1
|
Guo J, Shi G, Islam MM, Kariyawasam G, Moolhuijzen P, See PT, Zhong S, Aboukhaddour R, Faris JD, Friesen T, Liu Z. Identification of a novel genetic locus conferring virulence in the wheat tan spot pathogen Pyrenophora tritici-repentis. Fungal Genet Biol 2025; 179:104002. [PMID: 40383413 DOI: 10.1016/j.fgb.2025.104002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
The ascomycete Pyrenophora tritici-repentis (Ptr) is the causal agent of tan spot, a common and economically important wheat disease worldwide. Three necrotrophic effectors (NEs), known as Ptr ToxA, Ptr ToxB, and Ptr ToxC, have been identified from the fungal pathogen as major virulence factors. The race 2 isolate 86-124 which produces Ptr ToxA is capable of causing disease on wheat lines that is insensitive to Ptr ToxA, suggesting the use of additional NEs during the infection. To identify new NE gene(s) from 86-124, we developed a biparental fungal population from a cross between this isolate and the race 5 isolate DW5 using genetically modified heterothallic strains. The fungal population was genotyped with SNP and SSR markers as well as the ToxA gene, the mating type genes, and six ToxB loci. Each progeny was phenotyped onto the hard red spring wheat line CDC-Osler, which is insensitive to both Ptr ToxA and Ptr ToxB, but is highly susceptible to 86-124. The constructed genetic map consisted of 11 linkage groups that corresponded to the 11 chromosomes (chr) of the Ptr reference genome. ToxA and mating type genes mapped to the expected positions. Five of the six ToxB copies were tightly linked, residing at the distal end of chr 11, while the sixth copy was localized to the distal end of chr 5. Composite interval mapping revealed a major QTL on the distal end of chr 2 conferring virulence toward CDC-Osler by 86-124. This locus was designated as VirOsler1. Genomic sequence alignment at the locus showed a region of approximately 900 kb at the end of chr 2 absent in DW5. The identification of VirOsler1 locus provides clear evidence that the wheat tan spot pathogen uses additional virulence factors that interact with unidentified host factors for disease susceptibility.
Collapse
Affiliation(s)
- Jingwei Guo
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Md Mukul Islam
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Gayan Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA; Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Paula Moolhuijzen
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Pao-Theen See
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA; USDA-ARS Cereal Disease Laboratory, St. Paul, MN 55108, USA
| | - Reem Aboukhaddour
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, USA
| | - Timothy Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA; USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA.
| |
Collapse
|
2
|
Rawlinson C, Nealon G, Chooi YH, Oliver RP, Moffat CS, See PT. Discovery of Two Novel Phthalide Phytotoxins from the Wheat Tan Spot Fungal Pathogen Pyrenophora tritici-repentis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19594-19603. [PMID: 39214614 PMCID: PMC11403622 DOI: 10.1021/acs.jafc.4c02533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The Dothideomycete fungal pathogen Pyrenophora tritici-repentis (Ptr) is the causal agent of the tan spot disease of wheat. The proteinaceous necrotrophic effectors ToxA and ToxB are well characterized. A nonproteinaceous effector called ToxC has also been partially characterized. Ptr produces a number of other small molecular weight compounds, but these remain poorly characterized. In this study, two novel compounds, designated ToxE1 and ToxE2, capable of inducing chlorotic symptoms on wheat leaves in a cultivar-specific manner, were purified from Ptr liquid cultures. There is no evidence that these compounds correspond to ToxC. Most isolates produced ToxE1, ToxE2, or both, and both compounds were detected in infected wheat leaves. The structures of both analogues were elucidated by NMR spectroscopy and comprise a phthalide core structure with an amide moiety. We postulate that these compounds have a general phytotoxic effect and may have an ancillary role in disease development.
Collapse
Affiliation(s)
- Catherine Rawlinson
- Centre for Crop and Disease Management, Curtin University, Perth 6102, Australia
| | - Gareth Nealon
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia
- School of Molecular Sciences, University of Western Australia, Perth 6009, Australia
| | - Yit Heng Chooi
- School of Molecular Sciences, University of Western Australia, Perth 6009, Australia
| | - Richard P Oliver
- School of Biosciences, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Caroline S Moffat
- Centre for Crop and Disease Management, Curtin University, Perth 6102, Australia
| | - Pao Theen See
- Centre for Crop and Disease Management, Curtin University, Perth 6102, Australia
| |
Collapse
|
3
|
See PT, Iagallo EM, Marathamuthu KA, Wood B, Aboukhaddour R, Moffat CS. A New ToxA Haplotype in the Wheat Fungal Pathogen Bipolaris sorokiniana. PHYTOPATHOLOGY 2024; 114:1525-1532. [PMID: 38530294 DOI: 10.1094/phyto-10-23-0370-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The necrotrophic effector ToxA is a well-studied virulence factor produced by several fungal necrotrophs. Initially cloned from the wheat tan spot pathogen Pyrenophora tritici-repentis in 1996, ToxA was found almost a decade later in another fungal pathogen, Parastagonospora nodorum, and its sister species, Parastagonospora pseudonodorum. In 2018, ToxA was detected in a third wheat fungal pathogenic species, Bipolaris sorokiniana, which causes spot blotch disease. However, unlike the case with P. tritici-repentis and P. nodorum, the ToxA in B. sorokiniana has only been investigated in recent years. In this report, five Australian B. sorokiniana isolates were assessed for the presence of ToxA. Four isolates were found to contain ToxA. While one isolate harbored the previously reported ToxA haplotype sequence (ToxA19), three isolates contain a different haplotype, designated herein as ToxA25, which has a nonsynonymous mutation resulting in an amino acid change of glycine to arginine at position 168. Both B. sorokiniana ToxA isoforms, when heterologously expressed in Escherichia coli, exhibited the classic ToxA necrosis-inducing activity on ToxA-sensitive Tsn1 cultivars. Preliminary analysis of the B. sorokiniana isolates in Australian wheat cultivars showed that isolates with ToxA19, ToxA25, or ToxA-deficient displayed various degrees of virulence, with the most aggressive isolates observed for those producing ToxA. Differences in spot blotch disease severity between Tsn1 and tsn1 cultivars were observed; however, this was not limited to the ToxA-producing isolates. The overall results suggest that the virulence of the Australian B. sorokiniana isolates is diverse, with the significance of ToxA-Tsn1 interactions depending on individual isolates.
Collapse
Affiliation(s)
- Pao Theen See
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Elyce M Iagallo
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Kalai A Marathamuthu
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Blake Wood
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Reem Aboukhaddour
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta, Canada
| | - Caroline S Moffat
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
4
|
Moolhuijzen P, Sanglard LMVP, Paterson DJ, Gray S, Khambatta K, Hackett MJ, Zerihun A, Gibberd MR, Naim F. Spatiotemporal patterns of wheat response to Pyrenophora tritici-repentis in asymptomatic regions revealed by transcriptomic and X-ray fluorescence microscopy analyses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4707-4720. [PMID: 37201950 PMCID: PMC10433925 DOI: 10.1093/jxb/erad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/17/2023] [Indexed: 05/20/2023]
Abstract
Pathogen attacks elicit dynamic and widespread molecular responses in plants. While our understanding of plant responses has advanced considerably, little is known of the molecular responses in the asymptomatic 'green' regions adjoining lesions. Here, we explore gene expression data and high-resolution elemental imaging to report the spatiotemporal changes in the asymptomatic green region of susceptible and moderately resistant wheat cultivars infected with a necrotrophic fungal pathogen, Pyrenophora tritici-repentis. We show, with improved spatiotemporal resolution, that calcium oscillations are modified in the susceptible cultivar, resulting in 'frozen' host defence signals at the mature disease stage, and silencing of the host's recognition and defence mechanisms that would otherwise protect it from further attacks. In contrast, calcium accumulation and a heightened defence response were observed in the moderately resistant cultivar in the later stage of disease development. Furthermore, in the susceptible interaction, the asymptomatic green region was unable to recover after disease disruption. Our targeted sampling technique also enabled detection of eight previously predicted proteinaceous effectors in addition to the known ToxA effector. Collectively, our results highlight the benefits of spatially resolved molecular analysis and nutrient mapping to provide high-resolution spatiotemporal snapshots of host-pathogen interactions, paving the way for disentangling complex disease interactions in plants.
