1
|
Ling J, Yu W, Yang L, Zhang J, Jiang F, Zhang M, Wang Y, Sun H. Rootstock Breeding of Stone Fruits Under Modern Cultivation Regime: Current Status and Perspectives. PLANTS (BASEL, SWITZERLAND) 2025; 14:1320. [PMID: 40364348 PMCID: PMC12074155 DOI: 10.3390/plants14091320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025]
Abstract
Stone fruits (Prunus spp.) occupy a pivotal position in global fruit production due to their significant nutritional profile and distinctive organoleptic characteristics. Contemporary orchard systems are undergoing transformation through innovative cultivation approaches, notably high-density dwarfing systems, greenhouse cultivation, agri-tech integration, and simplified management. As a crucial agronomic component in modern stone fruit cultivation, rootstock systems confer multi-benefits including enhanced environmental resilience, improved scion productivity, superior fruit quality, controlled vigor, and dwarfing capacity. While the majority of European apple orchards have transitioned to dwarfing rootstock systems, achieving substantial gains in productivity and profitability, stone fruit cultivation lags significantly due to the key gaps in prunus rootstock development, including genetic complexity, extended evaluation cycles, clonal propagation barriers, and limited research programs. Urgent innovation is required to address these challenges in rootstock breeding to meet the demand of sustainable stone fruit production. This review systematically examines strategic breeding objectives and innovative molecular methodologies in prunus rootstock development, with particular emphasis on marker-assisted selection and genomic prediction technologies. We provide a comprehensive synthesis of breeding achievements across major commercial rootstock cultivars, while proposing forward-looking research strategies incorporating CRISPR-based genome editing and multi-omics approaches. The synthesized insights establish a theoretical pathway for advancing rootstock genetic improvement and sustainable orchard management practices in stone fruit cultivation systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haoyuan Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs/Beijing Engineering Research Center for Deciduous Fruit Trees/Apricot Engineering and Technology Research Center of the National Forestry and Grassland Administration, Beijing 100093, China
| |
Collapse
|
2
|
Bernat-Ponce S, García-García R, Aure CM, Nieves L, Bouvet JP, Beitia FJ, Monzó C. More than Just Host Plant Preferences for the Two Main Vectors of Xylella fastidiosa in Europe: Two Insect Species and Two Different Behaviors. INSECTS 2025; 16:416. [PMID: 40332965 PMCID: PMC12027782 DOI: 10.3390/insects16040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025]
Abstract
Xylella fastidiosa is a vector-borne bacterium causing significant economic losses in global agricultural industries. Management strategies focus primarily on controlling vector populations. The diversity of vector species, their polyphagy, and the wide range of host plants supporting bacterial development make X. fastidiosa pathosystems particularly challenging to manage. Understanding vector and host plant relationships is key to developing effective strategies. This study examined the oviposition strategies, host preferences, and nymphal development of Europe's main X. fastidiosa vectors, Philaenus spumarius and Neophilaenus campestris, under semi-field conditions (screenhouse). The two species exhibited distinct behaviors. Neophilaenus campestris primarily laid eggs on its preferential host, the grass Festuca arundinacea, while P. spumarius preferred dry soil substrates, irrespective of the host plant species. The presence of multiple hosts reduced the oviposition rates of P. spumarius compared with single-host scenarios. The nymphs of P. spumarius quickly identified and settled on preferential hosts, while the N. campestris nymphs initially moved randomly but later congregated on their preferred host. Despite their polyphagy, nymph survival was limited to preferential hosts. These findings highlight opportunities for habitat management strategies, such as enhancing plant diversity and eliminating overwintering egg sites, to mitigate vector populations and limit the spread of X. fastidiosa.
