1
|
Abd-El-Aziz A, Elnagdy SM, Han J, Mihelič R, Wang X, Agathos SN, Li J. Bacteria-microalgae interactions from an evolutionary perspective and their biotechnological significance. Biotechnol Adv 2025; 82:108591. [PMID: 40328341 DOI: 10.1016/j.biotechadv.2025.108591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
Interactions between bacteria and microalgae have been studied in natural environments and in industrial consortia. As results of co-evolution for millions of years in nature, they have developed complex symbiotic relationships, including mutualism, commensalism and parasitism, the nature of which is decided by mechanisms of the interaction. There are two main types of molecular interactions between microalgae and bacteria: exchange of nutrients and release of signalling molecules. Nutrient exchange includes transport of organic carbon from microalgae to bacteria and nutrient nitrogen released from nitrogen-fixing bacteria to microalgae, as well as reciprocal supply of micronutrients such as B vitamins and iron. Signalling molecules such as phytohormones secreted by microalgae and quorum sensing molecules secreted by bacteria have been shown to positively affect growth and metabolism of the symbiotic partner. However, there are still a number of potential microalgae-bacteria interactions that have not been well explored, including cyclic peptides, other quorum signalling molecules, and extracellular vesicles involved in exchange of genetic materials. A more thorough understanding of these interactions may not only result in a deeper understanding of the relationships between these symbiotic organisms but also have potential biotechnological applications. Upon new mechanisms of interaction being identified and characterized, novel bioprocesses of synthetic ecology might be developed especially for wastewater treatment and production of biofertilizers and biofuels.
Collapse
Affiliation(s)
- Ahmad Abd-El-Aziz
- College of Materials Science and Chemical Engineering, Harbin, 150001, and Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000 China.
| | - Sherif M Elnagdy
- College of Materials Science and Chemical Engineering, Harbin, 150001, and Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000 China; Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Jichang Han
- College of Food and Engineering, Ningbo University, Ningbo 315832, China
| | - Rok Mihelič
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Xulei Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Spiros N Agathos
- College of Materials Science and Chemical Engineering, Harbin, 150001, and Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000 China; Earth & Life Institute, Catholic University of Louvain, Louvain-la-Neuve 1348, Belgium
| | - Jian Li
- College of Materials Science and Chemical Engineering, Harbin, 150001, and Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000 China.
| |
Collapse
|
2
|
Arnold ND, Paper M, Fuchs T, Ahmad N, Jung P, Lakatos M, Rodewald K, Rieger B, Qoura F, Kandawa‐Schulz M, Mehlmer N, Brück TB. High-quality genome of a novel Thermosynechococcaceae species from Namibia and characterization of its protein expression patterns at elevated temperatures. Microbiologyopen 2024; 13:e70000. [PMID: 39365014 PMCID: PMC11450739 DOI: 10.1002/mbo3.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Thermophilic cyanobacteria thrive in extreme environments, making their thermoresistant enzymes valuable for industrial applications. Common habitats include hot springs, which act as evolutionary accelerators for speciation due to geographical isolation. The family Thermosynechococcaceae comprises thermophilic cyanobacteria known for their ability to thrive in high-temperature environments. These bacteria are notable for their photosynthetic capabilities, significantly contributing to primary production in extreme habitats. Members of Thermosynechococcaceae exhibit unique adaptations that allow them to perform photosynthesis efficiently at elevated temperatures, making them subjects of interest for studies on microbial ecology, evolution, and potential biotechnological applications. In this study, the genome of a thermophilic cyanobacterium, isolated from a hot spring near Okahandja in Namibia, was sequenced using a PacBio Sequel IIe long-read platform. Cultivations were performed at elevated temperatures of 40, 50, and 55°C, followed by proteome analyses based on the annotated genome. Phylogenetic investigations, informed by the 16S rRNA gene and aligned nucleotide identity (ANI), suggest that the novel cyanobacterium is a member of the family Thermosynechococcaceae. Furthermore, the new species was assigned to a separate branch, potentially representing a novel genus. Whole-genome alignments supported this finding, revealing few conserved regions and multiple genetic rearrangement events. Additionally, 129 proteins were identified as differentially expressed in a temperature-dependent manner. The results of this study broaden our understanding of cyanobacterial adaptation to extreme environments, providing a novel high-quality genome of Thermosynechococcaceae cyanobacterium sp. Okahandja and several promising candidate proteins for expression and characterization studies.
