Gram-Negative Bacteria. Front Cell Infect Microbiol 2019; 9:313. [PMID: 31552196 PMCID: PMC6737893 DOI: 10.3389/fcimb.2019.00313] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
The Gram-negative bacterial envelope is an essential interface between the intracellular and harsh extracellular environment. Envelope stress responses (ESRs) are crucial to the maintenance of this barrier and function to detect and respond to perturbations in the envelope, caused by environmental stresses. Pathogenic bacteria are exposed to an array of challenging and stressful conditions during their lifecycle and, in particular, during infection of a host. As such, maintenance of envelope homeostasis is essential to their ability to successfully cause infection. This review will discuss our current understanding of the σE- and Cpx-regulated ESRs, with a specific focus on their role in the virulence of a number of model pathogens.
Collapse
Affiliation(s)
- Claire L Hews
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Timothy Cho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tracy L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
27
|
Brunet YR, Wang X, Rudner DZ. SweC and SweD are essential co-factors of the FtsEX-CwlO cell wall hydrolase complex in Bacillus subtilis. PLoS Genet 2019; 15:e1008296. [PMID: 31437162 PMCID: PMC6705773 DOI: 10.1371/journal.pgen.1008296] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/08/2019] [Indexed: 01/10/2023] Open
Abstract
The peptidoglycan (PG) sacculus is composed of long glycan strands cross-linked together by short peptides forming a covalently closed meshwork that protects the bacterial cell from osmotic lysis and specifies its shape. PG hydrolases play essential roles in remodeling this three-dimensional network during growth and division but how these autolytic enzymes are regulated remains poorly understood. The FtsEX ABC transporter-like complex has emerged as a broadly conserved regulatory module in controlling cell wall hydrolases in diverse bacterial species. In most characterized examples, this complex regulates distinct PG hydrolases involved in cell division and is intimately associated with the cytokinetic machinery called the divisome. However, in the gram-positive bacterium Bacillus subtilis the FtsEX complex is required for cell wall elongation where it regulates the PG hydrolase CwlO that acts along the lateral cell wall. To investigate whether additional factors are required for FtsEX function outside the divisome, we performed a synthetic lethal screen taking advantage of the conditional essentiality of CwlO. This screen identified two uncharacterized factors (SweD and SweC) that are required for CwlO activity. We demonstrate that these proteins reside in a membrane complex with FtsX and that amino acid substitutions in residues adjacent to the ATPase domain of FtsE partially bypass the requirement for them. Collectively our data indicate that SweD and SweC function as essential co-factors of FtsEX in controlling CwlO during cell wall elongation. We propose that factors analogous to SweDC function to support FtsEX activity outside the divisome in other bacteria.
Collapse
Affiliation(s)
- Yannick R. Brunet
- Department of Microbiology, Harvard Medical School, Boston, MA, United States of America
| | - Xindan Wang
- Department of Microbiology, Harvard Medical School, Boston, MA, United States of America
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
28
|
Rashid MI, Rehman S, Ali A, Andleeb S. Fishing for vaccines against Vibrio cholerae using in silico pan-proteomic reverse vaccinology approach. PeerJ 2019; 7:e6223. [PMID: 31249730 PMCID: PMC6589079 DOI: 10.7717/peerj.6223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cholera, an acute enteric infection, is a serious health challenge in both the underdeveloped and the developing world. It is caused by Vibrio cholerae after ingestion of fecal contaminated food or water. Cholera outbreaks have recently been observed in regions facing natural calamities (i.e., earthquake in Haiti 2010) or war (i.e., ongoing civil war in Yemen 2016) where healthcare and sanitary setups have been disrupted as a consequence. Whole-cell oral cholera vaccines (OCVs) have been in market but their regimen efficacy has been questioned. A reverse vaccinology (RV) approach has been applied as a successful anti-microbial measure for many infectious diseases. METHODOLOGY With the aim of finding new protective antigens for vaccine development, the V. cholerae O1 (biovar eltr str. N16961) proteome was computationally screened in a sequential prioritization approach that focused on determining the antigenicity of potential vaccine candidates. Essential, accessible, virulent and immunogenic proteins were selected as potential candidates. The predicted epitopes were filtered for effective binding with MHC alleles and epitopes binding with greater MHC alleles were selected. RESULTS In this study, we report lipoprotein NlpD, outer membrane protein OmpU, accessory colonization factor AcfA, Porin, putative and outer membrane protein OmpW as potential candidates qualifying all the set criteria. These predicted epitopes can offer a potential for development of a reliable peptide or subunit vaccine for V. cholerae.
