1
|
Sanguankiattichai N, Chandrasekar B, Sheng Y, Hardenbrook N, Tabak WWA, Drapal M, Kaschani F, Grünwald-Gruber C, Krahn D, Buscaill P, Yamamoto S, Kato A, Nash R, Fleet G, Strasser R, Fraser PD, Kaiser M, Zhang P, Preston GM, van der Hoorn RAL. Bacterial pathogen deploys the iminosugar glycosyrin to manipulate plant glycobiology. Science 2025; 388:297-303. [PMID: 40245141 DOI: 10.1126/science.adp2433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 01/13/2025] [Accepted: 02/21/2025] [Indexed: 04/19/2025]
Abstract
The extracellular space (apoplast) in plants is a key battleground during microbial infections. To avoid recognition, the bacterial model phytopathogen Pseudomonas syringae pv. tomato DC3000 produces glycosyrin. Glycosyrin inhibits the plant-secreted β-galactosidase BGAL1, which would otherwise initiate the release of immunogenic peptides from bacterial flagellin. Here, we report the structure, biosynthesis, and multifunctional roles of glycosyrin. High-resolution cryo-electron microscopy and chemical synthesis revealed that glycosyrin is an iminosugar with a five-membered pyrrolidine ring and a hydrated aldehyde that mimics monosaccharides. Glycosyrin biosynthesis was controlled by virulence regulators, and its production is common in bacteria and prevents flagellin recognition and alters the extracellular glycoproteome and metabolome of infected plants. These findings highlight a potentially wider role for glycobiology manipulation by plant pathogens across the plant kingdom.
Collapse
Affiliation(s)
- Nattapong Sanguankiattichai
- Department of Biology, University of Oxford, Oxford, UK
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Yuewen Sheng
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Nathan Hardenbrook
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Werner W A Tabak
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Margit Drapal
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Farnusch Kaschani
- Analytics Core Facility Essen (ACE), Chemical Biology, Faculty of Biology, Universität Duisburg-Essen, ZMB, Essen, Germany
| | | | - Daniel Krahn
- Leibniz Institut für analytische Wissenschaften ISAS e.V., Dortmund, Germany
| | | | - Suzuka Yamamoto
- Department of Hospital Pharmacy, University of Toyama, Toyama, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama, Japan
| | - Robert Nash
- Institute of Biological, Environmental and Rural Sciences/Phytoquest Limited, Aberystwyth, UK
| | - George Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Biotechnology and Food Science, BOKU University, Vienna, Austria
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Markus Kaiser
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Peijun Zhang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
2
|
Sanguankiattichai N, Chandrasekar B, Sheng Y, Hardenbrook N, Tabak WWA, Krahn D, Drapal M, Buscaill P, Yamamoto S, Kato A, Nash R, Fleet G, Fraser P, Kaiser M, Zhang P, Preston GM, van der Hoorn RAL. Bacterial pathogen deploys iminosugar galactosyrin to manipulate plant glycobiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638044. [PMID: 39990308 PMCID: PMC11844564 DOI: 10.1101/2025.02.13.638044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The extracellular space (apoplast) of plants is an important molecular battleground during infection by many pathogens. We previously found that a plant-secreted β-galactosidase BGAL1 acts in immunity by facilitating the release of immunogenic peptides from bacterial flagellin and that Pseudomonas syringae suppresses this enzyme by producing a small molecule inhibitor called galactosyrin. Here, we elucidated the structure and biosynthesis of galactosyrin and uncovered its multifunctional roles during infection. Structural elucidation by cryo-EM and chemical synthesis revealed that galactosyrin is an iminosugar featuring a unique geminal diol attached to the pyrrolidine moiety that mimics galactose binding to the β-galactosidase active site. Galactosyrin biosynthesis branches off from purine biosynthesis and involves three enzymes of which the first is a reductase that is unique in iminosugar biosynthesis. Besides inhibiting BGAL1 to avoid detection, galactosyrin also changes the glycoproteome and metabolome of the apoplast. The manipulation of host glycobiology may be common to plant-associated bacteria that carry putative iminosugar biosynthesis clusters.
Collapse
Affiliation(s)
| | | | - Yuewen Sheng
- Diamond Light Source, Harwell Science and Innovation Campus; Didcot, United Kingdom
| | - Nathan Hardenbrook
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford; Oxford, United Kingdom
| | - Werner W. A. Tabak
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen; Essen, Germany
| | - Daniel Krahn
- Leibniz Institut für analytische Wissenschaften ISAS e.V.; Dortmund, Germany
| | - Margit Drapal
- Department of Biological Sciences, Royal Holloway University of London; Egham, United Kingdom
| | - Pierre Buscaill
- Department of Biology, University of Oxford; Oxford, United Kingdom
| | - Suzuka Yamamoto
- Department of Hospital Pharmacy, University of Toyama; Toyama, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama; Toyama, Japan
| | - Robert Nash
- Institute of Biological, Environmental and Rural Sciences/Phytoquest Limited; Aberystwyth, United Kingdom
| | - George Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford; Oxford, United Kingdom
| | - Paul Fraser
- Department of Biological Sciences, Royal Holloway University of London; Egham, United Kingdom
| | - Markus Kaiser
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen; Essen, Germany
| | - Peijun Zhang
- Diamond Light Source, Harwell Science and Innovation Campus; Didcot, United Kingdom
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford; Oxford, United Kingdom
| | - Gail M. Preston
- Department of Biology, University of Oxford; Oxford, United Kingdom
| | | |
Collapse
|
3
|
de Sousa T, Machado S, Caniça M, Ramos MJN, Santos D, Ribeiro M, Hébraud M, Igrejas G, Alves O, Costa E, Silva A, Lopes R, Poeta P. Pseudomonas aeruginosa: One Health approach to deciphering hidden relationships in Northern Portugal. J Appl Microbiol 2025; 136:lxaf037. [PMID: 39947205 DOI: 10.1093/jambio/lxaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025]
Abstract
AIMS Antimicrobial resistance in Pseudomonas aeruginosa represents a major global challenge in public and veterinary health, particularly from a One Health perspective. This study aimed to investigate antimicrobial resistance, the presence of virulence genes, and the genetic diversity of P. aeruginosa isolates from diverse sources. METHODS AND RESULTS The study utilized antimicrobial susceptibility testing, genomic analysis for resistance and virulence genes, and multilocus sequence typing to characterize a total of 737 P. aeruginosa isolates that were collected from humans, domestic animals, and aquatic environments in Northern Portugal. Antimicrobial resistance profiles were analyzed, and genomic approaches were employed to detect resistance and virulence genes. The study found a high prevalence of multidrug-resistant isolates, including high-risk clones such as ST244 and ST446, particularly in hospital sources and wastewater treatment plants. Key genes associated with resistance and virulence, including efflux pumps (e.g. MexA and MexB) and secretion systems (T3SS and T6SS), were identified. CONCLUSIONS This work highlights the intricate dynamics of multidrug-resistant P. aeruginosa across interconnected ecosystems in Northern Portugal. It underscores the importance of genomic studies in revealing the mechanisms of resistance and virulence, contributing to the broader understanding of resistance dynamics and informing future mitigation strategies.
Collapse
Affiliation(s)
- Telma de Sousa
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Sandro Machado
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistance and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Centre for the Studies of Animal Science (CECA) - Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401, Portugal
| | - Miguel J N Ramos
- National Reference Laboratory of Antibiotic Resistance and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
| | - Daniela Santos
- National Reference Laboratory of Antibiotic Resistance and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
| | - Miguel Ribeiro
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Michel Hébraud
- INRAE, Université Clermont Auvergne, UMR Microbiologie Environnement Digestif Santé (MEDiS), 63122 Saint-Genès-Champanelle, France
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Olimpia Alves
- Medical Centre of Trás-os-Montes and Alto Douro, Clinical Pathology Department, 5000-508 Vila Real, Portugal
| | - Eliana Costa
- Medical Centre of Trás-os-Montes and Alto Douro, Clinical Pathology Department, 5000-508 Vila Real, Portugal
| | - Augusto Silva
- INNO Veterinary Laboratories, R. Cândido de Sousa 15, 4710-300 Braga, Portugal
| | - Ricardo Lopes
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary and Animal Sciences, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal
| | - Patrícia Poeta
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
- CECAV - Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Curtsinger HD, Martínez-Absalón S, Liu Y, Lopatkin AJ. The metabolic burden associated with plasmid acquisition: An assessment of the unrecognized benefits to host cells. Bioessays 2025; 47:e2400164. [PMID: 39529437 DOI: 10.1002/bies.202400164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Bacterial conjugation, wherein DNA is transferred between cells through direct contact, is highly prevalent in complex microbial communities and is responsible for spreading myriad genes related to human and environmental health. Despite their importance, much remains unknown regarding the mechanisms driving the spread and persistence of these plasmids in situ. Studies have demonstrated that transferring, acquiring, and maintaining a plasmid imposes a significant metabolic burden on the host. Simultaneously, emerging evidence suggests that the presence of a conjugative plasmid can also provide both obvious and unexpected benefits to their host and local community. Combined, this highlights a continuous cost-benefit tradeoff at the population level, likely contributing to overall plasmid abundance and long-term persistence. Yet, while the metabolic burdens of plasmid conjugation, and their causes, are widely studied, their attendant potential advantages are less clear. Here, we summarize current perspectives on conjugative plasmids' metabolic burden and then highlight the lesser-appreciated yet critical benefits that plasmid-mediated metabolic burdens may provide. We argue that this largely unexplored tradeoff is critical to both a fundamental theory of microbial populations and engineering applications and therefore warrants further detailed study.
Collapse
Affiliation(s)
- Heather D Curtsinger
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Yuchang Liu
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Allison J Lopatkin
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Chemical Engineering, University of Rochester, Rochester, New York, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
5
|
Alattas H, Glick BR, Murphy DV, Scott C. Harnessing Pseudomonas spp. for sustainable plant crop protection. Front Microbiol 2024; 15:1485197. [PMID: 39640850 PMCID: PMC11617545 DOI: 10.3389/fmicb.2024.1485197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
This review examines the role of Pseudomonas spp. bacteria as biocontrol agents against crop diseases, focusing on their mechanisms of action, efficacy, and potential applications in sustainable agriculture. Pseudomonas spp., ubiquitous in soil ecosystems and root microbiomes, have attracted attention for their ability to suppress phytopathogens and enhance plant health through various mechanisms. These include direct competition for nutrients, production of antimicrobial compounds and volatile organic compounds, competition using type VI secretion systems, and indirect induction of systemic resistance. Our review shows that Pseudomonas strains effectively control a wide range of diseases across diverse plant species, with some strains demonstrating efficacy comparable to chemical fungicides. However, the review also highlights challenges in achieving consistent performance when using Pseudomonas inoculants under field conditions due to various biotic and abiotic factors. Strategies to optimize biocontrol potential, such as formulation techniques, application methods, and integration with other management practices, are discussed. The advantages of Pseudomonas-based biocontrol for sustainable agriculture include reduced reliance on chemical pesticides, enhanced crop productivity, and improved environmental sustainability. Future research directions should focus on understanding the complex interactions within the plant microbiome, optimizing delivery systems, and addressing regulatory hurdles for commercial deployment. This review underscores the significant potential of Pseudomonas spp. in sustainable crop protection while acknowledging the need for further research to fully harness their capabilities in agricultural systems.
Collapse
Affiliation(s)
- Hussain Alattas
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- School of Medical, Molecular, and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Daniel V. Murphy
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Colin Scott
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
6
|
Sweten A, Baltrus D. A complete genome sequence of Pseudomonas amygdali pathovar lachrymans YM7902. Microbiol Resour Announc 2024; 13:e0068224. [PMID: 39436065 PMCID: PMC11556109 DOI: 10.1128/mra.00682-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
Pseudomonas amygdali pathovar lachrymans YM7902 was originally isolated as a pathogen of cucumber in Japan. Here, we report a nearly complete genome sequence for this strain, assembled using a hybrid approach combining Illumina paired-end reads and longer reads sequenced using technology from Oxford Nanopore.