Collapse
Affiliation(s)
- Paula Moolhuijzen
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Lilian M V P Sanglard
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - David J Paterson
- Australian Synchrotron, ANSTO, Clayton, Victoria 3168, Australia
| | - Sean Gray
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Karina Khambatta
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Mark J Hackett
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Ayalsew Zerihun
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Mark R Gibberd
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Fatima Naim
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
5
|
See PT, Marathamuthu KA, Cupitt CF, Iagallo EM, Moffat CS. A Race Profile of Tan Spot in Australia Reveals Race 2 Isolates Harboring ToxC1. PHYTOPATHOLOGY 2023; 113:1202-1209. [PMID: 36750556 DOI: 10.1094/phyto-11-22-0422-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tan spot disease is caused by Pyrenophora tritici-repentis (Ptr), one of the major necrotrophic fungal pathogens that affects wheat crops globally. Extensive research has shown that the necrotrophic fungal effectors ToxA, ToxB, and ToxC underlie the genetic interactions of Ptr race classification. ToxA and ToxB are both small proteins secreted during infection; however, the structure of ToxC remains unknown. In line with the recent discovery of the ToxC1 gene that is involved in ToxC production, a subset of 68 isolates collected from the Australian wheat cropping regions were assessed for the presence of all three effectors by pathotyping against four tan spot wheat differential lines and PCR amplification of ToxA, ToxB, and ToxC1. Based on the disease phenotypes, the 68 isolates were grouped into two races with 63 classified as race 1 and five as race 2. A representative selection of each race was tested against eight Australian commercial wheat cultivars and showed no distinction between the virulence levels. Sequencing of ToxA showed that both races had identical gene sequences of haplotype PtrA1. All the race 1 isolates possessed ToxC1 but three race 2 isolates also contained ToxC1 despite being unable to induce a spreading chlorotic symptom on the ToxC differential line. Quantitative trait loci mapping confirmed the absence of the ToxC-Tsc1 association in disease response caused by the ToxC1-containing race 2 isolate; however, ToxC1 expression was detected during plant infection. Altogether, these results suggest that there is a complex regulatory process involved in the production of ToxC within the Australian race 2 isolates.
Collapse
Affiliation(s)
- Pao Theen See
- Centre for Crop and Disease Management, Molecular and Life Sciences, School of Science, Curtin University, Bentley, WA 6102, Australia
| | - Kalai A Marathamuthu
- Centre for Crop and Disease Management, Molecular and Life Sciences, School of Science, Curtin University, Bentley, WA 6102, Australia
| | - Catherine F Cupitt
- Centre for Crop and Disease Management, Molecular and Life Sciences, School of Science, Curtin University, Bentley, WA 6102, Australia
| | - Elyce M Iagallo
- Centre for Crop and Disease Management, Molecular and Life Sciences, School of Science, Curtin University, Bentley, WA 6102, Australia
| | - Caroline S Moffat
- Centre for Crop and Disease Management, Molecular and Life Sciences, School of Science, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
6
|
See PT, Moffat CS. Profiling the Pyrenophora tritici-repentis secretome: The Pf2 transcription factor regulates the secretion of the effector proteins ToxA and ToxB. Mol Microbiol 2023; 119:612-629. [PMID: 37059688 DOI: 10.1111/mmi.15058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 02/13/2023] [Accepted: 03/19/2023] [Indexed: 04/16/2023]
Abstract
The global wheat disease tan spot is caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr) which secretes necrotrophic effectors to facilitate host plant colonization. We previously reported a role of the Zn2 Cys6 binuclear cluster transcription factor Pf2 in the regulation of the Ptr effector ToxA. Here, we show that Pf2 is also a positive regulator of ToxB, via targeted deletion of PtrPf2 which resulted in reduced ToxB expression and defects in conidiation and pathogenicity. To further investigate the function of Ptr Pf2 in regulating protein secretion, the secretome profiles of two Δptrpf2 mutants of two Ptr races (races 1 and 5) were evaluated using a SWATH-mass spectrometry (MS) quantitative approach. Analysis of the secretomes of the Δptrpf2 mutants from in vitro culture filtrate identified more than 500 secreted proteins, with 25% unique to each race. Of the identified proteins, less than 6% were significantly differentially regulated by Ptr Pf2. Among the downregulated proteins were ToxA and ToxB, specific to race 1 and race 5 respectively, demonstrating the role of Ptr Pf2 as a positive regulator of both effectors. Significant motif sequences identified in both ToxA and ToxB putative promoter regions were further explored via GFP reporter assays.
Collapse
Affiliation(s)
- Pao Theen See
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australian, 6102, Australia
| | - Caroline S Moffat
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australian, 6102, Australia
| |
Collapse
|
7
|
Moolhuijzen PM, See PT, Shi G, Powell HR, Cockram J, Jørgensen LN, Benslimane H, Strelkov SE, Turner J, Liu Z, Moffat CS. A global pangenome for the wheat fungal pathogen Pyrenophora tritici-repentis and prediction of effector protein structural homology. Microb Genom 2022; 8:mgen000872. [PMID: 36214662 PMCID: PMC9676058 DOI: 10.1099/mgen.0.000872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The adaptive potential of plant fungal pathogens is largely governed by the gene content of a species, consisting of core and accessory genes across the pathogen isolate repertoire. To approximate the complete gene repertoire of a globally significant crop fungal pathogen, a pan genomic analysis was undertaken for Pyrenophora tritici-repentis (Ptr), the causal agent of tan (or yellow) spot disease in wheat. In this study, 15 new Ptr genomes were sequenced, assembled and annotated, including isolates from three races not previously sequenced. Together with 11 previously published Ptr genomes, a pangenome for 26 Ptr isolates from Australia, Europe, North Africa and America, representing nearly all known races, revealed a conserved core-gene content of 57 % and presents a new Ptr resource for searching natural homologues (orthologues not acquired by horizontal transfer from another species) using remote protein structural homology. Here, we identify for the first time a non-synonymous mutation in the Ptr necrotrophic effector gene ToxB, multiple copies of the inactive toxb within an isolate, a distant natural Pyrenophora homologue of a known Parastagonopora nodorum necrotrophic effector (SnTox3), and clear genomic break points for the ToxA effector horizontal transfer region. This comprehensive genomic analysis of Ptr races includes nine isolates sequenced via long read technologies. Accordingly, these resources provide a more complete representation of the species, and serve as a resource to monitor variations potentially involved in pathogenicity.
Collapse
Affiliation(s)
- Paula M. Moolhuijzen
- Centre for Crop Disease and Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- *Correspondence: Paula M. Moolhuijzen,
| | - Pao Theen See
- Centre for Crop Disease and Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, USA
| | - Harold R. Powell
- Department of Life Sciences, Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, England, UK
| | - James Cockram
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | | | - Hamida Benslimane
- Département de Botanique, Ecole Nationale Supérieure Agronomique (ENSA), Hassan Badi, El-Harrach, Algiers, Algeria
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, USA
- *Correspondence: Zhaohui Liu,
| | - Caroline S. Moffat
- Centre for Crop Disease and Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
8
|
John E, Jacques S, Phan HTT, Liu L, Pereira D, Croll D, Singh KB, Oliver RP, Tan KC. Variability in an effector gene promoter of a necrotrophic fungal pathogen dictates epistasis and effector-triggered susceptibility in wheat. PLoS Pathog 2022; 18:e1010149. [PMID: 34990464 PMCID: PMC8735624 DOI: 10.1371/journal.ppat.1010149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022] Open
Abstract
The fungus Parastagonospora nodorum uses proteinaceous necrotrophic effectors (NEs) to induce tissue necrosis on wheat leaves during infection, leading to the symptoms of septoria nodorum blotch (SNB). The NEs Tox1 and Tox3 induce necrosis on wheat possessing the dominant susceptibility genes Snn1 and Snn3B1/Snn3D1, respectively. We previously observed that Tox1 is epistatic to the expression of Tox3 and a quantitative trait locus (QTL) on chromosome 2A that contributes to SNB resistance/susceptibility. The expression of Tox1 is significantly higher in the Australian strain SN15 compared to the American strain SN4. Inspection of the Tox1 promoter region revealed a 401 bp promoter genetic element in SN4 positioned 267 bp upstream of the start codon that is absent in SN15, called PE401. Analysis of the world-wide P. nodorum population revealed that a high proportion of Northern Hemisphere isolates possess PE401 whereas the opposite was observed in representative P. nodorum isolates from Australia and South Africa. The presence of PE401 removed the epistatic effect of Tox1 on the contribution of the SNB 2A QTL but not Tox3. PE401 was introduced into the Tox1 promoter regulatory region in SN15 to test for direct regulatory roles. Tox1 expression was markedly reduced in the presence of PE401. This suggests a repressor molecule(s) binds PE401 and inhibits Tox1 transcription. Infection assays also demonstrated that P. nodorum which lacks PE401 is more pathogenic on Snn1 wheat varieties than P. nodorum carrying PE401. An infection competition assay between P. nodorum isogenic strains with and without PE401 indicated that the higher Tox1-expressing strain rescued the reduced virulence of the lower Tox1-expressing strain on Snn1 wheat. Our study demonstrated that Tox1 exhibits both 'selfish' and 'altruistic' characteristics. This offers an insight into a complex NE-NE interaction that is occurring within the P. nodorum population. The importance of PE401 in breeding for SNB resistance in wheat is discussed.