Collapse
Affiliation(s)
- Muhammad I. Rashid
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Sammia Rehman
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Saadia Andleeb
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| |
Collapse
|
29
|
Abstract
The peptidoglycan sacculus is a net-like polymer that surrounds the cytoplasmic membrane in most bacteria. It is essential to maintain the bacterial cell shape and protect from turgor. The peptidoglycan has a basic composition, common to all bacteria, with species-specific variations that can modify its biophysical properties or the pathogenicity of the bacteria. The synthesis of peptidoglycan starts in the cytoplasm and the precursor lipid II is flipped across the cytoplasmic membrane. The new peptidoglycan strands are synthesised and incorporated into the pre-existing sacculus by the coordinated activities of peptidoglycan synthases and hydrolases. In the model organism Escherichia coli there are two complexes required for the elongation and division. Each of them is regulated by different proteins from both the cytoplasmic and periplasmic sides that ensure the well-coordinated synthesis of new peptidoglycan.
Collapse
|
30
|
Juan C, Torrens G, Barceló IM, Oliver A. Interplay between Peptidoglycan Biology and Virulence in Gram-Negative Pathogens. Microbiol Mol Biol Rev 2018; 82:e00033-18. [PMID: 30209071 PMCID: PMC6298613 DOI: 10.1128/mmbr.00033-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The clinical and epidemiological threat of the growing antimicrobial resistance in Gram-negative pathogens, particularly for β-lactams, the most frequently used and relevant antibiotics, urges research to find new therapeutic weapons to combat the infections caused by these microorganisms. An essential previous step in the development of these therapeutic solutions is to identify their potential targets in the biology of the pathogen. This is precisely what we sought to do in this review specifically regarding the barely exploited field analyzing the interplay among the biology of the peptidoglycan and related processes, such as β-lactamase regulation and virulence. Hence, here we gather, analyze, and integrate the knowledge derived from published works that provide information on the topic, starting with those dealing with the historically neglected essential role of the Gram-negative peptidoglycan in virulence, including structural, biogenesis, remodeling, and recycling aspects, in addition to proinflammatory and other interactions with the host. We also review the complex link between intrinsic β-lactamase production and peptidoglycan metabolism, as well as the biological costs potentially associated with the expression of horizontally acquired β-lactamases. Finally, we analyze the existing evidence from multiple perspectives to provide useful clues for identifying targets enabling the future development of therapeutic options attacking the peptidoglycan-virulence interconnection as a key weak point of the Gram-negative pathogens to be used, if not to kill the bacteria, to mitigate their capacity to produce severe infections.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Isabel Maria Barceló
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| |
Collapse
|
31
|
Dean CR, Barkan DT, Bermingham A, Blais J, Casey F, Casarez A, Colvin R, Fuller J, Jones AK, Li C, Lopez S, Metzger LE, Mostafavi M, Prathapam R, Rasper D, Reck F, Ruzin A, Shaul J, Shen X, Simmons RL, Skewes-Cox P, Takeoka KT, Tamrakar P, Uehara T, Wei JR. Mode of Action of the Monobactam LYS228 and Mechanisms Decreasing In Vitro Susceptibility in Escherichia coli and Klebsiella pneumoniae. Antimicrob Agents Chemother 2018; 62:e01200-18. [PMID: 30061293 PMCID: PMC6153799 DOI: 10.1128/aac.01200-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022] Open
Abstract
The monobactam scaffold is attractive for the development of new agents to treat infections caused by drug-resistant Gram-negative bacteria because it is stable to metallo-β-lactamases (MBLs). However, the clinically used monobactam aztreonam lacks stability to serine β-lactamases (SBLs) that are often coexpressed with MBLs. LYS228 is stable to MBLs and most SBLs. LYS228 bound purified Escherichia coli penicillin binding protein 3 (PBP3) similarly to aztreonam (derived acylation rate/equilibrium dissociation constant [k2/Kd ] of 367,504 s-1 M-1 and 409,229 s-1 M-1, respectively) according to stopped-flow fluorimetry. A gel-based assay showed that LYS228 bound mainly to E. coli PBP3, with weaker binding to PBP1a and PBP1b. Exposing E. coli cells to LYS228 caused filamentation consistent with impaired cell division. No single-step mutants were selected from 12 Enterobacteriaceae strains expressing different classes of β-lactamases at 8× the MIC of LYS228 (frequency, <2.5 × 10-9). At 4× the MIC, mutants were selected from 2 of 12 strains at frequencies of 1.8 × 10-7 and 4.2 × 10-9 LYS228 MICs were ≤2 μg/ml against all mutants. These frequencies compared favorably to those for meropenem and tigecycline. Mutations decreasing LYS228 susceptibility occurred in ramR and cpxA (Klebsiella pneumoniae) and baeS (E. coli and K. pneumoniae). Susceptibility of E. coli ATCC 25922 to LYS228 decreased 256-fold (MIC, 0.125 to 32 μg/ml) after 20 serial passages. Mutants accumulated mutations in ftsI (encoding the target, PBP3), baeR, acrD, envZ, sucB, and rfaI These results support the continued development of LYS228, which is currently undergoing phase II clinical trials for complicated intraabdominal infection and complicated urinary tract infection (registered at ClinicalTrials.gov under identifiers NCT03377426 and NCT03354754).
