1
|
Liu H, Lei H, Cao J, Xie Z, Shi Y, Zhao Y. AcfA Regulates the Virulence and Cell Envelope Stress Response of Vibrio parahaemolyticus. Microorganisms 2024; 13:7. [PMID: 39858775 PMCID: PMC11767970 DOI: 10.3390/microorganisms13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Vibrio parahaemolyticus is a ubiquitous inhabitant of estuarine and marine environments that causes vibriosis in aquatic animals and food poisoning in humans. Accessory colonizing factor (ACF) is employed by Vibrio to assist in the colonization and invasion of host cells leading to subsequent illnesses. In this work, ΔacfA, an in-frame deletion mutant strain lacking the 4th to the 645th nucleotides of the open reading frame (ORF) of the acfA gene, and the complementary strain acfA+ were constructed to decipher the function of AcfA in V. parahaemolyticus. The deletion of acfA had no effect on bacterial growth but resulted in a significant reduction in biofilm formation, hemolytic activity, mucus adhesion, and the accumulated mortality of zebrafish, compared to the wild-type strain and the complementary strain acfA+. Additionally, AcfA was involved in adapting to stressors, such as H2O2, EDTA, and acid, in V. parahaemolyticus. Furthermore, RNA-Seq transcriptome analysis was conducted to identify global gene transcription alterations resulting from deletion of the acfA gene. A total of 416 differentially expressed genes were identified in the ΔacfA vs. wild-type comparison, with 238 up-regulated genes and 178 down-regulated genes. The expression of genes associated with the type III secretion system, type VI secretion system, and oligopeptide permeases system were significantly reduced, and yet the expression of genes associated with cell envelope biosynthesis and response regulation system were enhanced dramatically in the absence of the acfA gene compared to the wild-type strain. These findings suggest that AcfA may play a role in the overall success of pathogenesis and the cell envelope stress response of V. parahaemolyticus.
Collapse
Affiliation(s)
- Huan Liu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
- Shaanxi Research Institute of Agriculture Products Processing Technology, No. 6 Xuefu Road, Xi’an 710021, China
| | - Huayu Lei
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
| | - Juanjuan Cao
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
| | - Zhaobang Xie
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
| | - Yile Shi
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
| | - Yanni Zhao
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
- Shaanxi Research Institute of Agriculture Products Processing Technology, No. 6 Xuefu Road, Xi’an 710021, China
| |
Collapse
|
2
|
Zhang Q, Alter T, Fleischmann S. Non-O1/Non-O139 Vibrio cholerae-An Underestimated Foodborne Pathogen? An Overview of Its Virulence Genes and Regulatory Systems Involved in Pathogenesis. Microorganisms 2024; 12:818. [PMID: 38674762 PMCID: PMC11052320 DOI: 10.3390/microorganisms12040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the number of foodborne infections with non-O1 and non-O139 Vibrio cholerae (NOVC) has increased worldwide. These have ranged from sporadic infection cases to localized outbreaks. The majority of case reports describe self-limiting gastroenteritis. However, severe gastroenteritis and even cholera-like symptoms have also been described. All reported diarrheal cases can be traced back to the consumption of contaminated seafood. As climate change alters the habitats and distribution patterns of aquatic bacteria, there is a possibility that the number of infections and outbreaks caused by Vibrio spp. will further increase, especially in countries where raw or undercooked seafood is consumed or clean drinking water is lacking. Against this background, this review article focuses on a possible infection pathway and how NOVC can survive in the human host after oral ingestion, colonize intestinal epithelial cells, express virulence factors causing diarrhea, and is excreted by the human host to return to the environment.
Collapse
Affiliation(s)
| | | | - Susanne Fleischmann
- Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany; (Q.Z.); (T.A.)