Collapse
Affiliation(s)
- Evan John
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Curtin University, Bentley, Perth, Western Australia, Australia
| | - Silke Jacques
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Curtin University, Bentley, Perth, Western Australia, Australia
| | - Huyen T. T. Phan
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Curtin University, Bentley, Perth, Western Australia, Australia
| | - Lifang Liu
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Curtin University, Bentley, Perth, Western Australia, Australia
| | - Danilo Pereira
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Karam B. Singh
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Floreat, Western Australia, Australia
| | | | - Kar-Chun Tan
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Curtin University, Bentley, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Katoch S, Sharma V, Sharma D, Salwan R, Rana SK. Biology and molecular interactions of Parastagonospora nodorum blotch of wheat. PLANTA 2021; 255:21. [PMID: 34914013 DOI: 10.1007/s00425-021-03796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Parastagonospora nodorum is one of the important necrotrophic pathogens of wheat which causes severe economical loss to crop yield. So far, a number of effectors of Parastagonospora nodorum origin and their target interacting genes on the host plant have been characterized. Since targeting effector-sensitive gene carefully can be helpful in breeding for resistance. Therefore, constant efforts are required to further characterize the effectors, their interacting genes, and underlying biochemical pathways. Furthermore, to develop effective counter-strategies against emerging diseases, continuous efforts are required to determine the qualitative resistance that demands to screen of diverse genotypes for host resistance. Stagonospora nodorum blotch also refers to as Stagonospora glume blotch and leaf is caused by Parastagonospora nodorum. The pathogen deploys necrotrophic effectors for the establishment and development on wheat plants. The necrotrophic effectors and their interaction with host receptors lead to the establishment of infection on leaves and extensive lesions formation which either results in host cell death or suppression/activation of host defence mechanisms. The wheat Stagonospora nodorum interaction involves a set of nine host gene-necrotrophic effector interactions. Out of these, Snn1-SnTox1, Tsn1-SnToxA and Snn-SnTox3 are one of the most studied interaction, due to its role in the suppression of reactive oxygen species production, regulating the cytokinin content through ethylene-dependent wayduring initial infection stage. Further, although the molecular basis is not fully unveiled, these effectors regulate the redox state and influence the ethylene biosynthesis in infected wheat plants. Here, we have discussed the biology of the wheat pathogen Parastagonospora nodorum, role of its necrotrophic effectors and their interacting sensitivity genes on the redox state, how they hijack the resistance mechanisms, hormonal regulated immunity and other signalling pathways in susceptible wheat plants. The information generated from effectors and their corresponding sensitivity genes and other biological processes could be utilized effectively for disease management strategies.
Collapse
Affiliation(s)
- Shabnam Katoch
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, 140413, Punjab, India.
| | - Devender Sharma
- Crop Improvement Division, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Richa Salwan
- College of Horticulture and Forestry, Neri, Dr YS Parmar University of Horticulture and Forestry, Solan, Hamirpur, 177 001, India
| | - S K Rana
- Department of Plant Pathology, CSK HPKV Palampur, Palampur, 176062, Himachal Pradesh, India
| |
Collapse
|
10
|
Bauters L, Stojilković B, Gheysen G. Pathogens pulling the strings: Effectors manipulating salicylic acid and phenylpropanoid biosynthesis in plants. MOLECULAR PLANT PATHOLOGY 2021; 22:1436-1448. [PMID: 34414650 PMCID: PMC8518561 DOI: 10.1111/mpp.13123] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 06/01/2023]
Abstract
During evolution, plants have developed sophisticated ways to cope with different biotic and abiotic stresses. Phytohormones and secondary metabolites are known to play pivotal roles in defence responses against invading pathogens. One of the key hormones involved in plant immunity is salicylic acid (SA), of which the role in plant defence is well established and documented. Plants produce an array of secondary metabolites categorized in different classes, with the phenylpropanoids as major players in plant immunity. Both SA and phenylpropanoids are needed for an effective immune response by the plant. To successfully infect the host, pathogens secrete proteins, called effectors, into the plant tissue to lower defence. Secreted effectors can interfere with several metabolic or signalling pathways in the host to facilitate infection. In this review, we will focus on the different strategies pathogens have developed to affect the levels of SA and phenylpropanoids to increase plant susceptibility.
Collapse
Affiliation(s)
- Lander Bauters
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Boris Stojilković
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Godelieve Gheysen
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
11
|
Khambatta K, Hollings A, Sauzier G, Sanglard LMVP, Klein AR, Tobin MJ, Vongsvivut J, Gibberd MR, Payne AD, Naim F, Hackett MJ. "Wax On, Wax Off": In Vivo Imaging of Plant Physiology and Disease with Fourier Transform Infrared Reflectance Microspectroscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101902. [PMID: 34338438 PMCID: PMC8498906 DOI: 10.1002/advs.202101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Analysis of the epicuticular wax layer on the surface of plant leaves can provide a unique window into plant physiology and responses to environmental stimuli. Well-established analytical methodologies can quantify epicuticular wax composition, yet few methods are capable of imaging wax distribution in situ or in vivo. Here, the first report of Fourier transform infrared (FTIR) reflectance spectroscopic imaging as a non-destructive, in situ, method to investigate variation in epicuticular wax distribution at 25 µm spatial resolution is presented. The authors demonstrate in vivo imaging of alterations in epicuticular waxes during leaf development and in situ imaging during plant disease or exposure to environmental stressors. It is envisaged that this new analytical capability will enable in vivo studies of plants to provide insights into how the physiology of plants and crops respond to environmental stresses such as disease, soil contamination, drought, soil acidity, and climate change.
