1
|
Giorgio RT, Helaine S. Antibiotic-recalcitrant Salmonella during infection. Nat Rev Microbiol 2025; 23:276-287. [PMID: 39558126 DOI: 10.1038/s41579-024-01124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Antibiotic-recalcitrant infections, defined as the prolonged carriage of pathogenic bacteria even in the presence of antibiotics, are often caused by bacteria that are genetically susceptible to the drug. These recalcitrant bacteria fail to proliferate in the presence of antibiotics but remain viable such that they may recolonize their niche following antibiotic withdrawal. Significant progress has been made in our understanding of antibiotic-recalcitrant Salmonella, which are thought to be the source of infection relapse. In recent years, it has been shown that recalcitrant bacteria manipulate host immune defences and could directly contribute to the spread of antimicrobial resistance. In this Review, we provide an overview of what is currently known about the antibiotic recalcitrance of Salmonella during infection and highlight knowledge gaps requiring additional research in the future.
Collapse
Affiliation(s)
- Rachel T Giorgio
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Chowdhury FR, Mercado LD, Kharitonov K, Findlay BL. De novo evolution of antibiotic resistance to Oct-TriA 1. Microbiol Res 2025; 293:128056. [PMID: 39832423 DOI: 10.1016/j.micres.2025.128056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
The rise of antimicrobial resistance as a global health concern has led to a strong interest in compounds able to inhibit the growth of bacteria without detectable levels of resistance evolution. A number of these compounds have been reported in recent years, including the tridecaptins, a small family of lipopeptides typified by the synthetic analogue octyl-tridecaptin A1. Hypothesizing that prior reports of negligible resistance evolution have been due in part to limitations in the laboratory evolution systems used, we have attempted to select for resistant mutants using a soft agar gradient evolution (SAGE) system developed by our lab. Following optimization of the media conditions by incorporation of the anti-synaeresis agent xanthan gum into the agar matrix, we successfully evolved high-level resistance to both octyl-tridecaptin A1 as well as the challenging lipopeptide antibiotic polymyxin B. Decreased tridecaptin susceptibility was linked to mutations in outer membrane proteins ompC, lptD and mlaA, with the effect of these genes confirmed through a mix of allelic replacement and knockout studies. Overall, this work demonstrates the robust evolutionary potential of bacteria, even in the face of challenging antimicrobial agents.
Collapse
Affiliation(s)
- Farhan R Chowdhury
- Department of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Laura Domínguez Mercado
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Katya Kharitonov
- Department of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Brandon L Findlay
- Department of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada; Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada.
| |
Collapse
|
3
|
Wei C, Wu J, Zhang J, Liang Y, Yu K, Liao M, Liang X, Wang J, Long W, Wang J, Chen S, Yang Y, Gong X, Li J, Zhang X. Clinical characteristics, molecular epidemiology and mechanisms of colistin heteroresistance in Enterobacter cloacae complex. Front Cell Infect Microbiol 2025; 15:1536058. [PMID: 40115074 PMCID: PMC11922889 DOI: 10.3389/fcimb.2025.1536058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/10/2025] [Indexed: 03/23/2025] Open
Abstract
Introduction Colistin has emerged as the last resort for treating multidrug-resistant Enterobacter cloacae complex (ECC) infections. The primary purposes of this study were to demonstrate the presence of colistin heteroresistance in ECC and to further investigate their clinical characteristics, molecular epidemiology and mechanisms. Methods Population analysis profiles (PAP) were performed to confirm the heteroresistance phenotype. Average nucleotide identity (ANI) was determined to classify ECC species. Phylogenetic analysis based on core genome single nucleotide polymorphisms (cg-SNPs), multilocus sequence typing (MLST) and core genome MLST (cg-MLST). Risk factors and clinical outcomes of infections were analyzed through a retrospective case-control study. Potential mechanisms of colistin heteroresistance were evaluated using polymerase chain reaction (PCR), efflux pump inhibition assays and reverse transcription quantitative PCR (RT-qPCR). Results A high proportion (24.4%) of the non-resistant strains were colistin-heteroresistant isolates. Among the several ECC species, Enterobacter kobei had the largest percentage (29.4%) of colistin-heteroresistant isolates, followed by Enterobacter hormaechei (20.5%) and Enterobacter bugandensis (20.0%). Notably, only one strain (0.8%; 1/132) of Enterobacter hormaechei was fully resistant to colistin. Different ECC species showed varying heteroresistance levels: Enterobacter roggenkampii, Enterobacter kobei, Enterobacter asburiae and Enterobacter bugandensis displayed high heteroresistance levels (MIC ≥ 128 mg/L). 75% of all ST116 and ST56 strains were heteroresistant to colistin. The infection of ST116 and ST56 strains as well as exposure to cephalosporin antibiotics were independent risk factors for colistin-heteroresistant ECC infections. Mechanistic analysis revealed that heteroresistance strongly correlated with the overexpression of arnA, regulated by the PhoPQ two-component system (TCS). Notably, mgrB had minimal impact. AcrAB-TolC efflux pump genes showed unsynchronized expression; High acrB expression was strongly associated with colistin heteroresistance, while acrA and tolC were not. Discussion Colistin heteroresistance showed species-dependent variations in levels and prevalence rates. The colistin-heteroresistant mechanisms were complex, involving coordinated regulation of multiple genes. These results highlighted the need for tailored antimicrobial stewardship. In addition, the development of direct, reliable and rapid clinical methods for detecting heteroresistance is essential for improving infection management and prevention.
Collapse
Affiliation(s)
- Chunli Wei
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jiming Wu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jisheng Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Youtao Liang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Kaixin Yu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathogenic Biology, Basic Medicine of Jiamusi University, Jiamusi, China
| | - Mingjing Liao
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xushan Liang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jianmin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Wenzhang Long
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Shijian Chen
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Yang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xue Gong
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Guliaev A, Hjort K, Rossi M, Jonsson S, Nicoloff H, Guy L, Andersson DI. Machine learning detection of heteroresistance in Escherichia coli. EBioMedicine 2025; 113:105618. [PMID: 39986174 PMCID: PMC11893328 DOI: 10.1016/j.ebiom.2025.105618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Heteroresistance (HR) is a significant type of antibiotic resistance observed for several bacterial species and antibiotic classes where a susceptible main population contains small subpopulations of resistant cells. Mathematical models, animal experiments and clinical studies associate HR with treatment failure. Currently used susceptibility tests do not detect heteroresistance reliably, which can result in misclassification of heteroresistant isolates as susceptible which might lead to treatment failure. Here we examined if whole genome sequence (WGS) data and machine learning (ML) can be used to detect bacterial HR. METHODS We classified 467 Escherichia coli clinical isolates as HR or non-HR to the often used β-lactam/inhibitor combination piperacillin-tazobactam using pre-screening and Population Analysis Profiling tests. We sequenced the isolates, assembled the whole genomes and created a set of predictors based on current knowledge of HR mechanisms. Then we trained several machine learning models on 80% of this data set aiming to detect HR isolates. We compared performance of the best ML models on the remaining 20% of the data set with a baseline model based solely on the presence of β-lactamase genes. Furthermore, we sequenced the resistant sub-populations in order to analyse the genetic mechanisms underlying HR. FINDINGS The best ML model achieved 100% sensitivity and 84.6% specificity, outperforming the baseline model. The strongest predictors of HR were the total number of β-lactamase genes, β-lactamase gene variants and presence of IS elements flanking them. Genetic analysis of HR strains confirmed that HR is caused by an increased copy number of resistance genes via gene amplification or plasmid copy number increase. This aligns with the ML model's findings, reinforcing the hypothesis that this mechanism underlies HR in Gram-negative bacteria. INTERPRETATION We demonstrate that a combination of WGS and ML can identify HR in bacteria with perfect sensitivity and high specificity. This improved detection would allow for better-informed treatment decisions and potentially reduce the occurrence of treatment failures associated with HR. FUNDING Funding provided to DIA from the Swedish Research Council (2021-02091) and NIH (1U19AI158080-01).
Collapse
Affiliation(s)
- Andrei Guliaev
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Karin Hjort
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Michele Rossi
- Department of Biosciences, University of Milan, Milan, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Sofia Jonsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hervé Nicoloff
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Kupke J, Brombach J, Fang Y, Wolf SA, Thrukonda L, Ghazisaeedi F, Kuropka B, Hanke D, Semmler T, Nordholt N, Schreiber F, Tedin K, Lübke-Becker A, Steiner UK, Fulde M. Heteroresistance in Enterobacter cloacae complex caused by variation in transient gene amplification events. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:13. [PMID: 39987221 PMCID: PMC11846870 DOI: 10.1038/s44259-025-00082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/18/2024] [Indexed: 02/24/2025]
Abstract
Heteroresistance (HR) in bacteria describes a subpopulational phenomenon of antibiotic resistant cells of a generally susceptible population. Here, we investigated the molecular mechanisms and phenotypic characteristics underlying HR to ceftazidime (CAZ) in a clinical Enterobacter cloacae complex strain (ECC). We identified a plasmid-borne gene duplication-amplification (GDA) event of a region harbouring an ampC gene encoding a β-lactamase blaDHA-1 as the key determinant of HR. Individual colonies exhibited variations in the copy number of the genes resulting in resistance level variation which correlated with growth onset (lag times) and growth rates in the presence of CAZ. GDA copy number heterogeneity occurred within single resistant colonies, demonstrating heterogeneity of GDA on the single-cell level. The interdependence between GDA, lag time and antibiotic treatment and the strong plasticity underlying HR underlines the high risk for misdetection of antimicrobial HR and subsequent treatment failure.
Collapse
Affiliation(s)
- Johannes Kupke
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Julian Brombach
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Yuwen Fang
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Silver A Wolf
- Robert Koch Institute (RKI), MF1-Genome Competence Centre, Berlin, Germany
| | | | - Fereshteh Ghazisaeedi
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Dennis Hanke
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Torsten Semmler
- Robert Koch Institute (RKI), MF1-Genome Competence Centre, Berlin, Germany
| | - Niclas Nordholt
- Federal Institute for Materials Research and Testing (BAM), Department of Materials and the Environment, Division of Biodeterioration and Reference Organisms (4.1), Berlin, Germany
| | - Frank Schreiber
- Federal Institute for Materials Research and Testing (BAM), Department of Materials and the Environment, Division of Biodeterioration and Reference Organisms (4.1), Berlin, Germany
| | - Karsten Tedin
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Antina Lübke-Becker
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Ulrich K Steiner
- Institute of Biology, Evolutionary Demography, Freie Universität Berlin, Berlin, Germany
| | - Marcus Fulde
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany.
