1
|
Hasan MK, Alaribe O, Govind R. Regulatory networks: Linking toxin production and sporulation in Clostridioides difficile. Anaerobe 2025; 91:102920. [PMID: 39521117 PMCID: PMC11811957 DOI: 10.1016/j.anaerobe.2024.102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Clostridioides difficile has been recognized as an important nosocomial pathogen that causes diarrheal disease as a consequence of antibiotic exposure and costs the healthcare system billions of dollars every year. C. difficile enters the host gut as dormant spores, germinates into vegetative cells, colonizes the gut, and produces toxins TcdA and/or TcdB, leading to diarrhea and inflammation. Spores are the primary transmission vehicle, while the toxins A and B directly contribute to the disease. Thus, toxin production and sporulation are the key traits that determine the success of C. difficile as a pathogen. Both toxins and spores are produced during the late stationary phase in response to various stimuli. This review provides a comprehensive analysis of the current knowledge on the molecular mechanisms, highlighting the regulatory pathways that interconnect toxin gene expression and sporulation in C. difficile. The roles of carbohydrates, amino acids and other nutrients and signals, in modulating these virulence traits through global regulatory networks are discussed. Understanding the links within the gene regulatory network is crucial for developing effective therapeutic strategies against C. difficile infections, potentially leading to targeted interventions that disrupt the co-regulation of toxin production and sporulation.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Oluchi Alaribe
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
2
|
Bayliss CD, Clark JL, van der Woude MW. 100+ years of phase variation: the premier bacterial bet-hedging phenomenon. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001537. [PMID: 40014379 PMCID: PMC11868660 DOI: 10.1099/mic.0.001537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Stochastic, reversible switches in the expression of Salmonella flagella variants were first described by Andrewes in 1922. Termed phase variation (PV), subsequent research found that this phenomenon was widespread among bacterial species and controlled expression of major determinants of bacterial-host interactions. Underlying mechanisms were not discovered until the 1970s/1980s but were found to encompass intrinsic aspects of DNA processes (i.e. DNA slippage and recombination) and DNA modifications (i.e. DNA methylation). Despite this long history, discoveries are ongoing with expansions of the phase-variable repertoire into new organisms and novel insights into the functions of known loci and switching mechanisms. Some of these discoveries are somewhat controversial as the term 'PV' is being applied without addressing key aspects of the phenomenon such as whether mutations or epigenetic changes are reversible and generated prior to selection. Another 'missing' aspect of PV research is the impact of these adaptive switches in real-world situations. This review provides a perspective on the historical timeline of the discovery of PV, the current state-of-the-art, controversial aspects of classifying phase-variable loci and possible 'missing' real-world effects of this phenomenon.
Collapse
Affiliation(s)
- Christopher D. Bayliss
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Jack L. Clark
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Marjan W. van der Woude
- Hull York Medical School and the York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
3
|
Ouyang Z, Zhao M, Li J, Zhang Y, Zhao J. Cyclic diguanylate differentially regulates the expression of virulence factors and pathogenesis-related phenotypes in Clostridioides difficile. Microbiol Res 2024; 286:127811. [PMID: 38909416 DOI: 10.1016/j.micres.2024.127811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Clostridioides difficile infection (CDI) caused by toxigenic C. difficile is the leading cause of antimicrobial and healthcare-associated diarrhea. The pathogenicity of C. difficile relies on the synergistic effect of multiple virulence factors, including spores, flagella, type IV pili (T4P), toxins, and biofilm. Spores enable survival and transmission of C. difficile, while adhesion factors such as flagella and T4P allow C. difficile to colonize and persist in the host intestine. Subsequently, C. difficile produces the toxins TcdA and TcdB, causing pseudomembranous colitis and other C. difficile-associated diseases; adhesion factors bind to the extracellular matrix to form biofilm, allowing C. difficile to evade drug and immune system attack and cause recurrent infection. Cyclic diguanylate (c-di-GMP) is a near-ubiquitous second messenger that extensively regulates morphology, the expression of virulence factors, and multiple physiological processes in C. difficile. In this review, we summarize current knowledge of how c-di-GMP differentially regulates the expression of virulence factors and pathogenesis-related phenotypes in C. difficile. We highlight that C. difficile spore formation and expression of toxin and flagella genes are inhibited at high intracellular levels of c-di-GMP, while T4P biosynthesis, cell aggregation, and biofilm formation are induced. Recent studies have enhanced our understanding of the c-di-GMP signaling networks in C. difficile and provided insights for the development of c-di-GMP-dependent strategies against CDI.