Collapse
Affiliation(s)
- Karina Khambatta
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern Australia6102Australia
| | - Ashley Hollings
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern Australia6102Australia
| | - Georgina Sauzier
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern Australia6102Australia
| | - Lilian M. V. P. Sanglard
- Centre for Crop and Disease ManagementSchool of Molecular and Life SciencesCurtin UniversityBentleyWestern Australia6102Australia
| | - Annaleise R. Klein
- Infrared Microspectroscopy (IRM) BeamlineANSTO – Australian Synchrotron800 Blackburn RoadClaytonVictoria3168Australia
| | - Mark J. Tobin
- Infrared Microspectroscopy (IRM) BeamlineANSTO – Australian Synchrotron800 Blackburn RoadClaytonVictoria3168Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) BeamlineANSTO – Australian Synchrotron800 Blackburn RoadClaytonVictoria3168Australia
| | - Mark R. Gibberd
- Centre for Crop and Disease ManagementSchool of Molecular and Life SciencesCurtin UniversityBentleyWestern Australia6102Australia
| | - Alan D. Payne
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern Australia6102Australia
| | - Fatima Naim
- Centre for Crop and Disease ManagementSchool of Molecular and Life SciencesCurtin UniversityBentleyWestern Australia6102Australia
| | - Mark J. Hackett
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern Australia6102Australia
| |
Collapse
|
12
|
Dinglasan EG, Peressini T, Marathamuthu KA, See PT, Snyman L, Platz G, Godwin I, Voss-Fels KP, Moffat CS, Hickey LT. Genetic characterization of adult-plant resistance to tan spot (syn, yellow spot) in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2823-2839. [PMID: 34061222 DOI: 10.1007/s00122-021-03861-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
QTL mapping identified key genomic regions associated with adult-plant resistance to tan spot, which are effective even in the presence of the sensitivity gene Tsn1, thus serving as a new genetic solution to develop disease-resistant wheat cultivars. Improving resistance to tan spot (Pyrenophora tritici-repentis; Ptr) in wheat by eliminating race-specific susceptibility genes is a common breeding approach worldwide. The potential to exploit variation in quantitative forms of resistance, such as adult-plant resistance (APR), offers an alternative approach that could lead to broad-spectrum protection. We previously identified wheat landraces in the Vavilov diversity panel that exhibited high levels of APR despite carrying the sensitivity gene Tsn1. In this study, we characterised the genetic control of APR by developing a recombinant inbred line population fixed for Tsn1, but segregating for the APR trait. Linkage mapping using DArTseq markers and disease response phenotypes identified a QTL associated with APR to Ptr race 1 (producing Ptr ToxA- and Ptr ToxC) on chromosome 2B (Qts.313-2B), which was consistently detected in multiple adult-plant experiments. Additional loci were also detected on chromosomes 2A, 3D, 5A, 5D, 6A, 6B and 7A at the seedling stage, and on chromosomes 1A and 5B at the adult stage. We demonstrate that Qts.313-2B can be combined with other adult-plant QTL (i.e. Qts.313-1A and Qts.313-5B) to strengthen resistance levels. The APR QTL reported in this study provide a new genetic solution to tan spot in Australia and could be deployed in wheat cultivars, even in the presence of Tsn1, to decrease production losses and reduce the application of fungicides.
Collapse
Affiliation(s)
- Eric G Dinglasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Tamaya Peressini
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | | | - Pao Theen See
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| | - Lisle Snyman
- Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, Australia
| | - Greg Platz
- Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, Australia
| | - Ian Godwin
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Caroline S Moffat
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
13
|
Jacques S, Lenzo L, Stevens K, Lawrence J, Tan KC. An optimized sporulation method for the wheat fungal pathogen Pyrenophora tritici-repentis. PLANT METHODS 2021; 17:52. [PMID: 34011363 PMCID: PMC8136220 DOI: 10.1186/s13007-021-00751-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/29/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND The necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr) causes tan (syn. yellow) spot of wheat and accounts for significant yield losses worldwide. Understanding the molecular mechanisms of this economically important crop disease is crucial to counteract the yield and quality losses of wheat globally. Substantial progress has been made to comprehend the race structure of this phytopathogen based on its production of necrotrophic effectors and genomic resources of Ptr. However, one limitation for studying Ptr in a laboratory environment is the difficulty to isolate high spore numbers from vegetative growth with mycelial contamination common. These limitations reduce the experimental tractability of Ptr. RESULTS Here, we optimized a multitude of parameters and report a sporulation method for Ptr that yields robust, high quality and pure spores. Our methodology encompasses simple and reproducible plugging and harvesting techniques, resulting in spore yields up to 1500 fold more than the current sporulation methods and was tested on multiple isolates and races of Ptr as well as an additional seven modern Australian Ptr isolates. Moreover, this method also increased purity and spore harvest numbers for two closely related fungal pathogens (Pyrenophora teres f. maculata and f. teres) that cause net blotch diseases in barley (Hordeum vulgare), highlighting the usability of this optimized sporulation protocol for the wider research community. CONCLUSIONS Large-scale spore infection and virulence assays are essential for the screening of wheat and barley cultivars and combined with the genetic mapping of these populations allows pinpointing and exploiting sources of host genetic resistance. We anticipate that improvements in spore numbers and purity will further advance research to increase our understanding of the pathogenicity mechanisms of these important fungal pathogens.
Collapse
Affiliation(s)
- Silke Jacques
- Centre for Crop and Disease Management, Curtin University, Perth, Australia
| | - Leon Lenzo
- Centre for Crop and Disease Management, Curtin University, Perth, Australia
| | - Kofi Stevens
- Centre for Crop and Disease Management, Curtin University, Perth, Australia
| | - Julie Lawrence
- Centre for Crop and Disease Management, Curtin University, Perth, Australia
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, Curtin University, Perth, Australia.
| |
Collapse
|
14
|
Naim F, Khambatta K, Sanglard LMVP, Sauzier G, Reinhardt J, Paterson DJ, Zerihun A, Hackett MJ, Gibberd MR. Synchrotron X-ray fluorescence microscopy-enabled elemental mapping illuminates the 'battle for nutrients' between plant and pathogen. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2757-2768. [PMID: 33439999 PMCID: PMC8006550 DOI: 10.1093/jxb/erab005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/13/2021] [Indexed: 05/06/2023]
Abstract
Metal homeostasis is integral to normal plant growth and development. During plant-pathogen interactions, the host and pathogen compete for the same nutrients, potentially impacting nutritional homeostasis. Our knowledge of outcome of the interaction in terms of metal homeostasis is still limited. Here, we employed the X-ray fluorescence microscopy (XFM) beamline at the Australian Synchrotron to visualize and analyse the fate of nutrients in wheat leaves infected with Pyrenophora tritici-repentis, a necrotrophic fungal pathogen. We sought to (i) evaluate the utility of XFM for sub-micron mapping of essential mineral nutrients and (ii) examine the spatiotemporal impact of a pathogen on nutrient distribution in leaves. XFM maps of K, Ca, Fe, Cu, Mn, and Zn revealed substantial hyperaccumulation within, and depletion around, the infected region relative to uninfected control samples. Fungal mycelia were visualized as thread-like structures in the Cu and Zn maps. The hyperaccumulation of Mn in the lesion and localized depletion in asymptomatic tissue surrounding the lesion was unexpected. Similarly, Ca accumulated at the periphery of the symptomatic region and as microaccumulations aligning with fungal mycelia. Collectively, our results highlight that XFM imaging provides the capability for high-resolution mapping of elements to probe nutrient distribution in hydrated diseased leaves in situ.
Collapse
Affiliation(s)
- Fatima Naim
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Karina Khambatta
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Lilian M V P Sanglard
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Georgina Sauzier
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | | | | | - Ayalsew Zerihun
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Mark J Hackett
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Mark R Gibberd
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
15
|
Zhao L, You S, Zou H, Guan X. Transcriptome Analysis and Cell Morphology of Vitis rupestris Cells to Botryosphaeria Dieback Pathogen Diplodia seriata. Genes (Basel) 2021; 12:genes12020179. [PMID: 33513975 PMCID: PMC7910889 DOI: 10.3390/genes12020179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/16/2021] [Accepted: 01/25/2021] [Indexed: 11/30/2022] Open
Abstract
Diplodia seriata, one of the major causal agents of Botryosphaeria dieback, spreads worldwide, causing cankers, leaf spots and fruit black rot in grapevine. Vitis rupestris is an American wild grapevine widely used for resistance and rootstock breeding and was found to be highly resistant to Botryosphaeria dieback. The defense responses of V. rupestris to D. seriata 98.1 were analyzed by RNA-seq in this study. There were 1365 differentially expressed genes (DEGs) annotated with Gene Ontology (GO) and enriched by the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The DEGs could be allocated to the flavonoid biosynthesis pathway and the plant–pathogen interaction pathway. Among them, 53 DEGs were transcription factors (TFs). The expression levels of 12 genes were further verified by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The aggregation of proteins on the plasma membrane, formation variations in the cytoskeleton and plasmodesmata and hormone regulations revealed a declined physiological status in V. rupestris suspension cells after incubation with the culture filtrates of D. seriata 98.1. This study provides insights into the molecular mechanisms in grapevine cells’ response to D. seriata 98.1, which will be valuable for the control of Botryosphaeria dieback.
Collapse
Affiliation(s)
- Liang Zhao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (L.Z.); (S.Y.); (H.Z.)
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400716, China
| | - Shuangmei You
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (L.Z.); (S.Y.); (H.Z.)
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400716, China
| | - Hui Zou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (L.Z.); (S.Y.); (H.Z.)
| | - Xin Guan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (L.Z.); (S.Y.); (H.Z.)