Collapse
Affiliation(s)
- Charles R Dean
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - David T Barkan
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Alun Bermingham
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Johanne Blais
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Fergal Casey
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Anthony Casarez
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Richard Colvin
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - John Fuller
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Adriana K Jones
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Cindy Li
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Sara Lopez
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Louis E Metzger
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Mina Mostafavi
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Ramadevi Prathapam
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Dita Rasper
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Folkert Reck
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Alexey Ruzin
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Jacob Shaul
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Xiaoyu Shen
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Robert L Simmons
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Peter Skewes-Cox
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Kenneth T Takeoka
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Pramila Tamrakar
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Tsuyoshi Uehara
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Jun-Rong Wei
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| |
Collapse
|
32
|
Abstract
Peptidoglycan is an essential component of the cell wall that protects bacteria from environmental stress. A carefully coordinated biosynthesis of peptidoglycan during cell elongation and division is required for cell viability. This biosynthesis involves sophisticated enzyme machineries that dynamically synthesize, remodel, and degrade peptidoglycan. However, when and where bacteria build peptidoglycan, and how this is coordinated with cell growth, have been long-standing questions in the field. The improvement of microscopy techniques has provided powerful approaches to study peptidoglycan biosynthesis with high spatiotemporal resolution. Recent development of molecular probes further accelerated the growth of the field, which has advanced our knowledge of peptidoglycan biosynthesis dynamics and mechanisms. Here, we review the technologies for imaging the bacterial cell wall and its biosynthesis activity. We focus on the applications of fluorescent d-amino acids, a newly developed type of probe, to visualize and study peptidoglycan synthesis and dynamics, and we provide direction for prospective research.
Collapse
Affiliation(s)
- Atanas D Radkov
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.,Current affiliation: Biophysics and Biochemistry Department, University of California, San Francisco, California 94158, USA;
| | - Yen-Pang Hsu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA; , ,
| | - Garrett Booher
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA; , ,
| | - Michael S VanNieuwenhze
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA; , ,
| |
Collapse
|
33
|
Li X, He J, Fu W, Cao P, Zhang S, Jiang T. Effect of Mycobacterium tuberculosis Rv3717 on cell division and cell adhesion. Microb Pathog 2018; 117:184-190. [PMID: 29462697 DOI: 10.1016/j.micpath.2018.02.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/12/2018] [Accepted: 02/16/2018] [Indexed: 01/13/2023]
Abstract
Mycobacterium tuberculosis Rv3717 has been identified as a zinc-dependent amidase which can hydrolyze peptidoglycan (PG). To demonstrate the relationship of Rv3717 and cell division, in this study, Rv3717 gene was first amplified and expressed and the resulting protein was purified by using a His-tagged approach. M. smegmatis mc2155, a fast-growing and nonpathogenic mycobacterium was used to evaluate the effect of Rv3717 on cell division. Scan electron microscope (SEM) results indicated that M. smegmatis with division site was more exhibited and some of the cells turned larger in size after Rv3717 treatment. Transmission electron microscope (TEM) results revealed that MSMEG_6281 gene knockout strain named M sm-ΔM_6281 (MSMEG_6281 in M. smegmatis mc2155 is the homologous gene of Rv3717) tended to have a division defect with a severely abnormal morphology, and division septa were distorted. Gene expression analysis indicated also that the gene involved in cell division such as M. smegmatis ftsZ was significantly up-regulated with treatment time. The findings demonstrated that physiological role of Rv3717 was related to cell division and regulated possibly division septum formation. Further, fibronectin (Fn) binding ability of Rv3717 was evaluated by protein binding experiment, and the results confirmed the interaction of Rv3717 with Fn in a dose dependent manner. We found also that the invasion rate of M. sm-ΔM_6281 to A549 cells was reduced by 59% compared to the control strain, and the invasion defect could be rescued by Rv3717 addition. RT-PCR results showed that M. smegmatis fbpC were up-regulated after Rv3717 addition. These clues may be significant to explore roles of Rv3717 in growth and colonization of mycobacteria.