| |
Collapse
|
3
|
Potapova A, Garvey W, Dahl P, Guo S, Chang Y, Schwechheimer C, Trebino MA, Floyd KA, Phinney BS, Liu J, Malvankar NS, Yildiz FH. Outer membrane vesicles and the outer membrane protein OmpU govern Vibrio cholerae biofilm matrix assembly. mBio 2024; 15:e0330423. [PMID: 38206049 PMCID: PMC10865864 DOI: 10.1128/mbio.03304-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Biofilms are matrix-encased microbial communities that increase the environmental fitness and infectivity of many human pathogens including Vibrio cholerae. Biofilm matrix assembly is essential for biofilm formation and function. Known components of the V. cholerae biofilm matrix are the polysaccharide Vibrio polysaccharide (VPS), matrix proteins RbmA, RbmC, Bap1, and extracellular DNA, but the majority of the protein composition is uncharacterized. This study comprehensively analyzed the biofilm matrix proteome and revealed the presence of outer membrane proteins (OMPs). Outer membrane vesicles (OMVs) were also present in the V. cholerae biofilm matrix and were associated with OMPs and many biofilm matrix proteins suggesting that they participate in biofilm matrix assembly. Consistent with this, OMVs had the capability to alter biofilm structural properties depending on their composition. OmpU was the most prevalent OMP in the matrix, and its absence altered biofilm architecture by increasing VPS production. Single-cell force spectroscopy revealed that proteins critical for biofilm formation, OmpU, the matrix proteins RbmA, RbmC, Bap1, and VPS contribute to cell-surface adhesion forces at differing efficiency, with VPS showing the highest efficiency whereas Bap1 showing the lowest efficiency. Our findings provide new insights into the molecular mechanisms underlying biofilm matrix assembly in V. cholerae, which may provide new opportunities to develop inhibitors that specifically alter biofilm matrix properties and, thus, affect either the environmental survival or pathogenesis of V. cholerae.IMPORTANCECholera remains a major public health concern. Vibrio cholerae, the causative agent of cholera, forms biofilms, which are critical for its transmission, infectivity, and environmental persistence. While we know that the V. cholerae biofilm matrix contains exopolysaccharide, matrix proteins, and extracellular DNA, we do not have a comprehensive understanding of the majority of biofilm matrix components. Here, we discover outer membrane vesicles (OMVs) within the biofilm matrix of V. cholerae. Proteomic analysis of the matrix and matrix-associated OMVs showed that OMVs carry key matrix proteins and Vibrio polysaccharide (VPS) to help build biofilms. We also characterize the role of the highly abundant outer membrane protein OmpU in biofilm formation and show that it impacts biofilm architecture in a VPS-dependent manner. Understanding V. cholerae biofilm formation is important for developing a better prevention and treatment strategy framework.
Collapse
Affiliation(s)
- Anna Potapova
- Department of Microbiology and Environmental Toxicology, University of California-Santa Cruz, Santa Cruz, California, USA
| | - William Garvey
- Department of Microbiology and Environmental Toxicology, University of California-Santa Cruz, Santa Cruz, California, USA
| | - Peter Dahl
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
| | - Shuaiqi Guo
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yunjie Chang
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Carmen Schwechheimer
- Department of Microbiology and Environmental Toxicology, University of California-Santa Cruz, Santa Cruz, California, USA
| | - Michael A. Trebino
- Department of Microbiology and Environmental Toxicology, University of California-Santa Cruz, Santa Cruz, California, USA
| | - Kyle A. Floyd
- Department of Microbiology and Environmental Toxicology, University of California-Santa Cruz, Santa Cruz, California, USA
| | - Brett S. Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California-Davis, Davis, California, USA
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nikhil S. Malvankar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California-Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
4
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Cellular and physiological roles of sigma factors in Vibrio spp.: A comprehensive review. Int J Biol Macromol 2024; 254:127833. [PMID: 37918595 DOI: 10.1016/j.ijbiomac.2023.127833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Vibrio species are motile gram-negative bacteria commonly found in aquatic environments. Vibrio species include pathogenic as well as non-pathogenic strains. Pathogenic Vibrio species have been reported in invertebrates and humans, whereas non-pathogenic strains are involved in symbiotic relationships with their eukaryotic hosts. These bacteria are also able to adapt to fluctuations in temperature, salinity, and pH, in addition to oxidative stress, and osmotic pressure in aquatic ecosystems. Moreover, they have also developed protective mechanisms against the immune systems of their hosts. Vibrio species accomplish adaptation to changing environments outside or inside the host by altering their gene expression profiles. To this end, several sigma factors specifically regulate gene expression, particularly under stressful environmental conditions. Moreover, other sigma factors are associated with biofilm formation and virulence as well. This review discusses different types of sigma and anti-sigma factors of Vibrio species involved in virulence and regulation of gene expression upon changes in environmental conditions. The evolutionary relationships between sigma factors with various physiological roles in Vibrio species are also discussed extensively.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
5
|
Montero DA, Vidal RM, Velasco J, George S, Lucero Y, Gómez LA, Carreño LJ, García-Betancourt R, O’Ryan M. Vibrio cholerae, classification, pathogenesis, immune response, and trends in vaccine development. Front Med (Lausanne) 2023; 10:1155751. [PMID: 37215733 PMCID: PMC10196187 DOI: 10.3389/fmed.2023.1155751] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a highly contagious diarrheal disease affecting millions worldwide each year. Cholera is a major public health problem, primarily in countries with poor sanitary conditions and regions affected by natural disasters, where access to safe drinking water is limited. In this narrative review, we aim to summarize the current understanding of the evolution of virulence and pathogenesis of V. cholerae as well as provide an overview of the immune response against this pathogen. We highlight that V. cholerae has a remarkable ability to adapt and evolve, which is a global concern because it increases the risk of cholera outbreaks and the spread of the disease to new regions, making its control even more challenging. Furthermore, we show that this pathogen expresses several virulence factors enabling it to efficiently colonize the human intestine and cause cholera. A cumulative body of work also shows that V. cholerae infection triggers an inflammatory response that influences the development of immune memory against cholera. Lastly, we reviewed the status of licensed cholera vaccines, those undergoing clinical evaluation, and recent progress in developing next-generation vaccines. This review offers a comprehensive view of V. cholerae and identifies knowledge gaps that must be addressed to develop more effective cholera vaccines.