Collapse
Affiliation(s)
- Zirou Ouyang
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Min Zhao
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiayiren Li
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yulian Zhang
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianhong Zhao
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
4
|
Warren Norris MAH, Plaskon DM, Tamayo R. Phase Variation of Flagella and Toxins in Clostridioides difficile is Mediated by Selective Rho-dependent Termination. J Mol Biol 2024; 436:168456. [PMID: 38278436 PMCID: PMC10942720 DOI: 10.1016/j.jmb.2024.168456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Clostridioides difficile is an intestinal pathogen that exhibits phase variation of flagella and toxins through inversion of the flagellar (flg) switch controlling flagellar and toxin gene expression. The transcription termination factor Rho preferentially inhibits swimming motility of bacteria with the 'flg-OFF' switch sequence. How C. difficile Rho mediates this selectivity was unknown. C. difficile Rho contains an N-terminal insertion domain (NID) which is found in a subset of Rho orthologues and confers diverse functions. Here we determined how Rho distinguishes between flg-ON and -OFF mRNAs and the roles of the NID and other domains of C. difficile Rho. Using in vitro ATPase assays, we determined that Rho specifically binds a region containing the left inverted repeat of the flg switch, but only of flg-OFF mRNA, indicating that differential termination is mediated by selective Rho binding. Using a suite of in vivo and in vitro assays in C. difficile, we determined that the NID is essential for Rho termination of flg-OFF mRNA, likely by influencing the ability to form stable hexamers, and the RNA binding domain is critical for flg-OFF specific termination. This work gives insight into the novel mechanism by which Rho interacts with flg mRNA to mediate phase variation of flagella and toxins in C. difficile and broadens our understanding of Rho-mediated termination in an organism with an AT-rich genome.
Collapse
Affiliation(s)
- Mercedes A H Warren Norris
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Dylan M Plaskon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Serrano M, Martins D, Henriques AO. Clostridioides difficile Sporulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:273-314. [PMID: 38175480 DOI: 10.1007/978-3-031-42108-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Some members of the Firmicutes phylum, including many members of the human gut microbiota, are able to differentiate a dormant and highly resistant cell type, the endospore (hereinafter spore for simplicity). Spore-formers can colonize virtually any habitat and, because of their resistance to a wide variety of physical and chemical insults, spores can remain viable in the environment for long periods of time. In the anaerobic enteric pathogen Clostridioides difficile the aetiologic agent is the oxygen-resistant spore, while the toxins produced by actively growing cells are the main cause of the disease symptoms. Here, we review the regulatory circuits that govern entry into sporulation. We also cover the role of spores in the infectious cycle of C. difficile in relation to spore structure and function and the main control points along spore morphogenesis.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
| | - Diogo Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
6
|
Römling U, Cao LY, Bai FW. Evolution of cyclic di-GMP signalling on a short and long term time scale. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001354. [PMID: 37384391 PMCID: PMC10333796 DOI: 10.1099/mic.0.001354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Diversifying radiation of domain families within specific lineages of life indicates the importance of their functionality for the organisms. The foundation for the diversifying radiation of the cyclic di-GMP signalling network that occurred within the bacterial kingdom is most likely based in the outmost adaptability, flexibility and plasticity of the system. Integrative sensing of multiple diverse extra- and intracellular signals is made possible by the N-terminal sensory domains of the modular cyclic di-GMP turnover proteins, mutations in the protein scaffolds and subsequent signal reception by diverse receptors, which eventually rewires opposite host-associated as well as environmental life styles including parallel regulated target outputs. Natural, laboratory and microcosm derived microbial variants often with an altered multicellular biofilm behaviour as reading output demonstrated single amino acid substitutions to substantially alter catalytic activity including substrate specificity. Truncations and domain swapping of cyclic di-GMP signalling genes and horizontal gene transfer suggest rewiring of the network. Presence of cyclic di-GMP signalling genes on horizontally transferable elements in particular observed in extreme acidophilic bacteria indicates that cyclic di-GMP signalling and biofilm components are under selective pressure in these types of environments. On a short and long term evolutionary scale, within a species and in families within bacterial orders, respectively, the cyclic di-GMP signalling network can also rapidly disappear. To investigate variability of the cyclic di-GMP signalling system on various levels will give clues about evolutionary forces and discover novel physiological and metabolic pathways affected by this intriguing second messenger signalling system.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Lian-Ying Cao