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Bush NG, Diez-Santos I, Sankara Krishna P, Clavijo B, Maxwell A. Insights into antibiotic resistance promoted by quinolone exposure. Antimicrob Agents Chemother 2025; 69:e0099724. [PMID: 39589140 PMCID: PMC11784200 DOI: 10.1128/aac.00997-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
Quinolone-induced antibiotic resistance (QIAR) refers to the phenomenon by which bacteria exposed to sublethal levels of quinolones acquire resistance to non-quinolone antibiotics. We have explored this in Escherichia coli MG1655 using a variety of compounds and bacteria carrying a quinolone-resistance mutation in gyrase, mutations affecting the SOS response, and mutations in error-prone polymerases. The nature of the antibiotic-resistance mutations was determined by whole-genome sequencing. Exposure to low levels of most quinolones tested led to mutations conferring resistance to chloramphenicol, ampicillin, kanamycin, and tetracycline. The mutations included point mutations and deletions and could mostly be correlated with the resistance phenotype. QIAR depended upon DNA gyrase and involved the SOS response but was not dependent on error-prone polymerases. Only moxifloxacin, among the quinolones tested, did not display a significant QIAR effect. We speculate that the lack of QIAR with moxifloxacin may be attributable to it acting via a different mechanism. In addition to the concerns about antimicrobial resistance to quinolones and other compounds, QIAR presents an additional challenge in relation to the usage of quinolone antibacterials.
Collapse
Affiliation(s)
- Natassja G. Bush
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia School of Biological Sciences, Norwich, United Kingdom
| | - Isabel Diez-Santos
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia School of Biological Sciences, Norwich, United Kingdom
| | - Pilla Sankara Krishna
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Bernardo Clavijo
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
7
|
Xu L, Mo X, Zhang H, Wan F, Luo Q, Xiao Y. Epidemiology, mechanisms, and clinical impact of bacterial heteroresistance. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:7. [PMID: 39875628 PMCID: PMC11775119 DOI: 10.1038/s44259-025-00076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Bacterial heteroresistance, a phenomenon where subpopulations within a bacterial strain exhibit significantly reduced antibiotic susceptibility compared to the main population, poses a major challenge in managing infectious diseases. It is considered an intermediate stage in the evolution of bacteria towards full resistance. Heteroresistant strains often have a minimal inhibitory concentration (MIC) that appears sensitive, making detection and differentiation in clinical settings difficult. As a result, the impact on clinical outcomes is challenging to fully understand, as it often remains "hidden". In recent years, heteroresistance has received increasing attention. However, it is still poorly understood and underappreciated. We provide an overview of the epidemiology, mechanisms, and clinical impact of heteroresistance. This review underscores the critical importance of understanding and addressing bacterial heteroresistance in the ongoing fight against antibiotic resistance and infectious diseases.
Collapse
Affiliation(s)
- Linna Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Rescarch Center for Infectious Diseases, China-Singapore Belt and Road Joint Laboratory on Infection Research and Drug Development, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xiaofen Mo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Rescarch Center for Infectious Diseases, China-Singapore Belt and Road Joint Laboratory on Infection Research and Drug Development, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- School of Laboratory Medicine and Biotechnology, Hangzhou Medical College, Hangzhou, 310000, China
| | - Hui Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Rescarch Center for Infectious Diseases, China-Singapore Belt and Road Joint Laboratory on Infection Research and Drug Development, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- School of Laboratory Medicine and Biotechnology, Hangzhou Medical College, Hangzhou, 310000, China
| | - Fen Wan
- School of Laboratory Medicine and Biotechnology, Hangzhou Medical College, Hangzhou, 310000, China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Rescarch Center for Infectious Diseases, China-Singapore Belt and Road Joint Laboratory on Infection Research and Drug Development, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Rescarch Center for Infectious Diseases, China-Singapore Belt and Road Joint Laboratory on Infection Research and Drug Development, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| |
Collapse
|
8
|
Brown N, Luniewski A, Yu X, Warthan M, Liu S, Zulawinska J, Ahmad S, Congdon M, Santos W, Xiao F, Guler JL. Replication stress increases de novo CNVs across the malaria parasite genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629492. [PMID: 39803504 PMCID: PMC11722320 DOI: 10.1101/2024.12.19.629492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Changes in the copy number of large genomic regions, termed copy number variations (CNVs), contribute to important phenotypes in many organisms. CNVs are readily identified using conventional approaches when present in a large fraction of the cell population. However, CNVs that are present in only a few genomes across a population are often overlooked but important; if beneficial under specific conditions, a de novo CNV that arises in a single genome can expand during selection to create a larger population of cells with novel characteristics. While the reach of single cell methods to study de novo CNVs is increasing, we continue to lack information about CNV dynamics in rapidly evolving microbial populations. Here, we investigated de novo CNVs in the genome of the Plasmodium parasite that causes human malaria. The highly AT-rich P. falciparum genome readily accumulates CNVs that facilitate rapid adaptation to new drugs and host environments. We employed a low-input genomics approach optimized for this unique genome as well as specialized computational tools to evaluate the de novo CNV rate both before and after the application of stress. We observed a significant increase in genomewide de novo CNVs following treatment with a replication inhibitor. These stress-induced de novo CNVs encompassed genes that contribute to various cellular pathways and tended to be altered in clinical parasite genomes. This snapshot of CNV dynamics emphasizes the connection between replication stress, DNA repair, and CNV generation in this important microbial pathogen.
Collapse
Affiliation(s)
- Noah Brown
- University of Virginia, Department of Biology, Charlottesville, VA, USA
| | | | - Xuanxuan Yu
- Unifersity of Florida, Department of Biostatistics, Gainesville, FL, USA
- Unifersity of Florida, Department of Surgery, College of Medicine, Gainesville, FL, USA
| | - Michelle Warthan
- University of Virginia, Department of Biology, Charlottesville, VA, USA
| | - Shiwei Liu
- University of Virginia, Department of Biology, Charlottesville, VA, USA
- Current affiliation: Indiana University School of Medicine, Indianapolis, IN, USA
| | - Julia Zulawinska
- University of Virginia, Department of Biology, Charlottesville, VA, USA
| | - Syed Ahmad
- University of Virginia, Department of Biology, Charlottesville, VA, USA
| | - Molly Congdon
- Virginia Tech, Department of Chemistry, Blacksburg, VA, USA
| | - Webster Santos
- Virginia Tech, Department of Chemistry, Blacksburg, VA, USA
| | - Feifei Xiao
- Unifersity of Florida, Department of Biostatistics, Gainesville, FL, USA
| | - Jennifer L Guler
- University of Virginia, Department of Biology, Charlottesville, VA, USA
| |
Collapse
|
9
|
Silva KPT, Khare A. Antibiotic resistance mediated by gene amplifications. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:35. [PMID: 39843582 PMCID: PMC11721125 DOI: 10.1038/s44259-024-00052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/26/2024] [Indexed: 01/24/2025]
Abstract
Apart from horizontal gene transfer and sequence-altering mutational events, antibiotic resistance can emerge due to the formation of tandem repeats of genomic regions. This phenomenon, also known as gene amplification, has been implicated in antibiotic resistance in both laboratory and clinical scenarios, where the evolution of resistance via amplifications can affect treatment efficacy. Antibiotic resistance mediated by gene amplifications is unstable and consequently can be difficult to detect, due to amplification loss in the absence of the selective pressure of the antibiotic. Further, due to variable copy numbers in a population, amplifications result in heteroresistance, where only a subpopulation is resistant to an antibiotic. While gene amplifications typically lead to resistance by increasing the expression of resistance determinants due to the higher copy number, the underlying mechanisms of resistance are diverse. In this review article, we describe the various pathways by which gene amplifications cause antibiotic resistance, from efflux and modification of the antibiotic, to target modification and bypass. We also discuss how gene amplifications can engender resistance by alternate mutational outcomes such as altered regulation and protein structure, in addition to just an increase in copy number and expression. Understanding how amplifications contribute to bacterial survival following antibiotic exposure is critical to counter their role in the rise of antimicrobial resistance.
Collapse
Affiliation(s)
- Kalinga Pavan T Silva
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Burford-Gorst CM, Kidd SP. Phenotypic Variation in Staphylococcus aureus during Colonisation Involves Antibiotic-Tolerant Cell Types. Antibiotics (Basel) 2024; 13:845. [PMID: 39335018 PMCID: PMC11428495 DOI: 10.3390/antibiotics13090845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Staphylococcus aureus is a bacterial species that is commonly found colonising healthy individuals but that presents a paradoxical nature: simultaneously, it can migrate within the body and cause a range of diseases. Many of these become chronic by resisting immune responses, antimicrobial treatment, and medical intervention. In part, this ability to persist can be attributed to the adoption of multiple cell types within a single cellular population. These dynamics in the S. aureus cell population could be the result of its interplay with host cells or other co-colonising bacteria-often coagulase-negative Staphylococcal (CoNS) species. Further understanding of the unique traits of S. aureus alternative cell types, the drivers for their selection or formation during disease, as well as their presence even during non-pathological colonisation could advance the development of diagnostic tools and drugs tailored to target specific cells that are eventually responsible for chronic infections.
Collapse
Affiliation(s)
- Chloe M Burford-Gorst
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Research Centre for Infectious Diseases (RCID), The University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephen P Kidd
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Research Centre for Infectious Diseases (RCID), The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
11
|
Geraldes C, Tavares L, Gil S, Oliveira M. Antibiotic heteroresistance and persistence: an additional aid in hospital acquired infections by Enterococcus spp.? Future Microbiol 2024; 19:1407-1418. [PMID: 39229839 PMCID: PMC11552482 DOI: 10.1080/17460913.2024.2393003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Enterococcus, particularly E. faecium and E. faecalis, are responsible for many hospital-acquired infections. With their intrinsic antibiotic resistance and ability to form biofilms, enterococcal infections are already challenging to manage. However, when heterogenous populations are present, such as those exhibiting heteroresistance and persistence, the complexity of these infections increases exponentially not only due to their treatment but also due to their difficult diagnosis. In this study, we provide a summary of the current understanding of both heteroresistance and persistence in terms of mechanisms, diagnosis and treatment and subsequently review recent literature pertaining to these susceptibility types specifically in enterococci.
Collapse
Affiliation(s)
- Catarina Geraldes
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal & Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Luís Tavares
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal & Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Solange Gil
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal & Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- BICU - Biological Isolation & Containment Unit, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Manuela Oliveira
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal & Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- cE3c - Centre for Ecology, Evolution & Environmental Changes & CHANGE—Global Change & Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
12
|
Murtha AN, Kazi MI, Kim EY, Torres FV, Rosch KM, Dörr T. Multiple resistance factors collectively promote inoculum-dependent dynamic survival during antimicrobial peptide exposure in Enterobacter cloacae. PLoS Pathog 2024; 20:e1012488. [PMID: 39186812 PMCID: PMC11379400 DOI: 10.1371/journal.ppat.1012488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/06/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024] Open
Abstract
Antimicrobial peptides (AMPs) are a promising tool with which to fight rising antibiotic resistance. However, pathogenic bacteria are equipped with several AMP defense mechanisms, whose contributions to AMP resistance are often poorly defined. Here, we evaluate the genetic determinants of resistance to an insect AMP, cecropin B, in the opportunistic pathogen Enterobacter cloacae. Single-cell analysis of E. cloacae's response to cecropin revealed marked heterogeneity in cell survival, phenotypically reminiscent of heteroresistance (the ability of a subpopulation to grow in the presence of supra-MIC concentration of antimicrobial). The magnitude of this response was highly dependent on initial E. cloacae inoculum. We identified 3 genetic factors which collectively contribute to E. cloacae resistance in response to the AMP cecropin: The PhoPQ-two-component system, OmpT-mediated proteolytic cleavage of cecropin, and Rcs-mediated membrane stress response. Altogether, our data suggest that multiple, independent mechanisms contribute to AMP resistance in E. cloacae.