Collapse
Affiliation(s)
- Nathanael D. Arnold
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Michael Paper
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Tobias Fuchs
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Nadim Ahmad
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Patrick Jung
- Department of Integrative BiotechnologyUniversity of Applied Sciences KaiserslauternPirmasensGermany
| | - Michael Lakatos
- Department of Integrative BiotechnologyUniversity of Applied Sciences KaiserslauternPirmasensGermany
| | - Katia Rodewald
- Department of Chemistry, WACKER‐Chair of Macromolecular Chemistry, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Bernhard Rieger
- Department of Chemistry, WACKER‐Chair of Macromolecular Chemistry, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Farah Qoura
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | | | - Norbert Mehlmer
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Thomas B. Brück
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| |
Collapse
|
3
|
Kobayashi T, Sakamoto A, Hisano T, Kashiwagi K, Igarashi K, Takao K, Uemura T, Furuchi T, Sugita Y, Moriya T, Oshima T, Terui Y. Caldomycin, a new guanidopolyamine produced by a novel agmatine homocoupling enzyme involved in homospermidine biosynthesis. Sci Rep 2024; 14:7566. [PMID: 38555406 PMCID: PMC10981699 DOI: 10.1038/s41598-024-58296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
An extreme thermophilic bacterium, Thermus thermophilus produces more than 20 unusual polyamines, but their biosynthetic pathways, including homospermidine, are not yet fully understood. Two types of homospermidine synthases have been identified in plants and bacteria, which use spermidine and putrescine or two molecules of putrescine as substrates. However, homospermidine synthases with such substrate specificity have not been identified in T. thermophilus. Here we identified a novel agmatine homocoupling enzyme that is involved in homospermidine biosynthesis in T. thermophilus. The reaction mechanism is different from that of a previously described homospermidine synthase, and involves conjugation of two molecules of agmatine, which produces a diamidino derivative of homospermidine (caldomycin) as an immediate precursor of homospermidine. We conclude that there is a homospermidine biosynthetic pathway from agmatine via caldomycin synthase followed by ureohydrolase in T. thermophilus. Furthermore, it is shown that caldomycin is a novel compound existing in nature.
Collapse
Affiliation(s)
- Teruyuki Kobayashi
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
| | - Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa, Tokyo, Japan
| | - Tamao Hisano
- RIKEN Center for Biosystems Dynamics Research (BDR), Tsurumi, Kanagawa, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
| | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba, Japan
| | - Koichi Takao
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Takeshi Uemura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Takemitsu Furuchi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Yoshiaki Sugita
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Toshiyuki Moriya
- Institute of Environmental Biology, Kyowa-Kako, Machida, Tokyo, Japan
| | - Tairo Oshima
- Institute of Environmental Biology, Kyowa-Kako, Machida, Tokyo, Japan
| | - Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan.
- School of Pharmacy, International University of Health and Welfare, Otawara, Tochigi, Japan.
| |
Collapse
|
4
|
Li B, Liang J, Phillips MA, Michael AJ. Neofunctionalization of S-adenosylmethionine decarboxylase into pyruvoyl-dependent L-ornithine and L-arginine decarboxylases is widespread in bacteria and archaea. J Biol Chem 2023; 299:105005. [PMID: 37399976 PMCID: PMC10407285 DOI: 10.1016/j.jbc.2023.105005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
S-adenosylmethionine decarboxylase (AdoMetDC/SpeD) is a key polyamine biosynthetic enzyme required for conversion of putrescine to spermidine. Autocatalytic self-processing of the AdoMetDC/SpeD proenzyme generates a pyruvoyl cofactor from an internal serine. Recently, we discovered that diverse bacteriophages encode AdoMetDC/SpeD homologs that lack AdoMetDC activity and instead decarboxylate L-ornithine or L-arginine. We reasoned that neofunctionalized AdoMetDC/SpeD homologs were unlikely to have emerged in bacteriophages and were probably acquired from ancestral bacterial hosts. To test this hypothesis, we sought to identify candidate AdoMetDC/SpeD homologs encoding L-ornithine and L-arginine decarboxylases in bacteria and archaea. We searched for the anomalous presence of AdoMetDC/SpeD homologs in the absence of its obligatory partner enzyme spermidine synthase, or the presence of two AdoMetDC/SpeD homologs encoded in the same genome. Biochemical characterization of candidate neofunctionalized genes confirmed lack of AdoMetDC activity, and functional presence of L-ornithine or L-arginine decarboxylase activity in proteins from phyla