1
|
Kawahara K, Oki H, Iimori M, Muramoto R, Imai T, Gerle C, Shigematsu H, Matsuda S, Iida T, Nakamura S. High-resolution cryo-EM analysis visualizes hydrated type I and IV pilus structures from enterotoxigenic Escherichia coli. Structure 2025:S0969-2126(25)00107-8. [PMID: 40220752 DOI: 10.1016/j.str.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/18/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Pathogenic bacteria utilize a variety of pilus filaments to colonize intestinal epithelia, including those synthesized by the chaperone-usher or type IV pilus assembly pathway. Despite the importance of these filaments as potential drug and vaccine targets, their large size and dynamic nature make high-resolution structure determination challenging. Here, we used cryo-electron microscopy (cryo-EM) and whole-genome sequencing to determine the structures of type I and IV pili expressed in enterotoxigenic Escherichia coli. Well-defined cryo-EM maps at resolutions of 2.2 and 1.8 Å for type I and IV pilus, respectively, facilitated the de novo structural modeling for these filaments, revealing side-chain structures in detail. We resolved thousands of hydrated water molecules around and within the inner core of the filaments, which stabilize the otherwise metastable quaternary subunit assembly. The high-resolution structures offer novel insights into subunit-subunit interactions, and provide important clues to understand pilus assembly, stability, and flexibility.
Collapse
Affiliation(s)
- Kazuki Kawahara
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Hiroya Oki
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Minato Iimori
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryuki Muramoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoya Imai
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Christoph Gerle
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Hideki Shigematsu
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Shigeaki Matsuda
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tetsuya Iida
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shota Nakamura
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Guilvout I, Samsudin F, Huber RG, Bond PJ, Bardiaux B, Francetic O. Membrane platform protein PulF of the Klebsiella type II secretion system forms a trimeric ion channel essential for endopilus assembly and protein secretion. mBio 2024; 15:e0142323. [PMID: 38063437 PMCID: PMC10790770 DOI: 10.1128/mbio.01423-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/24/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Type IV pili and type II secretion systems are members of the widespread type IV filament (T4F) superfamily of nanomachines that assemble dynamic and versatile surface fibers in archaea and bacteria. The assembly and retraction of T4 filaments with diverse surface properties and functions require the plasma membrane platform proteins of the GspF/PilC superfamily. Generally considered dimeric, platform proteins are thought to function as passive transmitters of the mechanical energy generated by the ATPase motor, to somehow promote insertion of pilin subunits into the nascent pilus fibers. Here, we generate and experimentally validate structural predictions that support the trimeric state of a platform protein PulF from a type II secretion system. The PulF trimers form selective proton or sodium channels which might energize pilus assembly using the membrane potential. The conservation of the channel sequence and structural features implies a common mechanism for all T4F assembly systems. We propose a model of the oligomeric PulF-PulE ATPase complex that provides an essential framework to investigate and understand the pilus assembly mechanism.
Collapse
Affiliation(s)
- Ingrid Guilvout
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
| | | | | | - Peter J. Bond
- Bioinformatics Institute (A-STAR), Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Structural Bioinformatics Unit, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Transmembrane Systems Unit, Paris, France
| | - Olivera Francetic
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
| |
Collapse
|
3
|
Li Y, Santos-Moreno J, Francetic O. The periplasmic coiled coil formed by the assembly platform proteins PulL and PulM is critical for function of the Klebsiella type II secretion system. Res Microbiol 2023; 174:104075. [PMID: 37141929 DOI: 10.1016/j.resmic.2023.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Bacteria use type II secretion systems (T2SS) to secrete to their surface folded proteins that confer diverse functions, from nutrient acquisition to virulence. In the Klebsiella species, T2SS-mediated secretion of pullulanase (PulA) requires assembly of a dynamic filament called the endopilus. The inner membrane assembly platform (AP) subcomplex is essential for endopilus assembly and PulA secretion. AP components PulL and PulM interact with each other through their C-terminal globular domains and transmembrane segments. Here, we investigated the roles of their periplasmic helices, predicted to form a coiled coil, in assembly and function of the PulL-PulM complex. PulL and PulM variants lacking these periplasmic helices were defective for interaction in the bacterial two-hybrid (BACTH) assay. Their functions in PulA secretion and assembly of PulG subunits into endopilus filaments were strongly reduced. Interestingly, deleting the cytoplasmic peptide of PulM nearly abolished the function of variant PulMΔN and its interaction with PulG, but not with PulL, in the BACTH assay. Nevertheless, PulL was specifically proteolyzed in the presence of the PulMΔN variant, suggesting that PulM N-terminal peptide stabilizes PulL in the cytoplasm. We discuss the implications of these results for the T2S endopilus and type IV pilus assembly mechanisms.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Biochemistry of Macromolecular Interactions Unit, F-75015 Paris, France.
| | - Javier Santos-Moreno
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Biochemistry of Macromolecular Interactions Unit, F-75015 Paris, France.
| | - Olivera Francetic
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Biochemistry of Macromolecular Interactions Unit, F-75015 Paris, France.
| |
Collapse
|
4
|
Garnett JA. I shall be released: Assembly platform dynamics during type II secretion. Structure 2023; 31:123-125. [PMID: 36736296 DOI: 10.1016/j.str.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this issue of Structure, Dazzoni et al. solve the high-resolution homo- and hetero-dimeric structures of the Klebsiella oxytoca PulL and PulM C-terminal domains and unravel an uncharacterized dynamic interaction interface that is required for correct function of the type II secretion system.
Collapse
Affiliation(s)
- James A Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
5
|
Dazzoni R, Li Y, López-Castilla A, Brier S, Mechaly A, Cordier F, Haouz A, Nilges M, Francetic O, Bardiaux B, Izadi-Pruneyre N. Structure and dynamic association of an assembly platform subcomplex of the bacterial type II secretion system. Structure 2023; 31:152-165.e7. [PMID: 36586404 DOI: 10.1016/j.str.2022.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 12/31/2022]
Abstract
Type II secretion systems (T2SSs) allow diderm bacteria to secrete hydrolytic enzymes, adhesins, or toxins important for growth and virulence. To promote secretion of folded proteins, T2SSs assemble periplasmic filaments called pseudopili or endopili at an inner membrane subcomplex, the assembly platform (AP). Here, we combined biophysical approaches, nuclear magnetic resonance (NMR) and X-ray crystallography, to study the Klebsiella AP components PulL and PulM. We determined the structure and associations of their periplasmic domains and describe the structure of the heterodimer formed by their ferredoxin-like domains. We show how structural complementarity and plasticity favor their association during the secretion process. Cysteine scanning and crosslinking data provided additional constraints to build a structural model of the PulL-PulM assembly in the cellular context. Our structural and functional insights, together with the relative cellular abundance of its components, support the role of AP as a dynamic hub that orchestrates pilus polymerization.