Collapse
Affiliation(s)
- Andrew N. Murtha
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Misha I. Kazi
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
| | - Eileen Y. Kim
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
| | - Facundo V. Torres
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Kelly M. Rosch
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
13
|
Maybin M, Ranade AM, Schombel U, Gisch N, Mamat U, Meredith TC. IS 1-mediated chromosomal amplification of the arn operon leads to polymyxin B resistance in Escherichia coli B strains. mBio 2024; 15:e0063424. [PMID: 38904391 PMCID: PMC11253626 DOI: 10.1128/mbio.00634-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Polymyxins [colistin and polymyxin B (PMB)] comprise an important class of natural product lipopeptide antibiotics used to treat multidrug-resistant Gram-negative bacterial infections. These positively charged lipopeptides interact with lipopolysaccharide (LPS) located in the outer membrane and disrupt the permeability barrier, leading to increased uptake and bacterial cell death. Many bacteria counter polymyxins by upregulating genes involved in the biosynthesis and transfer of amine-containing moieties to increase positively charged residues on LPS. Although 4-deoxy-l-aminoarabinose (Ara4N) and phosphoethanolamine (PEtN) are highly conserved LPS modifications in Escherichia coli, different lineages exhibit variable PMB susceptibilities and frequencies of resistance for reasons that are poorly understood. Herein, we describe a mechanism prevalent in E. coli B strains that depends on specific insertion sequence 1 (IS1) elements that flank genes involved in the biosynthesis and transfer of Ara4N to LPS. Spontaneous and transient chromosomal amplifications mediated by IS1 raise the frequency of PMB resistance by 10- to 100-fold in comparison to strains where a single IS1 element located 90 kb away from the end of the arn operon has been deleted. Amplification involving IS1 becomes the dominant resistance mechanism in the absence of PEtN modification. Isolates with amplified arn operons gradually lose their PMB-resistant phenotype with passaging, consistent with classical PMB heteroresistance behavior. Analysis of the whole genome transcriptome profile showed altered expression of genes residing both within and outside of the duplicated chromosomal segment, suggesting complex phenotypes including PMB resistance can result from tandem amplification events.IMPORTANCEPhenotypic variation in susceptibility and the emergence of resistant subpopulations are major challenges to the clinical use of polymyxins. While a large database of genes and alleles that can confer polymyxin resistance has been compiled, this report demonstrates that the chromosomal insertion sequence (IS) content and distribution warrant consideration as well. Amplification of large chromosomal segments containing the arn operon by IS1 increases the Ara4N content of the lipopolysaccharide layer in Escherichia coli B lineages using a mechanism that is orthogonal to transcriptional upregulation through two-component regulatory systems. Altogether, our work highlights the importance of IS elements in modulating gene expression and generating diverse subpopulations that can contribute to phenotypic polymyxin B heteroresistance.
Collapse
Affiliation(s)
- Michael Maybin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Aditi M. Ranade
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ursula Schombel
- Division of Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Uwe Mamat
- Division of Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Leibniz Research Alliance INFECTIONS, Borstel, Germany
| | - Timothy C. Meredith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
14
|
Lin JY, Zhu ZC, Zhu J, Chen L, Du H. Antibiotic heteroresistance in Klebsiella pneumoniae: Definition, detection methods, mechanisms, and combination therapy. Microbiol Res 2024; 283:127701. [PMID: 38518451 DOI: 10.1016/j.micres.2024.127701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Klebsiella pneumoniae is a common opportunistic pathogen that presents significant challenges in the treatment of infections due to its resistance to multiple antibiotics. In recent years, K. pneumoniae has been reported for the development of heteroresistance, a phenomenon where subpopulations of the susceptible bacteria exhibit resistance. This heteroresistance has been associated with increased morbidity and mortality rates. Complicating matters further, its definition and detection pose challenges, often leading to its oversight or misdiagnosis. Various mechanisms contribute to the development of heteroresistance in K. pneumoniae, and these mechanisms differ among different antibiotics. Even for the same antibiotic, multiple mechanisms may be involved. However, our current understanding of these mechanisms remains incomplete, and further research is needed to gain a more comprehensive understanding of heteroresistance. While the clinical recommendation is to use combination antibiotic therapy to mitigate heteroresistance, this approach also comes with several drawbacks and potential adverse effects. In this review, we discuss the definition, detection methods, molecular mechanisms, and treatment of heterogenic resistance, aiming to pave the way for more effective treatment and management in the future. However, addressing the problem of heteroresistance in K. pneumoniae represents a long and complex journey that necessitates comprehensive research efforts.
Collapse
Affiliation(s)
- Jia Yao Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhi Chen Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jie Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.
| |
Collapse
|
15
|
Zhao C, Kristoffersson AN, Khan DD, Lagerbäck P, Lustig U, Cao S, Annerstedt C, Cars O, Andersson DI, Hughes D, Nielsen EI, Friberg LE. Quantifying combined effects of colistin and ciprofloxacin against Escherichia coli in an in silico pharmacokinetic-pharmacodynamic model. Sci Rep 2024; 14:11706. [PMID: 38778123 PMCID: PMC11111785 DOI: 10.1038/s41598-024-61518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Co-administering a low dose of colistin (CST) with ciprofloxacin (CIP) may improve the antibacterial effect against resistant Escherichia coli, offering an acceptable benefit-risk balance. This study aimed to quantify the interaction between ciprofloxacin and colistin in an in silico pharmacokinetic-pharmacodynamic model from in vitro static time-kill experiments (using strains with minimum inhibitory concentrations, MICCIP 0.023-1 mg/L and MICCST 0.5-0.75 mg/L). It was also sought to demonstrate an approach of simulating concentrations at the site of infection with population pharmacokinetic and whole-body physiologically based pharmacokinetic models to explore the clinical value of the combination when facing more resistant strains (using extrapolated strains with lower susceptibility). The combined effect in the final model was described as the sum of individual drug effects with a change in drug potency: for ciprofloxacin, concentration at half maximum killing rate (EC50) in combination was 160% of the EC50 in monodrug experiments, while for colistin, the change in EC50 was strain-dependent from 54.1% to 119%. The benefit of co-administrating a lower-than-commonly-administrated colistin dose with ciprofloxacin in terms of drug effect in comparison to either monotherapy was predicted in simulated bloodstream infections and pyelonephritis. The study illustrates the value of pharmacokinetic-pharmacodynamic modelling and simulation in streamlining rational development of antibiotic combinations.
Collapse
Affiliation(s)
- Chenyan Zhao
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - David D Khan
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Ulrika Lustig
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sha Cao
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Otto Cars
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Lena E Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
16
|
Nicoloff H, Hjort K, Andersson DI, Wang H. Three concurrent mechanisms generate gene copy number variation and transient antibiotic heteroresistance. Nat Commun 2024; 15:3981. [PMID: 38730266 PMCID: PMC11087502 DOI: 10.1038/s41467-024-48233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Heteroresistance is a medically relevant phenotype where small antibiotic-resistant subpopulations coexist within predominantly susceptible bacterial populations. Heteroresistance reduces treatment efficacy across diverse bacterial species and antibiotic classes, yet its genetic and physiological mechanisms remain poorly understood. Here, we investigated a multi-resistant Klebsiella pneumoniae isolate and identified three primary drivers of gene dosage-dependent heteroresistance for several antibiotic classes: tandem amplification, increased plasmid copy number, and transposition of resistance genes onto cryptic plasmids. All three mechanisms imposed fitness costs and were genetically unstable, leading to fast reversion to susceptibility in the absence of antibiotics. We used a mouse gut colonization model to show that heteroresistance due to elevated resistance-gene dosage can result in antibiotic treatment failures. Importantly, we observed that the three mechanisms are prevalent among Escherichia coli bloodstream isolates. Our findings underscore the necessity for treatment strategies that address the complex interplay between plasmids, resistance cassettes, and transposons in bacterial populations.
Collapse
Affiliation(s)
- Hervé Nicoloff
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Karin Hjort
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
17
|
Sun L, Zhuang H, Chen M, Chen Y, Chen Y, Shi K, Yu Y. Vancomycin heteroresistance caused by unstable tandem amplifications of the vanM gene cluster on linear conjugative plasmids in a clinical Enterococcus faecium. Antimicrob Agents Chemother 2024; 68:e0115923. [PMID: 38506549 PMCID: PMC11064493 DOI: 10.1128/aac.01159-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/20/2024] [Indexed: 03/21/2024] Open
Abstract
Vancomycin heteroresistance is prone to missed detection and poses a risk of clinical treatment failure. We encountered one clinical Enterococcus faecium strain, SRR12, that carried a complete vanM gene cluster but was determined as susceptible to vancomycin using the broth microdilution method. However, distinct subcolonies appeared within the clear zone of inhibition in the E-test assay, one of which, named SRR12-v1, showed high-level resistance to vancomycin. SRR12 was confirmed as heteroresistant to vancomycin using population analysis profiling and displayed "revive" growth curves with a lengthy lag phase of over 13 hours when exposed to 2-32 mg/L vancomycin. The resistant subcolony SRR12-v1 was found to carry an identical vanM gene cluster to that of SRR12 but a significantly increased vanM copy number in the genome. Long-read whole genome sequencing revealed that a one-copy vanM gene cluster was located on a pELF1-like linear plasmid in SRR12. In comparison, tandem amplification of the vanM gene cluster jointed with IS1216E was seated on a linear plasmid in the genome of SRR12-v1. These amplifications of the vanM gene cluster were demonstrated as unstable and would decrease accompanied by fitness reversion after serial passaging for 50 generations under increasing vancomycin pressure or without antibiotic pressure but were relatively stable under constant vancomycin pressure. Further, vanM resistance in resistant variants was verified to be carried by conjugative plasmids with variable sizes using conjugation assays and S1-pulsed field gel electrophoresis blotting, suggesting the instability/flexibility of vanM cluster amplification in the genome and an increased risk of vanM resistance dissemination.