Collapse
Affiliation(s)
- David A. Montero
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Unidad de Paciente Crítico, Clínica Hospital del Profesor, Santiago, Chile
- Programa de Formación de Especialista en Medicina de Urgencia, Universidad Andrés Bello, Santiago, Chile
| | - Sergio George
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Yalda Lucero
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Pediatría y Cirugía Infantil, Hospital Dr. Roberto del Rio, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Leonardo A. Gómez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Leandro J. Carreño
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Richard García-Betancourt
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel O’Ryan
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Zhang X, Shangguan W, Wang J, Liao Z, Fang X, Zhong Q. Transcriptomic analysis reveals the antibiofilm mechanism of Lacticaseibacillus rhamnosus MS1 against Vibrio parahaemolyticus. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Transcriptome Analysis Reveals the Effect of Low NaCl Concentration on Osmotic Stress and Type III Secretion System in Vibrio parahaemolyticus. Int J Mol Sci 2023; 24:ijms24032621. [PMID: 36768942 PMCID: PMC9916905 DOI: 10.3390/ijms24032621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/02/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Vibrio parahaemolyticus is a moderately halophilic foodborne pathogen that is mainly distributed in marine and freshwater environments. The transition of V. parahaemolyticus between aquatic ecosystems and hosts is essential for infection. Both freshwater and host environments have low salinity. In this study, we sought to further investigate the effects of low salinity (0.5% NaCl) on the fitness and virulence of V. parahaemolyticus. We found that V. parahaemolyticus could survive in Luria-Bertani (LB) and M9 mediums with different NaCl concentrations, except for the M9 medium containing 9% NaCl. Our results further showed that V. parahaemolyticus cultured in M9 medium with 0.5% NaCl had a higher cell density than that cultured at other NaCl concentrations when it entered the stationary phase. Therefore, we compared the transcriptomes of V. parahaemolyticus wild type (WT) cultured in an M9 medium with 0.5% and 3% NaCl at the stationary phase using RNA-seq. A total of 658 genes were significantly differentially expressed in the M9 medium with 0.5% NaCl, including regulators, osmotic adaptive responses (compatible solute synthesis systems, transporters, and outer membrane proteins), and virulence factors (T3SS1 and T6SS1). Furthermore, a low salinity concentration in the M9 medium induced the expression of T3SS1 to mediate the cytotoxicity of V. parahaemolyticus to HeLa cells. Similarly, low salinity could also induce the secretion of the T3SS2 translocon protein VPA1361. These factors may result in the high pathogenicity of V. parahaemolyticus in low-salinity environments. Taken together, these results suggest that low salinity (0.5% NaCl) could affect gene expression to mediate fitness and virulence, which may contribute to the transition of V. parahaemolyticus between aquatic ecosystems and the host.
Collapse
|
8
|
Pennetzdorfer N, Höfler T, Wölflingseder M, Tutz S, Schild S, Reidl J. σ E controlled regulation of porin OmpU in Vibrio cholerae. Mol Microbiol 2021; 115:1244-1261. [PMID: 33330989 PMCID: PMC8359247 DOI: 10.1111/mmi.14669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 01/19/2023]
Abstract
Bile resistance is essential for enteric pathogens, as exemplified by Vibrio cholerae, the causative agent of cholera. The outer membrane porin OmpU confers bacterial survival and colonization advantages in the presence of host‐derived antimicrobial peptides as well as bile. Expression of ompU is controlled by the virulence regulator ToxR. rpoE knockouts are accompanied by suppressor mutations causing ompU downregulation. Therefore, OmpU constitutes an intersection of the ToxR regulon and the σE‐pathway in V. cholerae. To understand the mechanism by which the sigma factor σE regulates OmpU synthesis, we performed transcription studies using ompU reporter fusions and immunoblot analysis. Our data revealed an increase in ompU promoter activity in ΔrpoE strains, as well as in a ΔompU background, indicating a negative feedback regulation circuit of ompU expression. This regulation seems necessary, since elevated lethality rates of ΔrpoE strains occur upon ompU overexpression. Manipulation of OmpU’s C‐terminal portion revealed its relevance for protein stability and potency of σE release. Furthermore, ΔrpoE strains are still capable of elevating OmpU levels under membrane stress conditions triggered by the bile salt sodium deoxycholate. This study provides new details about the impact of σE on ompU regulation, which is critical to the pathogen’s intestinal survival.
Collapse
Affiliation(s)
| | - Thomas Höfler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Sarah Tutz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria.,Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria.,Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|