Collapse
Affiliation(s)
- Xin Li
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Jiajia He
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Weizhe Fu
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Pingping Cao
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Siyi Zhang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Tao Jiang
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
34
|
Francis VI, Stevenson EC, Porter SL. Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiol Lett 2018; 364:3828290. [PMID: 28510688 PMCID: PMC5812489 DOI: 10.1093/femsle/fnx104] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a versatile opportunistic pathogen capable of infecting a broad range of hosts, in addition to thriving in a broad range of environmental conditions outside of hosts. With this versatility comes the need to tightly regulate its genome to optimise its gene expression and behaviour to the prevailing conditions. Two-component systems (TCSs) comprising sensor kinases and response regulators play a major role in this regulation. This minireview discusses the growing number of TCSs that have been implicated in the virulence of P. aeruginosa, with a special focus on the emerging theme of multikinase networks, which are networks comprising multiple sensor kinases working together, sensing and integrating multiple signals to decide upon the best response. The networks covered in depth regulate processes such as the switch between acute and chronic virulence (GacS network), the Cup fimbriae (Roc network and Rcs/Pvr network), the aminoarabinose modification of lipopolysaccharide (a network involving the PhoQP and PmrBA TCSs), twitching motility and virulence (a network formed from the Chp chemosensory pathway and the FimS/AlgR TCS), and biofilm formation (Wsp chemosensory pathway). In addition, we highlight the important interfaces between these systems and secondary messenger signals such as cAMP and c-di-GMP.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| | - Emma C Stevenson
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| | - Steven L Porter
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| |
Collapse
|
35
|
Dhar S, Kumari H, Balasubramanian D, Mathee K. Cell-wall recycling and synthesis in Escherichia coli and Pseudomonas aeruginosa – their role in the development of resistance. J Med Microbiol 2018; 67:1-21. [DOI: 10.1099/jmm.0.000636] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Supurna Dhar
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Hansi Kumari
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | | | - Kalai Mathee
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
36
|
Zielińska A, Billini M, Möll A, Kremer K, Briegel A, Izquierdo Martinez A, Jensen GJ, Thanbichler M. LytM factors affect the recruitment of autolysins to the cell division site in Caulobacter crescentus. Mol Microbiol 2017; 106:419-438. [PMID: 28833791 DOI: 10.1111/mmi.13775] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2017] [Indexed: 12/24/2022]
Abstract
Most bacteria possess a peptidoglycan cell wall that determines their morphology and provides mechanical robustness during osmotic challenges. The biosynthesis of this structure is achieved by a large set of synthetic and lytic enzymes with varying substrate specificities. Although the biochemical functions of these proteins are conserved and well-investigated, the precise roles of individual factors and the regulatory mechanisms coordinating their activities in time and space remain incompletely understood. Here, we comprehensively analyze the autolytic machinery of the alphaproteobacterial model organism Caulobacter crescentus, with a specific focus on LytM-like endopeptidases, soluble lytic transglycosylases and amidases. Our data reveal a high degree of redundancy within each protein family but also specialized functions for individual family members under stress conditions. In addition, we identify two lytic transglycosylases and an amidase as new divisome components that are recruited to midcell at distinct stages of the cell cycle. The midcell localization of these proteins is affected by two LytM factors with degenerate catalytic domains, DipM and LdpF, which may serve as regulatory hubs coordinating the activities of multiple autolytic enzymes during cell constriction and fission respectively. These findings set the stage for in-depth studies of the molecular mechanisms that control peptidoglycan remodeling in C. crescentus.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Faculty of Biology, Philipps-Universität, Marburg 35043, Germany.,Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Maria Billini
- Faculty of Biology, Philipps-Universität, Marburg 35043, Germany.,Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Andrea Möll
- Faculty of Biology, Philipps-Universität, Marburg 35043, Germany.,Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Katharina Kremer
- Faculty of Biology, Philipps-Universität, Marburg 35043, Germany
| | - Ariane Briegel
- Divison of Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Adrian Izquierdo Martinez
- Faculty of Biology, Philipps-Universität, Marburg 35043, Germany.,Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Grant J Jensen
- Divison of Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Martin Thanbichler
- Faculty of Biology, Philipps-Universität, Marburg 35043, Germany.,Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany.,LOEWE Center for Synthetic Microbiology, Marburg 35043, Germany
| |
Collapse
|
37
|
Targeting the permeability barrier and peptidoglycan recycling pathways to disarm Pseudomonas aeruginosa against the innate immune system. PLoS One 2017; 12:e0181932. [PMID: 28742861 PMCID: PMC5526577 DOI: 10.1371/journal.pone.0181932] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/10/2017] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial resistance is a continuously increasing threat that severely compromises our antibiotic arsenal and causes thousands of deaths due to hospital-acquired infections by pathogens such as Pseudomonas aeruginosa, situation further aggravated by the limited development of new antibiotics. Thus, alternative strategies such as those targeting bacterial resistance mechanisms, virulence or potentiating the activity of our immune system resources are urgently needed. We have recently shown that mutations simultaneously causing the peptidoglycan recycling blockage and the β-lactamase AmpC overexpression impair the virulence of P.aeruginosa. These findings suggested that peptidoglycan metabolism might be a good target not only for fighting antibiotic resistance, but also for the attenuation of virulence and/or potentiation of our innate immune weapons. Here we analyzed the activity of the innate immune elements peptidoglycan recognition proteins (PGRPs) and lysozyme against P. aeruginosa. We show that while lysozyme and PGRPs have a very modest basal effect over P. aeruginosa, their bactericidal activity is dramatically increased in the presence of subinhibitory concentrations of the permeabilizing agent colistin. We also show that the P. aeruginosa lysozyme inhibitors seem to play a very residual protective role even in permeabilizing conditions. In contrast, we demonstrate that, once the permeability barrier is overpassed, the activity of lysozyme and PGRPs is dramatically enhanced when inhibiting key peptidoglycan recycling components (such as the 3 AmpDs, AmpG or NagZ), indicating a decisive protective role for cell-wall recycling and that direct peptidoglycan-binding supports, at least partially, the activity of these enzymes. Finally, we show that recycling blockade when occurring simultaneously with AmpC overexpression determines a further decrease in the resistance against PGRP2 and lysozyme, linked to quantitative changes in the cell-wall. Thus, our results help to delineate new strategies against P. aeruginosa infections, simultaneously targeting β–lactam resistance, cell-wall metabolism and virulence, ultimately enhancing the activity of our innate immune weapons.