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400716, China
- Correspondence: ; Tel.: +86-(0)23-6825-0483
| |
Collapse
|
16
|
Mironenko NV, Orina AS, Kovalenko NM. Differences between Pyrenophora tritici-repentis Isolates in Expression of ToxA and PtrPf2 Genes in Culture (in vitro). RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Corsi B, Percival-Alwyn L, Downie RC, Venturini L, Iagallo EM, Campos Mantello C, McCormick-Barnes C, See PT, Oliver RP, Moffat CS, Cockram J. Genetic analysis of wheat sensitivity to the ToxB fungal effector from Pyrenophora tritici-repentis, the causal agent of tan spot. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:935-950. [PMID: 31915874 PMCID: PMC7021774 DOI: 10.1007/s00122-019-03517-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/17/2019] [Indexed: 05/05/2023]
Abstract
Genetic mapping of sensitivity to the Pyrenophora tritici-repentis effector ToxB allowed development of a diagnostic genetic marker, and investigation of wheat pedigrees allowed transmission of sensitive alleles to be tracked. Tan spot, caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis, is a major disease of wheat (Triticum aestivum). Secretion of the P. tritici-repentis effector ToxB is thought to play a part in mediating infection, causing chlorosis of plant tissue. Here, genetic analysis using an association mapping panel (n = 480) and a multiparent advanced generation intercross (MAGIC) population (n founders = 8, n progeny = 643) genotyped with a 90,000 feature single nucleotide polymorphism (SNP) array found ToxB sensitivity to be highly heritable (h2 ≥ 0.9), controlled predominantly by the Tsc2 locus on chromosome 2B. Genetic mapping of Tsc2 delineated a 1921-kb interval containing 104 genes in the reference genome of ToxB-insensitive variety 'Chinese Spring'. This allowed development of a co-dominant genetic marker for Tsc2 allelic state, diagnostic for ToxB sensitivity in the association mapping panel. Phenotypic and genotypic analysis in a panel of wheat varieties post-dated the association mapping panel further supported the diagnostic nature of the marker. Combining ToxB phenotype and genotypic data with wheat pedigree datasets allowed historic sources of ToxB sensitivity to be tracked, finding the variety 'Maris Dove' to likely be the historic source of sensitive Tsc2 alleles in the wheat germplasm surveyed. Exploration of the Tsc2 region gene space in the ToxB-sensitive line 'Synthetic W7984' identified candidate genes for future investigation. Additionally, a minor ToxB sensitivity QTL was identified on chromosome 2A. The resources presented here will be of immediate use for marker-assisted selection for ToxB insensitivity and the development of germplasm with additional genetic recombination within the Tsc2 region.
Collapse
Affiliation(s)
- Beatrice Corsi
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
| | | | - Rowena C Downie
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
- Plant Sciences Department, University of Cambridge, Cambridge, UK
| | - Luca Venturini
- Life Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Elyce M Iagallo
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Camila Campos Mantello
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
- Genetracer Biotech, Calle Albert Einstein 22, 39011, Santander, Spain
| | - Charlie McCormick-Barnes
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Pao Theen See
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Richard P Oliver
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Caroline S Moffat
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia.
| | - James Cockram
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK.
| |
Collapse
|
18
|
Rawlinson C, See PT, Moolhuijzen P, Li H, Moffat CS, Chooi YH, Oliver RP. The identification and deletion of the polyketide synthase-nonribosomal peptide synthase gene responsible for the production of the phytotoxic triticone A/B in the wheat fungal pathogen Pyrenophora tritici-repentis. Environ Microbiol 2019; 21:4875-4886. [PMID: 31698543 PMCID: PMC6915911 DOI: 10.1111/1462-2920.14854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022]
Abstract
The economically important necrotrophic fungal pathogen, Pyrenophora tritici-repentis (Ptr), causes tan spot of wheat, a disease typified by foliar necrosis and chlorosis. The culture filtrate of an Australian Ptr isolate, M4, possesses phytotoxic activity and plant bioassay guided discovery led to the purification of necrosis inducing toxins called triticone A and B. High-resolution LC-MS/MS analysis of the culture filtrate identified an additional 37 triticone-like compounds. The biosynthetic gene cluster responsible for triticone production (the Ttc cluster) was identified and deletion of TtcA, a hybrid polyketide synthase (PKS)-nonribosomal peptide synthase (NRPS), abolished production of all triticones. The pathogenicity of mutant (ttcA) strains was not visibly affected in our assays. We hypothesize that triticones possess general antimicrobial activity important for competition in multi-microbial environments.
Collapse
Affiliation(s)
- Catherine Rawlinson
- Centre for Crop and Disease Management, Curtin University, Perth, 6150, Western Australia, Australia
| | - Pao Theen See
- Centre for Crop and Disease Management, Curtin University, Perth, 6150, Western Australia, Australia
| | - Paula Moolhuijzen
- Centre for Crop and Disease Management, Curtin University, Perth, 6150, Western Australia, Australia
| | - Hang Li
- School of Molecular Sciences, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Caroline S Moffat
- Centre for Crop and Disease Management, Curtin University, Perth, 6150, Western Australia, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Richard P Oliver
- Centre for Crop and Disease Management, Curtin University, Perth, 6150, Western Australia, Australia
| |
Collapse
|
19
|
Biotechnological potential of engineering pathogen effector proteins for use in plant disease management. Biotechnol Adv 2019; 37:107387. [DOI: 10.1016/j.biotechadv.2019.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 11/19/2022]
|
20
|
Moolhuijzen P, See PT, Moffat CS. A new PacBio genome sequence of an Australian Pyrenophora tritici-repentis race 1 isolate. BMC Res Notes 2019; 12:642. [PMID: 31585535 PMCID: PMC6778365 DOI: 10.1186/s13104-019-4681-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/28/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES The necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr) is the causal agent of tan spot a major disease of wheat. We have generated a new genome resource for an Australian Ptr race 1 isolate V1 to support comparative 'omics analyses. In particular, the V1 PacBio Biosciences long-read sequence assembly was generated to confirm the stability of large-scale genome rearrangements of the Australian race 1 isolate M4 when compared to the North American race 1 isolate Pt-1C-BFP. RESULTS Over 1.3 million reads were sequenced by PacBio Sequel small-molecule real-time sequencing (SRMT) cell to yield 11.4 Gb for the genome assembly of V1 (285X coverage), with median and maximum read lengths of 8959 bp and 72,292 bp respectively. The V1 genome was assembled into 33 contiguous sequences with a of total length 40.4 Mb and GC content of 50.44%. A total of 14,050 protein coding genes were predicted and annotated for V1. Of these 11,519 genes were orthologous to both Pt-1C-BFP and M4. Whole genome alignment of the Australian long-read assemblies (V1 to M4) confirmed previously identified large-scale genome rearrangements between M4 and Pt-1C-BFP and presented small scale variations, which included a sequence break within a race-specific region for ToxA, a well-known necrotrophic effector gene.
Collapse
Affiliation(s)
- Paula Moolhuijzen
- Centre for Crop Disease and Management, School of Molecular Life Sciences, Curtin University, Perth, Australia.
| | - Pao Theen See
- Centre for Crop Disease and Management, School of Molecular Life Sciences, Curtin University, Perth, Australia
| | - Caroline S Moffat
- Centre for Crop Disease and Management, School of Molecular Life Sciences, Curtin University, Perth, Australia
| |
Collapse
|
21
|
See PT, Iagallo EM, Oliver RP, Moffat CS. Heterologous Expression of the Pyrenophora tritici-repentis Effector Proteins ToxA and ToxB, and the Prevalence of Effector Sensitivity in Australian Cereal Crops. Front Microbiol 2019; 10:182. [PMID: 30809209 PMCID: PMC6379657 DOI: 10.3389/fmicb.2019.00182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/23/2019] [Indexed: 12/05/2022] Open
Abstract
Here, we evaluate the expression of the proteinaceous effectors ToxA and ToxB, produced by the necrotrophic fungal pathogen Pyrenophora tritici-repentis, which confer tan spot disease susceptibility on wheat. These necrotrophic effectors were expressed in two heterologous systems: Escherichia coli and Pichia pastoris. The E. coli SHuffle system was demonstrated to be superior to P. pastoris in generating high-levels of recombinant proteins that were soluble and stable. In addition, protein extracts from P. pastoris induced non-specific chlorosis on wheat, postulated to be caused by co-purified glucanases secreted by the host. Up to 79.6 μg/ml of ToxB was obtained using the SHuffle system in the absence of the native signal peptide, whilst the ToxA yield was considerably lower at 3.2 μg/ml. Results indicated that a histidine tag at the ToxA C-terminus interfered with effector functionality. Heterologously expressed ToxA and ToxB were tested on a panel of Australian cereals, including 122 varieties of bread wheat, 16 durum, 20 triticale and 5 barley varieties, as well as common plant model species including tobacco and Arabidopsis thaliana. A varying degree of effector sensitivities was observed, with a higher ToxB sensitivity and prevalence in the durum and triticale varieties. ToxB-induced chlorosis was also detected on barley. The heterologous expression of effectors that are easily scalable, will facilitate effector-assisted selection of varieties in wheat breeding programs as well as the investigation of P. tritici-repentis effectors in host and non-host interactions.