Actinomycetota, Armatimonadota, Planctomycetota, Melainabacteria, Perigrinibacteria, Atribacteria, Chloroflexota, Sumerlaeota, Omnitrophota, Lentisphaerota, and Euryarchaeota, the bacterial candidate phyla radiation and DPANN archaea, and the δ-Proteobacteria class. Phylogenetic analysis indicated that L-arginine decarboxylases emerged at least three times from AdoMetDC/SpeD, whereas L-ornithine decarboxylases arose only once, potentially from the AdoMetDC/SpeD-derived L-arginine decarboxylases, revealing unsuspected polyamine metabolic plasticity. Horizontal transfer of the neofunctionalized genes appears to be the more prevalent mode of dissemination. We identified fusion proteins of bona fide AdoMetDC/SpeD with homologous L-ornithine decarboxylases that possess two, unprecedented internal protein-derived pyruvoyl cofactors. These fusion proteins suggest a plausible model for the evolution of the eukaryotic AdoMetDC.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jue Liang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Margaret A Phillips
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony J Michael
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
5
|
Dunn MF, Becerra-Rivera VA. The Biosynthesis and Functions of Polyamines in the Interaction of Plant Growth-Promoting Rhizobacteria with Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2671. [PMID: 37514285 PMCID: PMC10385936 DOI: 10.3390/plants12142671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are members of the plant rhizomicrobiome that enhance plant growth and stress resistance by increasing nutrient availability to the plant, producing phytohormones or other secondary metabolites, stimulating plant defense responses against abiotic stresses and pathogens, or fixing nitrogen. The use of PGPR to increase crop yield with minimal environmental impact is a sustainable and readily applicable replacement for a portion of chemical fertilizer and pesticides required for the growth of high-yielding varieties. Increased plant health and productivity have long been gained by applying PGPR as commercial inoculants to crops, although with uneven results. The establishment of plant-PGPR relationships requires the exchange of chemical signals and nutrients between the partners, and polyamines (PAs) are an important class of compounds that act as physiological effectors and signal molecules in plant-microbe interactions. In this review, we focus on the role of PAs in interactions between PGPR and plants. We describe the basic ecology of PGPR and the production and function of PAs in them and the plants with which they interact. We examine the metabolism and the roles of PAs in PGPR and plants individually and during their interaction with one another. Lastly, we describe some directions for future research.
Collapse
Affiliation(s)
- Michael F Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Víctor A Becerra-Rivera
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| |
Collapse
|
6
|
Nieves-Morión M, Camargo S, Bardi S, Ruiz MT, Flores E, Foster RA. Heterologous expression of genes from a cyanobacterial endosymbiont highlights substrate exchanges with its diatom host. PNAS NEXUS 2023; 2:pgad194. [PMID: 37383020 PMCID: PMC10299089 DOI: 10.1093/pnasnexus/pgad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
A few genera of diatoms are widespread and thrive in low-nutrient waters of the open ocean due to their close association with N2-fixing, filamentous heterocyst-forming cyanobacteria. In one of these symbioses, the symbiont, Richelia euintracellularis, has penetrated the cell envelope of the host, Hemiaulus hauckii, and lives inside the host cytoplasm. How the partners interact, including how the symbiont sustains high rates of N2 fixation, is unstudied. Since R. euintracellularis has evaded isolation, heterologous expression of genes in model laboratory organisms was performed to identify the function of proteins from the endosymbiont. Gene complementation of a cyanobacterial invertase mutant and expression of the protein in Escherichia coli showed that R. euintracellularis HH01 possesses a neutral invertase that splits sucrose producing glucose and fructose. Several solute-binding proteins (SBPs) of ABC transporters encoded in the genome of R. euintracellularis HH01 were expressed in E. coli, and their substrates were characterized. The selected SBPs directly linked the host as the source of several substrates, e.g. sugars (sucrose and galactose), amino acids (glutamate and phenylalanine), and a polyamine (spermidine), to support the cyanobacterial symbiont. Finally, transcripts of genes encoding the invertase and SBPs were consistently detected in wild populations of H. hauckii collected from multiple stations and depths in the western tropical North Atlantic. Our results support the idea that the diatom host provides the endosymbiotic cyanobacterium with organic carbon to fuel N2 fixation. This knowledge is key to understanding the physiology of the globally significant H. hauckii-R. euintracellularis symbiosis.