Collapse
Affiliation(s)
- Audrey Sweten
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - David Baltrus
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
7
|
Maguvu TE, Frias RJ, Hernandez-Rosas AI, Shipley E, Dardani G, Nouri MT, Yaghmour MA, Trouillas FP. Pathogenicity, phylogenomic, and comparative genomic study of Pseudomonas syringae sensu lato affecting sweet cherry in California. Microbiol Spectr 2024; 12:e0132424. [PMID: 39225473 PMCID: PMC11448091 DOI: 10.1128/spectrum.01324-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/13/2024] [Indexed: 09/04/2024] Open
Abstract
To gain insights into the diversity of Pseudomonas syringae sensu lato affecting sweet cherry in California, we sequenced and analyzed the phylogenomic and genomic architecture of 86 fluorescent pseudomonads isolated from symptomatic and asymptomatic cherry tissues. Fifty-eight isolates were phylogenetically placed within the P. syringae species complex and taxonomically classified into five genomospecies: P. syringae pv. syringae, P. syringae, Pseudomonas cerasi, Pseudomonas viridiflava, and A. We annotated components of the type III secretion system and phytotoxin-encoding genes and correlated the data with pathogenicity phenotypes. Intact probable regulatory protein HrpR was annotated in the genomic sequences of all isolates of P. syringae pv. syringae, P. syringae, P. cerasi, and A. Isolates of P. viridiflava had atypical probable regulatory protein HrpR. Syringomycin and syringopeptin-encoding genes were annotated in isolates of all genomospecies except for A and P. viridiflava. All isolates of P. syringae pv. syringae caused cankers, leaf spots, and fruit lesions in the field. In contrast, all isolates of P. syringae and P. cerasi and some isolates of P. viridiflava caused only cankers. Isolates of genomospecies A could not cause any symptoms suggesting phytotoxins are essential for pathogenicity. On detached immature cherry fruit pathogenicity assays, isolates of all five genomospecies produced symptoms (black-dark brown lesions). However, symptoms of isolates of genomospecies A were significantly (P < 0.01) less severe than those of other genomospecies. We also mined for genes conferring resistance to copper and kasugamycin and correlated these data with in vitro antibiotic sensitivity tests. IMPORTANCE Comprehensive identification of phytopathogens and an in-depth understanding of their genomic architecture, particularly virulence determinants and antibiotic-resistant genes, are critical for several practical reasons. These include disease diagnosis, improved knowledge of disease epidemiology, pathogen diversity, and determination of the best possible management strategies. In this study, we provide the first report of the presence and pathogenicity of genomospecies Pseudomonas cerasi and Pseudomonas viridiflava in California sweet cherry. More importantly, we report a relatively high level of resistance to copper among the population of Pseudomonas syringae pv. syringae (47.5%). This implies copper cannot be effectively used to control bacterial blast and bacterial canker of sweet cherries. On the other hand, no isolates were resistant to kasugamycin, an indication that kasugamycin could be effectively used for the control of bacterial blast and bacterial canker. Our findings are important to improve the management of bacterial blast and bacterial canker of sweet cherries in California.
Collapse
Affiliation(s)
- Tawanda E. Maguvu
- Department of Plant Pathology, University of California, Davis, California, USA
- Department of Plant Pathology, Kearney Agricultural Research and Extension Center, Parlier, California, USA
| | - Rosa J. Frias
- Department of Plant Pathology, University of California, Davis, California, USA
| | | | - Erin Shipley
- Department of Plant Pathology, Kearney Agricultural Research and Extension Center, Parlier, California, USA
| | - Greta Dardani
- Department of Plant Pathology, Kearney Agricultural Research and Extension Center, Parlier, California, USA
- Department of Agricultural, Forest and Food Science, University of Torino, Torino, Italy
| | - Mohamed T. Nouri
- Department of Plant Pathology, University of California Cooperative Extension, San Joaquin County, Stockton, California, USA
| | - Mohammad A. Yaghmour
- University of California Cooperative Extension, Kern County, Bakersfield, California, USA
| | - Florent P. Trouillas
- Department of Plant Pathology, University of California, Davis, California, USA
- Department of Plant Pathology, Kearney Agricultural Research and Extension Center, Parlier, California, USA
| |
Collapse
|
8
|
Lonjon F, Lai Y, Askari N, Aiyar N, Bundalovic-Torma C, Laflamme B, Wang PW, Desveaux D, Guttman DS. The effector-triggered immunity landscape of tomato against Pseudomonas syringae. Nat Commun 2024; 15:5102. [PMID: 38877009 PMCID: PMC11178782 DOI: 10.1038/s41467-024-49425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/31/2024] [Indexed: 06/16/2024] Open
Abstract
Tomato (Solanum lycopersicum) is one of the world's most important food crops, and as such, its production needs to be protected from infectious diseases that can significantly reduce yield and quality. Here, we survey the effector-triggered immunity (ETI) landscape of tomato against the bacterial pathogen Pseudomonas syringae. We perform comprehensive ETI screens in five cultivated tomato varieties and two wild relatives, as well as an immunodiversity screen on a collection of 149 tomato varieties that includes both wild and cultivated varieties. The screens reveal a tomato ETI landscape that is more limited than what was previously found in the model plant Arabidopsis thaliana. We also demonstrate that ETI eliciting effectors can protect tomato against P. syringae infection when the effector is delivered by a non-virulent strain either prior to or simultaneously with a virulent strain. Overall, our findings provide a snapshot of the ETI landscape of tomatoes and demonstrate that ETI can be used as a biocontrol treatment to protect crop plants.
Collapse
Affiliation(s)
- Fabien Lonjon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Yan Lai
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Nasrin Askari
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Niharikaa Aiyar
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | - Bradley Laflamme
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Pauline W Wang
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada.
| | - David S Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Islam T, Haque MA, Barai HR, Istiaq A, Kim JJ. Antibiotic Resistance in Plant Pathogenic Bacteria: Recent Data and Environmental Impact of Unchecked Use and the Potential of Biocontrol Agents as an Eco-Friendly Alternative. PLANTS (BASEL, SWITZERLAND) 2024; 13:1135. [PMID: 38674544 PMCID: PMC11054394 DOI: 10.3390/plants13081135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The economic impact of phytopathogenic bacteria on agriculture is staggering, costing billions of US dollars globally. Pseudomonas syringae is the top most phytopathogenic bacteria, having more than 60 pathovars, which cause bacteria speck in tomatoes, halo blight in beans, and so on. Although antibiotics or a combination of antibiotics are used to manage infectious diseases in plants, they are employed far less in agriculture compared to human and animal populations. Moreover, the majority of antibiotics used in plants are immediately washed away, leading to environmental damage to ecosystems and food chains. Due to the serious risk of antibiotic resistance (AR) and the potential for environmental contamination with antibiotic residues and resistance genes, the use of unchecked antibiotics against phytopathogenic bacteria is not advisable. Despite the significant concern regarding AR in the world today, there are inadequate and outdated data on the AR of phytopathogenic bacteria. This review presents recent AR data on plant pathogenic bacteria (PPB), along with their environmental impact. In light of these findings, we suggest the use of biocontrol agents as a sustainable, eco-friendly, and effective alternative to controlling phytopathogenic bacteria.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh;
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Arif Istiaq
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St Louis, MO 63110-1010, USA
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
10
|
Vadillo‐Dieguez A, Zeng Z, Mansfield JW, Grinberg NF, Lynn SC, Gregg A, Connell J, Harrison RJ, Jackson RW, Hulin MT. Genetic dissection of the tissue-specific roles of type III effectors and phytotoxins in the pathogenicity of Pseudomonas syringae pv. syringae to cherry. MOLECULAR PLANT PATHOLOGY 2024; 25:e13451. [PMID: 38590135 PMCID: PMC11002349 DOI: 10.1111/mpp.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
When compared with other phylogroups (PGs) of the Pseudomonas syringae species complex, P. syringae pv. syringae (Pss) strains within PG2 have a reduced repertoire of type III effectors (T3Es) but produce several phytotoxins. Effectors within the cherry pathogen Pss 9644 were grouped based on their frequency in strains from Prunus as the conserved effector locus (CEL) common to most P. syringae pathogens; a core of effectors common to PG2; a set of PRUNUS effectors common to cherry pathogens; and a FLEXIBLE set of T3Es. Pss 9644 also contains gene clusters for biosynthesis of toxins syringomycin, syringopeptin and syringolin A. After confirmation of virulence gene expression, mutants with a sequential series of T3E and toxin deletions were pathogenicity tested on wood, leaves and fruits of sweet cherry (Prunus avium) and leaves of ornamental cherry (Prunus incisa). The toxins had a key role in disease development in fruits but were less important in leaves and wood. An effectorless mutant retained some pathogenicity to fruit but not wood or leaves. Striking redundancy was observed amongst effector groups. The CEL effectors have important roles during the early stages of leaf infection and possibly acted synergistically with toxins in all tissues. Deletion of separate groups of T3Es had more effect in P. incisa than in P. avium. Mixed inocula were used to complement the toxin mutations in trans and indicated that strain mixtures may be important in the field. Our results highlight the niche-specific role of toxins in P. avium tissues and the complexity of effector redundancy in the pathogen Pss 9644.
Collapse
Affiliation(s)
- Andrea Vadillo‐Dieguez
- NIABCambridgeUK
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | | | | | | | | | | | | | - Richard J. Harrison
- NIABCambridgeUK
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
- Faculty of Natural Sciences, Plant Science GroupWageningen University and ResearchWageningenNetherlands
- Present address:
Faculty of Natural Sciences, Plant Science GroupWageningen University and ResearchWageningenNetherlands
| | - Robert W. Jackson
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Michelle T. Hulin
- NIABCambridgeUK
- Department of Plant Soil & Microbial SciencesMichigan State UniversityEast LansingUSA
- Present address:
Department of Plant Soil & Microbial SciencesMichigan State UniversityEast LansingUSA
| |
Collapse
|
11
|
Lipps SM, Castell-Miller C, Morris CE, Ishii S, Samac DA. Diversity of Strains in the Pseudomonas syringae Complex Causing Bacterial Stem Blight of Alfalfa ( Medicago sativa) in the United States. PHYTOPATHOLOGY 2024; 114:802-812. [PMID: 37913751 DOI: 10.1094/phyto-02-23-0059-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Alfalfa growers in the Intermountain West of the United States have recently seen an increased incidence in bacterial stem blight (BSB), which can result in significant herbage yield losses from the first harvest. BSB has been attributed to Pseudomonas syringae pv. syringae and P. viridiflava; however, little is known about the genetic diversity and pathogenicity of these bacteria or their interaction with alfalfa plants. Here, we present a comprehensive phylogenetic and phenotypic analysis of P. syringae and P. viridiflava strains causing BSB on alfalfa. A multilocus sequence analysis found that they grouped exclusively with P. syringae PG2b and P. viridiflava PG7a. Alfalfa symptoms caused by both bacterial groups were indistinguishable, although there was a large range in mean disease scores for individual strains. Overall, PG2b strains incited significantly greater disease scores than those caused by PG7a strains. Inoculated plants showed browning in the xylem and collapse of epidermal and pith parenchyma cells. Inoculation with a mixture of PG2b and PG7a strains did not result in synergistic activity. The populations of PG2b and PG7a strains were genetically diverse within their clades and did not group by location or haplotype. The PG2b strains had genes for production of the phytotoxin coronatine, which is unusual in PG2b strains. The results indicate that both pathogens are well established on alfalfa across a wide geographic range and that a recent introduction or evolution of more aggressive strains as the basis for emergence of the disease is unlikely.
Collapse
Affiliation(s)
- Savana M Lipps
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A
| | | | | | - Satoshi Ishii
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108, U.S.A
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Deborah A Samac
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A
- U.S. Department of Agriculture-Agricultural Research Service-Plant Science Research Unit, St. Paul, MN 55108, U.S.A
| |
Collapse
|
12
|
Colombi E, Bertels F, Doulcier G, McConnell E, Pichugina T, Sohn KH, Straub C, McCann HC, Rainey PB. Rapid dissemination of host metabolism-manipulating genes via integrative and conjugative elements. Proc Natl Acad Sci U S A 2024; 121:e2309263121. [PMID: 38457521 PMCID: PMC10945833 DOI: 10.1073/pnas.2309263121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/08/2024] [Indexed: 03/10/2024] Open
Abstract
Integrative and conjugative elements (ICEs) are self-transmissible mobile elements that transfer functional genetic units across broad phylogenetic distances. Accessory genes shuttled by ICEs can make significant contributions to bacterial fitness. Most ICEs characterized to date encode readily observable phenotypes contributing to symbiosis, pathogenicity, and antimicrobial resistance, yet the majority of ICEs carry genes of unknown function. Recent observations of rapid acquisition of ICEs in a pandemic lineage of Pseudomonas syringae pv. actinidae led to investigation of the structural and functional diversity of these elements. Fifty-three unique ICE types were identified across the P. syringae species complex. Together they form a distinct family of ICEs (PsICEs) that share a distant relationship to ICEs found in Pseudomonas aeruginosa. PsICEs are defined by conserved backbone genes punctuated by an array of accessory cargo genes, are highly recombinogenic, and display distinct evolutionary histories compared to their bacterial hosts. The most common cargo is a recently disseminated 16-kb mobile genetic element designated Tn6212. Deletion of Tn6212 did not alter pathogen growth in planta, but mutants displayed fitness defects when grown on tricarboxylic acid (TCA) cycle intermediates. RNA-seq analysis of a set of nested deletion mutants showed that a Tn6212-encoded LysR regulator has global effects on chromosomal gene expression. We show that Tn6212 responds to preferred carbon sources and manipulates bacterial metabolism to maximize growth.