Collapse
Affiliation(s)
- Saúl Bernat-Ponce
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, CV-315, Km 10.7, 46113 Valencia, Spain; (S.B.-P.); (R.G.-G.); (C.M.A.); (L.N.); (F.J.B.)
| | - Rosalía García-García
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, CV-315, Km 10.7, 46113 Valencia, Spain; (S.B.-P.); (R.G.-G.); (C.M.A.); (L.N.); (F.J.B.)
| | - Cristina M. Aure
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, CV-315, Km 10.7, 46113 Valencia, Spain; (S.B.-P.); (R.G.-G.); (C.M.A.); (L.N.); (F.J.B.)
| | - Lorena Nieves
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, CV-315, Km 10.7, 46113 Valencia, Spain; (S.B.-P.); (R.G.-G.); (C.M.A.); (L.N.); (F.J.B.)
| | - Juan Pedro Bouvet
- Estación Experimental Agropecuaria (EEA), Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional 14, Km 259, Concordia E3201, Entre Ríos, Argentina;
| | - Francisco J. Beitia
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, CV-315, Km 10.7, 46113 Valencia, Spain; (S.B.-P.); (R.G.-G.); (C.M.A.); (L.N.); (F.J.B.)
| | - César Monzó
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, CV-315, Km 10.7, 46113 Valencia, Spain; (S.B.-P.); (R.G.-G.); (C.M.A.); (L.N.); (F.J.B.)
| |
Collapse
|
3
|
Moll L, Badosa E, De La Fuente L, Montesinos E, Planas M, Bonaterra A, Feliu L. Mitigation of Almond Leaf Scorch by a Peptide that Inhibits the Motility of Xylella fastidiosa. PLANT DISEASE 2025; 109:327-340. [PMID: 39254847 DOI: 10.1094/pdis-07-24-1414-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Xylella fastidiosa is a xylem-limited plant pathogenic bacterium that is a menace to the agriculture worldwide, threating economically relevant crops such as almond. The pathogen presents a dual lifestyle in the plant xylem, consisting of sessile microbial aggregates and mobile independent cells that move by twitching motility. The latter is essential for the systemic colonization of the host and is mediated through type IV pili. In previous reports, it has been demonstrated that peptides can affect different key processes of X. fastidiosa, but their effect on motility has never been assessed. In the present work, peptides previously identified and newly designed analogs were studied for their effect in vitro on the motility of X. fastidiosa, and their protective effect against almond leaf scorch was determined. By assessing the twitching fringe width in colonies and using microfluidic chambers, the inhibitory effect of BP100 on twitching motility was demonstrated. Interestingly, type IV pili of BP100-treated cells were similar in frequency and length and presented no morphological differences when compared with the nontreated control. The application of BP100 by endotherapy in almond plants inoculated with X. fastidiosa under greenhouse conditions significantly reduced population levels and showed less affected xylem vessels, which correlated with decreased disease symptoms. Therefore, BP100 is a promising candidate to manage almond leaf scorch caused by X. fastidiosa.[Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Luis Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain
| |
Collapse
|
4
|
Figaj D. The Role of Heat Shock Protein (Hsp) Chaperones in Environmental Stress Adaptation and Virulence of Plant Pathogenic Bacteria. Int J Mol Sci 2025; 26:528. [PMID: 39859244 PMCID: PMC11764788 DOI: 10.3390/ijms26020528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Plant pathogenic bacteria are responsible for a substantial number of plant diseases worldwide, resulting in significant economic losses. Bacteria are exposed to numerous stress factors during their epiphytic life and within the host. Their ability to survive in the host and cause symptomatic infections depends on their capacity to overcome stressors. Bacteria have evolved a range of defensive and adaptive mechanisms to thrive under varying environmental conditions. One such mechanism involves the induction of chaperone proteins that belong to the heat shock protein (Hsp) family. Together with proteases, these proteins are integral components of the protein quality control system (PQCS), which is essential for maintaining cellular proteostasis. However, knowledge of their action is considerably less extensive than that of human and animal pathogens. This study discusses the modulation of Hsp levels by phytopathogenic bacteria in response to stress conditions, including elevated temperature, oxidative stress, changes in pH or osmolarity of the environment, and variable host conditions during infection. All these factors influence bacterial virulence. Finally, the secretion of GroEL and DnaK proteins outside the bacterial cell is considered a potentially important virulence trait.