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
7
|
HexSDF Is Required for Synthesis of a Novel Glycolipid That Mediates Daptomycin and Bacitracin Resistance in C. difficile. mBio 2023; 14:e0339722. [PMID: 36786594 PMCID: PMC10128005 DOI: 10.1128/mbio.03397-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Clostridioides difficile is a Gram-positive opportunistic pathogen responsible for 250,000 hospital-associated infections, 12,000 hospital-associated deaths, and $1 billion in medical costs in the United States each year. There has been recent interest in using a daptomycin analog, surotomycin, to treat C. difficile infections. Daptomycin interacts with phosphatidylglycerol and lipid II to disrupt the membrane and halt peptidoglycan synthesis. C. difficile has an unusual lipid membrane composition, as it has no phosphatidylserine or phosphatidylethanolamine, and ~50% of its membrane is composed of glycolipids, including the unique C. difficile lipid aminohexosyl-hexosyldiradylglycerol (HNHDRG). We identified a two-component system (TCS), HexRK, that is required for C. difficile resistance to daptomycin. Using transcriptome sequencing (RNA-seq), we found that HexRK regulates expression of hexSDF, a three-gene operon of unknown function. Based on bioinformatic predictions, hexS encodes a monogalactosyldiacylglycerol synthase, hexD encodes a polysaccharide deacetylase, and hexF encodes an MprF-like flippase. Deletion of hexRK leads to a 4-fold decrease in daptomycin MIC, and that deletion of hexSDF leads to an 8- to 16-fold decrease in daptomycin MIC. The ΔhexSDF mutant is also 4-fold less resistant to bacitracin but no other cell wall-active antibiotics. Our data indicate that in the absence of HexSDF, the phospholipid membrane composition is altered. In wild-type (WT) C. difficile, the unique glycolipid HNHDRG makes up ~17% of the lipids in the membrane. However, in a ΔhexSDF mutant, HNHDRG is completely absent. While it is unclear how HNHDRG contributes to daptomycin resistance, the requirement for bacitracin resistance suggests it has a general role in cell membrane biogenesis. IMPORTANCE Clostridioides difficile is a major cause of hospital-acquired diarrhea and represents an urgent concern due to the prevalence of antibiotic resistance and the rate of recurrent infections. Little is understood about C. difficile membrane lipids, but a unique glycolipid, HNHDRG, has been previously identified in C. difficile and, currently, has not been identified in other organisms. Here, we show that HexSDF and HexRK are required for synthesis of HNHDRG and that production of HNHDRG impacts resistance to daptomycin and bacitracin.
Collapse
|
8
|
Marshall A, McGrath JW, Graham R, McMullan G. Food for thought-The link between Clostridioides difficile metabolism and pathogenesis. PLoS Pathog 2023; 19:e1011034. [PMID: 36602960 PMCID: PMC9815643 DOI: 10.1371/journal.ppat.1011034] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Clostridioides difficile (C. difficile) is an opportunistic pathogen that leads to antibiotic-associated diarrhoea and is a leading cause of morbidity and mortality worldwide. Antibiotic usage is the main risk factor leading to C. difficile infection (CDI), as a dysbiotic gut environment allows colonisation and eventual pathology manifested by toxin production. Although colonisation resistance is mediated by the action of secondary bile acids inhibiting vegetative outgrowth, nutrient competition also plays a role in preventing CDI as the gut microbiota compete for nutrient niches inhibiting C. difficile growth. C. difficile is able to metabolise carbon dioxide, the amino acids proline, hydroxyproline, and ornithine, the cell membrane constituent ethanolamine, and the carbohydrates trehalose, cellobiose, sorbitol, and mucin degradation products as carbon and energy sources through multiple pathways. Zinc sequestration by the host response mediates metabolic adaptation of C. difficile by perhaps signalling an inflamed gut allowing it to acquire abundant nutrients. Persistence within the gut environment is also mediated by the by-products of metabolism through the production of p-cresol, which inhibit gut commensal species growth promoting dysbiosis. This review aims to explore and describe the various metabolic pathways of C. difficile, which facilitate its survival and pathogenesis within the colonised host gut.