Collapse
Affiliation(s)
- Elena Colombi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frederic Bertels
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Guilhem Doulcier
- Laboratoire Biophysique et Évolution, Institut Chemie Biologie Innovation, École Supérieure de Physique et de Chemie Industrielles de la Ville de Paris, Université Paris Science et Lettres, Centre National de al Reserche Scientifique, Paris 75005, France
| | - Ellen McConnell
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Tatyana Pichugina
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Kee Hoon Sohn
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Christina Straub
- Health and Environment, Institute of Environmental Science and Research, Auckland 1025, New Zealand
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Honour C McCann
- Plant Pathogen Evolution Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Paul B Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
- Laboratoire Biophysique et Évolution, Institut Chemie Biologie Innovation, École Supérieure de Physique et de Chemie Industrielles de la Ville de Paris, Université Paris Science et Lettres, Centre National de al Reserche Scientifique, Paris 75005, France
| |
Collapse
|
13
|
Fautt C, Couradeau E, Hockett KL. Naïve Bayes Classifiers and accompanying dataset for Pseudomonas syringae isolate characterization. Sci Data 2024; 11:178. [PMID: 38326362 PMCID: PMC10850129 DOI: 10.1038/s41597-024-03003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
The Pseudomonas syringae species complex (PSSC) is a diverse group of plant pathogens with a collective host range encompassing almost every food crop grown today. As a threat to global food security, rapid detection and characterization of epidemic and emerging pathogenic lineages is essential. However, phylogenetic identification is often complicated by an unclarified and ever-changing taxonomy, making practical use of available databases and the proper training of classifiers difficult. As such, while amplicon sequencing is a common method for routine identification of PSSC isolates, there is no efficient method for accurate classification based on this data. Here we present a suite of five Naïve bayes classifiers for PCR primer sets widely used for PSSC identification, trained on in-silico amplicon data from 2,161 published PSSC genomes using the life identification number (LIN) hierarchical clustering algorithm in place of traditional Linnaean taxonomy. Additionally, we include a dataset for translating classification results back into traditional taxonomic nomenclature (i.e. species, phylogroup, pathovar), and for predicting virulence factor repertoires.
Collapse
Affiliation(s)
- Chad Fautt
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, USA.
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA.
- Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Estelle Couradeau
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA.
- Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Kevin L Hockett
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, USA.
- Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
14
|
Nanfack AD, Nguefack J, Musonerimana S, La China S, Giovanardi D, Stefani E. Exploiting the microbiome associated with normal and abnormal sprouting rice (Oryza sativa L.) seed phenotypes through a metabarcoding approach. Microbiol Res 2024; 279:127546. [PMID: 37992468 DOI: 10.1016/j.micres.2023.127546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Rice germination and seedlings' growth are crucial stages that influence crop establishment and productivity. These performances depend on several factors, including the abundance and diversity of seed microbial endophytes. Two popular rainfed rice varieties cultivated in Cameroon, NERICA 3 and NERICA 8, were used for investigating the seed-associated microbiome using the Illumina-based 16 S rRNA gene. Significant differences were observed in terms of richness index between normal and abnormal seedlings developed from sprouting seeds, although no significant species evenness index was assessed within either phenotype. Two hundred ninety-two bacterial amplicon sequence variants were identified in seed microbiome of the rice varieties, and principal coordinate analysis revealed that microbial communities formed two distinct clusters in normal and abnormal seedling phenotypes. Overall, 38 bacteria genera were identified, belonging to 6 main phyla. Furthermore, the core microbiome was defined, and the differential abundance of 28 bacteria genera was assessed. Based on the collected results, putative bacterial genera were directly correlated with the development of normal seedlings. For most genera that are recognised to include beneficial species, such as Brevundimonas, Sphingomonas, Exiguobacterium, Luteibacter, Microbacterium and Streptomyces, a significant increase of their relative abundance was found in normal seedlings. Additionally, in abnormal seedlings, we also observed an increased abundance of the genera Kosakonia and Paenibacillus, which might have controversial aspects (beneficial or pathogenic), together with the presence of some genera (Clostridium sensu stricto) that are commonly correlated to sick plants. The putative functional gene annotation revealed the higher abundance of genes related to the metabolic biosynthesis of soluble carbohydrates and starch, tryptophan, nucleotides and ABC transporters in normal seedlings. Data presented in this study may help in further understanding the importance of the seed endophyte microbiome for driving a correct development of rice plants at the early stages and to identify possible beneficial bacteria for technological applications aimed to increase seed quality and crop productivity.
Collapse
Affiliation(s)
- Albert Dongmo Nanfack
- Department of Biochemistry, University of Yaoundé 1, Yaoundé, Cameroon; Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Julienne Nguefack
- Department of Biochemistry, University of Yaoundé 1, Yaoundé, Cameroon
| | - Samson Musonerimana
- International Centre for Genetic Engineering and Biotechnology, Padriciano, TS, Italy; Burundi University, Faculty of Agronomy and Bio-Engineering 2, UNESCO Avenue, P.O. Box 2940, Bujumbura, Burundi
| | - Salvatore La China
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Davide Giovanardi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy.
| | - Emilio Stefani
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy; University Centre for International Cooperation and Development (CUSCOS), via Università 4, 41121 Modena, Italy
| |
Collapse
|
15
|
McTavish KJ, Almeida RND, Tersigni J, Raimundi MK, Gong Y, Wang PW, Gontijo GF, de Souza RM, de Resende MLV, Desveaux D, Guttman DS. Pseudomonas syringae coffee blight is associated with the horizontal transfer of plasmid-encoded type III effectors. THE NEW PHYTOLOGIST 2024; 241:409-429. [PMID: 37953378 DOI: 10.1111/nph.19364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023]
Abstract
The emergence of new pathogens is an ongoing threat to human health and agriculture. While zoonotic spillovers received considerable attention, the emergence of crop diseases is less well studied. Here, we identify genomic factors associated with the emergence of Pseudomonas syringae bacterial blight of coffee. Fifty-three P. syringae strains from diseased Brazilian coffee plants were sequenced. Comparative and evolutionary analyses were used to identify loci associated with coffee blight. Growth and symptomology assays were performed to validate the findings. Coffee isolates clustered in three lineages, including primary phylogroups PG3 and PG4, and secondary phylogroup PG11. Genome-wide association study of the primary PG strains identified 37 loci, including five effectors, most of which were encoded on a plasmid unique to the PG3 and PG4 coffee strains. Evolutionary analyses support the emergence of coffee blight in PG4 when the coffee-associated plasmid and associated effectors derived from a divergent plasmid carried by strains associated with other hosts. This plasmid was only recently transferred into PG3. Natural diversity and CRISPR-Cas9 plasmid curing were used to show that strains with the coffee-associated plasmid grow to higher densities and cause more severe disease symptoms in coffee. This work identifies possible evolutionary mechanisms underlying the emergence of a new lineage of coffee pathogens.
Collapse
Affiliation(s)
- Kathryn J McTavish
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
| | - Renan N D Almeida
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
| | - Jonathan Tersigni
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
| | - Melina K Raimundi
- Department of Phytopathology, Universidade Federal de Lavras, Lavras, MG, CEP 37200-000, Brazil
| | - Yunchen Gong
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M6S 2Y1, Canada
| | - Pauline W Wang
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M6S 2Y1, Canada
| | - Guilherme F Gontijo
- Department of Phytopathology, Universidade Federal de Lavras, Lavras, MG, CEP 37200-000, Brazil
| | - Ricardo M de Souza
- Department of Phytopathology, Universidade Federal de Lavras, Lavras, MG, CEP 37200-000, Brazil
| | - Mario L V de Resende
- Department of Phytopathology, Universidade Federal de Lavras, Lavras, MG, CEP 37200-000, Brazil
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M6S 2Y1, Canada
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M6S 2Y1, Canada
| |
Collapse
|
16
|
Wang T, Hua C, Deng X. c-di-GMP signaling in Pseudomonas syringae complex. Microbiol Res 2023; 275:127445. [PMID: 37450986 DOI: 10.1016/j.micres.2023.127445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
The Pseudomonas syringae Complex is one of the model phytopathogenic bacteria for exploring plant-microbe interactions, causing devastating plant diseases and economic losses worldwide. The ubiquitous second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) plays an important role in the 'lifestyle switch' from single motile cells to biofilm formation and modulates bacterial behavior, thus influencing virulence in Pseudomonas and other bacterial species. However, less is known about the role of c-di-GMP in the P. syringae complex, in which c-di-GMP levels are controlled by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), such as Chp8, BifA and WspR. Deletion the chemotaxis receptor PscA also influences c-di-GMP levels, suggesting a cross-talk between chemotaxis and c-di-GMP pathways. Another transcription factor, FleQ, plays a dual role (positive or negative) in regulating cellulose synthesis as a c-di-GMP effector, whereas the transcription factor AmrZ regulates local c-di-GMP levels by inhibiting the DGC enzyme AdcA and the PDE enzyme MorA. Our recent research demonstrated that an increase in the c-di-GMP concentration increased biofilm development, siderophore biosynthesis and oxidative stress tolerance, while it decreased the siderophore content, bacterial motility and type III secretion system activity in P. syringae complex. These findings show that c-di-GMP intricately controls virulence in P. syringae complex, indicating that adjusting c-di-GMP levels may be a valuable tactic for defending plants against pathogens. This review highlights recent research on metabolic enzymes, regulatory mechanisms and the phenotypic consequences of c-di-GMP signaling in the P. syringae.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Biomedicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Canfeng Hua
- Department of Biomedicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Xin Deng
- Department of Biomedicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Hong Kong SAR, China; Tung Research Centre, City University of Hong Kong, Hong Kong SAR, China; Chengdu Research Institute, City University of Hong Kong, Chengdu, China.
| |
Collapse
|
17
|
Nikolić I, Glatter T, Ranković T, Berić T, Stanković S, Diepold A. Repertoire and abundance of secreted virulence factors shape the pathogenic capacity of Pseudomonas syringae pv. aptata. Front Microbiol 2023; 14:1205257. [PMID: 37383635 PMCID: PMC10294431 DOI: 10.3389/fmicb.2023.1205257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023] Open
Abstract
Pseudomonas syringae pv. aptata is a member of the sugar beet pathobiome and the causative agent of leaf spot disease. Like many pathogenic bacteria, P. syringae relies on the secretion of toxins, which manipulate host-pathogen interactions, to establish and maintain an infection. This study analyzes the secretome of six pathogenic P. syringae pv. aptata strains with different defined virulence capacities in order to identify common and strain-specific features, and correlate the secretome with disease outcome. All strains show a high type III secretion system (T3SS) and type VI secretion system (T6SS) activity under apoplast-like conditions mimicking the infection. Surprisingly, we found that low pathogenic strains show a higher secretion of most T3SS substrates, whereas a distinct subgroup of four effectors was exclusively secreted in medium and high pathogenic strains. Similarly, we detected two T6SS secretion patterns: while one set of proteins was highly secreted in all strains, another subset consisting of known T6SS substrates and previously uncharacterized proteins was exclusively secreted in medium and high virulence strains. Taken together, our data show that P. syringae pathogenicity is correlated with the repertoire and fine-tuning of effector secretion and indicate distinct strategies for establishing virulence of P. syringae pv. aptata in plants.
Collapse
Affiliation(s)
- Ivan Nikolić
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Timo Glatter
- Core Facility for Mass spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tamara Ranković
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Tanja Berić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
18
|
Song Z, Zheng J, Zhao Y, Yin J, Zheng D, Hu H, Liu H, Sun M, Ruan L, Liu F. Population genomics and pathotypic evaluation of the bacterial leaf blight pathogen of rice reveals rapid evolutionary dynamics of a plant pathogen. Front Cell Infect Microbiol 2023; 13:1183416. [PMID: 37305415 PMCID: PMC10250591 DOI: 10.3389/fcimb.2023.1183416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
The Xanthomonas oryzae pv. oryzae (Xoo) is a bacterial pathogen causing bacterial blight disease in rice, resulting in significant yield reductions of up to 50% in rice production. Despite its serious threat to food production globally, knowledge of its population structure and virulence evolution is relatively limited. In this study, we employed whole-genome sequencing to explore the diversity and evolution of Xoo in the main rice-growing areas of China over the past 30 years. Using phylogenomic analysis, we revealed six lineages. CX-1 and CX-2 primarily contained Xoo isolates from South China, while CX-3 represented Xoo isolates from North China. Xoo isolates belonging to CX-5 and CX-6 were the most prevalent across all studied areas, persisting as dominant lineages for several decades. Recent sporadic disease outbreaks were primarily caused by Xoo isolates derived from the two major lineages, CX-5 and CX-6, although Xoo isolates from other lineages also contributed to these outbreaks. The lineage and sub-lineage distributions of Xoo isolates were strongly correlated with their geographical origin, which was found to be mainly determined by the planting of the two major rice subspecies, indica and japonica. Moreover, large-scale virulence testing was conducted to evaluate the diversity of pathogenicity for Xoo. We found rapid virulence evolution against rice, and its determinant factors included the genetic background of Xoo, rice resistance genes, and planting environment of rice. This study provides an excellent model for understanding the evolution and dynamics of plant pathogens in the context of their interactions with their hosts, which are shaped by a combination of geographical conditions and farming practices. The findings of this study may have important implications for the development of effective strategies for disease management and crop protection in rice production systems.
