1
|
Kaweewan I, Mukai K, Rukthanapitak P, Nakagawa H, Hosaka T, Kodani S. Heterologous biosynthesis of myxobacterial lanthipeptides melittapeptins. Appl Microbiol Biotechnol 2024; 108:122. [PMID: 38229328 DOI: 10.1007/s00253-023-12834-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 01/18/2024]
Abstract
The myxobacteria are an attractive bioresource for bioactive compounds since the large size genome contains many biosynthetic gene clusters of secondary metabolites. The genome of the myxobacterium Melittangium boletus contains three biosynthetic gene clusters for lanthipeptide production. One of the gene clusters includes genes coding lanthipeptide precursor (melA), class II lanthipeptide synthetase (melM), and transporter (melT). The amino acid sequence of melA indicated similarity with that of known lanthipeptides mersacidin and lichenicidin A1 by the alignment. To perform heterologous production of new lanthipeptides, the expression vector containing the essential genes (melA and melM) was constructed by utilizing codon-optimized synthetic genes. The co-expression of two genes in the host bacterial cells of Escherichia coli BL21 (DE3) afforded new lanthipeptides named melittapeptins A-C. The structures of melittapeptins A-C including lanthionine/methyllanthionine bridge pattern were proposed based on protease digestion and MS/MS experiments. The native strain of M. boletus did not produce melittapeptins A-C, so heterologous production using the biosynthetic gene cluster was effective in obtaining the lanthipeptides. Melittapeptins A-C showed specific and potent antibacterial activity to the Gram-positive bacterium Micrococcus luteus. To the best of our knowledge, this is the first report of antibacterial lanthipeptides derived from myxobacterial origin. KEY POINTS: • New lanthipeptides melittapeptins were heterologously produced in Escherichia coli. • Melittapeptins showed specific antibacterial activity against Micrococcus luteus. • Melittapeptins were the first antibacterial lanthipeptides of myxobacterial origin.
Collapse
Affiliation(s)
- Issara Kaweewan
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Keiichiro Mukai
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | | | - Hiroyuki Nakagawa
- Research Center for Advanced Analysis, Core Technology Research Headquarters, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Takeshi Hosaka
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Shinya Kodani
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.
- College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
2
|
Fu Y, Pateri E, Kuipers OP. Discovery, Biosynthesis, and Characterization of Rodencin, a Two-Component Lanthipeptide, Harboring d-Amino Acids Introduced by the Unusual Dehydrogenase RodJ A. JOURNAL OF NATURAL PRODUCTS 2024; 87:2344-2354. [PMID: 39302883 PMCID: PMC11519912 DOI: 10.1021/acs.jnatprod.4c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Lanthipeptides, a group of ribosomally synthesized and post-translationally modified peptides (RiPPs), exhibit diverse structures and bioactivities. Their biosynthetic enzymes serve as valuable tools for peptide bioengineering. Here, we report a class II lanthipeptide biosynthetic gene cluster in a Bacillus strain, driving the biosynthesis of a two-component lanthipeptide, termed rodencin, featured by the presence of two different d-amino acids, i.e., d-Ala and d-Abu. Rodencin displays synergistic antimicrobial activity against food-borne pathogens such as Bacillus cereus, Staphylococcus aureus, and Listeria monocytogenes. The α-peptide of rodencin contains one d-Ala and the β-peptide features both d-Ala and d-Abu. These are installed by dehydratases RodM1 and RodM2 and dehydrogenase RodJA, the activities of which were successfully reconstituted using a dedicated E. coli expression system. To illustrate the unusual d-Abu incorporation potential of the enzymes, analogous to the d-amino acid-containing β peptide of lacticin 3147, was successfully produced with the rodencin heterologous expression system, by employing RodM2 and the dehydrogenase RodJA.
Collapse
Affiliation(s)
- Yuxin Fu
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen 9747 AG The Netherlands
| | - Eleftheria Pateri
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen 9747 AG The Netherlands
| | - Oscar P. Kuipers
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen 9747 AG The Netherlands
| |
Collapse
|
3
|
Moreira R, Yang Y, Luo Y, Gilmore MS, van der Donk WA. Bibacillin 1: a two-component lantibiotic from Bacillus thuringiensis. RSC Chem Biol 2024:d4cb00192c. [PMID: 39268544 PMCID: PMC11385697 DOI: 10.1039/d4cb00192c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Here we describe bibacillin 1 - a two-component lantibiotic from Bacillus thuringiensis. The peptides that comprise bibacillin 1 are modified by a class II lanthipeptide synthetase Bib1M producing two peptides with non-overlapping ring patterns that are reminiscent of cerecidin and the short component of the enterococcal cytolysin (CylLS''), a virulence factor associated with human disease. Stereochemical analysis demonstrated that each component contains ll-methyllanthionine and dl-lanthionine. The mature bibacillin 1 peptides showed cooperative bactericidal activity against Gram-positive bacteria, including members of the ESKAPE pathogens, and weak hemolytic activity. Optimal ratio studies suggest that bibacillin 1 works best when the components are present in a 1 : 1 ratio, but near optimal activity was observed at ratios strongly favouring one component over the other, suggesting that the two peptides may have different but complementary targets. Mechanism of action studies suggest a lipid II-independent killing action distinguishing bibacillin 1 from two other two-component lantibiotics haloduracin and lacticin 3147. One of the two components of bibacillin 1 showed cross reactivity with the cytolysin regulatory system. These result support the involvement of bibacillin 1 in quorum sensing and raise questions about the impact of CylLS''-like natural products on lanthipeptide expression in diverse bacterial communities.