Collapse
Affiliation(s)
| | | | | | - Caroline S. Moffat
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
22
|
Dinglasan EG, Singh D, Shankar M, Afanasenko O, Platz G, Godwin ID, Voss-Fels KP, Hickey LT. Discovering new alleles for yellow spot resistance in the Vavilov wheat collection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:149-162. [PMID: 30327845 DOI: 10.1007/s00122-018-3204-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
GWAS detected 11 yellow spot resistance QTL in the Vavilov wheat collection. Promising adult-plant resistance loci could provide a sustainable genetic solution to yellow spot in modern wheat varieties. Yellow spot, caused by the fungal pathogen Pyrenophora tritici-repentis (Ptr), is the most economically damaging foliar disease of wheat in Australia. Genetic resistance is considered to be the most sustainable means for disease management, yet the genomic regions underpinning resistance to Ptr, particularly adult-plant resistance (APR), remain vastly unknown. In this study, we report results of a genome-wide association study using 295 accessions from the Vavilov wheat collection which were extensively tested for response to Ptr infections in glasshouse and field trials at both seedling an adult growth stages. Combining phenotypic datasets from multiple experiments in Australia and Russia with 25,286 genome-wide, high-quality DArTseq markers, we detected a total of 11 QTL, of which 5 were associated with seedling resistance, 3 with all-stage resistance, and 3 with APR. Interestingly, the novel APR QTL were effective even in the presence of host sensitivity gene Tsn1. These genomic regions could offer broad-spectrum yellow spot protection, not just to ToxA but also other pathogenicity or virulence factors. Vavilov wheat accessions carrying APR QTL combinations displayed enhanced levels of resistance highlighting the potential for QTL stacking through breeding. We propose that the APR genetic factors discovered in our study could be used to improve resistance levels in modern wheat varieties and contribute to the sustainable control of yellow spot.
Collapse
Affiliation(s)
- Eric G Dinglasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Dharmendra Singh
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Manisha Shankar
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
- School of Agriculture and Environment, University of Western Australia, Crawley, WA, Australia
| | - Olga Afanasenko
- Department of Plant Resistance to Diseases, All-Russian Research Institute of Plant Protection, St. Petersburg, Russia
| | - Greg Platz
- Department of Agriculture and Fisheries, Hermitage Research Facility (HRF), Warwick, QLD, Australia
| | - Ian D Godwin
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia.
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
23
|
Moolhuijzen P, See PT, Moffat CS. Exploration of wheat and pathogen transcriptomes during tan spot infection. BMC Res Notes 2018; 11:907. [PMID: 30567596 PMCID: PMC6299956 DOI: 10.1186/s13104-018-3993-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/06/2018] [Indexed: 11/25/2022] Open
Abstract
Objectives The fungus Pyrenophora tritici-repentis is the causal agent of tan spot, a major disease of wheat (Triticum aestivum). Here, we used RNA sequencing to generate transcriptional datasets for both the host and pathogen during infection and during in vitro pathogen growth stages. Data description To capture gene expression during wheat infection with the P. tritici-repentis isolate M4, RNA datasets were generated for wheat inoculated with P. tritici-repentis (infection) and a mock (control) at 3 and 4 days post-infection, when scorable leaf disease symptoms manifest. The P. tritici-repentis isolate M4 was also RNA sequenced to capture gene expression in vitro at two different growth stages: 7-day old vegetative mycelia and 9-day old sporulating mycelia, to coincide with a latent growth stage and early sporulation respectively. In total, 6 RNA datasets are available to aid in the validation of predicted genes of P. tritici-repentis and wheat. The datasets generated offer an insight into the transcriptomic profile of the host–pathogen interaction and can be used to investigate the expression of a subset of transcripts or targeted genes prior to designing cost-intensive RNA sequencing experiments, that would be best further explored with replication and a time series analysis.
Collapse
Affiliation(s)
- Paula Moolhuijzen
- Centre for Crop Disease and Management, Curtin University, Perth, WA, Australia.
| | - Pao Theen See
- Centre for Crop Disease and Management, Curtin University, Perth, WA, Australia
| | - Caroline S Moffat
- Centre for Crop Disease and Management, Curtin University, Perth, WA, Australia
| |
Collapse
|
24
|
Moffat CS, Stoll T, Moolhuijzen P. Proteomics of the wheat tan spot pathogen Pyrenophora tritici-repentis. BMC Res Notes 2018; 11:846. [PMID: 30497514 PMCID: PMC6267847 DOI: 10.1186/s13104-018-3936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/21/2018] [Indexed: 11/10/2022] Open
Abstract
Objectives The fungus Pyrenophora tritici-repentis is a major pathogen of wheat worldwide, causing the leaf spotting disease tan spot. To best inform approaches for plant genetic resistance, an understanding of the biology and pathogenicity mechanisms of this fungal pathogen is essential. Here, intracellular and extracellular proteins of P. tritici-repentis were extracted, and peptides analysed via high-resolution mass spectrometry. Our objective was to generate a useful proteomics resource for P. tritici-repentis. A survey of proteins secreted by the pathogen into culture filtrate is especially useful, as these are likely to come in direct contact with the wheat host and may play important roles in infection/pathogenicity. The peptide data presented herein, has also been used to successfully verify and refine in silico predicted P. tritici-repentis gene annotations, through the validation of alternative splicing and reading frame shifts. Data description The data sets presented consist of peptide spectra of the extracellular and intracellular proteomes of three P. tritici-repentis isolates. Peptide matches to translated transcripts of the North American reference isolate Pt-1C-BFP are also provided.
Collapse
Affiliation(s)
- Caroline S Moffat
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia.
| | - Thomas Stoll
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD, Australia
| | - Paula Moolhuijzen
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
25
|
Moolhuijzen PM, See PT, Oliver RP, Moffat CS. Genomic distribution of a novel Pyrenophora tritici-repentis ToxA insertion element. PLoS One 2018; 13:e0206586. [PMID: 30379913 PMCID: PMC6209302 DOI: 10.1371/journal.pone.0206586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
The ToxA effector is a major virulence gene of Pyrenophora tritici-repentis (Ptr), a necrotrophic fungus and the causal agent of tan spot disease of wheat. ToxA and co-located genes are believed to be the result of a recent horizontally transferred highly conserved 14kb region a major pathogenic event for Ptr. Since this event, monitoring isolates for pathogenic changes has become important to help understand the underlying mechanisms in play. Here we examined ToxA in 100 Ptr isolates from Australia, Europe, North and South America and the Middle East, and uncovered in isolates from Denmark, Germany and New Zealand a new variation, a novel 166 bp insertion element (PtrHp1) which can form a perfectly matched 59 bp inverted repeat hairpin structure located downstream of the ToxA coding sequence in the 3’ UTR exon. A wider examination revealed PtrHp1 elements to be distributed throughout the genome. Analysis of genomes from Australia and North America had 50–112 perfect copies that often overlap other genes. The hairpin element appears to be unique to Ptr and the lack of ancient origins in other species suggests that PtrHp1 emerged after Ptr speciation. Furthermore, the ToxA UTR insertion site is identical for different isolates, which suggests a single insertion event occurred after the ToxA horizontal transfer. In vitro and in planta-detached leaf assays found that the PtrHp1 element insertion had no effect on ToxA expression. However, variation in the expression of ToxA was detected between the Ptr isolates from different demographic locations, which appears to be unrelated to the presence of the element. We envision that this discovery may contribute towards future understanding of the possible role of hairpin elements in Ptr.