Collapse
Affiliation(s)
- Zhiwei Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jiakang Yin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Dehong Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Huifeng Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Hongxia Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
19
|
Dell’Olmo E, Tiberini A, Sigillo L. Leguminous Seedborne Pathogens: Seed Health and Sustainable Crop Management. PLANTS (BASEL, SWITZERLAND) 2023; 12:2040. [PMID: 37653957 PMCID: PMC10221191 DOI: 10.3390/plants12102040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 09/02/2023]
Abstract
Pulses have gained popularity over the past few decades due to their use as a source of protein in food and their favorable impact on soil fertility. Despite being essential to modern agriculture, these species face a number of challenges, such as agronomic crop management and threats from plant seed pathogens. This review's goal is to gather information on the distribution, symptomatology, biology, and host range of seedborne pathogens. Important diagnostic techniques are also discussed as a part of a successful process of seed health certification. Additionally, strategies for sustainable control are provided. Altogether, the data collected are suggested as basic criteria to set up a conscious laboratory approach.
Collapse
Affiliation(s)
- Eliana Dell’Olmo
- Council for Agricultural Research and Economics, Research Center for Vegetable and Ornamental Crops (CREA-OF), Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Antonio Tiberini
- Council for Agricultural Research and Economics, Research Center for Plant Protection and Certification (CREA-DC), Via C. G. Bertero, 22, 00156 Rome, Italy
| | - Loredana Sigillo
- Council for Agricultural Research and Economics, Research Center for Vegetable and Ornamental Crops (CREA-OF), Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| |
Collapse
|
20
|
Ranković T, Nikolić I, Berić T, Popović T, Lozo J, Medić O, Stanković S. Genome Analysis of Two Pseudomonas syringae pv. aptata Strains with Different Virulence Capacity Isolated from Sugar Beet: Features of Successful Pathogenicity in the Phyllosphere Microbiome. Microbiol Spectr 2023; 11:e0359822. [PMID: 36912660 PMCID: PMC10100878 DOI: 10.1128/spectrum.03598-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Members of the Pseudomonas syringae species complex are heterogeneous bacteria that are the most abundant bacterial plant pathogens in the plant phyllosphere, with strong abilities to exist on and infect different plant hosts and survive in/outside agroecosystems. In this study, the draft genome sequences of two pathogenic P. syringae pv. aptata strains with different in planta virulence capacities isolated from the phyllosphere of infected sugar beet were analyzed to evaluate putative features of survival strategies and to determine the pathogenic potential of the strains. The draft genomes of P. syringae pv. aptata strains P16 and P21 are 5,974,057 bp and 6,353,752 bp in size, have GC contents of 59.03% and 58.77%, respectively, and contain 3,439 and 3,536 protein-coding sequences, respectively. For both average nucleotide identity and pangenome analysis, P16 and P21 largely clustered with other pv. aptata strains from the same isolation source. We found differences in the repertoire of effectors of the type III secretion system among all 102 selected strains, suggesting that the type III secretion system is a critical factor in the different virulent phenotypes of P. syringae pv. aptata. During genome analysis of the highly virulent strain P21, we discovered genes for T3SS effectors (AvrRpm1, HopAW1, and HopAU1) that were not previously found in genomes of P. syringae pv. aptata. We also identified coding sequences for pantothenate kinase, VapC endonuclease, phospholipase, and pectate lyase in both genomes, which may represent novel effectors of the type III secretion system. IMPORTANCE Genome analysis has an enormous effect on understanding the life strategies of plant pathogens. Comparing similarities with pathogens involved in other epidemics could elucidate the pathogen life cycle when a new outbreak happens. This study represents the first in-depth genome analysis of Pseudomonas syringae pv. aptata, the causative agent of leaf spot disease of sugar beet. Despite the increasing number of disease reports in recent years worldwide, there is still a lack of information about the genomic features, epidemiology, and pathogenic life strategies of this particular pathogen. Our findings provide advances in disease etiology (especially T3SS effector repertoire) and elucidate the role of environmental adaptations required for prevalence in the pathobiome of the sugar beet. From the perspective of the very heterogeneous P. syringae species complex, this type of analysis has specific importance in reporting the characteristics of individual strains.
Collapse
Affiliation(s)
- Tamara Ranković
- University of Belgrade, Faculty of Biology, Center for Biological Control and Plant Growth Promotion, Belgrade, Serbia
| | - Ivan Nikolić
- University of Belgrade, Faculty of Biology, Center for Biological Control and Plant Growth Promotion, Belgrade, Serbia
| | - Tanja Berić
- University of Belgrade, Faculty of Biology, Center for Biological Control and Plant Growth Promotion, Belgrade, Serbia
| | - Tatjana Popović
- Institute for Plant Protection and Environment, Belgrade, Serbia
| | - Jelena Lozo
- University of Belgrade, Faculty of Biology, Center for Biological Control and Plant Growth Promotion, Belgrade, Serbia
| | - Olja Medić
- University of Belgrade, Faculty of Biology, Center for Biological Control and Plant Growth Promotion, Belgrade, Serbia
| | - Slaviša Stanković
- University of Belgrade, Faculty of Biology, Center for Biological Control and Plant Growth Promotion, Belgrade, Serbia
| |
Collapse
|
21
|
Hulin MT, Rabiey M, Zeng Z, Vadillo Dieguez A, Bellamy S, Swift P, Mansfield JW, Jackson RW, Harrison RJ. Genomic and functional analysis of phage-mediated horizontal gene transfer in Pseudomonas syringae on the plant surface. THE NEW PHYTOLOGIST 2023; 237:959-973. [PMID: 36285389 PMCID: PMC10107160 DOI: 10.1111/nph.18573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Many strains of Pseudomonas colonise plant surfaces, including the cherry canker pathogens, Pseudomonas syringae pathovars syringae and morsprunorum. We have examined the genomic diversity of P. syringae in the cherry phyllosphere and focused on the role of prophages in transfer of genes encoding Type 3 secreted effector (T3SE) proteins contributing to the evolution of virulence. Phylogenomic analysis was carried out on epiphytic pseudomonads in the UK orchards. Significant differences in epiphytic populations occurred between regions. Nonpathogenic strains were found to contain reservoirs of T3SE genes. Members of P. syringae phylogroups 4 and 10 were identified for the first time from Prunus. Using bioinformatics, we explored the presence of the gene encoding T3SE HopAR1 within related prophage sequences in diverse P. syringae strains including cherry epiphytes and pathogens. Results indicated that horizontal gene transfer (HGT) of this effector between phylogroups may have involved phage. Prophages containing hopAR1 were demonstrated to excise, circularise and transfer the gene on the leaf surface. The phyllosphere provides a dynamic environment for prophage-mediated gene exchange and the potential for the emergence of new more virulent pathotypes. Our results suggest that genome-based epidemiological surveillance of environmental populations will allow the timely application of control measures to prevent damaging diseases.
Collapse
Affiliation(s)
- Michelle T. Hulin
- NIABLawrence Weaver RoadCambridgeCB3 0LEUK
- The Sainsbury LaboratoryNorwichNR4 7UHUK
| | - Mojgan Rabiey
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamB15 2TTUK
| | - Ziyue Zeng
- NIABLawrence Weaver RoadCambridgeCB3 0LEUK
| | | | | | - Phoebe Swift
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamB15 2TTUK
| | | | - Robert W. Jackson
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamB15 2TTUK
| | - Richard J. Harrison
- NIABLawrence Weaver RoadCambridgeCB3 0LEUK
- Present address:
Plant Science GroupWageningen University and ResearchWageningen6708WBthe Netherlands
| |
Collapse
|
22
|
Košćak L, Lamovšek J, Đermić E, Tegli S, Gruntar I, Godena S. Identification and Characterisation of Pseudomonas savastanoi pv. savastanoi as the Causal Agent of Olive Knot Disease in Croatian, Slovenian and Portuguese Olive ( Olea europaea L.) Orchards. PLANTS (BASEL, SWITZERLAND) 2023; 12:307. [PMID: 36679019 PMCID: PMC9865541 DOI: 10.3390/plants12020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Strains of Pseudomonas savastanoi pv. savastanoi (Pss), isolated from infected olive trees (Olea europaea L.) in three European countries (Croatia, Slovenia and Portugal) were identified and characterised according to their colony morphology, physiological and biochemical features. According to the LOPAT scheme, 38.6% of Pss isolates were grouped in the Ib cluster. The Portuguese Pss strains were fully consistent with the typical LOPAT profile for this bacterium. Conversely, most Slovenian Pss strains showed delayed oxidase activity, whilst Croatian Pss strains did not produce any fluorescent pigment when grown in vitro. For Pss molecular identification, both end-point and real-time PCR were used, as well as MALDI-TOF, which was additionally used for proteomic analysis and the subsequent species identification of a number of strains that showed deviations from expected LOPAT results. Pss was confirmed as a causal agent of olive knot disease in 46.6% of olive orchards screened. Overall, these data suggests a possible correlation of certain Pss features with the geographical origin and the ecological niche of Pss isolates.
Collapse
Affiliation(s)
- Laura Košćak
- Institute of Agriculture and Tourism, Carlo Hugues 8, 52440 Poreč, Croatia
| | - Janja Lamovšek
- Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia
| | - Edyta Đermić
- Faculty of Agriculture, University of Zagreb, Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Stefania Tegli
- Laboratorio di Patologia Vegetale Molecolare, Dipartimento di Scienze e Tecnologie Agrarie, Università degli Studi di Firenze, Alimentari, Ambientali e Forestali, Via della Lastruccia 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Igor Gruntar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Sara Godena
- Institute of Agriculture and Tourism, Carlo Hugues 8, 52440 Poreč, Croatia
| |
Collapse
|
23
|
The Arabidopsis thaliana–Streptomyces Interaction Is Controlled by the Metabolic Status of the Holobiont. Int J Mol Sci 2022; 23:ijms232112952. [PMID: 36361736 PMCID: PMC9655247 DOI: 10.3390/ijms232112952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/26/2022] Open
Abstract
How specific interactions between plant and pathogenic, commensal, or mutualistic microorganisms are mediated and how bacteria are selected by a plant are important questions to address. Here, an Arabidopsis thaliana mutant called chs5 partially deficient in the biogenesis of isoprenoid precursors was shown to extend its metabolic remodeling to phenylpropanoids and lipids in addition to carotenoids, chlorophylls, and terpenoids. Such a metabolic profile was concomitant to increased colonization of the phyllosphere by the pathogenic strain Pseudomonas syringae pv. tomato DC3000. A thorough microbiome analysis by 16S sequencing revealed that Streptomyces had a reduced colonization potential in chs5. This study revealed that the bacteria–Arabidopsis interaction implies molecular processes impaired in the chs5 mutant. Interestingly, our results revealed that the metabolic status of A. thaliana was crucial for the specific recruitment of Streptomyces into the microbiota. More generally, this study highlights specific as well as complex molecular interactions that shape the plant microbiota.
Collapse
|
24
|
Bundalovic-Torma C, Lonjon F, Desveaux D, Guttman DS. Diversity, Evolution, and Function of Pseudomonas syringae Effectoromes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:211-236. [PMID: 35537470 DOI: 10.1146/annurev-phyto-021621-121935] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pseudomonas syringae is an evolutionarily diverse bacterial species complex and a preeminent model for the study of plant-pathogen interactions due in part to its remarkably broad host range. A critical feature of P. syringae virulence is the employment of suites of type III secreted effector (T3SE) proteins, which vary widely in composition and function. These effectors act on a variety of plant intracellular targets to promote pathogenesis but can also be avirulence factors when detected by host immune complexes. In this review, we survey the phylogenetic diversity (PD) of the P. syringae effectorome, comprising 70 distinct T3SE families identified to date, and highlight how avoidance of host immune detection has shaped effectorome diversity through functional redundancy, diversification, and horizontal transfer. We present emerging avenues for research and novel insights that can be gained via future investigations of plant-pathogen interactions through the fusion of large-scale interaction screens and phylogenomic approaches.