Collapse
Affiliation(s)
- Régine Dazzoni
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, 75015 Paris, France
| | - Yuanyuan Li
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France
| | - Aracelys López-Castilla
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, 75015 Paris, France
| | - Sébastien Brier
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France
| | - Ariel Mechaly
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Crystallography Platform, 75015 Paris, France
| | - Florence Cordier
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France
| | - Ahmed Haouz
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Crystallography Platform, 75015 Paris, France
| | - Michael Nilges
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, 75015 Paris, France
| | - Olivera Francetic
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, 75015 Paris.
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, 75015 Paris.
| |
Collapse
|
6
|
Oliveira V, Aschtgen MS, van Erp A, Henriques-Normark B, Muschiol S. The Role of Minor Pilins in Assembly and Function of the Competence Pilus of Streptococcus pneumoniae. Front Cell Infect Microbiol 2022; 11:808601. [PMID: 35004361 PMCID: PMC8727766 DOI: 10.3389/fcimb.2021.808601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
The remarkable genomic plasticity of Streptococcus pneumoniae largely depends on its ability to undergo natural genetic transformation. To take up extracellular DNA, S. pneumoniae assembles competence pili composed of the major pilin ComGC. In addition to ComGC, four minor pilins ComGD, E, F, and G are expressed during bacterial competence, but their role in pilus biogenesis and transformation is unknown. Here, using a combination of protein-protein interaction assays we show that all four proteins can directly interact with each other. Pneumococcal ComGG stabilizes the minor pilin ComGD and ComGF and can interact with and stabilize the major pilin ComGC, thus, deletion of ComGG abolishes competence pilus assembly. We further demonstrate that minor pilins are present in sheared pili fractions and find ComGF to be incorporated along the competence pilus by immunofluorescence and electron microscopy. Finally, mutants of the invariant Glu5 residue (E5), ComGDE5A or ComGEE5A, but not ComGFE5A, were severely impaired in pilus formation and function. Together, our results suggest that ComGG, lacking E5, is essential for competence pilus assembly and function, and plays a central role in connecting the pneumococcal minor pilins to ComGC.
Collapse
Affiliation(s)
- Vitor Oliveira
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Anke van Erp
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Sandra Muschiol
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Structural interactions define assembly adapter function of a type II secretion system pseudopilin. Structure 2021; 29:1116-1127.e8. [PMID: 34139172 DOI: 10.1016/j.str.2021.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/15/2021] [Accepted: 05/28/2021] [Indexed: 01/13/2023]
Abstract
The type IV filament superfamily comprises widespread membrane-associated polymers in prokaryotes. The type II secretion system (T2SS), a virulence pathway in many pathogens, belongs to this superfamily. A knowledge gap in understanding of the T2SS is the molecular role of a small "pseudopilin" protein. Using multiple biophysical techniques, we have deciphered how this missing component of the Xcp T2SS architecture is structurally integrated, and thereby unlocked its function. We demonstrate that low-abundance XcpH is the adapter that bridges a trimeric initiating tip complex, XcpIJK, with a periplasmic filament of XcpG subunits. Each pseudopilin protein caps an XcpG protofilament in an overall pseudopilus compatible with dimensions of the periplasm and the outer membrane-spanning secretin through which substrates pass. Unexpectedly, to fulfill its adapter function, the XcpH N-terminal helix must be unwound, a property shared with XcpG subunits. We provide an experimentally validated three-dimensional structural model of a complete type IV filament.
Collapse
|
8
|
Horváthová L, Žárský V, Pánek T, Derelle R, Pyrih J, Motyčková A, Klápšťová V, Vinopalová M, Marková L, Voleman L, Klimeš V, Petrů M, Vaitová Z, Čepička I, Hryzáková K, Harant K, Gray MW, Chami M, Guilvout I, Francetic O, Franz Lang B, Vlček Č, Tsaousis AD, Eliáš M, Doležal P. Analysis of diverse eukaryotes suggests the existence of an ancestral mitochondrial apparatus derived from the bacterial type II secretion system. Nat Commun 2021; 12:2947. [PMID: 34011950 PMCID: PMC8134430 DOI: 10.1038/s41467-021-23046-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
The type 2 secretion system (T2SS) is present in some Gram-negative eubacteria and used to secrete proteins across the outer membrane. Here we report that certain representative heteroloboseans, jakobids, malawimonads and hemimastigotes unexpectedly possess homologues of core T2SS components. We show that at least some of them are present in mitochondria, and their behaviour in biochemical assays is consistent with the presence of a mitochondrial T2SS-derived system (miT2SS). We additionally identified 23 protein families co-occurring with miT2SS in eukaryotes. Seven of these proteins could be directly linked to the core miT2SS by functional data and/or sequence features, whereas others may represent different parts of a broader functional pathway, possibly also involving the peroxisome. Its distribution in eukaryotes and phylogenetic evidence together indicate that the miT2SS-centred pathway is an ancestral eukaryotic trait. Our findings thus have direct implications for the functional properties of the early mitochondrion. Bacteria use the type 2 secretion system to secrete enzymes and toxins across the outer membrane to the environment. Here the authors analyse the T2SS pathway in three protist lineages and suggest that the early mitochondrion may have been capable of secreting proteins into the cytosol.