Collapse
Affiliation(s)
- Andrew Marshall
- School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
- * E-mail:
| | - John W. McGrath
- School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Robert Graham
- School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Geoff McMullan
- School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
9
|
Reyes Ruiz LM, King KA, Agosto-Burgos C, Gamez IS, Gadda NC, Garrett EM, Tamayo R. Coordinated modulation of multiple processes through phase variation of a c-di-GMP phosphodiesterase in Clostridioides difficile. PLoS Pathog 2022; 18:e1010677. [PMID: 35789350 PMCID: PMC9286219 DOI: 10.1371/journal.ppat.1010677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/15/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
The opportunistic nosocomial pathogen Clostridioides difficile exhibits phenotypic heterogeneity through phase variation, a stochastic, reversible process that modulates expression. In C. difficile, multiple sequences in the genome undergo inversion through site-specific recombination. Two such loci lie upstream of pdcB and pdcC, which encode phosphodiesterases (PDEs) that degrade the signaling molecule c-di-GMP. Numerous phenotypes are influenced by c-di-GMP in C. difficile including cell and colony morphology, motility, colonization, and virulence. In this study, we aimed to assess whether PdcB phase varies, identify the mechanism of regulation, and determine the effects on intracellular c-di-GMP levels and regulated phenotypes. We found that expression of pdcB is heterogeneous and the orientation of the invertible sequence, or ‘pdcB switch’, determines expression. The pdcB switch contains a promoter that when properly oriented promotes pdcB expression. Expression is augmented by an additional promoter upstream of the pdcB switch. Mutation of nucleotides at the site of recombination resulted in phase-locked strains with significant differences in pdcB expression. Characterization of these mutants showed that the pdcB locked-ON mutant has reduced intracellular c-di-GMP compared to the locked-OFF mutant, consistent with increased and decreased PdcB activity, respectively. These alterations in c-di-GMP had concomitant effects on multiple known c-di-GMP regulated processes, indicating that phase variation of PdcB allows C. difficile to coordinately diversify multiple phenotypes in the population to enhance survival. Phase variation is a mechanism by which many bacteria introduce phenotypic heterogeneity into a population as a bet-hedging strategy to help ensure survival under detrimental conditions. In C. difficile, the intracellular signaling molecule c-di-GMP regulates production of flagella, toxins, adhesins, and other factors that impact virulence. C. difficile encodes multiple c-di-GMP synthases and hydrolases that modulate intracellular c-di-GMPs and control these processes. Here, we show that production of a c-di-GMP hydrolytic enzyme, PdcB, undergoes phase variation in C. difficile. We generated phase-locked mutants unable to phase vary and found that PdcB affects global intracellular c-di-GMP levels, swimming and surface motility, and biofilm formation. These findings suggest that phase variation of PdcB enables C. difficile to coordinately regulate the production multiple factors by generating heterogeneity in intracellular c-di-GMP levels among bacteria in the population.
Collapse
Affiliation(s)
- Leila M. Reyes Ruiz
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Kathleen A. King
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Christian Agosto-Burgos
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Isabella S. Gamez
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Nicole C. Gadda
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Elizabeth M. Garrett
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
10
|
Development of a Dual-Fluorescent-Reporter System in Clostridioides difficile Reveals a Division of Labor between Virulence and Transmission Gene Expression. mSphere 2022; 7:e0013222. [PMID: 35638354 PMCID: PMC9241537 DOI: 10.1128/msphere.00132-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The bacterial pathogen Clostridioides difficile causes gastroenteritis by producing toxins and transmits disease by making resistant spores. Toxin and spore production are energy-expensive processes that are regulated by multiple transcription factors in response to many environmental inputs. While toxin and sporulation genes are both induced in only a subset of C. difficile cells, the relationship between these two subpopulations remains unclear. To address whether C. difficile coordinates the generation of these subpopulations, we developed a dual-transcriptional-reporter system that allows toxin and sporulation gene expression to be simultaneously visualized at the single-cell level using chromosomally encoded mScarlet and mNeonGreen fluorescent transcriptional reporters. We then adapted an automated image analysis pipeline to quantify toxin and sporulation gene expression in thousands of individual cells under different medium conditions and in different genetic backgrounds. These analyses revealed that toxin and sporulation gene expression rarely overlap during growth on agar plates, whereas broth culture increases this overlap. Our results suggest that certain growth conditions promote a “division of labor” between transmission and virulence gene expression, highlighting how environmental inputs influence these subpopulations. Our data further suggest that the RstA transcriptional regulator skews the population to activate sporulation genes rather than toxin genes. Given that recent work has revealed population-wide heterogeneity for numerous cellular processes in C. difficile, we anticipate that our dual-reporter system will be broadly useful for determining the overlap between these subpopulations. IMPORTANCEClostridioides difficile is an important nosocomial pathogen that causes severe diarrhea by producing toxins and transmits disease by producing spores. While both processes are crucial for C. difficile disease, only a subset of cells express toxins and/or undergo sporulation. Whether C. difficile coordinates the subset of cells inducing these energy-expensive processes remains unknown. To address this question, we developed a dual-fluorescent-reporter system coupled with an automated image analysis pipeline to rapidly compare the expression of two genes of interest across thousands of cells. Using this system, we discovered that certain growth conditions, particularly growth on agar plates, induce a “division of labor” between toxin and sporulation gene expression. Since C. difficile exhibits phenotypic heterogeneity for numerous vital cellular processes, this novel dual-reporter system will enable future studies aimed at understanding how C. difficile coordinates various subpopulations throughout its infectious disease cycle.