Collapse
Affiliation(s)
- Mercedes Nieves-Morión
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm SE-106 91, Sweden
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville E-41092, Spain
| | - Sergio Camargo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville E-41092, Spain
| | - Sepehr Bardi
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm SE-106 91, Sweden
| | - María Teresa Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville E-41092, Spain
| | | | | |
Collapse
|
7
|
Differential global distribution of marine picocyanobacteria gene clusters reveals distinct niche-related adaptive strategies. THE ISME JOURNAL 2023; 17:720-732. [PMID: 36841901 PMCID: PMC10119275 DOI: 10.1038/s41396-023-01386-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/27/2023]
Abstract
The ever-increasing number of available microbial genomes and metagenomes provides new opportunities to investigate the links between niche partitioning and genome evolution in the ocean, especially for the abundant and ubiquitous marine picocyanobacteria Prochlorococcus and Synechococcus. Here, by combining metagenome analyses of the Tara Oceans dataset with comparative genomics, including phyletic patterns and genomic context of individual genes from 256 reference genomes, we show that picocyanobacterial communities thriving in different niches possess distinct gene repertoires. We also identify clusters of adjacent genes that display specific distribution patterns in the field (eCAGs) and are thus potentially involved in the same metabolic pathway and may have a key role in niche adaptation. Several eCAGs are likely involved in the uptake or incorporation of complex organic forms of nutrients, such as guanidine, cyanate, cyanide, pyrimidine, or phosphonates, which might be either directly used by cells, for example for the biosynthesis of proteins or DNA, or degraded to inorganic nitrogen and/or phosphorus forms. We also highlight the enrichment of eCAGs involved in polysaccharide capsule biosynthesis in Synechococcus populations thriving in both nitrogen- and phosphorus-depleted areas vs. low-iron (Fe) regions, suggesting that the complexes they encode may be too energy-consuming for picocyanobacteria thriving in the latter areas. In contrast, Prochlorococcus populations thriving in Fe-depleted areas specifically possess an alternative respiratory terminal oxidase, potentially involved in the reduction of Fe(III) to Fe(II). Altogether, this study provides insights into how phytoplankton communities populate oceanic ecosystems, which is relevant to understanding their capacity to respond to ongoing climate change.
Collapse
|
8
|
Martien JI, Trujillo EA, Jacobson TB, Tatli M, Hebert AS, Stevenson DM, Coon JJ, Amador-Noguez D. Metabolic Remodeling during Nitrogen Fixation in Zymomonas mobilis. mSystems 2021; 6:e0098721. [PMID: 34783580 PMCID: PMC8594446 DOI: 10.1128/msystems.00987-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
Zymomonas mobilis is an ethanologenic bacterium currently being developed for production of advanced biofuels. Recent studies have shown that Z. mobilis can fix dinitrogen gas (N2) as a sole nitrogen source. During N2 fixation, Z. mobilis exhibits increased biomass-specific rates of ethanol production. In order to better understand the physiology of Z. mobilis during N2 fixation and during changes in ammonium (NH4+) availability, we performed liquid chromatography-mass spectrometry (LC-MS)-based targeted metabolomics and shotgun proteomics under three regimes of nitrogen availability: continuous N2 fixation, gradual NH4+ depletion, and acute NH4+ addition to N2-fixing cells. We report dynamic changes in abundance of proteins and metabolites related to nitrogen fixation, motility, ammonium assimilation, amino acid biosynthesis, nucleotide biosynthesis, isoprenoid biosynthesis, and Entner-Doudoroff (ED) glycolysis, providing insight into the regulatory mechanisms that control these processes in Z. mobilis. Our analysis identified potential physiological mechanisms that may contribute to increased specific ethanol production during N2 fixation, including decreased activity of biosynthetic pathways, increased protein abundance of alcohol dehydrogenase (ADHI), and increased thermodynamic favorability of the ED pathway. Of particular relevance to advanced biofuel production, we found that intermediates in the methylerythritol phosphate (MEP) pathway for isoprenoid biosynthesis were depleted during N2 fixation, coinciding with decreased protein abundance of deoxyxylulose 5-phosphate synthase (DXS), the first enzyme in the pathway. This implies that DXS protein abundance serves as a native control point in regulating MEP pathway activity in Z. mobilis. The results of this study will inform metabolic engineering to further develop Z. mobilis as a platform organism for biofuel production. IMPORTANCE Biofuels and bioproducts have the potential to serve as environmentally sustainable replacements for petroleum-derived fuels and commodity molecules. Advanced fuels such as higher alcohols and isoprenoids are more suitable gasoline replacements than bioethanol. Developing microbial systems to generate advanced biofuels requires metabolic engineering to reroute carbon away from ethanol and other native products and toward desired pathways, such as the MEP pathway for isoprenoid biosynthesis. However, rational engineering of microbial metabolism relies on understanding metabolic control points, in terms of both enzyme activity and thermodynamic favorability. In Z. mobilis, the factors that control glycolytic rates, ethanol production, and isoprenoid production are still not fully understood. In this study, we performed metabolomic, proteomic, and thermodynamic analysis of Z. mobilis during N2 fixation. This analysis identified key changes in metabolite levels, enzyme abundance, and glycolytic thermodynamic favorability that occurred during changes in NH4+ availability, helping to inform future efforts in metabolic engineering.