Collapse
|
38
|
Tsang MJ, Yakhnina AA, Bernhardt TG. NlpD links cell wall remodeling and outer membrane invagination during cytokinesis in Escherichia coli. PLoS Genet 2017; 13:e1006888. [PMID: 28708841 PMCID: PMC5533458 DOI: 10.1371/journal.pgen.1006888] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/28/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Cytokinesis in gram-negative bacteria requires the constriction of all three cell envelope layers: the inner membrane (IM), the peptidoglycan (PG) cell wall and the outer membrane (OM). In order to avoid potentially lethal breaches in cell integrity, this dramatic reshaping of the cell surface requires tight coordination of the different envelope remodeling activities of the cytokinetic ring. However, the mechanisms responsible for this coordination remain poorly defined. One of the few characterized regulatory points in the envelope remodeling process is the activation of cell wall hydrolytic enzymes called amidases. These enzymes split cell wall material shared by developing daughter cells to facilitate their eventual separation. In Escherichia coli, amidase activity requires stimulation by one of two partially redundant activators: EnvC, which is associated with the IM, and NlpD, a lipoprotein anchored in the OM. Here, we investigate the regulation of amidase activation by NlpD. Structure-function analysis revealed that the OM localization of NlpD is critical for regulating its amidase activation activity. To identify additional factors involved in the NlpD cell separation pathway, we also developed a genetic screen using a flow cytometry-based enrichment procedure. This strategy allowed us to isolate mutants that form long chains of unseparated cells specifically when the redundant EnvC pathway is inactivated. The screen implicated the Tol-Pal system and YraP in NlpD activation. The Tol-Pal system is thought to promote OM invagination at the division site. YraP is a conserved protein of unknown function that we have identified as a new OM-localized component of the cytokinetic ring. Overall, our results support a model in which OM and PG remodeling events at the division site are coordinated in part through the coupling of NlpD activation with OM invagination.
Collapse
Affiliation(s)
- Mary-Jane Tsang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anastasiya A. Yakhnina
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas G. Bernhardt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
39
|
The SPOR Domain, a Widely Conserved Peptidoglycan Binding Domain That Targets Proteins to the Site of Cell Division. J Bacteriol 2017; 199:JB.00118-17. [PMID: 28396350 DOI: 10.1128/jb.00118-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sporulation-related repeat (SPOR) domains are small peptidoglycan (PG) binding domains found in thousands of bacterial proteins. The name "SPOR domain" stems from the fact that several early examples came from proteins involved in sporulation, but SPOR domain proteins are quite diverse and contribute to a variety of processes that involve remodeling of the PG sacculus, especially with respect to cell division. SPOR domains target proteins to the division site by binding to regions of PG devoid of stem peptides ("denuded" glycans), which in turn are enriched in septal PG by the intense, localized activity of cell wall amidases involved in daughter cell separation. This targeting mechanism sets SPOR domain proteins apart from most other septal ring proteins, which localize via protein-protein interactions. In addition to SPOR domains, bacteria contain several other PG-binding domains that can exploit features of the cell wall to target proteins to specific subcellular sites.
Collapse
|
40
|
Murakami K, Ono T, Noma Y, Minase I, Amoh T, Irie Y, Hirota K, Miyake Y. Explorative gene analysis of antibiotic tolerance-related genes in adherent and biofilm cells of Pseudomonas aeruginosa. J Infect Chemother 2017; 23:271-277. [PMID: 28274550 DOI: 10.1016/j.jiac.2017.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Antibiotic tolerance has attracted worldwide attention, as it leads to chronic, refractory, and persistent infections that are difficult to control. Bacterial biofilms are well known to be more tolerant to antibiotics compared to planktonic bacteria. We previously revealed that adherent bacteria on a solid surface also exhibited tolerance to antibiotics before forming a biofilm. However, little is known about the mechanisms of antibiotic tolerance for adherent or biofilm cells. OBJECTIVES We investigated the mechanisms of antibiotic tolerance in the biofilm life cycle using adherent and biofilm cells, and evaluated the possibility that common mechanisms operate at each stage. METHODS We constructed transposon mutants of Pseudomonas aeruginosa PAO1 and screened for low-tolerant mutants with two different methods, using adherent cells and biofilm cells. RESULTS Fourteen and nine mutants exhibiting low antibiotic tolerance were detected in the adherent cells and biofilm cells, and 14 and 7 candidate genes linked to this tolerance were identified by sequencing, respectively. Eight of the 14 genes related to the antibiotic tolerance of the adherent cells were involved in biofilm formation. Two of the seven genes related to the antibiotic tolerance of biofilm cells participated in the antibiotic tolerance of adherent cells. CONCLUSIONS The antibiotic tolerance of adherent cells and biofilm formation appear to be under the same regulation mechanism to promote survival in the presence of antibiotics. Antibiotic tolerance shows a complex regulation mechanism at each stage of biofilm formation.