Collapse
Affiliation(s)
- Lenka Horváthová
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vojtěch Žárský
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Tomáš Pánek
- Faculty of Science, Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic.,Faculty of Science, Department of Zoology, Charles University, Prague 2, Czech Republic
| | - Romain Derelle
- School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Jan Pyrih
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury, UK.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Alžběta Motyčková
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Veronika Klápšťová
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Martina Vinopalová
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Lenka Marková
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Luboš Voleman
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vladimír Klimeš
- Faculty of Science, Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic
| | - Markéta Petrů
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Zuzana Vaitová
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ivan Čepička
- Faculty of Science, Department of Zoology, Charles University, Prague 2, Czech Republic
| | - Klára Hryzáková
- Faculty of Science, Department of Genetics and Microbiology, Charles University, Prague 2, Czech Republic
| | - Karel Harant
- Faculty of Science, Proteomic core facility, Charles University, BIOCEV, Vestec, Czech Republic
| | - Michael W Gray
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Mohamed Chami
- Center for Cellular Imaging and NanoAnalytics, University of Basel, Basel, Switzerland
| | - Ingrid Guilvout
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Olivera Francetic
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - B Franz Lang
- Robert Cedergren Centre for Bioinformatics and Genomics, Département de Biochimie, Université de Montréal, Montreal, QC, Canada
| | - Čestmír Vlček
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague 4, Czech Republic
| | - Anastasios D Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury, UK
| | - Marek Eliáš
- Faculty of Science, Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic.
| | - Pavel Doležal
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czech Republic.
| |
Collapse
|
9
|
Bioengineering of Bordetella pertussis Adenylate Cyclase Toxin for Vaccine Development and Other Biotechnological Purposes. Toxins (Basel) 2021; 13:toxins13020083. [PMID: 33499260 PMCID: PMC7911819 DOI: 10.3390/toxins13020083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The adenylate cyclase toxin, CyaA, is one of the key virulent factors produced by Bordetella pertussis, the causative agent of whooping cough. This toxin primarily targets innate immunity to facilitate bacterial colonization of the respiratory tract. CyaA exhibits several remarkable characteristics that have been exploited for various applications in vaccinology and other biotechnological purposes. CyaA has been engineered as a potent vaccine vehicle to deliver antigens into antigen-presenting cells, while the adenylate cyclase catalytic domain has been used to design a robust genetic assay for monitoring protein-protein interactions in bacteria. These two biotechnological applications are briefly summarized in this chapter.
Collapse
|
10
|
Naskar S, Hohl M, Tassinari M, Low HH. The structure and mechanism of the bacterial type II secretion system. Mol Microbiol 2020; 115:412-424. [PMID: 33283907 DOI: 10.1111/mmi.14664] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/03/2020] [Indexed: 12/17/2022]
Abstract
The type II secretion system (T2SS) is a multi-protein complex used by many bacteria to move substrates across their cell membrane. Substrates released into the environment serve as local and long-range effectors that promote nutrient acquisition, biofilm formation, and pathogenicity. In both animals and plants, the T2SS is increasingly recognized as a key driver of virulence. The T2SS spans the bacterial cell envelope and extrudes substrates through an outer membrane secretin channel using a pseudopilus. An inner membrane assembly platform and a cytoplasmic motor controls pseudopilus assembly. This microreview focuses on the structure and mechanism of the T2SS. Advances in cryo-electron microscopy are enabling increasingly elaborate sub-complexes to be resolved. However, key questions remain regarding the mechanism of pseudopilus extension and retraction, and how this is coupled with the choreography of the substrate moving through the secretion system. The T2SS is part of an ancient type IV filament superfamily that may have been present within the last universal common ancestor (LUCA). Overall, mechanistic principles that underlie T2SS function have implication for other closely related systems such as the type IV and tight adherence pilus systems.
Collapse
Affiliation(s)
- Souvik Naskar
- Department of Infectious Disease, Imperial College, London, UK
| | - Michael Hohl
- Department of Infectious Disease, Imperial College, London, UK
| | | | - Harry H Low
- Department of Infectious Disease, Imperial College, London, UK
| |
Collapse
|
11
|
Suppressor Mutations in Type II Secretion Mutants of Vibrio cholerae: Inactivation of the VesC Protease. mSphere 2020; 5:5/6/e01125-20. [PMID: 33328352 PMCID: PMC7771236 DOI: 10.1128/msphere.01125-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genome-wide transposon mutagenesis has identified the genes encoding the T2SS in Vibrio cholerae as essential for viability, but the reason for this is unclear. Mutants with deletions or insertions in these genes can be isolated, suggesting that they have acquired secondary mutations that suppress their growth defect. The type II secretion system (T2SS) is a conserved transport pathway responsible for the secretion of a range of virulence factors by many pathogens, including Vibrio cholerae. Disruption of the T2SS genes in V. cholerae results in loss of secretion, changes in cell envelope function, and growth defects. While T2SS mutants are viable, high-throughput genomic analyses have listed these genes among essential genes. To investigate whether secondary mutations arise as a consequence of T2SS inactivation, we sequenced the genomes of six V. cholerae T2SS mutants with deletions or insertions in either the epsG, epsL, or epsM genes and identified secondary mutations in all mutants. Two of the six T2SS mutants contain distinct mutations in the gene encoding the T2SS-secreted protease VesC. Other mutations were found in genes coding for V. cholerae cell envelope proteins. Subsequent sequence analysis of the vesC gene in 92 additional T2SS mutant isolates identified another 19 unique mutations including insertions or deletions, sequence duplications, and single-nucleotide changes resulting in amino acid substitutions in the VesC protein. Analysis of VesC variants and the X-ray crystallographic structure of wild-type VesC suggested that all mutations lead to loss of VesC production and/or function. One possible mechanism by which V. cholerae T2SS mutagenesis can be tolerated is through selection of vesC-inactivating mutations, which may, in part, suppress cell envelope damage, establishing permissive conditions for the disruption of the T2SS. Other mutations may have been acquired in genes encoding essential cell envelope proteins to prevent proteolysis by VesC. IMPORTANCE Genome-wide transposon mutagenesis has identified the genes encoding the T2SS in Vibrio cholerae as essential for viability, but the reason for this is unclear. Mutants with deletions or insertions in these genes can be isolated, suggesting that they have acquired secondary mutations that suppress their growth defect. Through whole-genome sequencing and phenotypic analysis of T2SS mutants, we show that one means by which the growth defect can be suppressed is through mutations in the gene encoding the T2SS substrate VesC. VesC homologues are present in other Vibrio species and close relatives, and this may be why inactivation of the T2SS in species such as Vibrio vulnificus, Vibrio sp. strain 60, and Aeromonas hydrophila also results in a pleiotropic effect on their outer membrane assembly and integrity.