Collapse
Affiliation(s)
- Paula M Moolhuijzen
- Centre for Crop Disease and Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| | - Pao Theen See
- Centre for Crop Disease and Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| | - Richard P Oliver
- Centre for Crop Disease and Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| | - Caroline S Moffat
- Centre for Crop Disease and Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
26
|
Moolhuijzen P, See PT, Hane JK, Shi G, Liu Z, Oliver RP, Moffat CS. Comparative genomics of the wheat fungal pathogen Pyrenophora tritici-repentis reveals chromosomal variations and genome plasticity. BMC Genomics 2018; 19:279. [PMID: 29685100 PMCID: PMC5913888 DOI: 10.1186/s12864-018-4680-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/16/2018] [Indexed: 02/08/2023] Open
Abstract
Background Pyrenophora tritici-repentis (Ptr) is a necrotrophic fungal pathogen that causes the major wheat disease, tan spot. We set out to provide essential genomics-based resources in order to better understand the pathogenicity mechanisms of this important pathogen. Results Here, we present eight new Ptr isolate genomes, assembled and annotated; representing races 1, 2 and 5, and a new race. We report a high quality Ptr reference genome, sequenced by PacBio technology with Illumina paired-end data support and optical mapping. An estimated 98% of the genome coverage was mapped to 10 chromosomal groups, using a two-enzyme hybrid approach. The final reference genome was 40.9 Mb and contained a total of 13,797 annotated genes, supported by transcriptomic and proteogenomics data sets. Conclusions Whole genome comparative analysis revealed major chromosomal segmental rearrangements and fusions, highlighting intraspecific genome plasticity in this species. Furthermore, the Ptr race classification was not supported at the whole genome level, as phylogenetic analysis did not cluster the ToxA producing isolates. This expansion of available Ptr genomics resources will directly facilitate research aimed at controlling tan spot disease. Electronic supplementary material The online version of this article (10.1186/s12864-018-4680-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paula Moolhuijzen
- Centre for Crop Disease and Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia.
| | - Pao Theen See
- Centre for Crop Disease and Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| | - James K Hane
- Centre for Crop Disease and Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | - Richard P Oliver
- Centre for Crop Disease and Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| | - Caroline S Moffat
- Centre for Crop Disease and Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
27
|
Liu Z, Zurn JD, Kariyawasam G, Faris JD, Shi G, Hansen J, Rasmussen JB, Acevedo M. Inverse gene-for-gene interactions contribute additively to tan spot susceptibility in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1267-1276. [PMID: 28293708 DOI: 10.1007/s00122-017-2886-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Tan spot susceptibility is conferred by multiple interactions of necrotrophic effector and host sensitivity genes. Tan spot of wheat, caused by Pyrenophora tritici-repentis, is an important disease in almost all wheat-growing areas of the world. The disease system is known to involve at least three fungal-produced necrotrophic effectors (NEs) that interact with the corresponding host sensitivity (S) genes in an inverse gene-for-gene manner to induce disease. However, it is unknown if the effects of these NE-S gene interactions contribute additively to the development of tan spot. In this work, we conducted disease evaluations using different races and quantitative trait loci (QTL) analysis in a wheat recombinant inbred line (RIL) population derived from a cross between two susceptible genotypes, LMPG-6 and PI 626573. The two parental lines each harbored a single known NE sensitivity gene with LMPG-6 having the Ptr ToxC sensitivity gene Tsc1 and PI 626573 having the Ptr ToxA sensitivity gene Tsn1. Transgressive segregation was observed in the population for all races. QTL mapping revealed that both loci (Tsn1 and Tsc1) were significantly associated with susceptibility to race 1 isolates, which produce both Ptr ToxA and Ptr ToxC, and the two genes contributed additively to tan spot susceptibility. For isolates of races 2 and 3, which produce only Ptr ToxA and Ptr ToxC, only Tsn1 and Tsc1 were associated with tan spot susceptibility, respectively. This work clearly demonstrates that tan spot susceptibility in this population is due primarily to two NE-S interactions. Breeders should remove both sensitivity genes from wheat lines to obtain high levels of tan spot resistance.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA.
| | - Jason D Zurn
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Gayan Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, ND, 58102, USA
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Jana Hansen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Jack B Rasmussen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Maricelis Acevedo
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| |
Collapse
|
28
|
Abstract
Effectors are molecules used by microbial pathogens to facilitate infection via effector-triggered susceptibility or tissue necrosis in their host. Much research has been focussed on the identification and elucidating the function of fungal effectors during plant pathogenesis. By comparison, knowledge of how phytopathogenic fungi regulate the expression of effector genes has been lagging. Several recent studies have illustrated the role of various transcription factors, chromosome-based control, effector epistasis, and mobilisation of endosomes within the fungal hyphae in regulating effector expression and virulence on the host plant. Improved knowledge of effector regulation is likely to assist in improving novel crop protection strategies.
Collapse
Affiliation(s)
- Kar-Chun Tan
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| | - Richard P. Oliver
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
29
|
Rybak K, See PT, Phan HTT, Syme RA, Moffat CS, Oliver RP, Tan K. A functionally conserved Zn 2 Cys 6 binuclear cluster transcription factor class regulates necrotrophic effector gene expression and host-specific virulence of two major Pleosporales fungal pathogens of wheat. MOLECULAR PLANT PATHOLOGY 2017; 18:420-434. [PMID: 27860150 PMCID: PMC6638278 DOI: 10.1111/mpp.12511] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The fungus Parastagonospora nodorum is the causal agent of Septoria nodorum blotch of wheat (Triticum aestivum). The interaction is mediated by multiple fungal necrotrophic effector-dominant host sensitivity gene interactions. The three best-characterized effector-sensitivity gene systems are SnToxA-Tsn1, SnTox1-Snn1 and SnTox3-Snn3. These effector genes are highly expressed during early infection, but expression decreases as the infection progresses to tissue necrosis and sporulation. However, the mechanism of regulation is unknown. We have identified and functionally characterized a gene, referred to as PnPf2, which encodes a putative zinc finger transcription factor. PnPf2 deletion resulted in the down-regulation of SnToxA and SnTox3 expression. Virulence on Tsn1 and Snn3 wheat cultivars was strongly reduced. The SnTox1-Snn1 interaction remained unaffected. Furthermore, we have also identified and deleted an orthologous PtrPf2 from the tan spot fungus Pyrenophora tritici-repentis which possesses a near-identical ToxA that was acquired from P. nodorum via horizontal gene transfer. PtrPf2 deletion also resulted in the down-regulation of PtrToxA expression and a near-complete loss of virulence on Tsn1 wheat. We have demonstrated, for the first time, evidence for a functionally conserved signalling component that plays a role in the regulation of a common/horizontally transferred effector found in two major fungal pathogens of wheat.
Collapse
Affiliation(s)
- Kasia Rybak
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| | - Pao Theen See
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| | - Huyen T. T. Phan
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| | - Robert A. Syme
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| | - Caroline S. Moffat
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| | - Richard P. Oliver
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| | - Kar‐Chun Tan
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| |
Collapse
|
30
|
See PT, Moffat CS, Morina J, Oliver RP. Evaluation of a Multilocus Indel DNA Region for the Detection of the Wheat Tan Spot Pathogen Pyrenophora tritici-repentis. PLANT DISEASE 2016; 100:2215-2225. [PMID: 30682909 DOI: 10.1094/pdis-03-16-0262-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tan spot or yellow (leaf) spot disease of wheat (Triticum spp.) is caused by Pyrenophora tritici-repentis, a necrotrophic fungal pathogen that is widespread throughout the main wheat-growing regions in the world. This disease is currently the single most economically important crop disease in Australia. In this study, a real-time quantitative polymerase chain reaction (qPCR) assay was developed as a diagnostic tool to detect the pathogen on wheat foliar tissue. A multicopy locus (PtrMulti) present in the P. tritici-repentis genome was assessed for its suitability as a qPCR probe. The primer pair PtrMulti_F/R that targets the region was evaluated with respect to species specificity and sensitivity. A PtrMulti SYBR qPCR assay was developed and proved to be suitable for the identification and relative quantification of P. tritici-repentis with a detection limit of DNA levels at <0.1 pg. Variation of the PtrMulti copy number between the geographical representatives of P. tritici-repentis strains examined was minimal, with the range of 63 to 85 copies per genome. For naturally infected wheat field samples, the incidence of P. tritici-repentis DNA on leaves quantified by qPCR varied up to 1,000-fold difference in the concentration, with a higher incidence of DNA occurring on the lower canopy for most of the growth stages examined. At the early growth stages, qPCR assay was able to detect P. tritici-repentis DNA on the younger leaves in the absence of visible tan spot lesions. These results demonstrate the potential of PtrMulti probe to be used for early detection and rapid screening of tan spot disease on wheat plants.