Collapse
|
11
|
Regulation of Clostridioides difficile toxin production. Curr Opin Microbiol 2022; 65:95-100. [PMID: 34781095 PMCID: PMC8792210 DOI: 10.1016/j.mib.2021.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 02/03/2023]
Abstract
Clostridioides difficile produces toxins TcdA and TcdB during infection. Since the severity of the illness is directly correlated with the level of toxins produced, researchers have long been interested in the regulation mechanisms of toxin production. The advent of new genetics and mutagenesis technologies in C. difficile has allowed a slew of new investigations in the last decade, which considerably improved our understanding of this crucial regulatory network. The current body of work shows that the toxin regulatory network overlaps with the regulatory networks of sporulation, motility, and key metabolic pathways. This implies that toxin production is a complicated process initiated by bacteria in response to numerous host factors during infection. We summarize the existing knowledge about the toxin gene regulatory network here.
Collapse
|
12
|
Trzilova D, Warren MAH, Gadda NC, Williams CL, Tamayo R. Flagellum and toxin phase variation impacts intestinal colonization and disease development in a mouse model of Clostridioides difficile infection. Gut Microbes 2022; 14:2038854. [PMID: 35192433 PMCID: PMC8890394 DOI: 10.1080/19490976.2022.2038854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile is a major nosocomial pathogen that can cause severe, toxin-mediated diarrhea and pseudomembranous colitis. Recent work has shown that C. difficile exhibits heterogeneity in swimming motility and toxin production in vitro through phase variation by site-specific DNA recombination. The recombinase RecV reversibly inverts the flagellar switch sequence upstream of the flgB operon, leading to the ON/OFF expression of flagellum and toxin genes. How this phenomenon impacts C. difficile virulence in vivo remains unknown. We identified mutations in the right inverted repeat that reduced or prevented flagellar switch inversion by RecV. We introduced these mutations into C. difficile R20291 to create strains with the flagellar switch "locked" in either the ON or OFF orientation. These mutants exhibited a loss of flagellum and toxin phase variation during growth in vitro, yielding precisely modified mutants suitable for assessing virulence in vivo. In a hamster model of acute C. difficile infection, the phase-locked ON mutant caused greater toxin accumulation than the phase-locked OFF mutant but did not differ significantly in the ability to cause acute disease symptoms. In contrast, in a mouse model, preventing flagellum and toxin phase variation affected the ability of C. difficile to colonize the intestinal tract and to elicit weight loss, which is attributable to differences in toxin production during infection. These results show that the ability of C. difficile to phase vary flagella and toxins influences colonization and disease development and suggest that the phenotypic variants generated by flagellar switch inversion have distinct capacities for causing disease.