Collapse
Affiliation(s)
- Julia I. Martien
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Edna A. Trujillo
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Tyler B. Jacobson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Mehmet Tatli
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Alexander S. Hebert
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - David M. Stevenson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Joshua J. Coon
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Daniel Amador-Noguez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Li B, Liang J, Hanfrey CC, Phillips MA, Michael AJ. Discovery of ancestral L-ornithine and L-lysine decarboxylases reveals parallel, pseudoconvergent evolution of polyamine biosynthesis. J Biol Chem 2021; 297:101219. [PMID: 34560100 PMCID: PMC8503589 DOI: 10.1016/j.jbc.2021.101219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 11/15/2022] Open
Abstract
Polyamines are fundamental molecules of life, and their deep evolutionary history is reflected in extensive biosynthetic diversification. The polyamines putrescine, agmatine, and cadaverine are produced by pyridoxal 5'-phosphate-dependent L-ornithine, L-arginine, and L-lysine decarboxylases (ODC, ADC, LDC), respectively, from both the alanine racemase (AR) and aspartate aminotransferase (AAT) folds. Two homologous forms of AAT-fold decarboxylase are present in bacteria: an ancestral form and a derived, acid-inducible extended form containing an N-terminal fusion to the receiver-like domain of a bacterial response regulator. Only ADC was known from the ancestral form and limited to the Firmicutes phylum, whereas extended forms of ADC, ODC, and LDC are present in Proteobacteria and Firmicutes. Here, we report the discovery of ancestral form ODC, LDC, and bifunctional O/LDC and extend the phylogenetic diversity of functionally characterized ancestral ADC, ODC, and LDC to include phyla Fusobacteria, Caldiserica, Nitrospirae, and Euryarchaeota. Using purified recombinant enzymes, we show that these ancestral forms have a nascent ability to decarboxylate kinetically less preferred amino acid substrates with low efficiency, and that product inhibition primarily affects preferred substrates. We also note a correlation between the presence of ancestral ODC and ornithine/arginine auxotrophy and link this with a known symbiotic dependence on exogenous ornithine produced by species using the arginine deiminase system. Finally, we show that ADC, ODC, and LDC activities emerged independently, in parallel, in the homologous AAT-fold ancestral and extended forms. The emergence of the same ODC, ADC, and LDC activities in the nonhomologous AR-fold suggests that polyamine biosynthesis may be inevitable.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jue Liang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Margaret A Phillips
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony J Michael
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
10
|
Abstract
In the ocean surface layer and cell culture, the polyamine transport protein PotD of SAR11 bacteria is often one of the most abundant proteins detected. Polyamines are organic cations at seawater pH produced by all living organisms and are thought to be an important component of dissolved organic matter (DOM) produced in planktonic ecosystems. We hypothesized that SAR11 cells uptake and metabolize multiple polyamines and use them as sources of carbon and nitrogen. Metabolic footprinting and fingerprinting were used to measure the uptake of five polyamine compounds (putrescine, cadaverine, agmatine, norspermidine, and spermidine) in two SAR11 strains that represent the majority of SAR11 cells in the surface ocean environment, “Candidatus Pelagibacter” strain HTCC7211 and “Candidatus Pelagibacter ubique” strain HTCC1062. Both strains took up all five polyamines and concentrated them to micromolar or millimolar intracellular concentrations. Both strains could use most of the polyamines to meet their nitrogen requirements, but polyamines did not fully substitute for their requirements of glycine (or related compounds) or pyruvate (or related compounds). Our data suggest that potABCD transports all five polyamines and that spermidine synthase, speE, is reversible, catalyzing the breakdown of spermidine and norspermidine, in addition to its usual biosynthetic role. These findings provide support for the hypothesis that enzyme multifunctionality enables streamlined cells in planktonic ecosystems to increase the range of DOM compounds they metabolize.