Collapse
Affiliation(s)
| | - Fabien Lonjon
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Almeida RND, Greenberg M, Bundalovic-Torma C, Martel A, Wang PW, Middleton MA, Chatterton S, Desveaux D, Guttman DS. Predictive modeling of Pseudomonas syringae virulence on bean using gradient boosted decision trees. PLoS Pathog 2022; 18:e1010716. [PMID: 35877772 PMCID: PMC9352200 DOI: 10.1371/journal.ppat.1010716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/04/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas syringae is a genetically diverse bacterial species complex responsible for numerous agronomically important crop diseases. Individual P. syringae isolates are assigned pathovar designations based on their host of isolation and the associated disease symptoms, and these pathovar designations are often assumed to reflect host specificity although this assumption has rarely been rigorously tested. Here we developed a rapid seed infection assay to measure the virulence of 121 diverse P. syringae isolates on common bean (Phaseolus vulgaris). This collection includes P. syringae phylogroup 2 (PG2) bean isolates (pathovar syringae) that cause bacterial spot disease and P. syringae phylogroup 3 (PG3) bean isolates (pathovar phaseolicola) that cause the more serious halo blight disease. We found that bean isolates in general were significantly more virulent on bean than non-bean isolates and observed no significant virulence difference between the PG2 and PG3 bean isolates. However, when we compared virulence within PGs we found that PG3 bean isolates were significantly more virulent than PG3 non-bean isolates, while there was no significant difference in virulence between PG2 bean and non-bean isolates. These results indicate that PG3 strains have a higher level of host specificity than PG2 strains. We then used gradient boosting machine learning to predict each strain’s virulence on bean based on whole genome k-mers, type III secreted effector k-mers, and the presence/absence of type III effectors and phytotoxins. Our model performed best using whole genome data and was able to predict virulence with high accuracy (mean absolute error = 0.05). Finally, we functionally validated the model by predicting virulence for 16 strains and found that 15 (94%) had virulence levels within the bounds of estimated predictions. This study strengthens the hypothesis that P. syringae PG2 strains have evolved a different lifestyle than other P. syringae strains as reflected in their lower level of host specificity. It also acts as a proof-of-principle to demonstrate the power of machine learning for predicting host specific adaptation. Pseudomonas syringae is a genetically diverse Gammaproteobacterial species complex responsible for numerous agronomically important crop diseases. Strains in the P. syringae species complex are frequently categorized into pathovars depending on pathogenic characteristics such as host of isolation and disease symptoms. Common bean pathogens from P. syringae are known to cause two major diseases: (1) pathovar phaseolicola strains from phylogroup 3 cause halo blight disease, characterized by large necrotic lesions surrounded by a chlorotic zone or halo of yellow tissue; and (2) pathovar syringae strains from phylogroup 2 causes bacterial spot disease, characterized by brown leaf spots. While halo blight can cause serious crop losses, bacterial spot disease is generally of minor agronomic concern. Recently, statistical genetic and machine learning approaches have been applied to genomic data to identify genes underlying traits of interest or predict the outcome of host-microbe interactions. Here, we apply machine learning to P. syringae genomic data to predict virulence on bean. We first characterized the virulence of P. syringae isolates on common bean using a seed infection assay and then applied machine learning to the genomic data from the same strains to generate a predictive model for virulence on bean. We found that machine learning models built with k-mers from either full genome data or virulence factors could predict bean virulence with high accuracy. We also confirmed prior work showing that phylogroup 3 halo blight pathogens display a stronger degree of phylogenetic clustering and host specificity compared to phylogroup 2 brown spot pathogens. This works serves as a proof-of-principle for the power of machine learning for predicting host specificity and may find utility in agricultural diagnostic microbiology.
Collapse
Affiliation(s)
- Renan N. D. Almeida
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Michael Greenberg
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | | | - Alexandre Martel
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Pauline W. Wang
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| | - Maggie A. Middleton
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| | - Syama Chatterton
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Canada
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - David S. Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
26
|
Richard D, Roumagnac P, Pruvost O, Lefeuvre P. A network approach to decipher the dynamics of Lysobacteraceae plasmid gene sharing. Mol Ecol 2022; 32:2660-2673. [PMID: 35593155 DOI: 10.1111/mec.16536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/27/2022]
Abstract
Plasmids provide an efficient vehicle for gene sharing among bacterial populations, playing a key role in bacterial evolution. Network approaches are particularly suitable to represent multipartite relationships and are useful tools to characterize plasmid-mediated gene sharing events. The Lysobacteraceae bacterial family gathers plant commensal, plant pathogenic and opportunistic human pathogens for which plasmid mediated adaptation was reported. We searched for homologues of plasmid gene sequences from this family in all the diversity of available bacterial genome sequences and built a network of plasmid gene sharing from the results. While plasmid genes are openly shared between the bacteria of the Lysobacteraceae family, taxonomy strongly defined the boundaries of these exchanges, that only barely reached other families. Most inferred plasmid gene sharing events involved a few genes only, and evidence of full plasmid transfers were restricted to taxonomically close taxon. We detected multiple plasmid-chromosome gene transfers, among which the otherwise known sharing of a heavy metal resistance transposon. In the network, bacterial lifestyles shaped sub-structures of isolates colonizing specific ecological niches and harboring specific types of resistance genes. Genes associated to pathogenicity or antibiotic and metal resistance were among those that most importantly structured the network, highlighting the imprints of human-mediated selective pressure on pathogenic populations. A massive sequencing effort on environmental Lysobacteraceae is therefore required to refine our understanding on how this reservoir fuels the emergence and the spread of genes amongst this family and its potential impact on plant, animal and human health.
Collapse
Affiliation(s)
- D Richard
- Cirad, UMR PVBMT, F-97410 St Pierre, Réunion, France.,ANSES, Plant Health Laboratory, F-97410 St Pierre, Réunion, France.,Université de La Réunion, La Réunion, France
| | - P Roumagnac
- Montpellier, France.,PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - O Pruvost
- Cirad, UMR PVBMT, F-97410 St Pierre, Réunion, France
| | - P Lefeuvre
- Cirad, UMR PVBMT, F-97410 St Pierre, Réunion, France
| |
Collapse
|
27
|
Metaeffector interactions modulate the type III effector-triggered immunity load of Pseudomonas syringae. PLoS Pathog 2022; 18:e1010541. [PMID: 35576228 PMCID: PMC9135338 DOI: 10.1371/journal.ppat.1010541] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/26/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022] Open
Abstract
The bacterial plant pathogen Pseudomonas syringae requires type III secreted effectors (T3SEs) for pathogenesis. However, a major facet of plant immunity entails the recognition of a subset of P. syringae’s T3SEs by intracellular host receptors in a process called Effector-Triggered Immunity (ETI). Prior work has shown that ETI-eliciting T3SEs are pervasive in the P. syringae species complex raising the question of how P. syringae mitigates its ETI load to become a successful pathogen. While pathogens can evade ETI by T3SE mutation, recombination, or loss, there is increasing evidence that effector-effector (a.k.a., metaeffector) interactions can suppress ETI. To study the ETI-suppression potential of P. syringae T3SE repertoires, we compared the ETI-elicitation profiles of two genetically divergent strains: P. syringae pv. tomato DC3000 (PtoDC3000) and P. syringae pv. maculicola ES4326 (PmaES4326), which are both virulent on Arabidopsis thaliana but harbour largely distinct effector repertoires. Of the 529 T3SE alleles screened on A. thaliana Col-0 from the P. syringae T3SE compendium (PsyTEC), 69 alleles from 21 T3SE families elicited ETI in at least one of the two strain backgrounds, while 50 elicited ETI in both backgrounds, resulting in 19 differential ETI responses including two novel ETI-eliciting families: AvrPto1 and HopT1. Although most of these differences were quantitative, three ETI responses were completely absent in one of the pathogenic backgrounds. We performed ETI suppression screens to test if metaeffector interactions contributed to these ETI differences, and found that HopQ1a suppressed AvrPto1m-mediated ETI, while HopG1c and HopF1g suppressed HopT1b-mediated ETI. Overall, these results show that P. syringae strains leverage metaeffector interactions and ETI suppression to overcome the ETI load associated with their native T3SE repertoires.
Collapse
|
28
|
Oksel C, Avin FA, Mirik M, Baysal-Gurel F. Identification and Genetic Characterization of Pseudomonas syringae pv. syringae from Sweet Cherry in Turkey. PLANT DISEASE 2022; 106:1253-1261. [PMID: 34818912 DOI: 10.1094/pdis-10-21-2241-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pseudomonas syringae pv. syringae, which causes bacterial canker, is the most polyphagous bacterium in the P. syringae complex because of its broad host range. This pathogen is considered the major bacterial disease in cherry orchards. In this study, several samples were collected from infected sweet cherry (Prunus avium L.) trees in different locations of the Marmara region in Turkey between 2016 and 2018. Sixty-three isolates were identified as P. syringae pv. syringae by pathogenicity, LOPAT, GATTa, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry tests. Total genomic DNA was extracted to confirm identity, followed by PCR amplification of syrB and cfl genes. Out of 63 isolates, 12 were randomly selected for repetitive element sequence-based PCR and multilocus sequence typing analyses to gain insight into the relationships of those isolates. The cluster analysis of enterobacterial repetitive intergenic consensus-, repetitive extragenic palindromic-, and BOX-A1R-based repetitive extragenic-palindromic-PCR techniques could classify the isolates into two distinct clusters. Phylogenetic analysis was carried out to obtain the relation between isolates and the location. The multilocus sequencing typing analysis of gyrB, rpoDp, rpoDs, and gltA genes allowed a clear allocation of the isolates into two separate main clusters. The relationships among the isolates were also evaluated by constructing a genealogical median-joining network (MJN). The isolates from six locations produced 11 haplotypes that were illustrated in the MJN. The results of this study proved that location could not be an indicator for showing the genetic diversity of P. syringae pv. syringae from cherry orchards. As the genetic variability of Pseudomonads has been demonstrated, this study also showed high diversity among different isolates even within the populations. While more research is recommended, the results of this study contributed to a better understanding of the evolutionary progress of P. syringae pv. syringae and the genetic diversity of sweet cherry isolates.
Collapse
Affiliation(s)
- Cansu Oksel
- Department of Plant Protection, Tekirdag Namık Kemal University, Tekirdag 59100, Turkey
| | - Farhat A Avin
- Department of Agricultural and Environmental Sciences, Otis L. Floyd Nursery Research Center, Tennessee State University, McMinnville, TN 37110, U.S.A
| | - Mustafa Mirik
- Department of Plant Protection, Tekirdag Namık Kemal University, Tekirdag 59100, Turkey
| | - Fulya Baysal-Gurel
- Department of Agricultural and Environmental Sciences, Otis L. Floyd Nursery Research Center, Tennessee State University, McMinnville, TN 37110, U.S.A
| |
Collapse
|
29
|
Bundalovic-Torma C, Desveaux D, Guttman DS. RecPD: A Recombination-aware measure of phylogenetic diversity. PLoS Comput Biol 2022; 18:e1009899. [PMID: 35192600 PMCID: PMC8896707 DOI: 10.1371/journal.pcbi.1009899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/04/2022] [Accepted: 02/07/2022] [Indexed: 12/22/2022] Open
Abstract
A critical step in studying biological features (e.g., genetic variants, gene families, metabolic capabilities, or taxa) is assessing their diversity and distribution among a sample of individuals. Accurate assessments of these patterns are essential for linking features to traits or outcomes of interest and understanding their functional impact. Consequently, it is of crucial importance that the measures employed for quantifying feature diversity can perform robustly under any evolutionary scenario. However, the standard measures used for quantifying and comparing the distribution of features, such as prevalence, phylogenetic diversity, and related approaches, either do not take into consideration evolutionary history, or assume strictly vertical patterns of inheritance. Consequently, these approaches cannot accurately assess diversity for features that have undergone recombination or horizontal transfer. To address this issue, we have devised RecPD, a novel recombination-aware phylogenetic-diversity statistic for measuring the distribution and diversity of features under all evolutionary scenarios. RecPD utilizes ancestral-state reconstruction to map the presence / absence of features onto ancestral nodes in a species tree, and then identifies potential recombination events in the evolutionary history of the feature. We also derive several related measures from RecPD that can be used to assess and quantify evolutionary dynamics and correlation of feature evolutionary histories. We used simulation studies to show that RecPD reliably reconstructs feature evolutionary histories under diverse recombination and loss scenarios. We then applied RecPD in two diverse real-world scenarios including a preliminary study type III effector protein families secreted by the plant pathogenic bacterium Pseudomonas syringae and growth phenotypes of the Pseudomonas genus and demonstrate that prevalence is an inadequate measure that obscures the potential impact of recombination. We believe RecPD will have broad utility for revealing and quantifying complex evolutionary processes for features at any biological level. Phylogenetic diversity is an important concept utilized in evolutionary ecology which has extensive applications in population genetics to help us understand how evolutionary processes have distributed genetic variation among individuals of a species, and how this impacts phenotypic diversification over time. However, existing approaches for studying phylogenetic diversity largely assume that the genetic features follow vertical inheritance, which is frequently violated in the case of microbial genomes due to horizontal transfer. To address this shortcoming, we present RecPD, a recombination-aware phylogenetic diversity measure, which incorporates ancestral state reconstruction to quantify the phylogenetic diversity of genetic features mapped onto a species phylogeny. Through simulation experiments we show that RecPD robustly reconstructs the evolutionary histories of features evolving under various scenarios of recombination and loss. When applied to a real-world example of type III secreted effector protein families from the plant pathogenic bacterium Pseudomonas syringae, RecPD reveals that horizontal transfer has played an important role in shaping the phylogenetic distributions of a substantial proportion of families across the P. syringae species complex. Furthermore, we demonstrate that the traditional measures of feature prevalence are unsuitable as a measure for comparing feature diversity. We also provide a R package implementation of RecPD for public use: https://github.com/cedatorma/recpd.