Collapse
Affiliation(s)
- Ryan Moreira
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign Urbana IL 61822 USA +1 217 244 5360
| | - Yi Yang
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign Urbana IL 61822 USA +1 217 244 5360
| | - Youran Luo
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign Urbana IL 61822 USA +1 217 244 5360
| | - Michael S Gilmore
- Departments of Ophthalmology and Microbiology, Harvard Medical School Boston MA 02144 USA
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign Urbana IL 61822 USA +1 217 244 5360
| |
Collapse
|
4
|
Sugrue I, Ross RP, Hill C. Bacteriocin diversity, function, discovery and application as antimicrobials. Nat Rev Microbiol 2024; 22:556-571. [PMID: 38730101 PMCID: PMC7616364 DOI: 10.1038/s41579-024-01045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 05/12/2024]
Abstract
Bacteriocins are potent antimicrobial peptides that are produced by bacteria. Since their discovery almost a century ago, diverse peptides have been discovered and described, and some are currently used as commercial food preservatives. Many bacteriocins exhibit extensively post-translationally modified structures encoded on complex gene clusters, whereas others have simple linear structures. The molecular structures, mechanisms of action and resistance have been determined for a number of bacteriocins, but most remain incompletely characterized. These gene-encoded peptides are amenable to bioengineering strategies and heterologous expression, enabling metagenomic mining and modification of novel antimicrobials. The ongoing global antimicrobial resistance crisis demands that novel therapeutics be developed to combat infectious pathogens. New compounds that are target-specific and compatible with the resident microbiota would be valuable alternatives to current antimicrobials. As bacteriocins can be broad or narrow spectrum in nature, they are promising tools for this purpose. However, few bacteriocins have gone beyond preclinical trials and none is currently used therapeutically in humans. In this Review, we explore the broad diversity in bacteriocin structure and function, describe identification and optimization methods and discuss the reasons behind the lack of translation beyond the laboratory of these potentially valuable antimicrobials.
Collapse
Affiliation(s)
- Ivan Sugrue
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
5
|
Moreira R, Yang Y, Luo Y, Gilmore MS, van der Donk W. Bibacillin 1: A two-component lantibiotic from Bacillus thuringiensis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607848. [PMID: 39185197 PMCID: PMC11343131 DOI: 10.1101/2024.08.13.607848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Here we describe bibacillin 1 - a two-component lantibiotic from Bacillus thuringiensis. The peptides that comprise bibacillin 1 are modified by a class II lanthipeptide synthetase Bib1M producing two peptides with non-overlapping ring patterns that are reminiscent of cerecidin and the short component of the enterococcal cytolysin (CylLS"), a virulence factor associated with human disease. Stereochemical analysis demonstrated that each component contains LL-methyllanthionine and DL-lanthionine. The mature bibacillin 1 peptides showed cooperative bactericidal activity against Gram-positive bacteria, including members of ESKAPE pathogens, and weak hemolytic activity. Optimal ratio studies suggest that bibacillin 1 works best when the components are present in a 1:1 ratio, but near optimal activity was observed at ratios strongly favouring one component over the other, suggesting that the two peptides may have different but complementary targets. Mechanism of action studies suggest a lipid II-independent killing action distinguishing bibacillin 1 from two other two-component lantibiotics haloduracin and lacticin 3147. One of the two components of bibacillin 1 showed cross reactivity with the cytolysin regulatory system. These result support the involvement of bibacillin 1 in quorum sensing and raise questions about the impact of CylLS"-like natural products on lanthipeptide expression in diverse bacterial communities.
Collapse
Affiliation(s)
- Ryan Moreira
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61822, USA
| | - Yi Yang
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61822, USA
| | - Youran Luo
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61822, USA
| | - Michael S. Gilmore
- Departments of Ophthalmology and Microbiology, Harvard Medical School, Boston, MA 02144, USA
| | - Wilfred van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61822, USA
| |
Collapse
|
6
|
Antoshina DV, Balandin SV, Tagaev AA, Potemkina AA, Ovchinnikova TV. Biotechnological Production of the Recombinant Two-Component Lantibiotic Lichenicidin in a Bacterial Expression System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2024; 50:1150-1161. [DOI: 10.1134/s1068162024040459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 01/06/2025]
Abstract
Abstract
Objective: Lantibiotics are a family of bacterial antimicrobial peptides synthesized by ribosomes, that undergo post-translational modification to form lanthionine (Lan) and methyllanthionine (MeLan) residues. Lantibiotics are currently considered promising agents for combating antibiotic-resistant bacterial infections. This paper presents a biotechnological method for obtaining two components of the lantibiotic lichenicidin from Bacillus licheniformis B-511, Lchα and Lchβ. Such a system has the potential to facilitate the production of not only lichenicidin, but also other lantibiotics, including two-component ones, and also to enable the study of their biosynthesis and the activity and substrate specificity of modifying enzymes. Methods: The developed system is based on heterologous coexpression of the genes of Lchα and Lchβ precursors with the genes of their corresponding modifying enzymes in the cytoplasm of Escherichia coli BL21(DE3). Subsequent steps included immobilized metal affinity chromatography of the His-tagged hybrid peptide under denaturing conditions, cyanogen bromide cleavage in acidic medium, and final purification using reverse-phase HPLC. Results and Discussion: The system was employed for the expression and purification of lantibiotics, resulting in the successful isolation of the β-component of lichenicidin in high yield (approximately 4 mg/L of culture). This purified beta component exhibited structural and functional characteristics comparable to its natural counterpart, which was purified from the natural producer. However, the yield of the mature α-component of lichenicidin in such a system was significantly lower. Conclusions: The work presents a biotechnological method for obtaining recombinant two-component lantibiotic lichenicidin, which has proven to be particularly effective in the case of Lchβ. The developed method can also be applied to the production of other promising lantibiotics and their further research.