Collapse
Affiliation(s)
- Dominika Trzilova
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Mercedes A. H. Warren
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Nicole C. Gadda
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Caitlin L. Williams
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Edwards AN, Willams CL, Pareek N, McBride SM, Tamayo R. c-di-GMP Inhibits Early Sporulation in Clostridioides difficile. mSphere 2021; 6:e0091921. [PMID: 34878288 PMCID: PMC8653836 DOI: 10.1128/msphere.00919-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/19/2021] [Indexed: 12/02/2022] Open
Abstract
The formation of dormant spores is essential for the anaerobic pathogen Clostridioides difficile to survive outside the host gastrointestinal tract. The regulatory pathways and environmental signals that initiate C. difficile spore formation within the host are not well understood. One second-messenger signaling molecule, cyclic diguanylate (c-di-GMP), modulates several physiological processes important for C. difficile pathogenesis and colonization, but the impact of c-di-GMP on sporulation is unknown. In this study, we investigated the contribution of c-di-GMP to C. difficile sporulation. The overexpression of a gene encoding a diguanylate cyclase, dccA, decreased the sporulation frequency and early sporulation gene transcription in both the epidemic R20291 and historical 630Δerm strains. The expression of a dccA allele encoding a catalytically inactive DccA that is unable to synthesize c-di-GMP no longer inhibited sporulation, indicating that the accumulation of intracellular c-di-GMP reduces C. difficile sporulation. A null mutation in dccA slightly increased sporulation in R20291 and slightly decreased sporulation in 630Δerm, suggesting that DccA contributes to the intracellular pool of c-di-GMP in a strain-dependent manner. However, these data were highly variable, underscoring the complex regulation involved in modulating intracellular c-di-GMP concentrations. Finally, the overexpression of dccA in known sporulation mutants revealed that c-di-GMP is likely signaling through an unidentified regulatory pathway to control early sporulation events in C. difficile. c-di-GMP-dependent regulation of C. difficile sporulation may represent an unexplored avenue of potential environmental and intracellular signaling that contributes to the complex regulation of sporulation initiation. IMPORTANCE Many bacterial organisms utilize the small signaling molecule cyclic diguanylate (c-di-GMP) to regulate important physiological processes, including motility, toxin production, biofilm formation, and colonization. c-di-GMP inhibits motility and toxin production and promotes biofilm formation and colonization in the anaerobic, gastrointestinal pathogen Clostridioides difficile. However, the impact of c-di-GMP on C. difficile spore formation, a critical step in this pathogen's life cycle, is unknown. Here, we demonstrate that c-di-GMP negatively impacts sporulation in two clinically relevant C. difficile strains, the epidemic strain R20291 and the historical strain 630Δerm. The pathway through which c-di-GMP controls sporulation was investigated, and our results suggest that c-di-GMP is likely signaling through an unidentified regulatory pathway to control C. difficile sporulation. This work implicates c-di-GMP metabolism as a mechanism to integrate environmental and intracellular cues through c-di-GMP levels to influence C. difficile sporulation.
Collapse
Affiliation(s)
- Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Caitlin L. Willams
- Department of Microbiology and Immunology, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nivedita Pareek
- Department of Microbiology and Immunology, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Lee CD, Rizvi A, Edwards AN, DiCandia MA, Vargas Cuebas GG, Monteiro MP, McBride SM. Genetic mechanisms governing sporulation initiation in Clostridioides difficile. Curr Opin Microbiol 2021; 66:32-38. [PMID: 34933206 DOI: 10.1016/j.mib.2021.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/15/2022]
Abstract
As an anaerobe, Clostridioides difficile relies on the formation of a dormant spore for survival outside of the mammalian host's gastrointestinal tract. The spore is recalcitrant to desiccation, numerous disinfectants, UV light, and antibiotics, permitting long-term survival against environmental insults and efficient transmission from host to host. Although the morphological stages of spore formation are similar between C. difficile and other well-studied endospore-forming bacteria, the C. difficile genome does not appear to encode many of the known, conserved regulatory factors that are necessary to initiate sporulation in other spore-forming bacteria. The absence of early sporulation-specific orthologs suggests that C. difficile has evolved to control sporulation initiation in response to its unique and specific ecological niche and environmental cues within the host. Here, we review our current understanding and highlight the recent discoveries that have begun to unravel the regulatory pathways and molecular mechanisms by which C. difficile induces spore formation.