Collapse
|
12
|
Treuner-Lange A, Chang YW, Glatter T, Herfurth M, Lindow S, Chreifi G, Jensen GJ, Søgaard-Andersen L. PilY1 and minor pilins form a complex priming the type IVa pilus in Myxococcus xanthus. Nat Commun 2020; 11:5054. [PMID: 33028835 PMCID: PMC7541494 DOI: 10.1038/s41467-020-18803-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 09/14/2020] [Indexed: 01/05/2023] Open
Abstract
Type IVa pili are ubiquitous and versatile bacterial cell surface filaments that undergo cycles of extension, adhesion and retraction powered by the cell-envelope spanning type IVa pilus machine (T4aPM). The overall architecture of the T4aPM and the location of 10 conserved core proteins within this architecture have been elucidated. Here, using genetics, cell biology, proteomics and cryo-electron tomography, we demonstrate that the PilY1 protein and four minor pilins, which are widely conserved in T4aP systems, are essential for pilus extension in Myxococcus xanthus and form a complex that is an integral part of the T4aPM. Moreover, these proteins are part of the extended pilus. Our data support a model whereby the PilY1/minor pilin complex functions as a priming complex in T4aPM for pilus extension, a tip complex in the extended pilus for adhesion, and a cork for terminating retraction to maintain a priming complex for the next round of extension.
Collapse
Affiliation(s)
- Anke Treuner-Lange
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Yi-Wei Chang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, 91125, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Marco Herfurth
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Steffi Lindow
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Georges Chreifi
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, 91125, USA
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, 91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Lotte Søgaard-Andersen
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany.
| |
Collapse
|
13
|
Craig L, Forest KT, Maier B. Type IV pili: dynamics, biophysics and functional consequences. Nat Rev Microbiol 2020; 17:429-440. [PMID: 30988511 DOI: 10.1038/s41579-019-0195-4] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The surfaces of many bacteria are decorated with long, exquisitely thin appendages called type IV pili (T4P), dynamic filaments that are rapidly polymerized and depolymerized from a pool of pilin subunits. Cycles of pilus extension, binding and retraction enable T4P to perform a phenomenally diverse array of functions, including twitching motility, DNA uptake and microcolony formation. On the basis of recent developments, a comprehensive understanding is emerging of the molecular architecture of the T4P machinery and the filament it builds, providing mechanistic insights into the assembly and retraction processes. Combined microbiological and biophysical approaches have revealed how T4P dynamics influence self-organization of bacteria, how bacteria respond to external stimuli to regulate T4P activity for directed movement, and the role of T4P retraction in surface sensing. In this Review, we discuss the T4P machine architecture and filament structure and present current molecular models for T4P dynamics, with a particular focus on recent insights into T4P retraction. We also discuss the functional consequences of T4P dynamics, which have important implications for bacterial lifestyle and pathogenesis.
Collapse
Affiliation(s)
- Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Katrina T Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Berenike Maier
- Institute for Biological Physics, University of Cologne, Köln, Germany.
| |
Collapse
|
14
|
Abstract
The type II secretion system (T2SS) delivers toxins and a range of hydrolytic enzymes, including proteases, lipases, and carbohydrate-active enzymes, to the cell surface or extracellular space of Gram-negative bacteria. Its contribution to survival of both extracellular and intracellular pathogens as well as environmental species of proteobacteria is evident. This dynamic, multicomponent machinery spans the entire cell envelope and consists of a cytoplasmic ATPase, several inner membrane proteins, a periplasmic pseudopilus, and a secretin pore embedded in the outer membrane. Despite the trans-envelope configuration of the T2S nanomachine, proteins to be secreted engage with the system first once they enter the periplasmic compartment via the Sec or TAT export system. Thus, the T2SS is specifically dedicated to their outer membrane translocation. The many sequence and structural similarities between the T2SS and type IV pili suggest a common origin and argue for a pilus-mediated mechanism of secretion. This minireview describes the structures, functions, and interactions of the individual T2SS components and the general architecture of the assembled T2SS machinery and briefly summarizes the transport and function of a growing list of T2SS exoproteins. Recent advances in cryo-electron microscopy, which have led to an increased understanding of the structure-function relationship of the secretin channel and the pseudopilus, are emphasized.
Collapse
|
15
|
Bardiaux B, de Amorim GC, Luna Rico A, Zheng W, Guilvout I, Jollivet C, Nilges M, Egelman EH, Izadi-Pruneyre N, Francetic O. Structure and Assembly of the Enterohemorrhagic Escherichia coli Type 4 Pilus. Structure 2019; 27:1082-1093.e5. [PMID: 31056419 PMCID: PMC7003672 DOI: 10.1016/j.str.2019.03.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/18/2019] [Accepted: 03/25/2019] [Indexed: 12/30/2022]
Abstract
Bacterial type 4a pili are dynamic surface filaments that promote bacterial adherence, motility, and macromolecular transport. Their genes are highly conserved among enterobacteria and their expression in enterohemorrhagic Escherichia coli (EHEC) promotes adhesion to intestinal epithelia and pro-inflammatory signaling. To define the molecular basis of EHEC pilus assembly, we determined the structure of the periplasmic domain of its major subunit PpdD (PpdDp), a prototype of an enterobacterial pilin subfamily containing two disulfide bonds. The structure of PpdDp, determined by NMR, was then docked into the density envelope of purified EHEC pili obtained by cryoelectron microscopy (cryo-EM). Cryo-EM reconstruction of EHEC pili at ∼8 Å resolution revealed extremely high pilus flexibility correlating with a large extended region of the pilin stem. Systematic mutagenesis combined with functional and interaction analyses identified charged residues essential for pilus assembly. Structural information on exposed regions and interfaces between EHEC pilins is relevant for vaccine and drug discovery.