Collapse
|
7
|
Luo Y, Xu S, Frerk AM, van der Donk WA. Facile Method for Determining Lanthipeptide Stereochemistry. Anal Chem 2024; 96:1767-1773. [PMID: 38232355 PMCID: PMC10831782 DOI: 10.1021/acs.analchem.3c04958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Lanthipeptides make up a large group of natural products that belong to the ribosomally synthesized and post-translationally modified peptides (RiPPs). Lanthipeptides contain lanthionine and methyllanthionine bis-amino acids that have varying stereochemistry. The stereochemistry of new lanthipeptides is often not determined because current methods require equipment that is not standard in most laboratories. In this study, we developed a facile, efficient, and user-friendly method for detecting lanthipeptide stereochemistry, utilizing advanced Marfey's analysis with detection by liquid chromatography coupled with mass spectrometry (LC-MS). Under optimized conditions, 0.05 mg of peptide is sufficient to characterize the stereochemistry of five (methyl)lanthionines of different stereochemistry using a simple liquid chromatography setup, which is a much lower detection limit than current methods. In addition, we describe methods to readily access standards of the three different methyllanthionine stereoisomers and two different lanthionine stereoisomers that have been reported in known lanthipeptides. The developed workflow uses a commonly used nonchiral column system and offers a scalable platform to assist antimicrobial discovery. We illustrate its utility with an example of a lanthipeptide discovered by genome mining.
Collapse
Affiliation(s)
- Youran Luo
- Department
of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Shuyun Xu
- Department
of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Autumn M. Frerk
- Department
of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Saleem M, Yahya S, Razzak SA, Khawaja S, Ali A. Shotgun metagenomics and computational profiling of the plastisphere microbiome: unveiling the potential of enzymatic production and plastic degradation. Arch Microbiol 2023; 205:359. [PMID: 37884755 DOI: 10.1007/s00203-023-03701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
Plastic pollution is one of the most resilient types of pollution and is considered a global environmental threat, particularly in the marine environment. This study aimed to identify plastic-degrading bacteria from the plastisphere and their pharmaceutical and therapeutic potential. We collected samples from soil and aquatic plastisphere to identify the bacterial communities using shotgun metagenomic sequencing and bioinformatic tools. Results showed that the microbiome comprised 93% bacteria, 0.29% archaea, and 3.87% unidentified microbes. Of these 93% of bacteria, 54% were Proteobacteria, 23.9% were Firmicutes, 13% were Actinobacteria, and 2.1% were other phyla. We found that the plastisphere microbiome was involved in degrading synthetic and polyhydroxy alkanoate (PHA) plastic, biosurfactant production, and can thrive under high temperatures. However, no association existed between thermophiles, synthetic plastic or PHA degraders, and biosurfactant-producing bacterial species except for Pseudomonas. Other plastisphere inhabiting plastic degrading microbes include Streptomyces, Bacillus, Achromobacter, Azospirillum, Bacillus, Brevundimonas, Clostridium, Paenibacillus, Rhodococcus, Serratia, Staphylococcus, Thermobifida, and Thermomonospora. However, the plastisphere microbiome showed potential for producing secondary metabolites that were found to act as anticancer, antitumor, anti-inflammatory, antimicrobial, and enzyme stabilizers. These results revealed that the plastisphere microbiome upholds clinical and environmental significance as it can open future portals in a multi-directional way.
Collapse
Affiliation(s)
- Mahnoor Saleem
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto University of Science and Technology, Karachi, 75600, Sindh, Pakistan.
| | - Saira Yahya
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto University of Science and Technology, Karachi, 75600, Sindh, Pakistan.
| | - Safina Abdul Razzak
- Department of Bioscience, Muhammad Ali Jinnah University, Karachi, 75600, Pakistan
| | - Shariqa Khawaja
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Akhtar Ali
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
9
|
Chaudhary S, Kishen S, Singh M, Jassal S, Pathania R, Bisht K, Sareen D. Phylogeny-guided genome mining of roseocin family lantibiotics to generate improved variants of roseocin. AMB Express 2023; 13:34. [PMID: 36940043 PMCID: PMC10027976 DOI: 10.1186/s13568-023-01536-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/21/2023] Open
Abstract
Roseocin, the two-peptide lantibiotic from Streptomyces roseosporus, carries extensive intramolecular (methyl)lanthionine bridging in the peptides and exhibits synergistic antibacterial activity against clinically relevant Gram-positive pathogens. Both peptides have a conserved leader but a diverse core region. The biosynthesis of roseocin involves post-translational modification of the two precursor peptides by a single promiscuous lanthipeptide synthetase, RosM, to install an indispensable disulfide bond in the Rosα core along with four and six thioether rings in Rosα and Rosβ cores, respectively. RosM homologs in the phylum actinobacteria were identified here to reveal twelve other members of the roseocin family which diverged into three types of biosynthetic gene clusters (BGCs). Further, the evolutionary rate among the BGC variants and analysis of variability within the core peptide versus leader peptide revealed a phylum-dependent lanthipeptide evolution. Analysis of horizontal gene transfer revealed its role in the generation of core peptide diversity. The naturally occurring diverse congeners of roseocin peptides identified from the mined novel BGCs were carefully aligned to identify the conserved sites and the substitutions in the core peptide region. These selected sites in the Rosα peptide were mutated for permitted substitutions, expressed heterologously in E. coli, and post-translationally modified by RosM in vivo. Despite a limited number of generated variants, two variants, RosαL8F and RosαL8W exhibited significantly improved inhibitory activity in a species-dependent manner compared to the wild-type roseocin. Our study proves that a natural repository of evolved variants of roseocin is present in nature and the key variations can be used to generate improved variants.