Collapse
Affiliation(s)
- Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
5
|
Carlucci M, Savoia MA, Lucchese PG, Fanelli V, Mascio I, Aurelio FL, Miazzi MM, Pacifico A, Montemurro C, Nigro F. Behavior of Olive Genotypes Against Quick Decline Syndrome (QDS) Caused by Xylella fastidiosa subsp. pauca in Apulia. PLANTS (BASEL, SWITZERLAND) 2025; 14:157. [PMID: 39861511 PMCID: PMC11769438 DOI: 10.3390/plants14020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025]
Abstract
Xylella fastidiosa subsp. pauca (Xfp), a quarantine pathogen in the European Union, severely threatens Mediterranean olive production, especially in southern Italy, where Olive Quick Decline Syndrome (OQDS) has devastated Apulian olive groves. This study addresses the urgent need to identify resistant olive genotypes by monitoring 16 potentially tolerant genotypes over six years, assessing symptom severity and bacterial load. These genotypes, which survived in heavily infected areas, showed varied responses to Xfp; some maintained low symptom severity with minimal bacterial presence (high or undetectable Cq values), while others exhibited increased bacterial loads yet remained asymptomatic or showed limited canopy desiccation. SSR markers were used to investigate the genetic relationships among these genotypes and other widespread Mediterranean cultivars, showing genetic similarity with the resistant ones such as the Albanian Kalinjot and the Greek Leucocarpa, as well as with local Apulian cultivars, highlighting the potential of local and Mediterranean olive germplasm for Xfp resistance. This study integrates phenotypic responses with genetic knowledge to support the development of conservation strategies that will enhance the genetic diversity of Apulian olive cultivars. In addition, by focusing on the resilience of the different olive genotypes, this research aims to protect the traditional cultivars from the emerging threats, thus preserving the ecological and cultural heritage of the olive biodiversity of the Mediterranean region.
Collapse
Affiliation(s)
- Mariangela Carlucci
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Michele Antonio Savoia
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Pompea Gabriella Lucchese
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Valentina Fanelli
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Isabella Mascio
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Francesco Luigi Aurelio
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Monica Marilena Miazzi
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Andrea Pacifico
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| | - Cinzia Montemurro
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
- Spin Off Sinagri s.r.l., University of Bari Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy
| | - Franco Nigro
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari—Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy; (M.C.); (M.A.S.); (P.G.L.); (V.F.); (I.M.); (F.L.A.); (M.M.M.); (A.P.); (C.M.)
| |
Collapse
|
6
|
Trinh J, Tran M, Coaker G. The perception and evolution of flagellin, cold shock protein and elongation factor Tu from vector-borne bacterial plant pathogens. MOLECULAR PLANT PATHOLOGY 2024; 25:e70019. [PMID: 39460504 PMCID: PMC11512079 DOI: 10.1111/mpp.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/28/2024]
Abstract
Vector-borne bacterial pathogens cause devastating plant diseases that cost billions of dollars in crop losses worldwide. These pathogens have evolved to be host- and vector-dependent, resulting in a reduced genome size compared to their free-living relatives. All known vector-borne bacterial plant pathogens belong to four different genera: 'Candidatus Liberibacter', 'Candidatus Phytoplasma', Spiroplasma and Xylella. To protect themselves against pathogens, plants have evolved pattern recognition receptors that can detect conserved pathogen features as non-self and mount an immune response. To gain an understanding of how vector-borne pathogen features are perceived in plants, we investigated three proteinaceous features derived from cold shock protein (csp22), flagellin (flg22) and elongation factor Tu (elf18) from vector-borne bacterial pathogens as well as their closest free-living relatives. In general, vector-borne pathogens have fewer copies of genes encoding flagellin and cold shock protein compared to their closest free-living relatives. Furthermore, epitopes from vector-borne pathogens were less likely to be immunogenic compared to their free-living counterparts. Most Liberibacter csp22 and elf18 epitopes do not trigger plant immune responses in tomato or Arabidopsis. Interestingly, csp22 from the citrus pathogen 'Candidatus Liberibacter asiaticus' triggers immune responses in solanaceous plants, while csp22 from the solanaceous pathogen 'Candidatus Liberibacter solanacearum' does not. Our findings suggest that vector-borne plant pathogenic bacteria evolved to evade host recognition.