Collapse
Affiliation(s)
- Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS USR3756, Paris, France
| | - Gisele Cardoso de Amorim
- NMR of Biomolecules Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Areli Luna Rico
- NMR of Biomolecules Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France; Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Ingrid Guilvout
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Camille Jollivet
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Michael Nilges
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS USR3756, Paris, France
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Nadia Izadi-Pruneyre
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS USR3756, Paris, France; NMR of Biomolecules Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France.
| | - Olivera Francetic
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France.
| |
Collapse
|
16
|
Denise R, Abby SS, Rocha EPC. Diversification of the type IV filament superfamily into machines for adhesion, protein secretion, DNA uptake, and motility. PLoS Biol 2019; 17:e3000390. [PMID: 31323028 PMCID: PMC6668835 DOI: 10.1371/journal.pbio.3000390] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/31/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
Processes of molecular innovation require tinkering and shifting in the function of existing genes. How this occurs in terms of molecular evolution at long evolutionary scales remains poorly understood. Here, we analyse the natural history of a vast group of membrane-associated molecular systems in Bacteria and Archaea-the type IV filament (TFF) superfamily-that diversified in systems involved in flagellar or twitching motility, adhesion, protein secretion, and DNA uptake. The phylogeny of the thousands of detected systems suggests they may have been present in the last universal common ancestor. From there, two lineages-a bacterial and an archaeal-diversified by multiple gene duplications, gene fissions and deletions, and accretion of novel components. Surprisingly, we find that the 'tight adherence' (Tad) systems originated from the interkingdom transfer from Archaea to Bacteria of a system resembling the 'EppA-dependent' (Epd) pilus and were associated with the acquisition of a secretin. The phylogeny and content of ancestral systems suggest that initial bacterial pili were engaged in cell motility and/or DNA uptake. In contrast, specialised protein secretion systems arose several times independently and much later in natural history. The functional diversification of the TFF superfamily was accompanied by genetic rearrangements with implications for genetic regulation and horizontal gene transfer: systems encoded in fewer loci were more frequently exchanged between taxa. This may have contributed to their rapid evolution and spread across Bacteria and Archaea. Hence, the evolutionary history of the superfamily reveals an impressive catalogue of molecular evolution mechanisms that resulted in remarkable functional innovation and specialisation from a relatively small set of components.
Collapse
Affiliation(s)
- Rémi Denise
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Sophie S. Abby
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Eduardo P. C. Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
| |
Collapse
|
17
|
Luna Rico A, Zheng W, Petiot N, Egelman EH, Francetic O. Functional reconstitution of the type IVa pilus assembly system from enterohaemorrhagic Escherichia coli. Mol Microbiol 2019; 111:732-749. [PMID: 30561149 DOI: 10.1111/mmi.14188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2018] [Indexed: 12/17/2022]
Abstract
Type 4a pili (T4aP) are long, thin and dynamic fibres displayed on the surface of diverse bacteria promoting adherence, motility and transport functions. Genomes of many Enterobacteriaceae contain conserved gene clusters encoding putative T4aP assembly systems. However, their expression has been observed only in few strains including Enterohaemorrhagic Escherichia coli (EHEC) and their inducers remain unknown. Here we used EHEC genomic DNA as a template to amplify and assemble an artificial operon composed of four gene clusters encoding 13 pilus assembly proteins. Controlled expressions of this operon in nonpathogenic E. coli strains led to efficient assembly of T4aP composed of the major pilin PpdD, as shown by shearing assays and immunofluorescence microscopy. When compared with PpdD pili assembled in a heterologous Klebsiella T2SS type 2 secretion system (T2SS) by using cryo-electron microscopy (cryoEM), these pili showed indistinguishable helical parameters, emphasizing that major pilins are the principal determinants of the fibre structure. Bacterial two-hybrid analysis identified several interactions of PpdD with T4aP assembly proteins, and with components of the T2SS that allow for heterologous fibre assembly. These studies lay ground for further characterization of the T4aP structure, function and biogenesis in enterobacteria.
Collapse
Affiliation(s)
- Areli Luna Rico
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, Paris, 75724, France.,Structural Bioinformatics Unit and NMR of Biomolecules Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, Paris, 75724, France
| | - Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nathalie Petiot
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, Paris, 75724, France
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Olivera Francetic
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, Paris, 75724, France
| |
Collapse
|
18
|
Zhang Y, Faucher F, Zhang W, Wang S, Neville N, Poole K, Zheng J, Jia Z. Structure-guided disruption of the pseudopilus tip complex inhibits the Type II secretion in Pseudomonas aeruginosa. PLoS Pathog 2018; 14:e1007343. [PMID: 30346996 PMCID: PMC6211770 DOI: 10.1371/journal.ppat.1007343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/01/2018] [Accepted: 09/19/2018] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas aeruginosa utilizes the Type II secretion system (T2SS) to translocate a wide range of large, structured protein virulence factors through the periplasm to the extracellular environment for infection. In the T2SS, five pseudopilins assemble into the pseudopilus that acts as a piston to extrude exoproteins out of cells. Through structure determination of the pseudopilin complexes of XcpVWX and XcpVW and function analysis, we have confirmed that two minor pseudopilins, XcpV and XcpW, constitute a core complex indispensable to the pseudopilus tip. The absence of either XcpV or -W resulted in the non-functional T2SS. Our small-angle X-ray scattering experiment for the first time revealed the architecture of the entire pseudopilus tip and established the working model. Based on the interaction interface of complexes, we have developed inhibitory peptides. The structure-based peptides not only disrupted of the XcpVW core complex and the entire pseudopilus tip in vitro but also inhibited the T2SS in vivo. More importantly, these peptides effectively reduced the virulence of P. aeruginosa towards Caenorhabditis elegans. The Type II secretion system has been characterized as an important virulence factor translocation machine that secrets various toxic proteins from the periplasm into the extracellular milieu used by a wide spectrum of Gram-negative bacteria. Through the characterization of the structure of the pseudopilus tip complex by protein crystallography and small-angle X-ray scattering, we have identified a critical interaction interface in the core binary complex formed by two minor pseudopilins, XcpV and–W, in Pseudomonas aeruginosa. Based on the interaction interface, two inhibitory peptides were developed, which showed potency of disrupting the entire pseudopilus tip complex and further inhibited the Type II secretion system. When applied to Caenorhabditis elegans, these peptides prevent the killing of worms by the P. aeruginosa. Our work has represented the first successful research on the inhibition of the Type II secretion system based on the structure of the pseudopilus tip complex.