Collapse
Affiliation(s)
- Sandeep Chaudhary
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Shweta Kishen
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Mangal Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Sunanda Jassal
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Reeva Pathania
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Kalpana Bisht
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Dipti Sareen
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
10
|
Zhong G, Wang ZJ, Yan F, Zhang Y, Huo L. Recent Advances in Discovery, Bioengineering, and Bioactivity-Evaluation of Ribosomally Synthesized and Post-translationally Modified Peptides. ACS BIO & MED CHEM AU 2023; 3:1-31. [PMID: 37101606 PMCID: PMC10125368 DOI: 10.1021/acsbiomedchemau.2c00062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 04/28/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are of increasing interest in natural products as well as drug discovery. This empowers not only the unique chemical structures and topologies in natural products but also the excellent bioactivities such as antibacteria, antifungi, antiviruses, and so on. Advances in genomics, bioinformatics, and chemical analytics have promoted the exponential increase of RiPPs as well as the evaluation of biological activities thereof. Furthermore, benefiting from their relatively simple and conserved biosynthetic logic, RiPPs are prone to be engineered to obtain diverse analogues that exhibit distinct physiological activities and are difficult to synthesize. This Review aims to systematically address the variety of biological activities and/or the mode of mechanisms of novel RiPPs discovered in the past decade, albeit the characteristics of selective structures and biosynthetic mechanisms are briefly covered as well. Almost one-half of the cases are involved in anti-Gram-positive bacteria. Meanwhile, an increasing number of RiPPs related to anti-Gram-negative bacteria, antitumor, antivirus, etc., are also discussed in detail. Last but not least, we sum up some disciplines of the RiPPs' biological activities to guide genome mining as well as drug discovery and optimization in the future.
Collapse
Affiliation(s)
- Guannan Zhong
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
- Suzhou
Research Institute, Shandong University, Suzhou, Jiangsu 215123, P. R. China
| | - Zong-Jie Wang
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fu Yan
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
- CAS
Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liujie Huo
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
- Suzhou
Research Institute, Shandong University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
11
|
Janssen K, Krasenbrink J, Strangfeld S, Kroheck S, Josten M, Engeser M, Bierbaum G. Elucidation of the Bridging Pattern of the Lantibiotic Pseudomycoicidin. Chembiochem 2023; 24:e202200540. [PMID: 36399337 PMCID: PMC10107895 DOI: 10.1002/cbic.202200540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Lantibiotics are post-translationally modified antibiotic peptides with lanthionine thioether bridges that represent potential alternatives to conventional antibiotics. The lantibiotic pseudomycoicidin is produced by Bacillus pseudomycoides DSM 12442 and is effective against many Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. While prior work demonstrated that pseudomycoicidin possesses one disulfide bridge and four thioether bridges, the ring topology has so far remained unclear. Here, we analyzed several pseudomycoicidin analogues that are affected in ring formation via MALDI-TOF-MS and tandem mass spectrometry with regard to their dehydration and fragmentation patterns, respectively. As a result, we propose a bridging pattern involving Thr8 and Cys13, Thr10 and Cys16, Ser18 and Cys21, and Ser20 and Cys26, thus, forming two double ring systems. Additionally, we localized the disulfide bridge to connect Cys3 and Cys7 and, therefore, fully elucidated the bridging pattern of pseudomycoicidin.
Collapse
Affiliation(s)
- Kathrin Janssen
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Julia Krasenbrink
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany.,Present address: Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Sarina Strangfeld
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Sarah Kroheck
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Michaele Josten
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Marianne Engeser
- Kekulé Institute of Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| |
Collapse
|
12
|
Panina IS, Balandin SV, Tsarev AV, Chugunov AO, Tagaev AA, Finkina EI, Antoshina DV, Sheremeteva EV, Paramonov AS, Rickmeyer J, Bierbaum G, Efremov RG, Shenkarev ZO, Ovchinnikova TV. Specific Binding of the α-Component of the Lantibiotic Lichenicidin to the Peptidoglycan Precursor Lipid II Predetermines Its Antimicrobial Activity. Int J Mol Sci 2023; 24:ijms24021332. [PMID: 36674846 PMCID: PMC9863751 DOI: 10.3390/ijms24021332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
To date, a number of lantibiotics have been shown to use lipid II-a highly conserved peptidoglycan precursor in the cytoplasmic membrane of bacteria-as their molecular target. The α-component (Lchα) of the two-component lantibiotic lichenicidin, previously isolated from the Bacillus licheniformis VK21 strain, seems to contain two putative lipid II binding sites in its N-terminal and C-terminal domains. Using NMR spectroscopy in DPC micelles, we obtained convincing evidence that the C-terminal mersacidin-like site is involved in the interaction with lipid II. These data were confirmed by the MD simulations. The contact area of lipid II includes pyrophosphate and disaccharide residues along with the first isoprene units of bactoprenol. MD also showed the potential for the formation of a stable N-terminal nisin-like complex; however, the conditions necessary for its implementation in vitro remain unknown. Overall, our results clarify the picture of two component lantibiotics mechanism of antimicrobial action.