Collapse
|
11
|
A guanidine-degrading enzyme controls genomic stability of ethylene-producing cyanobacteria. Nat Commun 2021; 12:5150. [PMID: 34446715 PMCID: PMC8390497 DOI: 10.1038/s41467-021-25369-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
Recent studies have revealed the prevalence and biological significance of guanidine metabolism in nature. However, the metabolic pathways used by microbes to degrade guanidine or mitigate its toxicity have not been widely studied. Here, via comparative proteomics and subsequent experimental validation, we demonstrate that Sll1077, previously annotated as an agmatinase enzyme in the model cyanobacterium Synechocystis sp. PCC 6803, is more likely a guanidinase as it can break down guanidine rather than agmatine into urea and ammonium. The model cyanobacterium Synechococcus elongatus PCC 7942 strain engineered to express the bacterial ethylene-forming enzyme (EFE) exhibits unstable ethylene production due to toxicity and genomic instability induced by accumulation of the EFE-byproduct guanidine. Co-expression of EFE and Sll1077 significantly enhances genomic stability and enables the resulting strain to achieve sustained high-level ethylene production. These findings expand our knowledge of natural guanidine degradation pathways and demonstrate their biotechnological application to support ethylene bioproduction. The metabolic pathways used by microbes to degrade guanidine or mitigate its toxicity remain unclear. Here, the authors report a guanidine degrading enzyme that controls genomic stability of ethylene producing cyanobacterial strains.
Collapse
|
12
|
Nieves-Morión M, Flores E, Foster RA. Predicting substrate exchange in marine diatom-heterocystous cyanobacteria symbioses. Environ Microbiol 2020; 22:2027-2052. [PMID: 32281201 DOI: 10.1111/1462-2920.15013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 11/27/2022]
Abstract
In the open ocean, some phytoplankton establish symbiosis with cyanobacteria. Some partnerships involve diatoms as hosts and heterocystous cyanobacteria as symbionts. Heterocysts are specialized cells for nitrogen fixation, and a function of the symbiotic cyanobacteria is to provide the host with nitrogen. However, both partners are photosynthetic and capable of carbon fixation, and the possible metabolites exchanged and mechanisms of transfer are poorly understood. The symbiont cellular location varies from internal to partial to fully external, and this is reflected in the symbiont genome size and content. In order to identify the membrane transporters potentially involved in metabolite exchange, we compare the draft genomes of three differently located symbionts with known transporters mainly from model free-living heterocystous cyanobacteria. The types and numbers of transporters are directly related to the symbiont cellular location: restricted in the endosymbionts and wider in the external symbiont. Three proposed models of metabolite exchange are suggested which take into account the type of transporters in the symbionts and the influence of their cellular location on the available nutrient pools. These models provide a basis for several hypotheses that given the importance of these symbioses in global N and C budgets, warrant future testing.
Collapse
Affiliation(s)
- Mercedes Nieves-Morión
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, Seville, E-41092, Spain
| | - Rachel A Foster
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| |
Collapse
|
13
|
He P, Cai X, Chen K, Fu X. Identification of small RNAs involved in nitrogen fixation in Anabaena sp. PCC 7120 based on RNA-seq under steady state conditions. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01557-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
Purpose
Anabaena sp. PCC7120 is a genetically tractable model organism for nitrogen fixation and photosynthesis research. The importance of small regulatory RNAs (sRNAs) as mediators of a number of cellular processes in bacteria has begun to be recognized. Bacterial sRNA binds to target genes through base pairing, and play a regulatory role. Many studies have shown that bacterial sRNA can regulate cell stress response, carbon and nitrogen fixation, and so on. However, little is known about sRNAs in Anabaena sp. PCC 7120 regarded to nitrogen fixation under later steady state.