Collapse
Affiliation(s)
- Keiji Murakami
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan.
| | - Tsuneko Ono
- Department of Molecular Microbiology, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Yasuki Noma
- Department of Molecular Microbiology, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Issei Minase
- Department of Molecular Microbiology, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Takashi Amoh
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Yasuhiko Irie
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - Katsuhiko Hirota
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Yoichiro Miyake
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| |
Collapse
|
41
|
Mittal R, Lisi CV, Kumari H, Grati M, Blackwelder P, Yan D, Jain C, Mathee K, Weckwerth PH, Liu XZ. Otopathogenic Pseudomonas aeruginosa Enters and Survives Inside Macrophages. Front Microbiol 2016; 7:1828. [PMID: 27917157 PMCID: PMC5114284 DOI: 10.3389/fmicb.2016.01828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022] Open
Abstract
Otitis media (OM) is a broad term describing a group of infectious and inflammatory disorders of the middle ear. Despite antibiotic therapy, acute OM can progress to chronic suppurative otitis media (CSOM) characterized by ear drum perforation and purulent discharge. Pseudomonas aeruginosa is the most common pathogen associated with CSOM. Although, macrophages play an important role in innate immune responses but their role in the pathogenesis of P. aeruginosa-induced CSOM is not known. The objective of this study is to examine the interaction of P. aeruginosa with primary macrophages. We observed that P. aeruginosa enters and multiplies inside human and mouse primary macrophages. This bacterial entry in macrophages requires both microtubule and actin dependent processes. Transmission electron microscopy demonstrated that P. aeruginosa was present in membrane bound vesicles inside macrophages. Interestingly, deletion of oprF expression in P. aeruginosa abrogates its ability to survive inside macrophages. Our results suggest that otopathogenic P. aeruginosa entry and survival inside macrophages is OprF-dependent. The survival of bacteria inside macrophages will lead to evasion of killing and this lack of pathogen clearance by phagocytes contributes to the persistence of infection in CSOM. Understanding host-pathogen interaction will provide novel avenues to design effective treatment modalities against OM.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Christopher V Lisi
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Hansi Kumari
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami FL, USA
| | - M'hamed Grati
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Patricia Blackwelder
- Chemistry Department, Center for Advanced Microscopy, University of Miami, Coral GablesFL, USA; Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key BiscayneFL, USA
| | - Denise Yan
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Chaitanya Jain
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, MiamiFL, USA; Global Health Consortium and Biomolecular Science Institute, Florida International University, MiamiFL, USA
| | - Paulo H Weckwerth
- Health Sciences Department, University of Sagrado Coração Bauru, Brazil
| | - Xue Z Liu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| |
Collapse
|
42
|
Domínguez-Gil T, Lee M, Acebrón-Avalos I, Mahasenan KV, Hesek D, Dik DA, Byun B, Lastochkin E, Fisher JF, Mobashery S, Hermoso JA. Activation by Allostery in Cell-Wall Remodeling by a Modular Membrane-Bound Lytic Transglycosylase from Pseudomonas aeruginosa. Structure 2016; 24:1729-1741. [PMID: 27618662 DOI: 10.1016/j.str.2016.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/24/2016] [Accepted: 07/26/2016] [Indexed: 11/19/2022]
Abstract
Bacteria grow and divide without loss of cellular integrity. This accomplishment is notable, as a key component of their cell envelope is a surrounding glycopeptide polymer. In Gram-negative bacteria this polymer-the peptidoglycan-grows by the difference between concurrent synthesis and degradation. The regulation of the enzymatic ensemble for these activities is poorly understood. We report herein the structural basis for the control of one such enzyme, the lytic transglycosylase MltF of Pseudomonas aeruginosa. Its structure comprises two modules: an ABC-transporter-like regulatory module and a catalytic module. Occupancy of the regulatory module by peptidoglycan-derived muropeptides effects a dramatic and long-distance (40 Å) conformational change, occurring over the entire protein structure, to open its active site for catalysis. This discovery of the molecular basis for the allosteric control of MltF catalysis is foundational to further study of MltF within the complex enzymatic orchestration of the dynamic peptidoglycan.