Collapse
Affiliation(s)
- Lingyan Sun
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Hemu Zhuang
- Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengzhen Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yiyi Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Keren Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| |
Collapse
|
18
|
Levin BR, Berryhill BA, Gil-Gil T, Manuel JA, Smith AP, Choby JE, Andersson DI, Weiss DS, Baquero F. Theoretical considerations and empirical predictions of the pharmaco- and population dynamics of heteroresistance. Proc Natl Acad Sci U S A 2024; 121:e2318600121. [PMID: 38588431 PMCID: PMC11032463 DOI: 10.1073/pnas.2318600121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/28/2024] [Indexed: 04/10/2024] Open
Abstract
Antibiotics are considered one of the most important contributions to clinical medicine in the last century. Due to the use and overuse of these drugs, there have been increasing frequencies of infections with resistant pathogens. One form of resistance, heteroresistance, is particularly problematic; pathogens appear sensitive to a drug by common susceptibility tests. However, upon exposure to the antibiotic, resistance rapidly ascends, and treatment fails. To quantitatively explore the processes contributing to the emergence and ascent of resistance during treatment and the waning of resistance following cessation of treatment, we develop two distinct mathematical and computer-simulation models of heteroresistance. In our analysis of the properties of these models, we consider the factors that determine the response to antibiotic-mediated selection. In one model, heteroresistance is progressive, with each resistant state sequentially generating a higher resistance level. In the other model, heteroresistance is non-progressive, with a susceptible population directly generating populations with different resistance levels. The conditions where resistance will ascend in the progressive model are narrower than those of the non-progressive model. The rates of reversion from the resistant to the sensitive states are critically dependent on the transition rates and the fitness cost of resistance. Our results demonstrate that the standard test used to identify heteroresistance is insufficient. The predictions of our models are consistent with empirical results. Our results demand a reevaluation of the definition and criteria employed to identify heteroresistance. We recommend that the definition of heteroresistance should include a consideration of the rate of return to susceptibility.
Collapse
Affiliation(s)
- Bruce R. Levin
- Department of Biology, Emory University, Atlanta, GA30322
- Emory Antibiotic Resistance Center, Atlanta, GA30322
| | - Brandon A. Berryhill
- Department of Biology, Emory University, Atlanta, GA30322
- Program in Microbiology and Molecular Genetics, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA30322
| | - Teresa Gil-Gil
- Department of Biology, Emory University, Atlanta, GA30322
| | | | | | - Jacob E. Choby
- Emory Antibiotic Resistance Center, Atlanta, GA30322
- Emory Vaccine Center, Atlanta, GA30322
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, UppsalaSE-75123, Sweden
| | - David S. Weiss
- Emory Antibiotic Resistance Center, Atlanta, GA30322
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA30322
- Georgia Emerging Infections Program, Georgia Department of Public Health, Atlanta, GA30322
| | - Fernando Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, and Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Madrid28034, Spain
| |
Collapse
|
19
|
Wang CH, Siu LK, Chang FY, Tsai YK, Huang LY, Lin JC. Influence of PhoPQ and PmrAB two component system alternations on colistin resistance from non-mcr colistin resistant clinical E. Coli strains. BMC Microbiol 2024; 24:109. [PMID: 38565985 PMCID: PMC10986093 DOI: 10.1186/s12866-024-03259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The current understanding of acquired chromosomal colistin resistance mechanisms in Enterobacterales primarily involves the disruption of the upstream PmrAB and PhoPQ two-component system (TCS) control caused by mutations in the regulatory genes. Interestingly, previous studies have yielded conflicting results regarding the interaction of regulatory genes related to colistin resistance in Escherichia coli, specifically those surrounding PhoPQ and PmrAB TCS. RESULTS In our study, we focused on two clinical non-mcr colistin-resistant strains of E. coli, TSAREC02 and TSAREC03, to gain a better understanding of their resistance mechanisms. Upon analysis, we discovered that TSAREC02 had a deletion (Δ27-45) in MgrB, as well as substitutions (G206R, Y222H) in PmrB. On the other hand, TSAREC03 exhibited a long deletion (Δ84-224) in PhoP, along with substitutions (M1I, L14P, P178S, T235N) in PmrB. We employed recombinant DNA techniques to explore the interaction between the PhoPQ and PmrAB two-component systems (TCSs) and examine the impact of the mutated phoPQ and pmrB genes on the minimum inhibitory concentrations (MICs) of colistin. We observed significant changes in the expression of the pmrD gene, which encodes a connector protein regulated by the PhoPQ TCS, in the TSAREC02 wild-type (WT)-mgrB replacement mutant and the TSAREC03 WT-phoP replacement mutant, compared to their respective parental strains. However, the expressions of pmrB/pmrA, which reflect PmrAB TCS activity, and the colistin MICs remained unchanged. In contrast, the colistin MICs and pmrB/pmrA expression levels were significantly reduced in the pmrB deletion mutants from both TSAREC02 and TSAREC03, compared to their parental strains. Moreover, we were able to restore colistin resistance and the expressions of pmrB/pmrA by transforming a plasmid containing the parental mutated pmrB back into the TSAREC02 and TSAREC03 mutants, respectively. CONCLUSION While additional data from clinical E. coli isolates are necessary to validate whether our findings could be broadly applied to the E. coli population, our study illuminates distinct regulatory pathway interactions involving colistin resistance in E. coli compared to other species of Enterobacterales. The added information provided by our study contribute to a deeper understanding of the complex pathway interactions within Enterobacterales.
Collapse
Affiliation(s)
- Ching-Hsun Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - L Kristopher Siu
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - Yu-Kuo Tsai
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Yueh Huang
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan.
| |
Collapse
|
20
|
Lin CK, Page A, Lohsen S, Haider AA, Waggoner J, Smith G, Babiker A, Jacob JT, Howard-Anderson J, Satola SW. Rates of resistance and heteroresistance to newer β-lactam/β-lactamase inhibitors for carbapenem-resistant Enterobacterales. JAC Antimicrob Resist 2024; 6:dlae048. [PMID: 38515868 PMCID: PMC10957161 DOI: 10.1093/jacamr/dlae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Background Heteroresistance (HR), the presence of antibiotic-resistant subpopulations within a primary isogenic population, may be a potentially overlooked contributor to newer β-lactam/β-lactamase inhibitor (BL/BLI) treatment failure in carbapenem-resistant Enterobacterales (CRE) infections. Objectives To determine rates of susceptibility and HR to BL/BLIs ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam in clinical CRE isolates. Methods The first CRE isolate per patient per year from two >500 bed academic hospitals from 1 January 2016 to 31 December 2021, were included. Reference broth microdilution (BMD) was used to determine antibiotic susceptibility, and population analysis profiling (PAP) to determine HR. Carbapenemase production (CP) was determined using the Carba NP assay. Results Among 327 CRE isolates, 46% were Enterobacter cloacae, 38% Klebsiella pneumoniae and 16% Escherichia coli. By BMD, 87% to 98% of CRE were susceptible to the three antibiotics tested. From 2016 to 2021, there were incremental decreases in the rates of susceptibility to each of the three BL/BLIs. HR was detected in each species-antibiotic combination, with the highest rates of HR (26%) found in K. pneumoniae isolates with imipenem/relebactam. HR or resistance to at least one BL/BLI by PAP was found in 24% of CRE isolates and 65% of these had detectable CP. Conclusion Twenty-four percent of CRE isolates tested were either resistant or heteroresistant (HR) to newer BL/BLIs, with an overall decrease of ∼10% susceptibility over 6 years. While newer BL/BLIs remain active against most CRE, these findings support the need for ongoing antibiotic stewardship and a better understanding of the clinical implications of HR in CRE.
Collapse
Affiliation(s)
- Christina K Lin
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Alex Page
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah Lohsen
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ali A Haider
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jesse Waggoner
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Gillian Smith
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Georgia Emerging Infections Program, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ahmed Babiker
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jesse T Jacob
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Georgia Emerging Infections Program, Atlanta, GA, USA
| | - Jessica Howard-Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Georgia Emerging Infections Program, Atlanta, GA, USA
| | - Sarah W Satola
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Georgia Emerging Infections Program, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
21
|
Hernandez-Beltran JCR, Rodríguez-Beltrán J, Aguilar-Luviano OB, Velez-Santiago J, Mondragón-Palomino O, MacLean RC, Fuentes-Hernández A, San Millán A, Peña-Miller R. Plasmid-mediated phenotypic noise leads to transient antibiotic resistance in bacteria. Nat Commun 2024; 15:2610. [PMID: 38521779 PMCID: PMC10960800 DOI: 10.1038/s41467-024-45045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/12/2024] [Indexed: 03/25/2024] Open
Abstract
The rise of antibiotic resistance is a critical public health concern, requiring an understanding of mechanisms that enable bacteria to tolerate antimicrobial agents. Bacteria use diverse strategies, including the amplification of drug-resistance genes. In this paper, we showed that multicopy plasmids, often carrying antibiotic resistance genes in clinical bacteria, can rapidly amplify genes, leading to plasmid-mediated phenotypic noise and transient antibiotic resistance. By combining stochastic simulations of a computational model with high-throughput single-cell measurements of blaTEM-1 expression in Escherichia coli MG1655, we showed that plasmid copy number variability stably maintains populations composed of cells with both low and high plasmid copy numbers. This diversity in plasmid copy number enhances the probability of bacterial survival in the presence of antibiotics, while also rapidly reducing the burden of carrying multiple plasmids in drug-free environments. Our results further support the tenet that multicopy plasmids not only act as vehicles for the horizontal transfer of genetic information between cells but also as drivers of bacterial adaptation, enabling rapid modulation of gene copy numbers. Understanding the role of multicopy plasmids in antibiotic resistance is critical, and our study provides insights into how bacteria can transiently survive lethal concentrations of antibiotics.
Collapse
Affiliation(s)
- J Carlos R Hernandez-Beltran
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210, Cuernavaca, México.
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.
| | | | | | - Jesús Velez-Santiago
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210, Cuernavaca, México
| | - Octavio Mondragón-Palomino
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - R Craig MacLean
- Department of Biology, University of Oxford, OX1 3SZ, Oxford, UK
| | - Ayari Fuentes-Hernández
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210, Cuernavaca, México
| | - Alvaro San Millán
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - CSIC, 28049, Madrid, Spain
| | - Rafael Peña-Miller
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210, Cuernavaca, México.
| |
Collapse
|
22
|
Pal A, Andersson DI. Bacteria can compensate the fitness costs of amplified resistance genes via a bypass mechanism. Nat Commun 2024; 15:2333. [PMID: 38485998 PMCID: PMC10940297 DOI: 10.1038/s41467-024-46571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Antibiotic heteroresistance is a phenotype in which a susceptible bacterial population includes a small subpopulation of cells that are more resistant than the main population. Such resistance can arise by tandem amplification of DNA regions containing resistance genes that in single copy are not sufficient to confer resistance. However, tandem amplifications often carry fitness costs, manifested as reduced growth rates. Here, we investigated if and how these fitness costs can be genetically ameliorated. We evolved four clinical isolates of three bacterial species that show heteroresistance to tobramycin, gentamicin and tetracyclines at increasing antibiotic concentrations above the minimal inhibitory concentration (MIC) of the main susceptible population. This led to a rapid enrichment of resistant cells with up to an 80-fold increase in the resistance gene copy number, an increased MIC, and severely reduced growth rates. When further evolved in the presence of antibiotic, these strains acquired compensatory resistance mutations and showed a reduction in copy number while maintaining high-level resistance. A deterministic model indicated that the loss of amplified units was driven mainly by their fitness costs and that the compensatory mutations did not affect the loss rate of the gene amplifications. Our findings suggest that heteroresistance mediated by copy number changes can facilitate and precede the evolution towards stable resistance.