Collapse
Affiliation(s)
- Irina S. Panina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sergey V. Balandin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-495-335-0900
| | - Andrey V. Tsarev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Anton O. Chugunov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Andrey A. Tagaev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ekaterina I. Finkina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Daria V. Antoshina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Elvira V. Sheremeteva
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander S. Paramonov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Jasmin Rickmeyer
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, 53117 Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, 53117 Bonn, Germany
| | - Roman G. Efremov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Department of Applied Mathematics, National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Zakhar O. Shenkarev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Department of Bioorganic Chemistry, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
13
|
Kaweewan I, Ijichi S, Nakagawa H, Kodani S. Heterologous production of new lanthipeptides hazakensins A and B using a cryptic gene cluster of the thermophilic bacterium Thermosporothrix hazakensis. World J Microbiol Biotechnol 2022; 39:30. [PMID: 36445498 DOI: 10.1007/s11274-022-03463-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022]
Abstract
The thermophilic bacterium Thermosporothrix hazakensis belongs to a class of Ktedonobacteria in the phylum Chloroflexota. Lanthipeptides are a naturally occurring peptide group that contains antibacterial compounds such as nisin. To find a new lanthipeptide that is a possible candidate for an antibacterial reagent, we performed genome-mining of T. hazakensis and heterologous expression experiments. Based on genome-mining, the presence of a total of ten putative biosynthetic gene clusters for class I and class II lanthipeptides was indicated from the genome sequence of T. hazakensis. New lanthipeptides named hazakensins A and B were produced by heterologous expression of a class I lanthipeptide biosynthetic gene cluster in the expression host Escherichia coli. Co-expression of the biosynthetic gene cluster with tRNA-Glu and glutamyl-tRNA synthetase coding genes derived from T. hazakensis increased the production yield of both lanthipeptides by about 4-6 times. The chemical structures of hazakensins A and B including the bridging pattern of lanthionine/methyllanthionine rings were determined by NMR and MS experiments. Since production of hazakensins A and B was not observed in the native strain T. hazakensis, heterologous production was an effective method to obtain the lanthipeptides derived from the biosynthetic gene cluster. This is the first report of heterologous production of class I lanthipeptides originating from the filamentous green non-sulfur bacteria, to the best of our knowledge. The success of heterologous production of hazakensins may lead to the discovery and development of new lanthipeptides derived from the origins of bacteria in the phylum Chloroflexota.
Collapse
Affiliation(s)
- Issara Kaweewan
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Shinta Ijichi
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hiroyuki Nakagawa
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Ibaraki, 305-8642, Japan
| | - Shinya Kodani
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan. .,Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Shizuoka, 422-8529, Japan. .,College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
14
|
Ayikpoe RS, Shi C, Battiste AJ, Eslami SM, Ramesh S, Simon MA, Bothwell IR, Lee H, Rice AJ, Ren H, Tian Q, Harris LA, Sarksian R, Zhu L, Frerk AM, Precord TW, van der Donk WA, Mitchell DA, Zhao H. A scalable platform to discover antimicrobials of ribosomal origin. Nat Commun 2022; 13:6135. [PMID: 36253467 PMCID: PMC9576775 DOI: 10.1038/s41467-022-33890-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a promising source of new antimicrobials in the face of rising antibiotic resistance. Here, we report a scalable platform that combines high-throughput bioinformatics with automated biosynthetic gene cluster refactoring for rapid evaluation of uncharacterized gene clusters. As a proof of concept, 96 RiPP gene clusters that originate from diverse bacterial phyla involving 383 biosynthetic genes are refactored in a high-throughput manner using a biological foundry with a success rate of 86%. Heterologous expression of all successfully refactored gene clusters in Escherichia coli enables the discovery of 30 compounds covering six RiPP classes: lanthipeptides, lasso peptides, graspetides, glycocins, linear azol(in)e-containing peptides, and thioamitides. A subset of the discovered lanthipeptides exhibit antibiotic activity, with one class II lanthipeptide showing low µM activity against Klebsiella pneumoniae, an ESKAPE pathogen. Overall, this work provides a robust platform for rapidly discovering RiPPs.
Collapse
Affiliation(s)
- Richard S Ayikpoe
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Chengyou Shi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Alexander J Battiste
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Sara M Eslami
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Sangeetha Ramesh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Max A Simon
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Ian R Bothwell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Hyunji Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Andrew J Rice
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Hengqian Ren
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Qiqi Tian
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Lonnie A Harris
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Raymond Sarksian
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Autumn M Frerk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Timothy W Precord
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Wilfred A van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, 20815, MD, USA.
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
| | - Huimin Zhao
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
| |
Collapse
|
15
|
Striving for sustainable biosynthesis: discovery, diversification, and production of antimicrobial drugs in Escherichia coli. Biochem Soc Trans 2022; 50:1315-1328. [PMID: 36196987 DOI: 10.1042/bst20220218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
New antimicrobials need to be discovered to fight the advance of multidrug-resistant pathogens. A promising approach is the screening for antimicrobial agents naturally produced by living organisms. As an alternative to studying the native producer, it is possible to use genetically tractable microbes as heterologous hosts to aid the discovery process, facilitate product diversification through genetic engineering, and ultimately enable environmentally friendly production. In this mini-review, we summarize the literature from 2017 to 2022 on the application of Escherichia coli and E. coli-based platforms as versatile and powerful systems for the discovery, characterization, and sustainable production of antimicrobials. We highlight recent developments in high-throughput screening methods and genetic engineering approaches that build on the strengths of E. coli as an expression host and that led to the production of antimicrobial compounds. In the last section, we briefly discuss new techniques that have not been applied to discover or engineer antimicrobials yet, but that may be useful for this application in the future.