Collapse
Affiliation(s)
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - David S. Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
30
|
Baltrus DA, Feng Q, Kvitko BH. Genome Context Influences Evolutionary Flexibility of Nearly Identical Type III Effectors in Two Phytopathogenic Pseudomonads. Front Microbiol 2022; 13:826365. [PMID: 35250942 PMCID: PMC8895235 DOI: 10.3389/fmicb.2022.826365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 12/02/2022] Open
Abstract
Integrative Conjugative Elements (ICEs) are replicons that can insert and excise from chromosomal locations in a site-specific manner, can conjugate across strains, and which often carry a variety of genes useful for bacterial growth and survival under specific conditions. Although ICEs have been identified and vetted within certain clades of the agricultural pathogen Pseudomonas syringae, the impact of ICE carriage and transfer across the entire P. syringae species complex remains underexplored. Here we identify and vet an ICE (PmaICE-DQ) from P. syringae pv. maculicola ES4326, a strain commonly used for laboratory virulence experiments, demonstrate that this element can excise and conjugate across strains, and highlight that this element contains loci encoding multiple type III effector proteins. Moreover, genome context suggests that another ICE (PmaICE-AOAB) is highly similar in comparison with and found immediately adjacent to PmaICE-DQ within the chromosome of strain ES4326, and also contains multiple type III effectors. Lastly, we present passage data from in planta experiments that suggests that genomic plasticity associated with ICEs may enable strains to more rapidly lose type III effectors that trigger R-gene mediated resistance in comparison to strains where nearly isogenic effectors are not present in active ICEs. Taken together, our study sheds light on a set of ICE elements from P. syringae pv. maculicola ES4326 and suggests how genomic context may lead to different evolutionary dynamics for shared virulence genes between strains.
Collapse
Affiliation(s)
- David A. Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
- *Correspondence: David A. Baltrus,
| | - Qian Feng
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Brian H. Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
- Brian H. Kvitko,
| |
Collapse
|
31
|
Marcolungo L, Passera A, Maestri S, Segala E, Alfano M, Gaffuri F, Marturano G, Casati P, Bianco PA, Delledonne M. Real-Time On-Site Diagnosis of Quarantine Pathogens in Plant Tissues by Nanopore-Based Sequencing. Pathogens 2022; 11:pathogens11020199. [PMID: 35215142 PMCID: PMC8876587 DOI: 10.3390/pathogens11020199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/29/2022] [Indexed: 12/31/2022] Open
Abstract
Rapid and sensitive assays for the identification of plant pathogens are necessary for the effective management of crop diseases. The main limitation of current diagnostic testing is the inability to combine broad and sensitive pathogen detection with the identification of key strains, pathovars, and subspecies. Such discrimination is necessary for quarantine pathogens, whose management is strictly dependent on genotype identification. To address these needs, we have established and evaluated a novel all-in-one diagnostic assay based on nanopore sequencing for the detection and simultaneous characterization of quarantine pathogens, using Xylella fastidiosa as a case study. The assay proved to be at least as sensitive as standard diagnostic tests and the quantitative results agreed closely with qPCR-based analysis. The same sequencing results also allowed discrimination between subspecies when present either individually or in combination. Pathogen detection and typing were achieved within 13 min of sequencing owing to the use of an internal control that allowed to stop sequencing when sufficient data had accumulated. These advantages, combined with the use of portable equipment, will facilitate the development of next-generation diagnostic assays for the efficient monitoring of other plant pathogens.
Collapse
Affiliation(s)
- Luca Marcolungo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
| | - Alessandro Passera
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milano, Via Celoria 2, 20133 Milan, Italy; (A.P.); (P.C.); (P.A.B.)
| | - Simone Maestri
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
| | - Elena Segala
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
| | - Massimiliano Alfano
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
| | - Francesca Gaffuri
- Servizio Fitosanitario Regione Lombardia Laboratorio Fitopatologico c/o Fondazione Minoprio, 22100 Minoprio, Italy;
| | - Giovanni Marturano
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
| | - Paola Casati
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milano, Via Celoria 2, 20133 Milan, Italy; (A.P.); (P.C.); (P.A.B.)
| | - Piero Attilio Bianco
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milano, Via Celoria 2, 20133 Milan, Italy; (A.P.); (P.C.); (P.A.B.)
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce, 73, 10135 Turin, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.M.); (S.M.); (E.S.); (M.A.); (G.M.)
- Genartis S.r.l., Via P. Mascagni 98, 37060 Castel D’Azzano, Italy
- Correspondence: ; Tel.: +39-045-802-7962
| |
Collapse
|
32
|
Draft Genome Sequence of Pseudomonas syringae RAYR-BL, a Strain Isolated from Natural Accessions of Arabidopsis thaliana Plants. Microbiol Resour Announc 2022; 11:e0100121. [PMID: 35023773 PMCID: PMC8759392 DOI: 10.1128/mra.01001-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Here, we report the genome sequence of the P. syringae strain RAYR-BL, isolated from natural accessions of Arabidopsis plants. The draft genome sequence consists of 5.85 Mbp assembled in 110 contigs. The study of P. syringae RAYR-BL is a valuable tool to investigate molecular features of plant-pathogen interaction under environmental conditions.
Collapse
|
33
|
Lipps SM, Samac DA. Pseudomonas viridiflava: An internal outsider of the Pseudomonas syringae species complex. MOLECULAR PLANT PATHOLOGY 2022; 23:3-15. [PMID: 34463014 PMCID: PMC8659605 DOI: 10.1111/mpp.13133] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Pseudomonas viridiflava is a gram-negative pseudomonad that is phylogenetically placed within the Pseudomonas syringae species complex. P. viridiflava has a wide host range and causes a variety of symptoms in different plant parts, including stems, leaves, and blossoms. Outside of its role as a pathogen, P. viridiflava also exists as an endophyte, epiphyte, and saprophyte. Increased reports of P. viridiflava causing disease on new hosts in recent years coincide with increased research on its genetic variability, virulence, phylogenetics, and phenotypes. There is high variation in its core genome, virulence factors, and phenotypic characteristics. The main virulence factors of this pathogen include the enzyme pectate lyase and virulence genes encoded within one or two pathogenicity islands. The delineation of P. viridiflava in the P. syringae complex has been investigated using several molecular approaches. P. viridiflava comprises its own species, within the complex. While seemingly an outsider to the complex as a whole due to differences in the core genome and virulence genes, low average nucleotide identity to other of P. syringae complex members, and some phenotypic traits, it remains as part of the complex. Defining phylogenetic, phenotypic, and genomic characteristics of P. viridiflava in comparison to other P. syringae members is important to understanding this pathogen and for the development of disease resistance and management practices. TAXONOMY Kingdom Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Family Pseudomonadaceae; Genus Pseudomonas; Species Pseudomonas syringae species complex, Genomospecies 6, Phylogroup 7 and 8. MICROBIOLOGICAL PROPERTIES Gram-negative, fluorescent, aerobic, motile, rod-shaped, oxidase negative, arginine dihydrolase negative, levan production negative (or positive), potato rot positive (or negative), tobacco hypersensitivity positive. GENOME There are two complete genomes, five chromosome-level genomes, and 1,540 genomes composed of multiple scaffolds of P. viridiflava available in the National Center for Biotechnology Information Genome database. The median total length of these assemblies is 5,975,050 bp, the median number of protein coding genes is 5,208, and the median G + C content is 59.3%. DISEASE SYMPTOMS P. viridiflava causes a variety of disease symptoms, including spots, streaks, necrosis, rots, and more in above- and below-ground plant parts on at least 50 hosts. EPIDEMIOLOGY There have been several significant disease outbreaks on field and horticultural crops caused by P. viridiflava since the turn of the century. P. viridiflava has been reported as a pathogen, epiphyte, endophyte, and saprophyte. This species has been isolated from a variety of environmental sources, including asymptomatic wild plants, snow, epilithic biofilms, and icepacks.
Collapse
Affiliation(s)
- Savana M. Lipps
- Plant PathologyUniversity of Minnesota Twin CitiesSt PaulMNUSA
| | | |
Collapse
|
34
|
Abstract
Amplicon sequencing variants (ASVs) have been proposed as an alternative to operational taxonomic units (OTUs) for analyzing microbial communities. ASVs have grown in popularity, in part because of a desire to reflect a more refined level of taxonomy since they do not cluster sequences based on a distance-based threshold. However, ASVs and the use of overly narrow thresholds to identify OTUs increase the risk of splitting a single genome into separate clusters. To assess this risk, I analyzed the intragenomic variation of 16S rRNA genes from the bacterial genomes represented in an rrn copy number database, which contained 20,427 genomes from 5,972 species. As the number of copies of the 16S rRNA gene increased in a genome, the number of ASVs also increased. There was an average of 0.58 ASVs per copy of the 16S rRNA gene for full-length 16S rRNA genes. It was necessary to use a distance threshold of 5.25% to cluster full-length ASVs from the same genome into a single OTU with 95% confidence for genomes with 7 copies of the 16S rRNA, such as Escherichia coli. This research highlights the risk of splitting a single bacterial genome into separate clusters when ASVs are used to analyze 16S rRNA gene sequence data. Although there is also a risk of clustering ASVs from different species into the same OTU when using broad distance thresholds, these risks are of less concern than artificially splitting a genome into separate ASVs and OTUs. IMPORTANCE 16S rRNA gene sequencing has engendered significant interest in studying microbial communities. There has been tension between trying to classify 16S rRNA gene sequences to increasingly lower taxonomic levels and the reality that those levels were defined using more sequence and physiological information than is available from a fragment of the 16S rRNA gene. Furthermore, the naming of bacterial taxa reflects the biases of those who name them. One motivation for the recent push to adopt ASVs in place of OTUs in microbial community analyses is to allow researchers to perform their analyses at the finest possible level that reflects species-level taxonomy. The current research is significant because it quantifies the risk of artificially splitting bacterial genomes into separate clusters. Far from providing a better representation of bacterial taxonomy and biology, the ASV approach can lead to conflicting inferences about the ecology of different ASVs from the same genome.
Collapse
|
35
|
Dillon MM, Ruiz-Bedoya T, Bundalovic-Torma C, Guttman KM, Kwak H, Middleton MA, Wang PW, Horuz S, Aysan Y, Guttman DS. Comparative genomic insights into the epidemiology and virulence of plant pathogenic pseudomonads from Turkey. Microb Genom 2021; 7:000585. [PMID: 34227931 PMCID: PMC8477409 DOI: 10.1099/mgen.0.000585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas is a highly diverse genus that includes species that cause disease in both plants and animals. Recently, pathogenic pseudomonads from the Pseudomonas syringae and Pseudomonas fluorescens species complexes have caused significant outbreaks in several agronomically important crops in Turkey, including tomato, citrus, artichoke and melon. We characterized 169 pathogenic Pseudomonas strains associated with recent outbreaks in Turkey via multilocus sequence analysis and whole-genome sequencing, then used comparative and evolutionary genomics to characterize putative virulence mechanisms. Most of the isolates are closely related to other plant pathogens distributed among the primary phylogroups of P. syringae, although there are significant numbers of P. fluorescens isolates, which is a species better known as a rhizosphere-inhabiting plant-growth promoter. We found that all 39 citrus blast pathogens cluster in P. syringae phylogroup 2, although strains isolated from the same host do not cluster monophyletically, with lemon, mandarin orange and sweet orange isolates all being intermixed throughout the phylogroup. In contrast, 20 tomato pith pathogens are found in two independent lineages: one in the P. syringae secondary phylogroups, and the other from the P. fluorescens species complex. These divergent pith necrosis strains lack characteristic virulence factors like the canonical tripartite type III secretion system, large effector repertoires and the ability to synthesize multiple bacterial phytotoxins, suggesting they have alternative molecular mechanisms to cause disease. These findings highlight the complex nature of host specificity among plant pathogenic pseudomonads.