Collapse
Affiliation(s)
- Ankita Pal
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23, Uppsala, Sweden.
| |
Collapse
|
23
|
Murtha AN, Kazi M, Kim E, Rosch KM, Torres F, Dörr T. Multiple resistance factors collectively promote inoculum-dependent dynamic survival during antimicrobial peptide exposure in Enterobacter cloacae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583169. [PMID: 38463991 PMCID: PMC10925329 DOI: 10.1101/2024.03.03.583169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Antimicrobial peptides (AMPs) are a promising tool with which to fight rising antibiotic resistance. However, pathogenic bacteria are equipped with several AMP defense mechanisms, whose contributions to AMP resistance are often poorly defined. Here, we evaluate the genetic determinants of resistance to an insect AMP, cecropin B, in the opportunistic pathogen Enterobacter cloacae. Single-cell analysis of E. cloacae's response to cecropin revealed marked heterogeneity in cell survival, phenotypically reminiscent of heteroresistance (the ability of a subpopulation to grow in the presence of supra-MIC concentration of antimicrobial). The magnitude of this response was highly dependent on initial E. cloacae inoculum. We identified 3 genetic factors which collectively contribute to E. cloacae resistance in response to the AMP cecropin: The PhoPQ-two-component system, OmpT-mediated proteolytic cleavage of cecropin, and Rcs-mediated membrane stress response. Altogether, this evidence suggests that multiple, independent mechanisms contribute to AMP resistance in E. cloacae.
Collapse
Affiliation(s)
- Andrew N. Murtha
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Misha Kazi
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Eileen Kim
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Kelly M. Rosch
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Facundo Torres
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
24
|
Heidarian S, Guliaev A, Nicoloff H, Hjort K, Andersson DI. High prevalence of heteroresistance in Staphylococcus aureus is caused by a multitude of mutations in core genes. PLoS Biol 2024; 22:e3002457. [PMID: 38175839 PMCID: PMC10766187 DOI: 10.1371/journal.pbio.3002457] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Heteroresistance (HR) is an enigmatic phenotype where, in a main population of susceptible cells, small subpopulations of resistant cells exist. This is a cause for concern, as this small subpopulation is difficult to detect by standard antibiotic susceptibility tests, and upon antibiotic exposure the resistant subpopulation may increase in frequency and potentially lead to treatment complications or failure. Here, we determined the prevalence and mechanisms of HR for 40 clinical Staphylococcus aureus isolates, against 6 clinically important antibiotics: daptomycin, gentamicin, linezolid, oxacillin, teicoplanin, and vancomycin. High frequencies of HR were observed for gentamicin (69.2%), oxacillin (27%), daptomycin (25.6%), and teicoplanin (15.4%) while none of the isolates showed HR toward linezolid or vancomycin. Point mutations in various chromosomal core genes, including those involved in membrane and peptidoglycan/teichoic acid biosynthesis and transport, tRNA charging, menaquinone and chorismite biosynthesis and cyclic-di-AMP biosynthesis, were the mechanisms responsible for generating the resistant subpopulations. This finding is in contrast to gram-negative bacteria, where increased copy number of bona fide resistance genes via tandem gene amplification is the most prevalent mechanism. This difference can be explained by the observation that S. aureus has a low content of resistance genes and absence of the repeat sequences that allow tandem gene amplification of these genes as compared to gram-negative species.
Collapse
Affiliation(s)
- Sheida Heidarian
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Andrei Guliaev
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hervé Nicoloff
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Karin Hjort
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Sánchez-León I, Pérez-Nadales E, Marín-Sanz JA, García-Martínez T, Martínez-Martínez L. Heteroresistance to colistin in wild-type Klebsiella pneumoniae isolates from clinical origin. Microbiol Spectr 2023; 11:e0223823. [PMID: 37962370 PMCID: PMC10714954 DOI: 10.1128/spectrum.02238-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE Colistin is one of the last remaining therapeutic options for dealing with Enterobacteriaceae. Unfortunately, heteroresistance to colistin is also rapidly increasing. We described the prevalence of colistin heteroresistance in a variety of wild-type strains of Klebsiella pneumoniae and the evolution of these strains with colistin heteroresistance to a resistant phenotype after colistin exposure and withdrawal. Resistant mutants were characterized at the molecular level, and numerous mutations in genes related to lipopolysaccharide formation were observed. In colistin-treated patients, the evolution of K. pneumoniae heteroresistance to resistance phenotype could lead to higher rates of therapeutic failure.
Collapse
Affiliation(s)
- Irene Sánchez-León
- Maimonides Biomedical Research Institute of Cordoba, Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, Cordoba, Spain
| | - Elena Pérez-Nadales
- Maimonides Biomedical Research Institute of Cordoba, Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, Cordoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Antonio Marín-Sanz
- Maimonides Biomedical Research Institute of Cordoba, Cordoba, Spain
- Department of Computer Sciences, University of Cordoba, Cordoba, Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, Cordoba, Spain
| | - Luis Martínez-Martínez
- Maimonides Biomedical Research Institute of Cordoba, Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, Cordoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Clinical Unit of Microbiology, Reina Sofía University Hospital, Cordoba, Spain
| |
Collapse
|
26
|
Levin BR, Berryhill BA, Gil-Gil T, Manuel JA, Smith AP, Choby JE, Andersson DI, Weiss DS, Baquero F. Theoretical Considerations and Empirical Predictions of the Pharmaco- and Population Dynamics of Heteroresistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558832. [PMID: 37790545 PMCID: PMC10542493 DOI: 10.1101/2023.09.21.558832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Antibiotics are considered one of the most important contributions to clinical medicine in the last 100 years. Due to the use and overuse of these drugs, there have been increasing frequencies of infections with resistant pathogens. One form of resistance, heteroresistance, is particularly problematic; pathogens appear sensitive to a drug by common susceptibility tests. However, upon exposure to the antibiotic, resistance rapidly ascends, and treatment fails. To quantitatively explore the processes contributing to the emergence and ascent of resistance during treatment and the waning of resistance following cessation of treatment, we develop two distinct mathematical and computer-simulations models of heteroresistance. In our analysis of the properties of these models, we consider the factors that determine the response to antibiotic-mediated selection. In one model, heteroresistance is progressive, with each resistant state sequentially generating a higher resistance level. In the other model, heteroresistance is non-progressive, with a susceptible population directly generating populations with different resistance levels. The conditions where resistance will ascend in the progressive model are narrower than those of the non-progressive model. The rates of reversion from the resistant to the sensitive states are critically dependent on the transition rates and the fitness cost of resistance. Our results demonstrate that the standard test used to identify heteroresistance is insufficient. The predictions of our models are consistent with empirical results. Our results demand a reevaluation of the definition and criteria employed to identify heteroresistance. We recommend the definition of heteroresistance should include a consideration of the rate of return to susceptibility.
Collapse
Affiliation(s)
- Bruce R. Levin
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
- Emory Antibiotic Resistance Center; Atlanta, Georgia, 30322, USA
| | - Brandon A. Berryhill
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
- Program in Microbiology and Molecular Genetics, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University; Atlanta, GA, 30322, USA
| | - Teresa Gil-Gil
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - Joshua A. Manuel
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - Andrew P. Smith
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - Jacob E. Choby
- Emory Antibiotic Resistance Center; Atlanta, Georgia, 30322, USA
- Emory Vaccine Center; Atlanta, Georgia, 30322, USA
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE-75123, Sweden
| | - David S. Weiss
- Emory Antibiotic Resistance Center; Atlanta, Georgia, 30322, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, GA, 30322, USA
- Georgia Emerging Infections Program, Georgia Department of Public Health; Atlanta, GA, 30322, USA
| | - Fernando Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, and Centro de Investigación Médica en Red, Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| |
Collapse
|
27
|
Chowdhury F, Findlay BL. Fitness Costs of Antibiotic Resistance Impede the Evolution of Resistance to Other Antibiotics. ACS Infect Dis 2023; 9:1834-1845. [PMID: 37726252 PMCID: PMC10581211 DOI: 10.1021/acsinfecdis.3c00156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Indexed: 09/21/2023]
Abstract
Antibiotic resistance is a major threat to global health, claiming the lives of millions every year. With a nearly dry antibiotic development pipeline, novel strategies are urgently needed to combat resistant pathogens. One emerging strategy is the use of sequential antibiotic therapy, postulated to reduce the rate at which antibiotic resistance evolves. Here, we use the soft agar gradient evolution (SAGE) system to carry out high-throughput in vitro bacterial evolution against antibiotic pressure. We find that evolution of resistance to the antibiotic chloramphenicol (CHL) severely affects bacterial fitness, slowing the rate at which resistance to the antibiotics nitrofurantoin and streptomycin emerges. In vitro acquisition of compensatory mutations in the CHL-resistant cells markedly improves fitness and nitrofurantoin adaptation rates but fails to restore rates to wild-type levels against streptomycin. Genome sequencing reveals distinct evolutionary paths to resistance in fitness-impaired populations, suggesting resistance trade-offs in favor of mitigation of fitness costs. We show that the speed of bacterial fronts in SAGE plates is a reliable indicator of adaptation rates and evolutionary trajectories to resistance. Identification of antibiotics whose mutational resistance mechanisms confer stable impairments may help clinicians prescribe sequential antibiotic therapies that are less prone to resistance evolution.
Collapse
Affiliation(s)
- Farhan
R. Chowdhury
- Department
of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Brandon L. Findlay
- Department
of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Department
of Chemistry and Biochemistry, Concordia
University, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
28
|
Rogga V, Kosalec I. Untying the anchor for the lipopolysaccharide: lipid A structural modification systems offer diagnostic and therapeutic options to tackle polymyxin resistance. Arh Hig Rada Toksikol 2023; 74:145-166. [PMID: 37791675 PMCID: PMC10549895 DOI: 10.2478/aiht-2023-74-3717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/01/2023] [Accepted: 07/01/2023] [Indexed: 10/05/2023] Open
Abstract
Polymyxin antibiotics are the last resort for treating patients in intensive care units infected with multiple-resistant Gram-negative bacteria. Due to their polycationic structure, their mode of action is based on an ionic interaction with the negatively charged lipid A portion of the lipopolysaccharide (LPS). The most prevalent polymyxin resistance mechanisms involve covalent modifications of lipid A: addition of the cationic sugar 4-amino-L-arabinose (L-Ara4N) and/or phosphoethanolamine (pEtN). The modified structure of lipid A has a lower net negative charge, leading to the repulsion of polymyxins and bacterial resistance to membrane disruption. Genes encoding the enzymatic systems involved in these modifications can be transferred either through chromosomes or mobile genetic elements. Therefore, new approaches to resistance diagnostics have been developed. On another note, interfering with these enzymatic systems might offer new therapeutic targets for drug discovery. This literature review focuses on diagnostic approaches based on structural changes in lipid A and on the therapeutic potential of molecules interfering with these changes.