Collapse
|
16
|
Malit JJL, Leung HYC, Qian PY. Targeted Large-Scale Genome Mining and Candidate Prioritization for Natural Product Discovery. Mar Drugs 2022; 20:398. [PMID: 35736201 PMCID: PMC9231227 DOI: 10.3390/md20060398] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/20/2022] Open
Abstract
Large-scale genome-mining analyses have identified an enormous number of cryptic biosynthetic gene clusters (BGCs) as a great source of novel bioactive natural products. Given the sheer number of natural product (NP) candidates, effective strategies and computational methods are keys to choosing appropriate BGCs for further NP characterization and production. This review discusses genomics-based approaches for prioritizing candidate BGCs extracted from large-scale genomic data, by highlighting studies that have successfully produced compounds with high chemical novelty, novel biosynthesis pathway, and potent bioactivities. We group these studies based on their BGC-prioritization logics: detecting presence of resistance genes, use of phylogenomics analysis as a guide, and targeting for specific chemical structures. We also briefly comment on the different bioinformatics tools used in the field and examine practical considerations when employing a large-scale genome mining study.
Collapse
Affiliation(s)
- Jessie James Limlingan Malit
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (J.J.L.M.); (H.Y.C.L.)
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hiu Yu Cherie Leung
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (J.J.L.M.); (H.Y.C.L.)
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (J.J.L.M.); (H.Y.C.L.)
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
17
|
da Silva Dantas A. Antimicrobial resistance. Mol Microbiol 2022; 117:959-960. [PMID: 35621028 DOI: 10.1111/mmi.14912] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 11/27/2022]
|
18
|
Maiti PK, Mandal S. Comprehensive genome analysis of Lentzea reveals repertoire of polymer-degrading enzymes and bioactive compounds with clinical relevance. Sci Rep 2022; 12:8409. [PMID: 35589875 PMCID: PMC9120177 DOI: 10.1038/s41598-022-12427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
The genus Lentzea is a rare group of actinobacteria having potential for the exploration of bioactive compounds. Despite its proven ability to produce compounds with medical relevance, Lentzea genome analysis remains unexplored. Here we show a detailed understanding of the genetic features, biosynthetic gene clusters (BGCs), and genetic clusters for carbohydrate-active enzymes present in the Lentzea genome. Our analysis determines the genes for core proteins, non-ribosomal peptide synthetase condensation domain, and polyketide synthases-ketide synthase domain. The antiSMASH-based sequence analysis identifies 692 BGCs among which 8% are identical to the BGCs that produce geosmin, citrulassin, achromosin (lassopeptide), vancosamine, anabaenopeptin NZ857/nostamide A, alkylresorcinol, BE-54017, and bezastatin. The remaining BGCs code for advanced category antimicrobials like calcium-dependent, glycosylated, terpenoids, lipopeptides, thiopeptide, lanthipeptide, lassopeptide, lingual antimicrobial peptide and lantibiotics together with antiviral, antibacterial, antifungal, antiparasitic, anticancer agents. About 28% of the BGCs, that codes for bioactive secondary metabolites, are exclusive in Lentzea and could lead to new compound discoveries. We also find 7121 genes that code for carbohydrate-degrading enzymes which could essentially convert a wide range of polymeric carbohydrates. Genome mining of such genus is very much useful to give scientific leads for experimental validation in the discovery of new-generation bioactive molecules of biotechnological importance.
Collapse
Affiliation(s)
- Pulak Kumar Maiti
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
19
|
Thetsana C, Ijichi S, Kaweewan I, Nakagawa H, Kodani S. Heterologous expression of a cryptic gene cluster from a marine proteobacterium Thalassomonas actiniarum affords new lanthipeptides thalassomonasins A and B. J Appl Microbiol 2022; 132:3629-3639. [PMID: 35157343 DOI: 10.1111/jam.15491] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
AIMS The aim of this study was to utilize a cryptic biosynthetic gene cluster of a marine proteobacterium Thalassomonas actiniarum for production of new lanthipeptides by heterologous expression system. METHODS AND RESULTS Based on genome-mining, a new biosynthetic gene cluster of class I lanthipeptide was found in the genome sequence of a marine proteobacterium Thalassomonas actiniarum. Molecular cloning was performed to construct expression vector derived from commercial available plasmid pET-41a(+). Heterologous production of new lanthipeptides named thalassomonasins A and B was performed using the host Escherichia coli BL21(DE3) harboring the expression vector. The structure of thalassomonasin A was determined by interpretation of NMR and MS data. As a result, thalassomonasin A was determined to be a lanthipeptide with three units of lanthionine. The bridging pattern of the lanthionine rings in thalassomonasin A was determined by interpretation of NOESY data. The structure of thalassomonasin B was proposed by MS/MS experiment. CONCLUSIONS We succeeded in heterologous production of new class I lanthipeptides using a biosynthetic gene cluster of a marine proteobacterium Thalassomonas actiniarum. SIGNIFICANCE AND IMPACT OF THE STUDY To the best of our knowledge, this is the first report of heterologous production of lanthipeptides derived from proteobacterial origin. There are many cryptic biosynthetic gene clusters of this class of lanthipeptides in proteobacterial genomes. This study may lead to production of new lanthipeptides by utilizing the biosynthetic gene clusters.