Collapse
Affiliation(s)
- Teresa Domínguez-Gil
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Iván Acebrón-Avalos
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Kiran V Mahasenan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - David A Dik
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Byungjin Byun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Elena Lastochkin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Juan A Hermoso
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain.
| |
Collapse
|
43
|
Wu H, Chen J, Chen GQ. Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli. Appl Microbiol Biotechnol 2016; 100:9907-9916. [DOI: 10.1007/s00253-016-7715-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
|
44
|
Contribution of the Twin Arginine Translocation system to the exoproteome of Pseudomonas aeruginosa. Sci Rep 2016; 6:27675. [PMID: 27279369 PMCID: PMC4899797 DOI: 10.1038/srep27675] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/23/2016] [Indexed: 01/24/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa uses secretion systems to deliver exoproteins into the environment. These exoproteins contribute to bacterial survival, adaptation, and virulence. The Twin arginine translocation (Tat) export system enables the export of folded proteins into the periplasm, some of which can then be further secreted outside the cell. However, the full range of proteins that are conveyed by Tat is unknown, despite the importance of Tat for the adaptability and full virulence of P. aeruginosa. In this work, we explored the P. aeruginosa Tat-dependent exoproteome under phosphate starvation by two-dimensional gel analysis. We identified the major secreted proteins and new Tat-dependent exoproteins. These exoproteins were further analyzed by a combination of in silico analysis, regulation studies, and protein localization. Altogether we reveal that the absence of the Tat system significantly affects the composition of the exoproteome by impairing protein export and affecting gene expression. Notably we discovered three new Tat exoproteins and one novel type II secretion substrate. Our data also allowed the identification of two new start codons highlighting the importance of protein annotation for subcellular predictions. The new exoproteins that we identify may play a significant role in P. aeruginosa pathogenesis, host interaction and niche adaptation.
Collapse
|
45
|
Pseudomonas aeruginosa: targeting cell-wall metabolism for new antibacterial discovery and development. Future Med Chem 2016; 8:975-92. [PMID: 27228070 DOI: 10.4155/fmc-2016-0017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of hospital-acquired infections and is resistant to most antibiotics. With therapeutic options against P. aeruginosa dwindling, and the lack of new antibiotics in advanced developmental stages, strategies for preserving the effectiveness of current antibiotics are urgently required. β-Lactam antibiotics are important agents for treating P. aeruginosa infections, thus, adjuvants that potentiate the activity of these compounds are desirable for extending their lifespan while new antibiotics - or antibiotic classes - are discovered and developed. In this review, we discuss recent research that has identified exploitable targets of cell-wall metabolism for the design and development of compounds that hinder resistance and potentiate the activity of antipseudomonal β-lactams.
Collapse
|
46
|
Role of the Gram-Negative Envelope Stress Response in the Presence of Antimicrobial Agents. Trends Microbiol 2016; 24:377-390. [PMID: 27068053 DOI: 10.1016/j.tim.2016.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 01/10/2023]
Abstract
Bacterial survival necessitates endurance of many types of antimicrobial compound. Many Gram-negative envelope stress responses, which must contend with an outer membrane and a dense periplasm containing the cell wall, have been associated with the status of protein folding, membrane homeostasis, and physiological functions such as efflux and the proton motive force (PMF). In this review, we discuss evidence that indicates an emerging role for Gram-negative envelope stress responses in enduring exposure to diverse antimicrobial substances, focusing on recent studies of the γ-proteobacterial Cpx envelope stress response.
Collapse
|
47
|
Identification of EnvC and Its Cognate Amidases as Novel Determinants of Intrinsic Resistance to Cationic Antimicrobial Peptides. Antimicrob Agents Chemother 2016; 60:2222-31. [PMID: 26810659 PMCID: PMC4808223 DOI: 10.1128/aac.02699-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/20/2016] [Indexed: 11/30/2022] Open
Abstract
Cationic antimicrobial peptides (CAMPs) are an essential part of the innate immune system. Some Gram-negative enteric pathogens, such as Salmonella enterica, show intrinsic resistance to CAMPs. However, the molecular basis of intrinsic resistance is poorly understood, largely due to a lack of information about the genes involved. In this study, using a microarray-based genomic technique, we screened the Keio collection of 3,985 Escherichia coli mutants for altered susceptibility to human neutrophil peptide 1 (HNP-1) and identified envC and zapB as novel genetic determinants of intrinsic CAMP resistance. In CAMP killing assays, an E. coli ΔenvCEc or ΔzapBEc mutant displayed a distinct profile of increased susceptibility to both LL-37 and HNP-1. Both mutants, however, displayed wild-type resistance to polymyxin B and human β-defensin 3 (HBD3), suggesting that the intrinsic resistance mediated by EnvC or ZapB is specific to certain CAMPs. A corresponding Salmonella ΔenvCSe mutant showed similarly increased CAMP susceptibility. The envC mutants of both E. coli and S. enterica displayed increased surface negativity and hydrophobicity, which partly explained the increased CAMP susceptibility. However, the ΔenvCEc mutant, but not the ΔenvCSe mutant, was defective in outer membrane permeability, excluding this defect as a common factor contributing to the increased CAMP susceptibility. Animal experiments showed that the Salmonella ΔenvCSe mutant had attenuated virulence. Taken together, our results indicate that the role of envC in intrinsic CAMP resistance is likely conserved among Gram-negative enteric bacteria, demonstrate the importance of intrinsic CAMP resistance for full virulence of S. enterica, and provide insight into distinct mechanisms of action of CAMPs.