Collapse
Affiliation(s)
- Vanessa Rogga
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Microbiology, Zagreb, Croatia
| | - Ivan Kosalec
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Microbiology, Zagreb, Croatia
| |
Collapse
|
29
|
Jaggavarapu S, Hufnagel DA, Weiss DS. Pre-existing heterogeneity facilitates development of heteroresistance upon gene acquisition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550411. [PMID: 37546825 PMCID: PMC10402025 DOI: 10.1101/2023.07.24.550411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Antibiotic resistance causes 1.27 million global deaths annually and is predicted to worsen. Heteroresistance is a form of resistance in which only a minor and unstable subpopulation of cells of a bacterial isolate are resistant to a given antibiotic, and are therefore often undetected by clinical diagnostics. These infrequent and undetected resistant cells can be selected during antibiotic therapy, expand in number, and cause unexplained treatment failures. A major question is how heteroresistance evolves. Here, studying the antibiotic fosfomycin, we report that heteroresistance can develop from a pre-existing state of phenotypic heterogeneity in which an isolate harbors a subpopulation with increased minimum inhibitory concentration (MIC), but below the clinical resistance breakpoint. We call this phenomenon heterosusceptibility and demonstrate that acquisition of a resistance gene, fosA, increases the MIC of the subpopulation beyond the breakpoint, making the isolate heteroresistant. Conversely, deletion of fosA from a heteroresistant isolate led to reduction of the MIC of the resistant subpopulation without a loss of heterogeneity, thus generating heterosusceptibility. A survey of 103 carbapenem-resistant Enterobacterales (CRE) revealed that the Escherichia sp. isolates lacked the fosA gene and uniformly exhibited fosfomycin heterosusceptibility, whereas the Klebsiella and Enterobacter encoded the fosA gene and were almost exclusively heteroresistant. Furthermore, some isolates exhibited heterosusceptibility to other antibiotics, demonstrating that this is a widespread phenomenon. These results highlight a mechanism for the evolution of heteroresistance and suggest that surveillance for heterosusceptibility may facilitate the prediction of impending heteroresistance before it evolves.
Collapse
Affiliation(s)
- Siddharth Jaggavarapu
- Emory Antibiotic Resistance Center, Atlanta, GA, USA
- Emory Vaccine Center, Atlanta, GA, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - David A. Hufnagel
- Emory Antibiotic Resistance Center, Atlanta, GA, USA
- Emory Vaccine Center, Atlanta, GA, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - David S. Weiss
- Emory Antibiotic Resistance Center, Atlanta, GA, USA
- Emory Vaccine Center, Atlanta, GA, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
30
|
Sánchez-León I, García-Martínez T, Diene SM, Pérez-Nadales E, Martínez-Martínez L, Rolain JM. Heteroresistance to Colistin in Clinical Isolates of Klebsiella pneumoniae Producing OXA-48. Antibiotics (Basel) 2023; 12:1111. [PMID: 37508209 PMCID: PMC10375995 DOI: 10.3390/antibiotics12071111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Heteroresistance to colistin can be defined as the presence of resistant subpopulations in an isolate that is susceptible to this antibiotic. Colistin resistance in Gram-negative bacteria is more frequently related to chromosomal mutations and insertions. This work aimed to study heteroresistance in nine clinical isolates of Klebsiella pneumoniae producing OXA-48 and to describe genomic changes in mutants with acquired resistance in vitro. Antimicrobial susceptibility was determined by broth microdilution (BMD) and heteroresistance by population analysis profiling (PAP). The proteins related to colistin resistance were analyzed for the presence of mutations. Additionally, PCR of the mgrB gene was performed to identify the presence of insertions. In the nine parental isolates, the PAP method showed colistin heteroresistance of colonies growing on plates with concentrations of up to 64 mg/L, corresponding to stable mutant subpopulations. The MICs of some mutants from the PAP plate containing 4×MIC of colistin had absolute values of ≤2 mg/L that were higher than the parental MICs and were defined as persistent variants. PCR of the mgrB gene identified an insertion sequence that inactivated the gene in 21 mutants. Other substitutions in the investigated mutants were found in PhoP, PhoQ, PmrB, PmrC, CrrA and CrrB proteins. Colistin heteroresistance in K. pneumoniae isolates was attributed mainly to insertions in the mgrB gene and point mutations in colistin resistance proteins. The results of this study will improve understanding regarding the mechanisms of colistin resistance in mutants of K. pneumoniae producing OXA-48.
Collapse
Affiliation(s)
- Irene Sánchez-León
- Maimonides Biomedical Research Institute of Cordoba, 14004 Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014 Cordoba, Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014 Cordoba, Spain
| | - Seydina M Diene
- Microbes Evolution Phylogeny and Infections (MEPHI), IRD, APHM, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-University, 13005 Marseille, France
| | - Elena Pérez-Nadales
- Maimonides Biomedical Research Institute of Cordoba, 14004 Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis Martínez-Martínez
- Maimonides Biomedical Research Institute of Cordoba, 14004 Cordoba, Spain
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Cordoba, 14014 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Clinical Unit of Microbiology, Reina Sofía University Hospital, 14004 Cordoba, Spain
| | - Jean-Marc Rolain
- Microbes Evolution Phylogeny and Infections (MEPHI), IRD, APHM, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-University, 13005 Marseille, France
| |
Collapse
|
31
|
Fernández-Fernández R, López-Igual R, Casadesús J, Sánchez-Romero MA. Analysis of Salmonella lineage-specific traits upon cell sorting. Front Cell Infect Microbiol 2023; 13:1146070. [PMID: 37065195 PMCID: PMC10090396 DOI: 10.3389/fcimb.2023.1146070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Microbial cell individuality is receiving increasing interest in the scientific community. Individual cells within clonal populations exhibit noticeable phenotypic heterogeneity. The advent of fluorescent protein technology and advances in single-cell analysis has revealed phenotypic cell variant in bacterial populations. This heterogeneity is evident in a wide range of phenotypes, for example, individual cells display variable degrees of gene expression and survival under selective conditions and stresses, and can exhibit differing propensities to host interactions. Last few years, numerous cell sorting approaches have been employed for resolving the properties of bacterial subpopulations. This review provides an overview of applications of cell sorting to analyze Salmonella lineage-specific traits, including bacterial evolution studies, gene expression analysis, response to diverse cellular stresses and characterization of diverse bacterial phenotypic variants.
Collapse
Affiliation(s)
- Rocío Fernández-Fernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Rocío López-Igual
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and C.S.I.C., Seville, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - María Antonia Sánchez-Romero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- *Correspondence: María Antonia Sánchez-Romero,
| |
Collapse
|
32
|
Fernández-Fernández R, Olivenza DR, Sánchez-Romero MA. Identifying Bacterial Lineages in Salmonella by Flow Cytometry. EcoSal Plus 2022; 10:eESP00182021. [PMID: 35148202 PMCID: PMC10729938 DOI: 10.1128/ecosalplus.esp-0018-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022]
Abstract
Advances in technologies that permit high-resolution analysis of events in single cells have revealed that phenotypic heterogeneity is a widespread phenomenon in bacteria. Flow cytometry has the potential to describe the distribution of cellular properties within a population of bacterial cells and has yielded invaluable information about the ability of isogenic cells to diversify into phenotypic subpopulations. This review will discuss several single-cell approaches that have recently been applied to define phenotypic heterogeneity in populations of Salmonella enterica.
Collapse
Affiliation(s)
| | - David R. Olivenza
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | |
Collapse
|
33
|
Whole-Genome Sequence Analysis of Carbapenem-Heteroresistant Klebsiella pneumoniae and Escherichia coli Isolates. Curr Microbiol 2022; 79:384. [DOI: 10.1007/s00284-022-03087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
34
|
Chiu S, Hancock AM, Schofner BW, Sniezek KJ, Soto-Echevarria N, Leon G, Sivaloganathan DM, Wan X, Brynildsen MP. Causes of polymyxin treatment failure and new derivatives to fill the gap. J Antibiot (Tokyo) 2022; 75:593-609. [PMID: 36123537 DOI: 10.1038/s41429-022-00561-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022]
Abstract
Polymyxins are a class of antibiotics that were discovered in 1947 from programs searching for compounds effective in the treatment of Gram-negative infections. Produced by the Gram-positive bacterium Paenibacillus polymyxa and composed of a cyclic peptide chain with a peptide-fatty acyl tail, polymyxins exert bactericidal effects through membrane disruption. Currently, polymyxin B and colistin (polymyxin E) have been developed for clinical use, where they are reserved as "last-line" therapies for multidrug-resistant (MDR) infections. Unfortunately, the incidences of strains resistant to polymyxins have been increasing globally, and polymyxin heteroresistance has been gaining appreciation as an important clinical challenge. These phenomena, along with bacterial tolerance to this antibiotic class, constitute important contributors to polymyxin treatment failure. Here, we review polymyxins and their mechanism of action, summarize the current understanding of how polymyxin treatment fails, and discuss how the next generation of polymyxins holds promise to invigorate this antibiotic class.
Collapse
Affiliation(s)
- Selena Chiu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Anna M Hancock
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Bob W Schofner
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Katherine J Sniezek
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Gabrielle Leon
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Xuanqing Wan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
35
|
Abstract
The use and misuse of antibiotics have resulted in the selection of difficult-to-treat resistant bacteria. Two key parameters that influence the selection of resistant bacteria are the minimal selective concentration (MSC) and the fitness cost of resistance, both of which have been measured during planktonic growth in several studies. However, bacterial growth most often occurs in biofilms, and it is unclear if and how these parameters differ under these two growth conditions. To address this knowledge gap, we compared a selection of several types of antibiotic-resistant Escherichia coli mutants during planktonic and biofilm growth to determine the fitness costs and MSCs. Biofilm-forming Escherichia coli strains are commonly found in catheter-associated and recurrent urinary tract infections. Isogenic strains of a biofilm-forming E. coli strain, differing only in the resistance mechanisms and the fluorescent markers, were constructed, and susceptible and resistant bacteria were grown in head-to-head competitions at various concentrations of antibiotics under planktonic and biofilm conditions. Mutants with resistance to five different antibiotics were studied. The results show that during both planktonic and biofilm growth, selection for the resistant mutants occurred for all antibiotics at sub-MICs far below the MIC of the antibiotic. Even though differences were seen, the MSC values and the fitness costs did not differ systematically between planktonic and biofilm growth, implying that despite the different growth modes, the basic selection parameters are similar. These findings highlight the risk that resistant mutants may, similarly to planktonic growth, also be selected at sub-MICs of antibiotics in biofilms.