Collapse
Affiliation(s)
- Chanaphat Thetsana
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Shinta Ijichi
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Issara Kaweewan
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Hiroyuki Nakagawa
- Research center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Shinya Kodani
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.,Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Shizuoka, Japan.,College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
20
|
Alternatives to Fight Vancomycin-Resistant Staphylococci and Enterococci. Antibiotics (Basel) 2021; 10:antibiotics10091116. [PMID: 34572698 PMCID: PMC8471638 DOI: 10.3390/antibiotics10091116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
Gram positive pathogens are a significant cause of healthcare-associated infections, with Staphylococci and Enterococci being the most prevalent ones. Vancomycin, a last resort glycopeptide, is used to fight these bacteria but the emergence of resistance against this drug leaves some patients with few therapeutic options. To counter this issue, new generations of antibiotics have been developed but resistance has already been reported. In this article, we review the strategies in place or in development to counter vancomycin-resistant pathogens. First, an overview of traditional antimicrobials already on the market or in the preclinical or clinical pipeline used individually or in combination is summarized. The second part focuses on the non-traditional antimicrobials, such as antimicrobial peptides, bacteriophages and nanoparticles. The conclusion is that there is hitherto no substitute equivalent to vancomycin. However, promising strategies based on drugs with multiple mechanisms of action and treatments based on bacteriophages possibly combined with conventional antibiotics are hoped to provide treatment options for vancomycin-resistant Gram-positive pathogens.
Collapse
|
21
|
Li C, Alam K, Zhao Y, Hao J, Yang Q, Zhang Y, Li R, Li A. Mining and Biosynthesis of Bioactive Lanthipeptides From Microorganisms. Front Bioeng Biotechnol 2021; 9:692466. [PMID: 34395400 PMCID: PMC8358304 DOI: 10.3389/fbioe.2021.692466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial resistance is one of the most serious public health issues in the worldwide and only a few new antimicrobial drugs have been discovered in recent decades. To overcome the ever-increasing emergence of multidrug-resistant (MDR) pathogens, discovery of new natural products (NPs) against MDR pathogens with new technologies is in great demands. Lanthipeptides which are ribosomally synthesized and post-translationally modified peptides (RiPPs) display high diversity in their chemical structures and mechanisms of action. Genome mining and biosynthetic engineering have also yielded new lanthipeptides, which are a valuable source of drug candidates. In this review we cover the recent advances in the field of microbial derived lanthipeptide discovery and development.
Collapse
Affiliation(s)
- Caiyun Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Khorshed Alam
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yiming Zhao
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jinfang Hao
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ruijuan Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Aiying Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
22
|
van Staden ADP, van Zyl WF, Trindade M, Dicks LMT, Smith C. Therapeutic Application of Lantibiotics and Other Lanthipeptides: Old and New Findings. Appl Environ Microbiol 2021; 87:e0018621. [PMID: 33962984 PMCID: PMC8231447 DOI: 10.1128/aem.00186-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides, with modifications that are incorporated during biosynthesis by dedicated enzymes. Various modifications of the peptides are possible, resulting in a highly diverse group of bioactive peptides that offer a potential reservoir for use in the fight against a plethora of diseases. Their activities range from the antimicrobial properties of lantibiotics, especially against antibiotic-resistant strains, to antiviral activity, immunomodulatory properties, antiallodynic effects, and the potential to alleviate cystic fibrosis symptoms. Lanthipeptide biosynthetic genes are widespread within bacterial genomes, providing a substantial repository for novel bioactive peptides. Using genome mining tools, novel bioactive lanthipeptides can be identified, and coupled with rapid screening and heterologous expression technologies, the lanthipeptide drug discovery pipeline can be significantly sped up. Lanthipeptides represent a group of bioactive peptides that hold great potential as biotherapeutics, especially at a time when novel and more effective therapies are required. With this review, we provide insight into the latest developments made toward the therapeutic applications and production of lanthipeptides, specifically looking at heterologous expression systems.
Collapse
Affiliation(s)
- Anton Du Preez van Staden
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Winschau F. van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
23
|
Bothwell IR, Caetano T, Sarksian R, Mendo S, van der Donk WA. Structural Analysis of Class I Lanthipeptides from Pedobacter lusitanus NL19 Reveals an Unusual Ring Pattern. ACS Chem Biol 2021; 16:1019-1029. [PMID: 34085816 PMCID: PMC9845027 DOI: 10.1021/acschembio.1c00106] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified peptide natural products characterized by the presence of lanthionine and methyllanthionine cross-linked amino acids formed by dehydration of Ser/Thr residues followed by conjugate addition of Cys to the resulting dehydroamino acids. Class I lanthipeptide dehydratases utilize glutamyl-tRNAGlu as a cosubstrate to glutamylate Ser/Thr followed by glutamate elimination. A vast majority of lanthipeptides identified from class I synthase systems have been from Gram-positive bacteria. Herein, we report the heterologous expression and modification in Escherichia coli of two lanthipeptides from the Gram-negative Bacteroidetes Pedobacter lusitanus NL19. These peptides are representative of a group of compounds frequently encoded in Pedobacter genomes. Structural characterization of the lanthipeptides revealed a novel ring pattern as well as an unusual ll-lanthionine stereochemical configuration and a cyclase that lacks the canonical zinc ligands found in most LanC enzymes.