Methods
To provide a comprehensive study of sRNAs in this model organism, the sRNA (< 200 nt) extracted from Anabaena sp. PCC 7120 under nitrogen step-down treatment of 12 days, together with the sRNA from the control, was analyzed using deep RNA sequencing. Possible target genes regulated by all identified putative sRNAs were predicted by IntaRNA and further analyzed for functional categorizations for biological pathways.
Result
Totally, 14,132 transcripts were produced from the de novo assembly. Among them, transcripts that are located either in the intergenic region or antisense strand were kept, which resulted in 1219 sRNA candidates, for further analysis. RPKM-based differential expression analysis showed that 418 sRNAs were significantly differentially expressed between the samples from control (nitrogen addition, N+) and nitrogen depletion, (N−). Among them, 303 sRNAs were significantly upregulated, whereas 115 sRNAs were significantly downregulated. RT-PCR of 18 randomly chosen sRNAs showed a similar pattern as RNA-seq result, which confirmed the reliability of the RNA-seq data. In addition, the possible target genes regulated by unique sRNAs of Anabaena sp. PCC 7120 under nitrogen addition (N+) condition or that under nitrogen depletion (N−) condition were analyzed for functional categorization and biological pathways, which provided the evidences that sRNAs were indeed involved in many different metabolic pathways.
Conclusion
The information from the present study provides a valuable reference for understanding the sRNA-mediated regulation of the nitrogen fixation in Anabaena PCC 7120 under steady state conditions.
Collapse
|
14
|
A polyamine-independent role for S-adenosylmethionine decarboxylase. Biochem J 2019; 476:2579-2594. [DOI: 10.1042/bcj20190561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 11/17/2022]
Abstract
AbstractThe only known function of S-adenosylmethionine decarboxylase (AdoMetDC) is to supply, with its partner aminopropyltransferase enzymes such as spermidine synthase (SpdSyn), the aminopropyl donor for polyamine biosynthesis. Polyamine spermidine is probably essential for the growth of all eukaryotes, most archaea and many bacteria. Two classes of AdoMetDC exist, the prokaryotic class 1a and 1b forms, and the eukaryotic class 2 enzyme, which is derived from an ancient fusion of two prokaryotic class 1b genes. Herein, we show that ‘eukaryotic' class 2 AdoMetDCs are found in bacteria and are enzymatically functional. However, the bacterial AdoMetDC class 2 genes are phylogenetically limited and were likely acquired from a eukaryotic source via transdomain horizontal gene transfer, consistent with the class 2 form of AdoMetDC being a eukaryotic invention. We found that some class 2 and thousands of class 1b AdoMetDC homologues are present in bacterial genomes that also encode a gene fusion of an N-terminal membrane protein of the Major Facilitator Superfamily (MFS) class of transporters and a C-terminal SpdSyn-like domain. Although these AdoMetDCs are enzymatically functional, spermidine is absent, and an entire fusion protein or its SpdSyn-like domain only, does not biochemically complement a SpdSyn deletion strain of E. coli. This suggests that the fusion protein aminopropylates a substrate other than putrescine, and has a role outside of polyamine biosynthesis. Another integral membrane protein found clustered with these genes is DUF350, which is also found in other gene clusters containing a homologue of the glutathionylspermidine synthetase family and occasionally other polyamine biosynthetic enzymes.
Collapse
|
15
|
|
16
|
Burnat M, Picossi S, Valladares A, Herrero A, Flores E. Catabolic pathway of arginine in Anabaena involves a novel bifunctional enzyme that produces proline from arginine. Mol Microbiol 2019; 111:883-897. [PMID: 30636068 DOI: 10.1111/mmi.14203] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2019] [Indexed: 12/16/2022]
Abstract
Arginine participates widely in metabolic processes. The heterocyst-forming cyanobacterium Anabaena catabolizes arginine to produce proline and glutamate, with concomitant release of ammonium, as major products. Analysis of mutant Anabaena strains showed that this catabolic pathway is the product of two genes, agrE (alr4995) and putA (alr0540). The predicted PutA protein is a conventional, bifunctional proline oxidase that produces glutamate from proline. In contrast, AgrE is a hitherto unrecognized enzyme that contains both an N-terminal α/β propeller domain and a unique C-terminal domain of previously unidentified function. In vitro analysis of the proteins expressed in Escherichia coli or Anabaena showed arginine dihydrolase activity of the N-terminal domain and ornithine cyclodeaminase activity of the C-terminal domain, overall producing proline from arginine. In the diazotrophic filaments of Anabaena, β-aspartyl-arginine dipeptide is transferred from the heterocysts to the vegetative cells, where it is cleaved producing aspartate and arginine. Both agrE and putA were found to be expressed at higher levels in vegetative cells than in heterocysts, implying that arginine is catabolized by the AgrE-PutA pathway mainly in the vegetative cells. Expression in Anabaena of a homolog of the C-terminal domain of AgrE obtained from Methanococcus maripaludis enabled us to identify an archaeal ornithine cyclodeaminase.