Collapse
|
36
|
Kapel N, Caballero JD, MacLean RC. Localized pmrB hypermutation drives the evolution of colistin heteroresistance. Cell Rep 2022; 39:110929. [PMID: 35675785 PMCID: PMC9189680 DOI: 10.1016/j.celrep.2022.110929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/02/2021] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Colistin has emerged as an important last line of defense for the treatment of infections caused by antibiotic-resistant gram-negative pathogens, but colistin resistance remains poorly understood. Here, we investigate the responses of ≈1,000 populations of a multi-drug-resistant (MDR) strain of P. aeruginosa to a high dose of colistin. Colistin exposure causes rapid cell death, but some populations eventually recover due to the growth of sub-populations of heteroresistant cells. Heteroresistance is unstable, and resistance is rapidly lost under culture in colistin-free medium. The evolution of heteroresistance is primarily driven by selection for heteroresistance at two hotspot sites in the PmrAB regulatory system. Localized hypermutation of pmrB generates colistin resistance at 103–104 times the background resistance mutation rate (≈2 × 10-5 per cell division). PmrAB provides resistance to antimicrobial peptides that are involved in host immunity, suggesting that this pathogen may have evolved a highly mutable pmrB as an adaptation to host immunity. Pseudomonas populations recover from colistin due to the growth of heteroresistant cells Heteroresistance is driven by pre-existing mutations in the PmrAB regulatory system pmrB mutations arise at 103–104 times the background mutation rate Heteroresistance is unstable and is rapidly lost in the absence of colistin
Collapse
Affiliation(s)
- Natalia Kapel
- University of Oxford, Department of Zoology, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Julio Diaz Caballero
- University of Oxford, Department of Zoology, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - R Craig MacLean
- University of Oxford, Department of Zoology, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| |
Collapse
|
37
|
Baaity Z, von Loewenich FD, Nagy E, Orosz L, Burián K, Somogyvári F, Sóki J. Phenotypic and Molecular Characterization of Carbapenem-Heteroresistant Bacteroides fragilis Strains. Antibiotics (Basel) 2022; 11:antibiotics11050590. [PMID: 35625234 PMCID: PMC9138018 DOI: 10.3390/antibiotics11050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/29/2022] Open
Abstract
Carbapenem-resistant Bacteroides fragilis strains usually emerge by an insertion sequence (IS) jump into the upstream region of the cfiA carbapenemase gene. However, intermediate or fully resistant cfiA-positive strains also exist. These do not have such IS element activations, but usually have heterogeneous resistance (HR) phenotypes, as detected by a disc diffusion or gradient tests. Heteroresistance is a serious antibiotic resistance problem, whose molecular mechanisms are not fully understood. We aim to characterize HR and investigate diagnostic issues in the set of cfiA-positive B. fragilis strains using phenotypic and molecular methods. Of the phenotypic methods used, the population analysis profile (PAP) and area under curve (AUC) measurements were the best prognostic markers for HR. PAP AUC, imipenem agar dilution and imipenemase production corresponded well with each other. We also identified a saturation curve parameter (quasi-PAP curves), which correlated well with these phenotypic traits, implying that HR is a stochastic process. The genes, on a previously defined ‘cfiA element’, act in a complex manner to produce the HR phenotype, including a lysine-acetylating toxin and a lysine-rich peptide. Furthermore, imipenem HR is triggered by imipenem. The two parameters that most correlate with the others are imipenemase production and ‘GNAT’ expression, which prompted us to suspect that carbapenem heteroresistance of the B. fragilis strains is stochastically regulated and is mediated by the altered imipenemase production.
Collapse
Affiliation(s)
- Zain Baaity
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and School of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.B.); (E.N.); (L.O.); (K.B.); (F.S.)
| | | | - Elisabeth Nagy
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and School of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.B.); (E.N.); (L.O.); (K.B.); (F.S.)
| | - László Orosz
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and School of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.B.); (E.N.); (L.O.); (K.B.); (F.S.)
| | - Katalin Burián
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and School of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.B.); (E.N.); (L.O.); (K.B.); (F.S.)
| | - Ferenc Somogyvári
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and School of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.B.); (E.N.); (L.O.); (K.B.); (F.S.)
| | - József Sóki
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and School of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.B.); (E.N.); (L.O.); (K.B.); (F.S.)
- Correspondence: author:
| |
Collapse
|
38
|
Abrahams JS, Weigand MR, Ring N, MacArthur I, Etty J, Peng S, Williams MM, Bready B, Catalano AP, Davis JR, Kaiser MD, Oliver JS, Sage JM, Bagby S, Tondella ML, Gorringe AR, Preston A. Towards comprehensive understanding of bacterial genetic diversity: large-scale amplifications in Bordetella pertussis and Mycobacterium tuberculosis. Microb Genom 2022; 8:000761. [PMID: 35143385 PMCID: PMC8942028 DOI: 10.1099/mgen.0.000761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/11/2021] [Indexed: 11/18/2022] Open
Abstract
Bacterial genetic diversity is often described solely using base-pair changes despite a wide variety of other mutation types likely being major contributors. Tandem duplication/amplifications are thought to be widespread among bacteria but due to their often-intractable size and instability, comprehensive studies of these mutations are rare. We define a methodology to investigate amplifications in bacterial genomes based on read depth of genome sequence data as a proxy for copy number. We demonstrate the approach with Bordetella pertussis, whose insertion sequence element-rich genome provides extensive scope for amplifications to occur. Analysis of data for 2430 B. pertussis isolates identified 272 putative amplifications, of which 94 % were located at 11 hotspot loci. We demonstrate limited phylogenetic connection for the occurrence of amplifications, suggesting unstable and sporadic characteristics. Genome instability was further described in vitro using long-read sequencing via the Nanopore platform, which revealed that clonally derived laboratory cultures produced heterogenous populations rapidly. We extended this research to analyse a population of 1000 isolates of another important pathogen, Mycobacterium tuberculosis. We found 590 amplifications in M. tuberculosis, and like B. pertussis, these occurred primarily at hotspots. Genes amplified in B. pertussis include those involved in motility and respiration, whilst in M. tuberuclosis, functions included intracellular growth and regulation of virulence. Using publicly available short-read data we predicted previously unrecognized, large amplifications in B. pertussis and M. tuberculosis. This reveals the unrecognized and dynamic genetic diversity of B. pertussis and M. tuberculosis, highlighting the need for a more holistic understanding of bacterial genetics.
Collapse
Affiliation(s)
- Jonathan S. Abrahams
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - Michael R. Weigand
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Natalie Ring
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - Iain MacArthur
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - Joss Etty
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - Scott Peng
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Margaret M. Williams
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | | | | | | | | | - Stefan Bagby
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - M. Lucia Tondella
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Andrew Preston
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| |
Collapse
|
39
|
Laborda P, Hernando-Amado S, Martínez JL, Sanz-García F. Antibiotic Resistance in Pseudomonas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:117-143. [DOI: 10.1007/978-3-031-08491-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Stojowska-Swędrzyńska K, Łupkowska A, Kuczyńska-Wiśnik D, Laskowska E. Antibiotic Heteroresistance in Klebsiella pneumoniae. Int J Mol Sci 2021; 23:449. [PMID: 35008891 PMCID: PMC8745652 DOI: 10.3390/ijms23010449] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Klebsiella pneumoniae is one of the most common pathogens responsible for infections, including pneumonia, urinary tract infections, and bacteremias. The increasing prevalence of multidrug-resistant K. pneumoniae was recognized in 2017 by the World Health Organization as a critical public health threat. Heteroresistance, defined as the presence of a subpopulation of cells with a higher MIC than the dominant population, is a frequent phenotype in many pathogens. Numerous reports on heteroresistant K. pneumoniae isolates have been published in the last few years. Heteroresistance is difficult to detect and study due to its phenotypic and genetic instability. Recent findings provide strong evidence that heteroresistance may be associated with an increased risk of recurrent infections and antibiotic treatment failure. This review focuses on antibiotic heteroresistance mechanisms in K. pneumoniae and potential therapeutic strategies against antibiotic heteroresistant isolates.
Collapse
Affiliation(s)
| | | | | | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.S.-S.); (A.Ł.); (D.K.-W.)
| |
Collapse
|
41
|
Drown them in their own garbage: a new strategy to reverse polymyxin resistance? J Bacteriol 2021; 204:e0057421. [PMID: 34843378 DOI: 10.1128/jb.00574-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purcell and colleagues offer new insights into a major mechanism of polymyxin resistance in Gram-negative bacteria. Inactivating a single lipid recycling enzyme causes accumulation of waste lipid by-products that inhibit a key factor responsible for polymyxin resistance.
Collapse
|
42
|
Binsker U, Käsbohrer A, Hammerl JA. Global colistin use: A review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol Rev 2021; 46:6382128. [PMID: 34612488 PMCID: PMC8829026 DOI: 10.1093/femsre/fuab049] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
The dramatic global rise of MDR and XDR Enterobacterales in human medicine forced clinicians to the reintroduction of colistin as last-resort drug. Meanwhile, colistin is used in the veterinary medicine since its discovery, leading to a steadily increasing prevalence of resistant isolates in the livestock and meat-based food sector. Consequently, transmission of resistant isolates from animals to humans, acquisition via food and exposure to colistin in the clinic are reasons for the increased prevalence of colistin-resistant Enterobacterales in humans in the last decades. Initially, resistance mechanisms were caused by mutations in chromosomal genes. However, since the discovery in 2015, the focus has shifted exclusively to mobile colistin resistances (mcr). This review will advance the understanding of chromosomal-mediated resistance mechanisms in Enterobacterales. We provide an overview about genes involved in colistin resistance and the current global situation of colistin-resistant Enterobacterales. A comparison of the global colistin use in veterinary and human medicine highlights the effort to reduce colistin sales in veterinary medicine under the One Health approach. In contrast, it uncovers the alarming rise in colistin consumption in human medicine due to the emergence of MDR Enterobacterales, which might be an important driver for the increasing emergence of chromosome-mediated colistin resistance.
Collapse
Affiliation(s)
- Ulrike Binsker
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Annemarie Käsbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Department for Farm Animals and Veterinary Public Health, Institute of Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jens A Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
43
|
Bacterial heteroresistance: an evolving novel way to combat antibiotics. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00820-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Wang Z, Chen Q, Zhang J, Yan H, Chen Y, Chen C, Chen X. High prevalence of unstable antibiotic heteroresistance in cyanobacteria causes resistance underestimation. WATER RESEARCH 2021; 202:117430. [PMID: 34298276 DOI: 10.1016/j.watres.2021.117430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Both cyanobacterial bloom and antibiotic resistance have aggravated worldwide and posed a global threat to public health in recent years. Cyanobacteria can exhibit discrepancy between their resistance genotype and susceptible phenotype due to antibiotic heteroresistance, which leads to difficulties in unambiguously classifying cyanobacterial strains as susceptible or resistant. Here we profiled the prevalence and mechanisms of antibiotic heteroresistance in cyanobacterial strains isolated from 50 sites across four eutrophicated lakes in China. Among 300 cyanobacterial isolates tested against 19 different antibiotics, over 90% of cyanobacterial isolates exhibited HR to multiple antibiotics and 19.5% of isolate/antibiotic interactions classified as susceptible by traditional minimum inhibitory concentration (MIC) estimates were designated heteroresistant. Over 97% of these monoclonal HR cases were unstable, with an increased resistance of subpopulations due to amplification of known resistance genes with high fitness cost. Wide-type cyanobacterial isolates of Synechococcus, Synechocystis, Anabaena and Microcystis aeruginosa exposed to sub-MIC level of four antibiotics evolved high-level resistance with little fitness cost, resulting in stable polyclonal HR. Both stable polyclonal HR and unstable monoclonal HR observed in different cyanobacterial strains can be promoted under environmental levels of antibiotic pressure. The highly prevalent and unstable monoclonal HR with the potential for susceptibility misclassification highlighted underestimation of cyanobacteria-derived antibiotic resistance. Cost-effective strategies should be developed to identify heteroresistance in cyanobacteria and to avoid false positive or negative results in traditional susceptibility testing.