Collapse
Affiliation(s)
- Ian R Bothwell
- Howard Hughes Medical Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61822, United States
| | - Tânia Caetano
- Molecular Biotechnology Laboratory, CESAM, and Departamento de Biologia|Campus de Santiago, University of Aveiro, 3810-189 Aveiro, Portugal
| | - Raymond Sarksian
- Howard Hughes Medical Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61822, United States
| | - Sónia Mendo
- Molecular Biotechnology Laboratory, CESAM, and Departamento de Biologia|Campus de Santiago, University of Aveiro, 3810-189 Aveiro, Portugal
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61822, United States
| |
Collapse
|
24
|
Breitling R, Avbelj M, Bilyk O, Carratore F, Filisetti A, Hanko EKR, Iorio M, Redondo RP, Reyes F, Rudden M, Severi E, Slemc L, Schmidt K, Whittall DR, Donadio S, García AR, Genilloud O, Kosec G, De Lucrezia D, Petković H, Thomas G, Takano E. Synthetic biology approaches to actinomycete strain improvement. FEMS Microbiol Lett 2021; 368:6289918. [PMID: 34057181 PMCID: PMC8195692 DOI: 10.1093/femsle/fnab060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
Their biochemical versatility and biotechnological importance make actinomycete bacteria attractive targets for ambitious genetic engineering using the toolkit of synthetic biology. But their complex biology also poses unique challenges. This mini review discusses some of the recent advances in synthetic biology approaches from an actinomycete perspective and presents examples of their application to the rational improvement of industrially relevant strains.
Collapse
Affiliation(s)
- Rainer Breitling
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Martina Avbelj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Oksana Bilyk
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Francesco Del Carratore
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | - Erik K R Hanko
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | | | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnologico de Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Michelle Rudden
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | | | - Lucija Slemc
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Kamila Schmidt
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Dominic R Whittall
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | | | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnologico de Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Gregor Kosec
- Acies Bio d.o.o., Tehnološki Park 21, 1000, Ljubljana, Slovenia
| | - Davide De Lucrezia
- Explora Biotech Srl, Doulix business unit, Via Torino 107, 30133 Venice, Italy
| | - Hrvoje Petković
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Gavin Thomas
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Eriko Takano
- Corresponding author: Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK. E-mail:
| |
Collapse
|
25
|
Aggarwal E, Chauhan S, Sareen D. Thiopeptides encoding biosynthetic gene clusters mined from bacterial genomes. J Biosci 2021. [DOI: 10.1007/s12038-021-00158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 468] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
27
|
Kayrouz CM, Zhang Y, Pham TM, Ju KS. Genome Mining Reveals the Phosphonoalamide Natural Products and a New Route in Phosphonic Acid Biosynthesis. ACS Chem Biol 2020; 15:1921-1929. [PMID: 32484327 DOI: 10.1021/acschembio.0c00256] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phosphonic acid natural products have potent inhibitory activities that have led to their application as antibiotics. Recent studies uncovered large collections of gene clusters encoding for unknown phosphonic acids across microbial genomes. However, our limited understanding of their metabolism presents a significant challenge toward accurately informing the discovery of new bioactive compounds directly from sequence information alone. Here, we use genome mining to identify a family of gene clusters encoding a conserved branch point unknown to bacterial phosphonic acid biosynthesis. The products of this gene cluster family are the phosphonoalamides, four new phosphonopeptides with l-phosphonoalanine as the common headgroup. Phosphonoalanine and phosphonoalamide A are antibacterials, with strongest inhibition observed against strains of Bacillus and Escherichia coli. Heterologous expression identified the gene required for transamination of phosphonopyruvate to phosphonoalanine, a new route for bacterial phosphonic acids encoded within genomes of diverse microbes. These results expand our knowledge of phosphonic acid diversity and pathways for their biosynthesis.
Collapse
Affiliation(s)
- Chase M. Kayrouz
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yeying Zhang
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tiffany M. Pham
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kou-San Ju
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
28
|
Walker MC, Eslami SM, Hetrick KJ, Ackenhusen SE, Mitchell DA, van der Donk WA. Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family. BMC Genomics 2020; 21:387. [PMID: 32493223 PMCID: PMC7268733 DOI: 10.1186/s12864-020-06785-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/18/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Lanthipeptides belong to the ribosomally synthesized and post-translationally modified peptide group of natural products and have a variety of biological activities ranging from antibiotics to antinociceptives. These peptides are cyclized through thioether crosslinks and can bear other secondary post-translational modifications. While lanthipeptide biosynthetic gene clusters can be identified by the presence of genes encoding characteristic enzymes involved in the post-translational modification process, locating the precursor peptides encoded within these clusters is challenging due to their short length and high sequence variability, which limits the high-throughput exploration of lanthipeptide biosynthesis. To address this challenge, we enhanced the predictive capabilities of Rapid ORF Description & Evaluation Online (RODEO) to identify members of all four known classes of lanthipeptides. RESULTS Using RODEO, we mined over 100,000 bacterial and archaeal genomes in the RefSeq database. We identified nearly 8500 lanthipeptide precursor peptides. These precursor peptides were identified in a broad range of bacterial phyla as well as the Euryarchaeota phylum of archaea. Bacteroidetes were found to encode a large number of these biosynthetic gene clusters, despite making up a relatively small portion of the genomes in this dataset. A number of these precursor peptides are similar to those of previously characterized lanthipeptides, but even more were not, including potential antibiotics. One such new antimicrobial lanthipeptide was purified and characterized. Additionally, examination of the biosynthetic gene clusters revealed that enzymes installing secondary post-translational modifications are more widespread than initially thought. CONCLUSION Lanthipeptide biosynthetic gene clusters are more widely distributed and the precursor peptides encoded within these clusters are more diverse than previously appreciated, demonstrating that the lanthipeptide sequence-function space remains largely underexplored.
Collapse
Affiliation(s)
- Mark C Walker
- Department of Chemistry and Chemical Biology, University of New Mexico, 346 Clark Hall, 300 Terrace St. NE, Albuquerque, NM, 87131, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA.
| | - Sara M Eslami
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Kenton J Hetrick
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Sarah E Ackenhusen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Wilfred A van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| |
Collapse
|