Collapse
Affiliation(s)
- Yichen Zhang
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Frédérick Faucher
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Wenwen Zhang
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Shu Wang
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Nolan Neville
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Keith Poole
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
Michel-Souzy S, Douzi B, Cadoret F, Raynaud C, Quinton L, Ball G, Voulhoux R. Direct interactions between the secreted effector and the T2SS components GspL and GspM reveal a new effector-sensing step during type 2 secretion. J Biol Chem 2018; 293:19441-19450. [PMID: 30337370 DOI: 10.1074/jbc.ra117.001127] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
In many Gram-negative bacteria, the type 2 secretion system (T2SS) plays an important role in virulence because of its capacity to deliver a large amount of fully folded protein effectors to the extracellular milieu. Despite our knowledge of most T2SS components, the mechanisms underlying effector recruitment and secretion by the T2SS remain enigmatic. Using complementary biophysical and biochemical approaches, we identified here two direct interactions between the secreted effector CbpD and two components, XcpYL and XcpZM, of the T2SS assembly platform (AP) in the opportunistic pathogen Pseudomonas aeruginosa Competition experiments indicated that CbpD binding to XcpYL is XcpZM-dependent, suggesting sequential recruitment of the effector by the periplasmic domains of these AP components. Using a bacterial two-hybrid system, we then tested the influence of the effector on the AP protein-protein interaction network. Our findings revealed that the presence of the effector modifies the AP interactome and, in particular, induces XcpZM homodimerization and increases the affinity between XcpYL and XcpZM The observed direct relationship between effector binding and T2SS dynamics suggests an additional synchronizing step during the type 2 secretion process, where the activation of the AP of the T2SS nanomachine is triggered by effector binding.
Collapse
Affiliation(s)
- Sandra Michel-Souzy
- From the CNRS, Aix Marseille Université, Institut de Microbiologie de la Méditerranée (IMM), Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM)/UMR7255, 13009 Marseille, France
| | - Badreddine Douzi
- From the CNRS, Aix Marseille Université, Institut de Microbiologie de la Méditerranée (IMM), Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM)/UMR7255, 13009 Marseille, France.,CNRS, Aix Marseille Université, IMM, Laboratoire de Chimie Bactérienne (LCB)/UMR7283, 13009 Marseille, France, and
| | - Frédéric Cadoret
- From the CNRS, Aix Marseille Université, Institut de Microbiologie de la Méditerranée (IMM), Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM)/UMR7255, 13009 Marseille, France
| | - Claire Raynaud
- From the CNRS, Aix Marseille Université, Institut de Microbiologie de la Méditerranée (IMM), Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM)/UMR7255, 13009 Marseille, France.,CNRS, Aix Marseille Université, IMM, Laboratoire de Chimie Bactérienne (LCB)/UMR7283, 13009 Marseille, France, and
| | - Loïc Quinton
- Laboratory of Mass Spectrometry-MolSys, Department of Chemistry, University of Liège, B4000 Liège, Belgium
| | - Geneviève Ball
- From the CNRS, Aix Marseille Université, Institut de Microbiologie de la Méditerranée (IMM), Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM)/UMR7255, 13009 Marseille, France.,CNRS, Aix Marseille Université, IMM, Laboratoire de Chimie Bactérienne (LCB)/UMR7283, 13009 Marseille, France, and
| | - Romé Voulhoux
- From the CNRS, Aix Marseille Université, Institut de Microbiologie de la Méditerranée (IMM), Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM)/UMR7255, 13009 Marseille, France, .,CNRS, Aix Marseille Université, IMM, Laboratoire de Chimie Bactérienne (LCB)/UMR7283, 13009 Marseille, France, and
| |
Collapse
|
20
|
Structure of the calcium-dependent type 2 secretion pseudopilus. Nat Microbiol 2017; 2:1686-1695. [PMID: 28993624 PMCID: PMC5705324 DOI: 10.1038/s41564-017-0041-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/11/2017] [Indexed: 11/08/2022]
Abstract
Many Gram-negative bacteria use type 2 secretion systems (T2SS) to secrete proteins involved in virulence and adaptation. Transport of folded proteins via T2SS nanomachines requires the assembly of inner membrane-anchored fibers called pseudopili. Although efficient pseudopilus assembly is essential for protein secretion, structure-based functional analyses are required to unravel the mechanistic link between these processes. Here, we report an atomic model for a T2SS pseudopilus from Klebsiella oxytoca, obtained by fitting the NMR structure of its calcium-bound subunit PulG into the ~ 5 Å resolution cryo-electron microscopy (cryoEM) reconstruction of assembled fibers. This structure reveals the comprehensive network of inter-subunit contacts and unexpected features, including a disordered central region of the PulG helical stem, and highly flexible C-terminal residues on the fiber surface. NMR, mutagenesis and functional analyses highlight the key role of calcium in PulG folding and stability. Fiber disassembly in the absence of calcium provides a basis for pseudopilus length control, essential for protein secretion, and supports the Archimedes' screw model for T2S mechanism.
Collapse
|
21
|
Gu S, Shevchik VE, Shaw R, Pickersgill RW, Garnett JA. The role of intrinsic disorder and dynamics in the assembly and function of the type II secretion system. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1255-1266. [PMID: 28733198 DOI: 10.1016/j.bbapap.2017.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/02/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Many Gram-negative commensal and pathogenic bacteria use a type II secretion system (T2SS) to transport proteins out of the cell. These exported proteins or substrates play a major role in toxin delivery, maintaining biofilms, replication in the host and subversion of host immune responses to infection. We review the current structural and functional work on this system and argue that intrinsically disordered regions and protein dynamics are central for assembly, exo-protein recognition, and secretion competence of the T2SS. The central role of intrinsic disorder-order transitions in these processes may be a particular feature of type II secretion.