Collapse
Affiliation(s)
- Zhiyuan Wang
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Yangtze Institute for Conservation and Green Development, Hohai University, Nanjing 210098, China
| | - Qiuwen Chen
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Yangtze Institute for Conservation and Green Development, Hohai University, Nanjing 210098, China.
| | - Jianyun Zhang
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Yangtze Institute for Conservation and Green Development, Hohai University, Nanjing 210098, China.
| | - Hanlu Yan
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| | - Yuchen Chen
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| | - Cheng Chen
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| | - Xiaoxue Chen
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| |
Collapse
|
45
|
Analysis of β-lactams and Carbapenem Heteroresistance in Extra-intestinal Pathogenic Escherichia coli from Blood Samples in Iran. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2021. [DOI: 10.52547/jommid.9.3.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
A Resistance Mechanism in Non- mcr Colistin-Resistant Escherichia coli in Taiwan: R81H Substitution in PmrA Is an Independent Factor Contributing to Colistin Resistance. Microbiol Spectr 2021; 9:e0002221. [PMID: 34259551 PMCID: PMC8552686 DOI: 10.1128/spectrum.00022-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colistin resistance due to the mcr-type genes in Escherichia coli is well characterized. In order to study the resistance mechanism in mcr-negative colistin-resistant E. coli, strains were selected from a nationwide antimicrobial resistance surveillance program in Taiwan for further investigation. A total of 11 mcr-negative colistin-resistant isolates among 7,942 (0.1%) clinical E. coli isolates were identified between 2008 and 2018. Their prevalence was low and remained stable during the study period. Since 2012, ST131 and ST1193 clones with multiple drug-resistant phenotypes have emerged. All resistant strains displayed higher expression levels of the operons pmrHFIJKLM and pmrCAB than the control MG1655 strain. Although several amino acid substitutions were identified in PmrA or PmrB, only R81H in PmrA was associated with overexpression of pmrHFIJKLM and colistin resistance. The effect of substitution R81H in PmrA in colistin resistance was confirmed by complementation experiments. Although some strains harbored substitutions in PmrB, the identified mutations in pmrB did not contribute to colistin resistance. In conclusion, the amino acid substitution R81H in PmrA is an independent factor contributing to colistin resistance in non-mcrE. coli. IMPORTANCE The molecular epidemiology and resistance mechanisms of mcr-negative colistin-resistant E. coli are not well described. In this study, a total of 11 mcr-negative colistin-resistant E. coli isolates were selected from a nationwide antimicrobial resistance surveillance program in Taiwan for further investigation. We determined the resistance mechanism of non-mcr colistin-resistant strains using gene knockout and complementation experiments. We observed the occurrence of the global multiple-drug-resistant E. coli clones ST131 and ST1193 starting in 2012. Moreover, for the first time, we proved that the amino acid substitution R81H in PmrA is an independent factor contributing to colistin resistance in non-mcrE. coli. The study results helped to gain an insight into the diversity and complexity of chromosome-encoded colistin resistance in E. coli.
Collapse
|
47
|
Wójcicki M, Świder O, Daniluk KJ, Średnicka P, Akimowicz M, Roszko MŁ, Sokołowska B, Juszczuk-Kubiak E. Transcriptional Regulation of the Multiple Resistance Mechanisms in Salmonella-A Review. Pathogens 2021; 10:pathogens10070801. [PMID: 34202800 PMCID: PMC8308502 DOI: 10.3390/pathogens10070801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
The widespread use of antibiotics, especially those with a broad spectrum of activity, has resulted in the development of multidrug resistance in many strains of bacteria, including Salmonella. Salmonella is among the most prevalent causes of intoxication due to the consumption of contaminated food and water. Salmonellosis caused by this pathogen is pharmacologically treated using antibiotics such as fluoroquinolones, ceftriaxone, and azithromycin. This foodborne pathogen developed several molecular mechanisms of resistance both on the level of global and local transcription modulators. The increasing rate of antibiotic resistance in Salmonella poses a significant global concern, and an improved understanding of the multidrug resistance mechanisms in Salmonella is essential for choosing the suitable antibiotic for the treatment of infections. In this review, we summarized the current knowledge of molecular mechanisms that control gene expression related to antibiotic resistance of Salmonella strains. We characterized regulators acting as transcription activators and repressors, as well as two-component signal transduction systems. We also discuss the background of the molecular mechanisms of the resistance to metals, regulators of multidrug resistance to antibiotics, global regulators of the LysR family, as well as regulators of histone-like proteins.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Kamila J. Daniluk
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Monika Akimowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Marek Ł. Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
- Correspondence: ; Tel.: +48-22-6063605
| |
Collapse
|
48
|
Wang Y, Berglund B, Zhu Y, Luo Q, Xiao Y. Performance of different methods for testing polymyxin B: comparison of broth microdilution, agar dilution and MIC test strip in mcr-1 positive and negative Escherichia coli. Lett Appl Microbiol 2021; 73:197-205. [PMID: 33904164 DOI: 10.1111/lam.13492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 03/25/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Antimicrobial susceptibility testing with the last-resort antibiotics polymyxins (polymyxin B and colistin) is associated with several methodological issues. Currently, broth microdilution (BMD) is recommended for colistin and polymyxin B. BMD is laborious and the utility of alternative methods needs to be evaluated for polymyxin B susceptibility testing. In this study, using BMD as a reference method, the performance of agar dilution (AD) and MIC test strips (MTS) were evaluated in polymyxin B susceptibility testing. BMD, AD and MTS were used to determine MICs of 193 clinical isolates of Escherichia coli. Seventy-nine were positive for the polymyxin resistance gene mcr-1. Method performances were evaluated based on pair-wise agreements with the reference method (BMD) and statistical testing. AD and MTS showed an unacceptable number of very major errors (VMEs) compared with BMD, 9·3 and 10·7%, respectively. The essential agreement (EA) was low for AD (49·7%), but high for MTS (97·8%). However, statistical testing showed that MTS tended to yield a one-step lower MIC (P < 0·01) compared with BMD. The discordances observed with MTS and AD in comparison with BMD for polymyxin B susceptibility testing for E. coli suggest their inapplicability in routine testing. A large number of isolates clustered around the susceptibility breakpoint (2-4 mg l-1 ) and several mcr-1 positive isolates (17%) were determined as susceptible with BMD. A screening breakpoint for mcr-1 of 2 mg l-1 should also be considered.
Collapse
Affiliation(s)
- Y Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - B Berglund
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institution of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Y Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Q Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Y Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
The highly dynamic nature of bacterial heteroresistance impairs its clinical detection. Commun Biol 2021; 4:521. [PMID: 33953333 PMCID: PMC8099907 DOI: 10.1038/s42003-021-02052-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/26/2021] [Indexed: 11/23/2022] Open
Abstract
Many bacterial species and antibiotic classes exhibit heteroresistance, a phenomenon in which a susceptible bacterial isolate harbors a resistant subpopulation that can grow in the presence of an antibiotic and cause treatment failure. The resistant phenotype is often unstable and without antibiotic selection it reverts back to susceptibility. Here we studied the dynamics by which these resistant subpopulations are enriched in the presence of antibiotic and recede back to their baseline frequency in the absence of selection. An increasing understanding of this instability will allow more effective diagnostics and treatment of infections caused by heteroresistant bacteria. We show for clinical isolates of Escherichia coli and Salmonella enterica that different antibiotics at levels below the MIC of the susceptible main population can cause rapid enrichment of resistant subpopulations with increased copy number of genes that cause resistance. Modelling and growth rate measurements of bacteria with increased gene copy number in cultures and by microscopy of single-cells in a microfluidic chip show that the fitness cost of gene amplifications and their intrinsic instability drives their rapid loss in the absence of selection. Using a common antibiotic susceptibility test, we demonstrate that this test strongly underestimates the occurrence of heteroresistance in clinical isolates. Bacterial populations can show heteroresistance, where an antibiotic resistant subpopulation is part of a susceptible one. Pereira et al. show in Escherichia coli and Salmonella enterica that disk diffusion, a common antibiotic susceptibility test, underestimates the occurrence of heteroresistance in clinical isolates.
Collapse
|
50
|
Single-molecule nanopore sequencing reveals extreme target copy number heterogeneity in arylomycin-resistant mutants. Proc Natl Acad Sci U S A 2021; 118:2021958118. [PMID: 33443214 PMCID: PMC7817135 DOI: 10.1073/pnas.2021958118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Genetic heterogeneity is a significant driver of antibiotic resistance in bacteria. Understanding copy number (CN) heterogeneity is important because minority subclones with increased CN can drive resistance during antibiotic exposure, but revert and escape detection during clinical susceptibility testing. Despite its clinical relevance, CN variation has eluded quantification at single-molecule resolution. Here, we report nanopore sequencing of arylomycin-resistant mutants carrying tandem repeats ranging in size from 4.8 to 50.0 kb and encompassing the arylomycin target gene lepB. Reads spanning individual repeat arrays show vast differences in CN, underscoring the importance of amplifications in driving the emergence of genetic heterogeneity. This is a direct observation of cell-to-cell CN differences in an antibiotic-resistant bacterial population. Tandem gene amplification is a frequent and dynamic source of antibiotic resistance in bacteria. Ongoing expansions and contractions of repeat arrays during population growth are expected to manifest as cell-to-cell differences in copy number (CN). As a result, a clonal bacterial culture could comprise subpopulations of cells with different levels of antibiotic sensitivity that result from variable gene dosage. Despite the high potential for misclassification of heterogenous cell populations as either antibiotic-susceptible or fully resistant in clinical settings, and the concomitant risk of inappropriate treatment, CN distribution among cells has defied analysis. Here, we use the MinION single-molecule nanopore sequencer to uncover CN heterogeneity in clonal populations of Escherichia coli and Acinetobacter baumannii grown from single cells isolated while selecting for resistance to an optimized arylomycin, a member of a recently discovered class of Gram-negative antibiotic. We found that gene amplification of the arylomycin target, bacterial type I signal peptidase LepB, is a mechanism of unstable arylomycin resistance and demonstrate in E. coli that amplification instability is independent of RecA. This instability drives the emergence of a nonuniform distribution of lepB CN among cells with a range of 1 to at least 50 copies of lepB identified in a single clonal population. In sum, this remarkable heterogeneity, and the evolutionary plasticity it fuels, illustrates how gene amplification can enable bacterial populations to respond rapidly to novel antibiotics. This study establishes a rationale for further nanopore-sequencing studies of heterogeneous cell populations to uncover CN variability at single-molecule resolution.
Collapse
|