Collapse
|
48
|
Mittal R, Grati M, Yan D, Liu XZ. Pseudomonas aeruginosa Activates PKC-Alpha to Invade Middle Ear Epithelial Cells. Front Microbiol 2016; 7:255. [PMID: 26973629 PMCID: PMC4777741 DOI: 10.3389/fmicb.2016.00255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/16/2016] [Indexed: 12/31/2022] Open
Abstract
Otitis media (OM) is a group of complex inflammatory disorders affecting the middle ear which can be acute or chronic. Chronic suppurative otitis media (CSOM) is a form of chronic OM characterized by tympanic membrane perforation and discharge. Despite the significant impact of CSOM on human population, it is still an understudied and unexplored research area. CSOM is a leading cause of hearing loss and life-threatening central nervous system complications. Bacterial exposure especially Pseudomonas aeruginosa is the most common cause of CSOM. Our previous studies have demonstrated that P. aeruginosa invades human middle ear epithelial cells (HMEECs). However, molecular mechanisms leading to bacterial invasion of HMEECs are not known. The aim of this study is to characterize the role of PKC pathway in the ability of P. aeruginosa to colonize HMEECs. We observed that otopathogenic P. aeruginosa activates the PKC pathway, specifically phosphorylation of PKC-alpha (PKC-α) in HMEECs. The ability of otopathogenic P. aeruginosa to phosphorylate PKC-α depends on bacterial OprF expression. The activation of PKC-α was associated with actin condensation. Blocking the PKC pathway attenuated the ability of bacteria to invade HMEECs and subsequent actin condensation. This study, for the first time, demonstrates that the host PKC-α pathway is involved in invasion of HMEECs by P. aeruginosa and subsequently to cause OM. Characterizing the role of the host signaling pathway in the pathogenesis of CSOM will provide novel avenues to design effective treatment modalities against the disease.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami Florida, USA
| | - M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami Florida, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami Florida, USA
| | - Xue Z Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, MiamiFlorida, USA; Department of Biochemistry, University of Miami Miller School of Medicine, MiamiFL, USA; Department of Human Genetics, University of Miami Miller School of Medicine, MiamiFL, USA; Department of Otolaryngology, Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
49
|
Fine-Tuning of the Cpx Envelope Stress Response Is Required for Cell Wall Homeostasis in Escherichia coli. mBio 2016; 7:e00047-16. [PMID: 26908573 PMCID: PMC4791840 DOI: 10.1128/mbio.00047-16] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The envelope of Gram-negative bacteria is an essential compartment that constitutes a protective and permeability barrier between the cell and its environment. The envelope also hosts the cell wall, a mesh-like structure made of peptidoglycan (PG) that determines cell shape and provides osmotic protection. Since the PG must grow and divide in a cell-cycle-synchronized manner, its synthesis and remodeling are tightly regulated. Here, we discovered that PG homeostasis is intimately linked to the levels of activation of the Cpx system, an envelope stress response system traditionally viewed as being involved in protein quality control in the envelope. We first show that Cpx is activated when PG integrity is challenged and that this activation provides protection to cells exposed to antibiotics inhibiting PG synthesis. By rerouting the outer membrane lipoprotein NlpE, a known Cpx activator, to a different envelope subcompartment, we managed to manipulate Cpx activation levels. We found that Cpx overactivation leads to aberrant cellular morphologies, to an increased sensitivity to β-lactams, and to dramatic division and growth defects, consistent with a loss of PG homeostasis. Remarkably, these phenotypes were largely abrogated by the deletion of ldtD, a Cpx-induced gene involved in noncanonical PG cross-linkage, suggesting that this transpeptidase is an important link between PG homeostasis and the Cpx system. Altogether our data show that fine-tuning of an envelope quality control system constitutes an important layer of regulation of the highly organized cell wall structure. The envelope of Gram-negative bacteria is essential for viability. First, it includes the cell wall, a continuous polymer of peptidoglycan (PG) that determines cell morphology and protects against osmotic stress. Moreover, the envelope constitutes a protective barrier between the cell interior and the environment. Therefore, mechanisms called envelope stress response systems (ESRS) exist to monitor and defend envelope integrity against harmful conditions. Cpx is a major ESRS that detects and manages the accumulation of misfolded proteins in the envelope of Escherichia coli. We found that this protein quality control system also plays a fundamental role in the regulation of PG assembly. Strikingly, the level of Cpx response is critical, as an excessive activation leads to phenotypes associated with a loss of cell wall integrity. Thus, by contributing to PG homeostasis, the Cpx system lies at the crossroads between key processes of bacterial life, including cell shape, growth, division, and antibiotic resistance.
Collapse
|