Collapse
Affiliation(s)
- Marcus M. Dillon
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Present address: Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Tatiana Ruiz-Bedoya
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - Kevin M. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Haejin Kwak
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Maggie A. Middleton
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Pauline W. Wang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Sumer Horuz
- Department of Plant Protection, Erciyes University, Kayseri, Turkey
| | - Yesim Aysan
- Department of Plant Protection, University of Çukurova, Adana, Turkey
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Smee MR, Real-Ramirez I, Zuluaga Arias C, Hendry TA. Epiphytic Strains of Pseudomonas syringae Kill Diverse Aphid Species. Appl Environ Microbiol 2021; 87:e00017-21. [PMID: 33741631 PMCID: PMC8208145 DOI: 10.1128/aem.00017-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 01/15/2023] Open
Abstract
Interactions between epiphytic bacteria and herbivorous insects are ubiquitous on plants, but little is known about their ecological implications. Aphids are devastating crop pests worldwide, so understanding how epiphytic bacteria impact aphid populations is critically important. Recent evidence demonstrates that plant-associated bacteria, such as Pseudomonas syringae, can be highly virulent to one species of aphid, the pea aphid (Acyrthosiphon pisum). Currently, we have no knowledge on how broad this phenomenon is across diverse aphid species that are of high agricultural concern. In controlled experiments using oral exposure in an artificial diet, we challenged five aphid species of agricultural importance with three strains of P. syringae that vary in virulence to the pea aphid. These strains also vary in epiphytic ability and comprise two phytopathogens and one non-plant-pathogenic strain. In general, differences in virulence to aphids remained relatively constant across strains regardless of the aphid species, except for the bird cherry-oat aphid (Rhopalosiphum padi), which is significantly less susceptible to two P. syringae strains. We demonstrate that lower infection incidence likely plays a role in the reduced susceptibility. Importantly, these data support previous results showing that interactions with epiphytic bacteria are important for aphids and may play a large, but underappreciated, role in insect population dynamics. Our study illustrates a potential role of epiphytic bacteria in the biological control of aphid pests broadly but suggests the need for more research encompassing a greater diversity of pest species.IMPORTANCE Sap-sucking aphids are insects of huge agricultural concern, not only because of direct damage caused by feeding but also because of their ability to transmit various plant pathogens. Some bacteria that grow on leaf surfaces, such as Pseudomonas syringae, can infect and kill aphids, making them potentially useful in the biological control of pest aphids. However, only one aphid species, the pea aphid (Acyrthosiphon pisum), has been tested for infection by P. syringae Here, we challenged five aphid species of agricultural importance with three strains of P. syringae that vary in virulence to the pea aphid. We found that four of these aphid species were susceptible to infection and death, suggesting that these bacteria are broadly useful for biological control. However, one aphid species was much more resistant to infection, indicating that more testing on diverse aphid species is needed.
Collapse
Affiliation(s)
- Melanie R Smee
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | | | | | - Tory A Hendry
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
37
|
Wang H, Yang Z, Swingle B, Kvitko BH. AlgU, a Conserved Sigma Factor Regulating Abiotic Stress Tolerance and Promoting Virulence in Pseudomonas syringae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:326-336. [PMID: 33264045 DOI: 10.1094/mpmi-09-20-0254-cr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pseudomonas syringae can rapidly deploy specialized functions to deal with abiotic and biotic stresses. Host niches pose specific sets of environmental challenges driven, in part, by immune defenses. Bacteria use a "just-in-time" strategy of gene regulation, meaning that they only produce the functions necessary for survival as needed. Extracytoplasmic function (ECF) sigma factors transduce a specific set of environmental signals and change gene expression patterns by altering RNA polymerase promoter specificity, to adjust bacterial physiology, structure, or behavior, singly or in combination, to improve chances of survival. The broadly conserved ECF sigma factor AlgU affects virulence in both animal and plant pathogens. Pseudomonas syringae AlgU controls expression of more than 800 genes, some of which contribute to suppression of plant immunity and bacterial fitness in plants. This review discusses AlgU activation mechanisms, functions controlled by AlgU, and how these functions contribute to P. syringae survival in plants.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. 2021.
Collapse
Affiliation(s)
- Haibi Wang
- Department of Plant Pathology, University of Georgia, 120 Carlton St., Athens, GA 30602, U.S.A
| | - Zichu Yang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Bldg., Ithaca, NY 14853, U.S.A
| | - Bryan Swingle
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Bldg., Ithaca, NY 14853, U.S.A
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853, U.S.A
| | - Brian H Kvitko
- Department of Plant Pathology, University of Georgia, 120 Carlton St., Athens, GA 30602, U.S.A
- The Plant Center, University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
38
|
Analysis of the Structure and Biosynthesis of the Lipopolysaccharide Core Oligosaccharide of Pseudomonas syringae pv. tomato DC3000. Int J Mol Sci 2021; 22:ijms22063250. [PMID: 33806795 PMCID: PMC8005017 DOI: 10.3390/ijms22063250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is important for bacterial viability in general and host-pathogen interactions in particular. Negative charges at its core oligosaccharide (core-OS) contribute to membrane integrity through bridging interactions with divalent cations. The molecular structure and synthesis of the core-OS have been resolved in various bacteria including the mammalian pathogen Pseudomonas aeruginosa. A few core-OS structures of plant-associated Pseudomonas strains have been solved to date, but the genetic components of the underlying biosynthesis remained unclear. We conducted a comparative genome analysis of the core-OS gene cluster in Pseudomonas syringae pv. tomato (Pst) DC3000, a widely used model pathogen in plant-microbe interactions, within the P. syringae species complex and to other plant-associated Pseudomonas strains. Our results suggest a genetic and structural conservation of the inner core-OS but variation in outer core-OS composition within the P. syringae species complex. Structural analysis of the core-OS of Pst DC3000 shows an uncommonly high phosphorylation and presence of an O-acetylated sugar. Finally, we combined the results of our genomic survey with available structure information to estimate the core-OS composition of other Pseudomonas species.
Collapse
|
39
|
Teoh MC, Furusawa G, Veera Singham G. Multifaceted interactions between the pseudomonads and insects: mechanisms and prospects. Arch Microbiol 2021; 203:1891-1915. [PMID: 33634321 DOI: 10.1007/s00203-021-02230-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/19/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Insects and bacteria are the most widespread groups of organisms found in nearly all habitats on earth, establishing diverse interactions that encompass the entire range of possible symbiotic associations from strict parasitism to obligate mutualism. The complexity of their interactions is instrumental in shaping the roles of insects in the environment, meanwhile ensuring the survival and persistence of the associated bacteria. This review aims to provide detailed insight on the multifaceted symbiosis between one of the most versatile bacterial genera, Pseudomonas (Gammaproteobacteria: Pseudomonadaceae) and a diverse group of insect species. The Pseudomonas engages with varied interactions with insects, being either a pathogen or beneficial endosymbiont, as well as using insects as vectors. In addition, this review also provides updates on existing and potential applications of Pseudomonas and their numerous insecticidal metabolites as biocontrol agents against pest insects for the improvement of integrated pest management strategies. Here, we have summarized several known modes of action and the virulence factors of entomopathogenic Pseudomonas strains essential for their pathogenicity against insects. Meanwhile, the beneficial interactions between pseudomonads and insects are currently limited to a few known insect taxa, despite numerous studies reporting identification of pseudomonads in the guts and haemocoel of various insect species. The vector-symbiont association between pseudomonads and insects can be diverse from strict phoresy to a role switch from commensalism to parasitism following a dose-dependent response. Overall, the pseudomonads appeared to have evolved independently to be either exclusively pathogenic or beneficial towards insects.
Collapse
Affiliation(s)
- Miao-Ching Teoh
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - G Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
40
|
A Large Tn7-like Transposon Confers Hyper-Resistance to Copper in Pseudomonas syringae pv. syringae. Appl Environ Microbiol 2021; 87:AEM.02528-20. [PMID: 33361370 PMCID: PMC8090865 DOI: 10.1128/aem.02528-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Copper resistance mechanisms provide an important adaptive advantage to plant pathogenic bacteria under exposure to copper treatments. Copper resistance determinants have been described in Pseudomonas syringae pv. syringae (Pss) strains isolated from mango intimately associated with 62 kb plasmids belonging to the pPT23A family (PFP). It has been previously described that the indiscriminate use of copper-based compounds promotes the selection of copper resistant bacterial strains and constitutes a selective pressure in the evolution of copper resistance determinants. Hence, we have explored in this study the copper resistance evolution and the distribution of specific genetic determinants in two different Pss mango populations isolated from the same geographical regions, mainly from southern Spain with an average of 20 years of difference. The total content of plasmids, in particular the 62 kb plasmids, and the number of copper resistant Pss strains were maintained at similar levels over the time. Interestingly, the phylogenetic analysis indicated the presence of a phylogenetic subgroup (PSG) in the Pss mango phylotype, mostly composed of the recent Pss population analyzed in this study that was strongly associated with a hyper-resistant phenotype to copper. Genome sequencing of two selected Pss strains from this PSG revealed the presence of a large Tn7-like transposon of chromosomal location, which harbored putative copper and arsenic resistance genes (COARS Tn7-like). Transformation of the copper sensitive Pss UMAF0158 strain with some putative copper resistance genes and RT-qPCR experiments brought into light the role of COARS Tn7-like transposon in the hyper-resistant phenotype to copper in Pss.IMPORTANCECopper compounds have traditionally been used as standard bactericides in agriculture in the past few decades. However, the extensive use of copper has fostered the evolution of bacterial copper resistance mechanisms. Pseudomonas syringae is a plant pathogenic bacterium used worldwide as a model to study plant-pathogen interactions. The adaption of P. syringae to plant surface environment is the most important step prior to an infection. In this scenario, copper resistance mechanisms could play a key role in improving its epiphytic survival. In this work, a novel Tn7-like transposon of chromosomal location was detected in P. syringae pv. syringae strains isolated from mango. This transposon conferred the highest resistance to copper sulfate described to date for this bacterial phytopathogen. Understanding in depth the copper resistance mechanisms and their evolution are important steps to the agricultural industry to get a better improvement of disease management strategies.
Collapse
|
41
|
Tian L, Huang C, Mazloom R, Heath LS, Vinatzer BA. LINbase: a web server for genome-based identification of prokaryotes as members of crowdsourced taxa. Nucleic Acids Res 2020; 48:W529-W537. [PMID: 32232369 PMCID: PMC7319462 DOI: 10.1093/nar/gkaa190] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/04/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
High throughput DNA sequencing in combination with efficient algorithms could provide the basis for a highly resolved, genome phylogeny-based and digital prokaryotic taxonomy. However, current taxonomic practice continues to rely on cumbersome journal publications for the description of new species, which still constitute the smallest taxonomic units. In response, we introduce LINbase, a web server that allows users to genomically circumscribe any group of prokaryotes with measurable DNA similarity and that uses the individual isolate as smallest unit. Since LINbase leverages the concept of Life Identification Numbers (LINs), which are codes assigned to individual genomes based on reciprocal average nucleotide identity, we refer to groups circumscribed in LINbase as LINgroups. Users can associate with each LINgroup a name, a short description, and a URL to a peer-reviewed publication. As soon as a LINgroup is circumscribed, any user can immediately identify query genomes as members and submit comments about the LINgroup. Most genomes currently in LINbase were imported from GenBank, but users can upload their own genome sequences as well. In conclusion, LINbase combines the resolution of LINs with the power of crowdsourcing in support of a highly resolved, genome phylogeny-based digital taxonomy. LINbase is available at http://www.LINbase.org.
Collapse
Affiliation(s)
- Long Tian
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Chengjie Huang
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Reza Mazloom
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Boris A Vinatzer
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
42
|
Burghardt LT. Evolving together, evolving apart: measuring the fitness of rhizobial bacteria in and out of symbiosis with leguminous plants. THE NEW PHYTOLOGIST 2020; 228:28-34. [PMID: 31276218 DOI: 10.1111/nph.16045] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/20/2019] [Indexed: 05/11/2023]
Abstract
Most plant-microbe interactions are facultative, with microbes experiencing temporally and spatially variable selection. How this variation affects microbial evolution is poorly understood. Given its tractability and ecological and agricultural importance, the legume-rhizobia nitrogen-fixing symbiosis is a powerful model for identifying traits and genes underlying bacterial fitness. New technologies allow high-throughput measurement of the relative fitness of bacterial mutants, strains and species in mixed inocula in the host, rhizosphere and soil environments. I consider how host genetic variation (G × G), other environmental factors (G × E), and host life-cycle variation may contribute to the maintenance of genetic variation and adaptive trajectories of rhizobia - and, potentially, other facultative symbionts. Lastly, I place these findings in the context of developing beneficial inoculants in a changing climate.
Collapse
Affiliation(s)
- Liana T Burghardt
- Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St Paul, MN, 55108, USA
| |
Collapse
|
43
|
Laflamme B, Dillon MM, Martel A, Almeida RND, Desveaux D, Guttman DS. The pan-genome effector-triggered immunity landscape of a host-pathogen interaction. Science 2020; 367:763-768. [PMID: 32054757 DOI: 10.1126/science.aax4079] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/18/2019] [Accepted: 01/17/2020] [Indexed: 12/24/2022]
Abstract
Effector-triggered immunity (ETI), induced by host immune receptors in response to microbial effectors, protects plants against virulent pathogens. However, a systematic study of ETI prevalence against species-wide pathogen diversity is lacking. We constructed the Pseudomonas syringae Type III Effector Compendium (PsyTEC) to reduce the pan-genome complexity of 5127 unique effector proteins, distributed among 70 families from 494 strains, to 529 representative alleles. We screened PsyTEC on the model plant Arabidopsis thaliana and identified 59 ETI-eliciting alleles (11.2%) from 19 families (27.1%), with orthologs distributed among 96.8% of P. syringae strains. We also identified two previously undescribed host immune receptors, including CAR1, which recognizes the conserved effectors AvrE and HopAA1, and found that 94.7% of strains harbor alleles predicted to be recognized by either CAR1 or ZAR1.