Collapse
Affiliation(s)
- Pao Theen See
- Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Bentley, WA 6102, Australia
| | - Caroline S Moffat
- Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Bentley, WA 6102, Australia
| | - Joseph Morina
- Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Bentley, WA 6102, Australia
| | - Richard P Oliver
- Centre for Crop and Disease Management, Department of Environment and Agriculture, School of Science, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
31
|
Chang HX, Domier LL, Radwan O, Yendrek CR, Hudson ME, Hartman GL. Identification of Multiple Phytotoxins Produced by Fusarium virguliforme Including a Phytotoxic Effector (FvNIS1) Associated With Sudden Death Syndrome Foliar Symptoms. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:96-108. [PMID: 26646532 DOI: 10.1094/mpmi-09-15-0219-r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Sudden death syndrome (SDS) of soybean is caused by a soilborne pathogen, Fusarium virguliforme. Phytotoxins produced by F. virguliforme are translocated from infected roots to leaves, in which they cause SDS foliar symptoms. In this study, additional putative phytotoxins of F. virguliforme were identified, including three secondary metabolites and 11 effectors. While citrinin, fusaric acid, and radicicol induced foliar chlorosis and wilting, Soybean mosaic virus (SMV)-mediated overexpression of F. virguliforme necrosis-inducing secreted protein 1 (FvNIS1) induced SDS foliar symptoms that mimicked the development of foliar symptoms in the field. The expression level of fvnis1 remained steady over time, although foliar symptoms were delayed compared with the expression levels. SMV::FvNIS1 also displayed genotype-specific toxicity to which 75 of 80 soybean cultivars were susceptible. Genome-wide association mapping further identified three single nucleotide polymorphisms at two loci, where three leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes were found. Culture filtrates of fvnis1 knockout mutants displayed a mild reduction in phytotoxicity, indicating that FvNIS1 is one of the phytotoxins responsible for SDS foliar symptoms and may contribute to the quantitative susceptibility of soybean by interacting with the LRR-RLK genes.
Collapse
Affiliation(s)
| | - Leslie L Domier
- 1 University of Illinois
- 2 USDA-Agricultural Research Service; and
| | | | - Craig R Yendrek
- 1 University of Illinois
- 3 Institute for Genomic Biology, Urbana, IL, U.S.A
| | | | - Glen L Hartman
- 1 University of Illinois
- 2 USDA-Agricultural Research Service; and
| |
Collapse
|
32
|
Manning VA, Ciuffetti LM. Necrotrophic effector epistasis in the Pyrenophora tritici-repentis-wheat interaction. PLoS One 2015; 10:e0123548. [PMID: 25845019 PMCID: PMC4386829 DOI: 10.1371/journal.pone.0123548] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/05/2015] [Indexed: 11/25/2022] Open
Abstract
Pyrenophora tritici-repentis, the causal agent of tan spot disease of wheat, mediates disease by the production of host-selective toxins (HST). The known toxins are recognized in an 'inverse' gene-for-gene manner, where each is perceived by the product of a unique locus in the host and recognition leads to disease susceptibility. Given the importance of HSTs in disease development, we would predict that the loss of any of these major pathogenicity factors would result in reduced virulence and disease development. However, after either deletion of the gene encoding the HST ToxA or, reciprocally, heterologous expression of ToxA in a race that does not normally produce the toxin followed by inoculation of ToxA-sensitive and insensitive wheat cultivars, we demonstrate that ToxA symptom development can be epistatic to other HST-induced symptoms. ToxA epistasis on certain ToxA-sensitive wheat cultivars leads to genotype-specific increases in total leaf area affected by disease. These data indicate a complex interplay between host responses to HSTs in some genotypes and underscore the challenge of identifying additional HSTs whose activity may be masked by other toxins. Also, through mycelial staining, we acquire preliminary evidence that ToxA may provide additional benefits to fungal growth in planta in the absence of its cognate recognition partner in the host.
Collapse
Affiliation(s)
- Viola A. Manning
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Lynda M. Ciuffetti
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
33
|
Tan KC, Phan HTT, Rybak K, John E, Chooi YH, Solomon PS, Oliver RP. Functional redundancy of necrotrophic effectors - consequences for exploitation for breeding. FRONTIERS IN PLANT SCIENCE 2015; 6:501. [PMID: 26217355 PMCID: PMC4495316 DOI: 10.3389/fpls.2015.00501] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Necrotrophic diseases of wheat cause major losses in most wheat growing areas of world. Tan spot (caused by Pyrenophora tritici-repentis) and septoria nodorum blotch (SNB; Parastagonospora nodorum) have been shown to reduce yields by 10-20% across entire agri-ecological zones despite the application of fungicides and a heavy focus over the last 30 years on resistance breeding. Efforts by breeders to improve the resistance of cultivars has been compromised by the universal finding that resistance was quantitative and governed by multiple quantitative trait loci (QTL). Most QTL had a limited effect that was hard to measure precisely and varied significantly from site to site and season to season. The discovery of necrotrophic effectors has given breeding for disease resistance new methods and tools. In the case of tan spot in West Australia, a single effector, PtrToxA and its recogniser gene Tsn1, has a dominating impact in disease resistance. The delivery of ToxA to breeders has had a major impact on cultivar choice and breeding strategies. For P. nodorum, three effectors - SnToxA, SnTox1, and SnTox3 - have been well characterized. Unlike tan spot, no one effector has a dominating role. Genetic analysis of various mapping populations and pathogen isolates has shown that different effectors have varying impact and that epistatic interactions also occur. As a result of these factors the deployment of these effectors for SNB resistance breeding is more complex. We have deleted the three effectors in a strain of P. nodorum and measured effector activity and disease potential of the triple knockout mutant. The culture filtrate causes necrosis in several cultivars and the strain causes disease, albeit the overall levels are less than in the wild type. Modeling of the field disease resistance scores of cultivars from their reactions to the microbially expressed effectors SnToxA, SnTox1, and SnTox3 is significantly improved by including the response to the triple knockout mutant culture filtrate. This indicates that one or more further effectors are secreted into the culture filtrate. We conclude that the in vitro-secreted necrotrophic effectors explain a very large part of the disease response of wheat germplasm and that this method of resistance breeding promises to further reduce the impact of these globally significant diseases.
Collapse
Affiliation(s)
- Kar-Chun Tan
- Centre for Crop Disease Management, Department of Environment and Agriculture, Curtin University, BentleyWA, Australia
- *Correspondence: Richard P. Oliver and Kar-Chun Tan, Centre for Crop Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA 6102, Australia, ;
| | - Huyen T. T. Phan
- Centre for Crop Disease Management, Department of Environment and Agriculture, Curtin University, BentleyWA, Australia
| | - Kasia Rybak
- Centre for Crop Disease Management, Department of Environment and Agriculture, Curtin University, BentleyWA, Australia
| | - Evan John
- Centre for Crop Disease Management, Department of Environment and Agriculture, Curtin University, BentleyWA, Australia
| | - Yit H. Chooi
- Plant Sciences Division, Research School of Biology, Australian National University, CanberraACT, Australia
- School of Chemistry and Biochemistry, University of Western Australia, PerthWA, Australia
| | - Peter S. Solomon
- Plant Sciences Division, Research School of Biology, Australian National University, CanberraACT, Australia
| | - Richard P. Oliver
- Centre for Crop Disease Management, Department of Environment and Agriculture, Curtin University, BentleyWA, Australia
- *Correspondence: Richard P. Oliver and Kar-Chun Tan, Centre for Crop Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA 6102, Australia, ;
| |
Collapse
|