Collapse
Affiliation(s)
- Cheyenne D Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Arshad Rizvi
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Michael A DiCandia
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Germán G Vargas Cuebas
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Marcos P Monteiro
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA.
| |
Collapse
|
15
|
Purcell EB. Second messenger signaling in Clostridioides difficile. Curr Opin Microbiol 2021; 65:138-144. [PMID: 34864551 DOI: 10.1016/j.mib.2021.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022]
Abstract
Small, diffusible second messenger molecules transmit information about extracellular conditions to intracellular machinery in order to influence transcription, translation, and metabolism. The enteropathogenic bacterium Clostridioides difficile coordinates its response to a dynamic and hostile environment via nucleotide second messengers. While riboswitch-mediated cyclic diguanylate regulation has been extensively characterized in C. difficile, signaling by cyclic diadenylate and by guanosine alarmones has only recently been confirmed in this organism. This review summarizes the current knowledge of how nucleotide second messenger signaling regulates physiological processes in C. difficile.
Collapse
Affiliation(s)
- Erin B Purcell
- Old Dominion University, Department of Chemistry and Biochemistry, 4501 Elkhorn Ave, Norfolk, VA 23529, United States.
| |
Collapse
|
16
|
Hasan MK, Dhungel BA, Govind R. Characterization of an operon required for growth on cellobiose in Clostridioides difficile. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001079. [PMID: 34410904 PMCID: PMC8489589 DOI: 10.1099/mic.0.001079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
Cellobiose metabolism is linked to the virulence properties in numerous bacterial pathogens. Here, we characterized a putative cellobiose PTS operon of Clostridiodes difficile to investigate the role of cellobiose metabolism in C. difficile pathogenesis. Our gene knockout experiments demonstrated that the putative cellobiose operon enables uptake of cellobiose into C. difficile and allows growth when cellobiose is provided as the sole carbon source in minimal medium. Additionally, using reporter gene fusion assays and DNA pulldown experiments, we show that its transcription is regulated by CelR, a novel transcriptional repressor protein, which directly binds to the upstream region of the cellobiose operon to control its expression. We have also identified cellobiose metabolism to play a significant role in C. difficile physiology as observed by the reduction of sporulation efficiency when cellobiose uptake was compromised in the mutant strain. In corroboration to in vitro study findings, our in vivo hamster challenge experiment showed a significant reduction of pathogenicity by the cellobiose mutant strain in both the primary and the recurrent infection model - substantiating the role of cellobiose metabolism in C. difficile pathogenesis.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
17
|
Garrett EM, Mehra A, Sekulovic O, Tamayo R. Multiple Regulatory Mechanisms Control the Production of CmrRST, an Atypical Signal Transduction System in Clostridioides difficile. mBio 2021; 13:e0296921. [PMID: 35164558 PMCID: PMC8844915 DOI: 10.1128/mbio.02969-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Clostridioides difficile, an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase variation. The signal transduction system CmrRST, which encodes two response regulators (CmrR and CmrT) and a sensor kinase (CmrS), impacts C. difficile cell and colony morphology, surface and swimming motility, biofilm formation, and virulence in an animal model. CmrRST is subject to phase variation through site-specific recombination and reversible inversion of the "cmr switch," and expression of cmrRST is also regulated by cyclic diguanylate (c-di-GMP) through a riboswitch. The goal of this study was to determine how the cmr switch and c-di-GMP work together to regulate cmrRST expression. We generated "phase-locked" strains by mutating key residues in the right inverted repeat flanking the cmr switch. Phenotypic characterization of these phase-locked cmr-ON and -OFF strains demonstrates that they cannot switch between rough and smooth colony morphologies, respectively, or other CmrRST-associated phenotypes. Manipulation of c-di-GMP levels in these mutants showed that c-di-GMP promotes cmrRST expression and associated phenotypes independently of cmr switch orientation. We identified multiple promoters controlling cmrRST transcription, including one within the ON orientation of the cmr switch and another that is positively autoregulated by CmrR. Overall, this work reveals a complex regulatory network that governs cmrRST expression and a unique intersection of phase variation and c-di-GMP signaling. These findings suggest that multiple environmental signals impact the production of this signaling transduction system. IMPORTANCE Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile, including cell and colony morphology, motility, biofilm formation, and virulence. Here, we define the complex, multilevel regulation of cmrRST expression, including stochastic control through phase variation, modulation by the second messenger c-di-GMP, and positive autoregulation by CmrR. The results of this study suggest that multiple, distinct environmental stimuli and selective pressures must be integrated to appropriately control cmrRST expression.
Collapse
Affiliation(s)
- Elizabeth M. Garrett
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anchal Mehra
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ognjen Sekulovic
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|