Collapse
Affiliation(s)
- Shuang Gu
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, United Kingdom
| | - Vladimir E Shevchik
- Université de Lyon, F-69003, Université Lyon 1, Lyon, F-69622, INSA-Lyon, Villeurbanne F-69621, CNRS, UMR5240, Microbiologie Adaptation et Pathogénie, Lyon F-69622, France
| | - Rosie Shaw
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, United Kingdom
| | - Richard W Pickersgill
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, United Kingdom.
| | - James A Garnett
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, United Kingdom.
| |
Collapse
|
22
|
Maffei B, Francetic O, Subtil A. Tracking Proteins Secreted by Bacteria: What's in the Toolbox? Front Cell Infect Microbiol 2017; 7:221. [PMID: 28620586 PMCID: PMC5449463 DOI: 10.3389/fcimb.2017.00221] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/15/2017] [Indexed: 01/14/2023] Open
Abstract
Bacteria have acquired multiple systems to expose proteins on their surface, release them in the extracellular environment or even inject them into a neighboring cell. Protein secretion has a high adaptive value and secreted proteins are implicated in many functions, which are often essential for bacterial fitness. Several secreted proteins or secretion machineries have been extensively studied as potential drug targets. It is therefore important to identify the secretion substrates, to understand how they are specifically recognized by the secretion machineries, and how transport through these machineries occurs. The purpose of this review is to provide an overview of the biochemical, genetic and imaging tools that have been developed to evaluate protein secretion in a qualitative or quantitative manner. After a brief overview of the different tools available, we will illustrate their advantages and limitations through a discussion of some of the current open questions related to protein secretion. We will start with the question of the identification of secreted proteins, which for many bacteria remains a critical initial step toward a better understanding of their interactions with the environment. We will then illustrate our toolbox by reporting how these tools have been applied to better understand how substrates are recognized by their cognate machinery, and how secretion proceeds. Finally, we will highlight recent approaches that aim at investigating secretion in real time, and in complex environments such as a tissue or an organism.
Collapse
Affiliation(s)
- Benoit Maffei
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut PasteurParis, France.,Centre National de la Recherche Scientifique UMR3691Paris, France
| | - Olivera Francetic
- Unité de Biochimie des Interactions Macromoléculaires, Institut PasteurParis, France.,Centre National de la Recherche Scientifique ERL6002Paris, France
| | - Agathe Subtil
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut PasteurParis, France.,Centre National de la Recherche Scientifique UMR3691Paris, France
| |
Collapse
|
23
|
Thomassin JL, Santos Moreno J, Guilvout I, Tran Van Nhieu G, Francetic O. The trans-envelope architecture and function of the type 2 secretion system: new insights raising new questions. Mol Microbiol 2017; 105:211-226. [DOI: 10.1111/mmi.13704] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Jenny-Lee Thomassin
- Department of structural biology and chemistry, Biochemistry of Macromolecular Interactions Unit; Institut Pasteur; 28 rue du Dr Roux 75724 Paris Cedex 15 France
- Centre National de la Recherche Scientifique (CNRS); ERL6002 75724 Paris France
| | - Javier Santos Moreno
- Université Paris Diderot (Paris 7) Sorbonne Paris Cité; Paris France
- Laboratory of Intercellular Communication and Microbial Infections; CIRB, Collège de France; 11 Place Marcelin Berthelot 75005 Paris France
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1050; 75005 Paris France
- Centre National de la Recherche Scientifique (CNRS), UMR7241; 75005 Paris France
- MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres; 75005 Paris France
| | - Ingrid Guilvout
- Department of structural biology and chemistry, Biochemistry of Macromolecular Interactions Unit; Institut Pasteur; 28 rue du Dr Roux 75724 Paris Cedex 15 France
- Centre National de la Recherche Scientifique (CNRS); ERL6002 75724 Paris France
| | - Guy Tran Van Nhieu
- Laboratory of Intercellular Communication and Microbial Infections; CIRB, Collège de France; 11 Place Marcelin Berthelot 75005 Paris France
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1050; 75005 Paris France
- Centre National de la Recherche Scientifique (CNRS), UMR7241; 75005 Paris France
- MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres; 75005 Paris France
| | - Olivera Francetic
- Department of structural biology and chemistry, Biochemistry of Macromolecular Interactions Unit; Institut Pasteur; 28 rue du Dr Roux 75724 Paris Cedex 15 France
- Centre National de la Recherche Scientifique (CNRS); ERL6002 75724 Paris France
| |
Collapse
|
24
|
Santos-Moreno J, East A, Guilvout I, Nadeau N, Bond PJ, Tran Van Nhieu G, Francetic O. Polar N-terminal Residues Conserved in Type 2 Secretion Pseudopilins Determine Subunit Targeting and Membrane Extraction Steps during Fibre Assembly. J Mol Biol 2017; 429:1746-1765. [PMID: 28427876 DOI: 10.1016/j.jmb.2017.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 11/28/2022]
Abstract
Bacterial type 2 secretion systems (T2SS), type 4 pili, and archaeal flagella assemble fibres from initially membrane-embedded pseudopilin and pilin subunits. Fibre subunits are made as precursors with positively charged N-terminal anchors, whose cleavage via the prepilin peptidase, essential for pilin membrane extraction and assembly, is followed by N-methylation of the mature (pseudo)pilin N terminus. The conserved Glu residue at position 5 (E5) of mature (pseudo)pilins is essential for assembly. Unlike T4 pilins, where E5 residue substitutions also abolish N-methylation, the E5A variant of T2SS pseudopilin PulG remains N-methylated but is affected in interaction with the T2SS component PulM. Here, biochemical and functional analyses showed that the PulM interaction defect only partly accounts for the PulGE5A assembly defect. First, PulGT2A variant, equally defective in PulM interaction, remained partially functional. Furthermore, pseudopilus assembly defect of pulG(E5A) mutant was stronger than that of the pulM deletion mutant. To understand the dominant effect of E5A mutation, we used molecular dynamics simulations of PulGE5A, methylated PulGWT (MePulGWT), and MePulGE5A variant in a model membrane. These simulations pointed to a key role for an intramolecular interaction between the pseudopilin N-terminal amine and E5 to limit polar interactions with membrane phospholipids. N-methylation of the N-terminal amine further limited its interactions with phospholipid head-groups to facilitate pseudopilin membrane escape. By binding to polar residues in the conserved N-terminal region of PulG, we propose that PulM acts as chaperone to promote pseudopilin recruitment and coordinate its membrane extraction with subsequent steps of the fibre assembly process.