Collapse
Affiliation(s)
- Mireia Burnat
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092, Sevilla, Spain
| | - Silvia Picossi
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092, Sevilla, Spain
| | - Ana Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092, Sevilla, Spain
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092, Sevilla, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092, Sevilla, Spain
| |
Collapse
|
17
|
Zhang H, Yang C. Arginine and nitrogen mobilization in cyanobacteria. Mol Microbiol 2019; 111:863-867. [DOI: 10.1111/mmi.14204] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Hao Zhang
- CAS‐Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences Shanghai 200032China
| | - Chen Yang
- CAS‐Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences Shanghai 200032China
| |
Collapse
|
18
|
Herrero A, Flores E. Genetic responses to carbon and nitrogen availability in Anabaena. Environ Microbiol 2018; 21:1-17. [PMID: 30066380 DOI: 10.1111/1462-2920.14370] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 11/27/2022]
Abstract
Heterocyst-forming cyanobacteria are filamentous organisms that perform oxygenic photosynthesis and CO2 fixation in vegetative cells and nitrogen fixation in heterocysts, which are formed under deprivation of combined nitrogen. These organisms can acclimate to use different sources of nitrogen and respond to different levels of CO2 . Following work mainly done with the best studied heterocyst-forming cyanobacterium, Anabaena, here we summarize the mechanisms of assimilation of ammonium, nitrate, urea and N2 , the latter involving heterocyst differentiation, and describe aspects of CO2 assimilation that involves a carbon concentration mechanism. These processes are subjected to regulation establishing a hierarchy in the assimilation of nitrogen sources -with preference for the most reduced nitrogen forms- and a dependence on sufficient carbon. This regulation largely takes place at the level of gene expression and is exerted by a variety of transcription factors, including global and pathway-specific transcriptional regulators. NtcA is a CRP-family protein that adjusts global gene expression in response to the C-to-N balance in the cells, and PacR is a LysR-family transcriptional regulator (LTTR) that extensively acclimates the cells to oxygenic phototrophy. A cyanobacterial-specific transcription factor, HetR, is involved in heterocyst differentiation, and other LTTR factors are specifically involved in nitrate and CO2 assimilation.
Collapse
Affiliation(s)
- Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| |
Collapse
|
19
|
Abstract
Most of the phylogenetic diversity of life is found in bacteria and archaea, and is reflected in the diverse metabolism and functions of bacterial and archaeal polyamines. The polyamine spermidine was probably present in the last universal common ancestor, and polyamines are known to be necessary for critical physiological functions in bacteria, such as growth, biofilm formation, and other surface behaviors, and production of natural products, such as siderophores. There is also phylogenetic diversity of function, indicated by the role of polyamines in planktonic growth of different species, ranging from absolutely essential to entirely dispensable. However, the cellular molecular mechanisms responsible for polyamine function in bacterial growth are almost entirely unknown. In contrast, the molecular mechanisms of essential polyamine functions in archaea are better understood: covalent modification by polyamines of translation factor aIF5A and the agmatine modification of tRNAIle As with bacterial hyperthermophiles, archaeal thermophiles require long-chain and branched polyamines for growth at high temperatures. For bacterial species in which polyamines are essential for growth, it is still unknown whether the molecular mechanisms underpinning polyamine function involve covalent or noncovalent interactions. Understanding the cellular molecular mechanisms of polyamine function in bacterial growth and physiology remains one of the great challenges for future polyamine research.
Collapse
Affiliation(s)
- Anthony J Michael
- From the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|