Collapse
Affiliation(s)
- Bradley Laflamme
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Marcus M Dillon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Alexandre Martel
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Renan N D Almeida
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | - David S Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada. .,Center for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
44
|
Lacault C, Briand M, Jacques MA, Darrasse A. Zucchini Vein Clearing Disease Is Caused by Several Lineages Within Pseudomonas syringae Species Complex. PHYTOPATHOLOGY 2020; 110:744-757. [PMID: 31909688 DOI: 10.1094/phyto-07-19-0266-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Zucchini (Cucurbita pepo) is worldwide affected by Pseudomonas syringae, inducing vein clearing, stunting, and necroses during plantlet development. A collection of 58 P. syringae strains isolated from diseased zucchini plantlets was characterized by multilocus sequence analysis (MLSA). A subset of 23 strains responsible for vein clearing of zucchini (VCZ) was evaluated for pathogenicity on zucchini, and their genomes were sequenced. The host range of six VCZ strains was evaluated on 11 cucurbit species. Most VCZ strains belong to clades 2a and 2b-a within phylogroup 2 of P. syringae species complex and are closely related to other strains previously isolated from cucurbits. Genome analyses revealed diversity among VCZ strains within each clade. One main cluster, once referred to by the invalid pathovar name (peponis), gathers VCZ strains presenting a narrow host range including zucchini and squashes. Other VCZ strains present a large host range including zucchini, squashes, cucumber, melons, and in some cases watermelon. The VCZ strain pathogenic features are strongly associated with type III effector repertoires. The presence of avrRpt2 and absence of hopZ5 are associated with a narrow host range, whereas the presence of hopZ5 and absence of avrRpt2 are most generally associated with a large host range. To better detect the different clusters identified with whole genome sequence and pathogenicity analyses, we used a specific-k-mers approach to refine the MLSA scheme. Using this novel MLSA scheme to type P. syringae isolates from diseased cucurbits would give insight into distribution of worldwide strains and origin of epidemics.
Collapse
Affiliation(s)
- Caroline Lacault
- Agrocampus-Ouest, INRAE, Université d'Angers, IRHS, 49071, Beaucouzé, France
| | - Martial Briand
- Agrocampus-Ouest, INRAE, Université d'Angers, IRHS, 49071, Beaucouzé, France
| | - Marie-Agnès Jacques
- Agrocampus-Ouest, INRAE, Université d'Angers, IRHS, 49071, Beaucouzé, France
| | - Armelle Darrasse
- Agrocampus-Ouest, INRAE, Université d'Angers, IRHS, 49071, Beaucouzé, France
| |
Collapse
|
45
|
Martel A, Lo T, Desveaux D, Guttman DS. A High-Throughput, Seedling Screen for Plant Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:394-401. [PMID: 31851574 DOI: 10.1094/mpmi-10-19-0295-ta] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An understanding of how biological diversity affects plant-microbe interactions is becoming increasingly important, particularly with respect to components of the pathogen effector arsenal and the plant immune system. Although technological improvements have greatly advanced our ability to examine molecular sequences and interactions, relatively few advances have been made that facilitate high-throughput, in vivo pathology screens. Here, we present a high-throughput, microplate-based, nondestructive seedling pathology assay, and apply it to identify Arabidopsis thaliana effector-triggered immunity (ETI) responses against Pseudomonas syringae type III secreted effectors. The assay was carried out in a 48-well microplate format with spray inoculation, and disease symptoms were quantitatively recorded in a semiautomated manner, thereby greatly reducing both time and costs. The assay requires only slight modifications of common labware and uses no proprietary software. We validated the assay by recapitulating known ETI responses induced by P. syringae in Arabidopsis. We also demonstrated that we can quantitatively differentiate responses from a diversity of plant genotypes grown in the same microplate. Finally, we showed that the results obtained from our assay can be used to perform genome-wide association studies to identify host immunity genes, recapitulating results that have been independently obtained with mature plants.
Collapse
Affiliation(s)
- Alexandre Martel
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Timothy Lo
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Ontario, Canada
| | - David S Guttman
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Ontario, Canada
| |
Collapse
|
46
|
Abstract
Pseudomonas coronafaciens pv. oryzae 1_6 was originally isolated as a phytopathogen of rice. Here, we report a complete genome sequence for this strain, containing a circular chromosome and one circular plasmid, assembled using a hybrid approach combining Illumina paired-end reads and longer reads sequenced on an Oxford Nanopore Flongle flow cell. Pseudomonas coronafaciens pv. oryzae 1_6 was originally isolated as a phytopathogen of rice. Here, we report a complete genome sequence for this strain, containing a circular chromosome and one circular plasmid, assembled using a hybrid approach combining Illumina paired-end reads and longer reads sequenced on an Oxford Nanopore Flongle flow cell.
Collapse
|
47
|
Moreno-Pérez A, Pintado A, Murillo J, Caballo-Ponce E, Tegli S, Moretti C, Rodríguez-Palenzuela P, Ramos C. Host Range Determinants of Pseudomonas savastanoi Pathovars of Woody Hosts Revealed by Comparative Genomics and Cross-Pathogenicity Tests. FRONTIERS IN PLANT SCIENCE 2020; 11:973. [PMID: 32714356 PMCID: PMC7343908 DOI: 10.3389/fpls.2020.00973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/15/2020] [Indexed: 05/02/2023]
Abstract
The study of host range determinants within the Pseudomonas syringae complex is gaining renewed attention due to its widespread distribution in non-agricultural environments, evidence of large variability in intra-pathovar host range, and the emergence of new epidemic diseases. This requires the establishment of appropriate model pathosystems facilitating integration of phenotypic, genomic and evolutionary data. Pseudomonas savastanoi pv. savastanoi is a model pathogen of the olive tree, and here we report a closed genome of strain NCPPB 3335, plus draft genome sequences of three strains isolated from oleander (pv. nerii), ash (pv. fraxini) and broom plants (pv. retacarpa). We then conducted a comparative genomic analysis of these four new genomes plus 16 publicly available genomes, representing 20 strains of these four P. savastanoi pathovars of woody hosts. Despite overlapping host ranges, cross-pathogenicity tests using four plant hosts clearly separated these pathovars and lead to pathovar reassignment of two strains. Critically, these functional assays were pivotal to reconcile phylogeny with host range and to define pathovar-specific genes repertoires. We report a pan-genome of 7,953 ortholog gene families and a total of 45 type III secretion system effector genes, including 24 core genes, four genes exclusive of pv. retacarpa and several genes encoding pathovar-specific truncations. Noticeably, the four pathovars corresponded with well-defined genetic lineages, with core genome phylogeny and hierarchical clustering of effector genes closely correlating with pathogenic specialization. Knot-inducing pathovars encode genes absent in the canker-inducing pv. fraxini, such as those related to indole acetic acid, cytokinins, rhizobitoxine, and a bacteriophytochrome. Other pathovar-exclusive genes encode type I, type II, type IV, and type VI secretion system proteins, the phytotoxine phevamine A, a siderophore, c-di-GMP-related proteins, methyl chemotaxis proteins, and a broad collection of transcriptional regulators and transporters of eight different superfamilies. Our combination of pathogenicity analyses and genomics tools allowed us to correctly assign strains to pathovars and to propose a repertoire of host range-related genes in the P. syringae complex.
Collapse
Affiliation(s)
- Alba Moreno-Pérez
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Adrián Pintado
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Jesús Murillo
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, Mutilva Baja, Spain
- *Correspondence: Jesús Murillo, ; Cayo Ramos,
| | - Eloy Caballo-Ponce
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Stefania Tegli
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari Ambientali e Forestali (DAGRI), Laboratorio di Patologia Vegetale Molecolare, University of Florence, Firenze, Italy
| | - Chiaraluce Moretti
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| | - Pablo Rodríguez-Palenzuela
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
- *Correspondence: Jesús Murillo, ; Cayo Ramos,
| |
Collapse
|
48
|
Burghardt LT, Trujillo DI, Epstein B, Tiffin P, Young ND. A Select and Resequence Approach Reveals Strain-Specific Effects of Medicago Nodule-Specific PLAT-Domain Genes. PLANT PHYSIOLOGY 2020; 182:463-471. [PMID: 31653715 PMCID: PMC6945875 DOI: 10.1104/pp.19.00831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/07/2019] [Indexed: 05/23/2023]
Abstract
Genetic studies of legume symbiosis with nitrogen-fixing rhizobial bacteria have traditionally focused on nodule and nitrogen-fixation phenotypes when hosts are inoculated with a single rhizobial strain. These approaches overlook the potential effect of host genes on rhizobial fitness (i.e. how many rhizobia are released from host nodules) and strain-specific effects of host genes (i.e. genome × genome interactions). Using Medicago truncatula mutants in the recently described nodule-specific PLAT domain (NPD) gene family, we show how inoculating plants with a mixed inoculum of 68 rhizobial strains (Ensifer meliloti) via a select-and-resequence approach can be used to efficiently assay host mutants for strain-specific effects of late-acting host genes on interacting bacteria. The deletion of a single NPD gene (npd2) or all five members of the NPD gene family (npd1-5) differentially altered the frequency of rhizobial strains in nodules even though npd2 mutants had no visible nodule morphology or N-fixation phenotype. Also, npd1-5 nodules were less diverse and had larger populations of colony-forming rhizobia despite their smaller size. Lastly, NPD mutations disrupt a positive correlation between strain fitness and wild-type host biomass. These changes indicate that the effects of NPD proteins are strain dependent and that NPD family members are not redundant with regard to their effects on rhizobial strains. Association analyses of the rhizobial strains in the mixed inoculation indicate that rhizobial genes involved in chromosome segregation, cell division, GABA metabolism, efflux systems, and stress tolerance play an important role in the strain-specific effects of NPD genes.
Collapse
Affiliation(s)
- Liana T Burghardt
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Diana I Trujillo
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Nevin D Young
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
49
|
Detection of the Plant Pathogen Pseudomonas Syringae pv. Lachrymans on Antibody-Modified Gold Electrodes by Electrochemical Impedance Spectroscopy. SENSORS 2019; 19:s19245411. [PMID: 31835291 PMCID: PMC6960962 DOI: 10.3390/s19245411] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 01/08/2023]
Abstract
The present work describes an impedimetric immunosensor for Pseudomonas syringae pv. lachrymans (Psl) detection. This pathogen infects many crop species causing considerable yield losses, thus fast and cheap detection method is in high demand. In the assay, the gold disc electrode was modified with 4-aminothiophenol (4-ATP), glutaraldehyde (GA), and anti-Psl antibodies, and free-sites were blocked with bovine serum albumin (BSA). Sensor development was characterized by cyclic voltammetry (CV) and antigen detection by electrochemical impedance spectroscopy (EIS) measurements. Seven analyzed strains of Psl were verified as positive by the reference method (PCR) and this immunoassay, proving sensor specificity. Label-free electrochemical detection was in the linear range 1 × 103–1.2 × 105 CFU/mL (colony-forming unit) with an R2 coefficient of 0.992 and a detection limit (LOD) of 337 CFU/mL. The sensor did not interfere with negative probes like buffers and other bacteria. The assay was proven to be fast (10 min detection) and easy in preparation. The advantage was the simplicity and availability of the verified analyte (whole bacteria) as the method does not require sample pretreatment (e.g., DNA isolation). EIS biosensing technique was chosen as one of the simplest and most sensitive with the least destructive influence on the probes compared to other electrochemical methods.
Collapse
|
50
|
Genome-wide identification of Pseudomonas syringae genes required for fitness during colonization of the leaf surface and apoplast. Proc Natl Acad Sci U S A 2019; 116:18900-18910. [PMID: 31484768 DOI: 10.1073/pnas.1908858116] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The foliar plant pathogen Pseudomonas syringae can establish large epiphytic populations on leaf surfaces before apoplastic colonization. However, the bacterial genes that contribute to these lifestyles have not been completely defined. The fitness contributions of 4,296 genes in P. syringae pv. syringae B728a were determined by genome-wide fitness profiling with a randomly barcoded transposon mutant library that was grown on the leaf surface and in the apoplast of the susceptible plant Phaseolus vulgaris Genes within the functional categories of amino acid and polysaccharide (including alginate) biosynthesis contributed most to fitness both on the leaf surface (epiphytic) and in the leaf interior (apoplast), while genes involved in type III secretion system and syringomycin synthesis were primarily important in the apoplast. Numerous other genes that had not been previously associated with in planta growth were also required for maximum epiphytic or apoplastic fitness. Fourteen hypothetical proteins and uncategorized glycosyltransferases were also required for maximum competitive fitness in and on leaves. For most genes, no relationship was seen between fitness in planta and either the magnitude of their expression in planta or degree of induction in planta compared to in vitro conditions measured in other studies. A lack of association of gene expression and fitness has important implications for the interpretation of transcriptional information and our broad understanding of plant-microbe interactions.
Collapse
|