Collapse
Affiliation(s)
- Javier Santos-Moreno
- Université Paris Diderot (Paris 7) Sorbonne Paris Cité, 11 Place Marcelin Berthelot, 75231 Paris, France; Laboratory of Intercellular Communication and Microbial Infections, CIRB, Collège de France, 75231 Paris, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, 75231 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR7241, 75231 Paris, France; MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres, 75231 Paris, France
| | - Alexandra East
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Ingrid Guilvout
- Laboratory of Macromolecular Systems and Signalling, Institut Pasteur, Department of Microbiology and CNRS ERL6002, 25 rue du Dr Roux, 75724 Paris, Cedex 15, France; Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, Cedex 15, France
| | - Nathalie Nadeau
- Laboratory of Macromolecular Systems and Signalling, Institut Pasteur, Department of Microbiology and CNRS ERL6002, 25 rue du Dr Roux, 75724 Paris, Cedex 15, France
| | - Peter J Bond
- Bioinformatics Institute (A*STAR), 30 Biopolis Str, #07-01 Matrix, Singapore 138671, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Guy Tran Van Nhieu
- Laboratory of Intercellular Communication and Microbial Infections, CIRB, Collège de France, 75231 Paris, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, 75231 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR7241, 75231 Paris, France; MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres, 75231 Paris, France
| | - Olivera Francetic
- Laboratory of Macromolecular Systems and Signalling, Institut Pasteur, Department of Microbiology and CNRS ERL6002, 25 rue du Dr Roux, 75724 Paris, Cedex 15, France; Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, Cedex 15, France.
| |
Collapse
|
25
|
Ng D, Harn T, Altindal T, Kolappan S, Marles JM, Lala R, Spielman I, Gao Y, Hauke CA, Kovacikova G, Verjee Z, Taylor RK, Biais N, Craig L. The Vibrio cholerae Minor Pilin TcpB Initiates Assembly and Retraction of the Toxin-Coregulated Pilus. PLoS Pathog 2016; 12:e1006109. [PMID: 27992883 PMCID: PMC5207764 DOI: 10.1371/journal.ppat.1006109] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/03/2017] [Accepted: 12/02/2016] [Indexed: 01/03/2023] Open
Abstract
Type IV pilus (T4P) systems are complex molecular machines that polymerize major pilin proteins into thin filaments displayed on bacterial surfaces. Pilus functions require rapid extension and depolymerization of the pilus, powered by the assembly and retraction ATPases, respectively. A set of low abundance minor pilins influences pilus dynamics by unknown mechanisms. The Vibrio cholerae toxin-coregulated pilus (TCP) is among the simplest of the T4P systems, having a single minor pilin TcpB and lacking a retraction ATPase. Here we show that TcpB, like its homolog CofB, initiates pilus assembly. TcpB co-localizes with the pili but at extremely low levels, equivalent to one subunit per pilus. We used a micropillars assay to demonstrate that TCP are retractile despite the absence of a retraction ATPase, and that retraction relies on TcpB, as a V. cholerae tcpB Glu5Val mutant is fully piliated but does not induce micropillars movements. This mutant is impaired in TCP-mediated autoagglutination and TcpF secretion, consistent with retraction being required for these functions. We propose that TcpB initiates pilus retraction by incorporating into the growing pilus in a Glu5-dependent manner, which stalls assembly and triggers processive disassembly. These results provide a framework for understanding filament dynamics in more complex T4P systems and the closely related Type II secretion system. Bacterial pathogens utilize a number of highly complex and sophisticated molecular systems to colonize their hosts and alter them, creating customized niches in which to reproduce. One such system is the Type IV pilus system, made up of dozens of proteins that form a macromolecular machine to polymerize small pilin proteins into long thin filaments that are displayed on the bacterial surface. These pili have a remarkable array of functions that rely on their ability to (i) adhere to many substrates, including host cell surfaces, pili from nearby bacteria, DNA and bacterial viruses (bacteriophage), and (ii) to depolymerize or retract, which pulls the bacteria along mucosal surfaces, pulls them close together in protective aggregates, and can even draw in substrates like DNA and bacteriophage for nutrition and genetic variation. For most Type IV pilus systems, retraction is an energy-driven process facilitated by a retraction ATPase. We show here that in the simplest of the Type IV pilus systems, the Vibrio cholerae toxin-coregulated pilus, a pilin-like protein initiates pilus retraction by what appears to be mechanical rather than enzymatic means. Our results provide a framework for understanding more complex Type IV pili and the related Type II secretion systems, which represent targets for novel highly specific antibiotics.
Collapse
Affiliation(s)
- Dixon Ng
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tony Harn
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tuba Altindal
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Subramania Kolappan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jarrad M. Marles
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Rajan Lala
- Biology Department, Brooklyn College, City University of New York, Brooklyn, New York, United States of America
| | - Ingrid Spielman
- Biology Department, Brooklyn College, City University of New York, Brooklyn, New York, United States of America
| | - Yang Gao
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Caitlyn A. Hauke
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Gabriela Kovacikova
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Zia Verjee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ronald K. Taylor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Nicolas Biais
- Biology Department, Brooklyn College, City University of New York, Brooklyn, New York, United States of America
- Graduate Center, City University of New York, Brooklyn, New York, United States of America
- * E-mail: (LC); (NB)
| | - Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail: (LC); (NB)
| |
Collapse
|
26
|
Structure of the Neisseria meningitidis Type IV pilus. Nat Commun 2016; 7:13015. [PMID: 27698424 PMCID: PMC5059446 DOI: 10.1038/ncomms13015] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/25/2016] [Indexed: 02/04/2023] Open
Abstract
Neisseria meningitidis use Type IV pili (T4P) to adhere to endothelial cells and breach the blood brain barrier, causing cause fatal meningitis. T4P are multifunctional polymers of the major pilin protein, which share a conserved hydrophobic N terminus that is a curved extended α-helix, α1, in X-ray crystal structures. Here we report a 1.44 Å crystal structure of the N. meningitidis major pilin PilE and a ∼6 Å cryo-electron microscopy reconstruction of the intact pilus, from which we built an atomic model for the filament. This structure reveals the molecular arrangement of the N-terminal α-helices in the filament core, including a melted central portion of α1 and a bridge of electron density consistent with a predicted salt bridge necessary for pilus assembly. This structure has important implications for understanding pilus biology. Type IV pili are present on a wide range of bacterial pathogens and mediate diverse functions. Here the authors report a high resolution crystal structure of the pilin subunit PilE, and a cryoEM reconstruction of the Type IV pilus filament from N. meningitidis that offer insight into pilus assembly and functions.
Collapse
|