Collapse
Affiliation(s)
- Jessica Trinh
- Department of Plant PathologyUniversity of California, DavisDavisCaliforniaUSA
| | - Megann Tran
- Department of Plant PathologyUniversity of California, DavisDavisCaliforniaUSA
| | - Gitta Coaker
- Department of Plant PathologyUniversity of California, DavisDavisCaliforniaUSA
| |
Collapse
|
7
|
Arnholdt-Schmitt B, Noceda C, Germano TA, Aziz S, Thiers KLL, Oliveira M, Bharadwaj R, Mohanapriya G, Sircar D, Costa JH. Validating alternative oxidase (AOX) gene family as efficient marker consortium for multiple-resilience in Xylella fastidiosa-infected Vitis holobionts. PLANT CELL REPORTS 2024; 43:236. [PMID: 39313563 DOI: 10.1007/s00299-024-03327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
KEY MESSAGE AOX gene family in motion marks in-born efficiency of respiration adjustment; can serve for primer screening, genotype ranking, in vitro-plant discrimination and a SMART perspective for multiple-resilient plant holobiont selection. The bacteria Xylella fastidiosa (Xf) is a climate-dependent, global threat to many crops of high socio-economic value, including grapevine. Currently designed breeding strategies for Xf-tolerant or -resistant genotypes insufficiently address the danger of biodiversity loss by focusing on selected threats, neglecting future environmental conditions. Thus, breeding strategies should be validated across diverse populations and acknowledge temperature changes and drought by minimizing the metabolic-physiologic effects of multiple stress-induced oxygen shortages. This research hypothesizes that multiple-resilient plant holobionts achieve lifelong adaptive robustness through early molecular and metabolic responses in primary stress target cells, which facilitate efficient respiration adjustment and cell cycle down-regulation. To validate this concept open-access transcriptome data were analyzed of xylem tissues of Xf-tolerant and -resistant Vitis holobionts from diverse trials and genetic origins from early hours to longer periods after Xf-inoculation. The results indicated repetitive involvement of alternative oxidase (AOX) transcription in episodes of down-regulated transcripts of cytochrome c oxidase (COX) at various critical time points before disease symptoms emerged. The relation between transcript levels of COX and AOX ('relCOX/AOX') was found promising for plant discrimination and primer screening. Furthermore, transcript levels of xylem-harbored bacterial consortia indicated common regulation with Xf and revealed stress-induced early down-regulation and later enhancement. LPS priming promoted the earlier increase in bacterial transcripts after Xf-inoculation. This proof-of-principle study highlights a SMART perspective for AOX-assisted plant selection towards multiple-resilience that includes Xf-tolerance. It aims to support timely future plant diagnostics and in-field substitution, sustainable agro-management, which protects population diversity and strengthens both conventional breeding and high-tech, molecular breeding research. Furthermore, the results suggested early up-regulation of bacterial microbiota consortia in vascular-enriched tissues as a novel additional trait for future studies on Xf-tolerance.
Collapse
Affiliation(s)
- Birgit Arnholdt-Schmitt
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal.
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, Brazil.
| | - Carlos Noceda
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- Cell and Molecular Biotechnology of Plants (BIOCEMP)/Industrial Biotechnology and Bioproducts, Departamento de Ciencias de La Vida y de La Agricultura, Universidad de Las Fuerzas Armadas-ESPE, Sangolquí, 171103, Ecuador
- Facultad de Ingeniería, Universidad Estatal de Milagro (UNEMI), Guayas, 091050, Ecuador
| | - Thais Andrade Germano
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, Brazil
| | - Shahid Aziz
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, Brazil
| | - Karine Leitão Lima Thiers
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, Brazil
| | - Manuela Oliveira
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- Department of Mathematics and CIMA -Center for Research On Mathematics and Its Applications, Universidade de Évora, Évora, Portugal
| | - Revuru Bharadwaj
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
| | - Gunasekaran Mohanapriya
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- School of Biotechnology, A.V.P. College of Arts and Science, Tiruppur, 641652, India
| | - Debabrata Sircar
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - José Hélio Costa
- Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal.
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, Brazil.
| |
Collapse
|
8
|
Gil-Ordóñez A, Pardo JM, Sheat S, Xaiyavong K, Leiva AM, Arinaitwe W, Winter S, Newby J, Cuellar WJ. Isolation, genome analysis and tissue localization of Ceratobasidium theobromae, a new encounter pathogen of cassava in Southeast Asia. Sci Rep 2024; 14:18139. [PMID: 39103398 PMCID: PMC11300614 DOI: 10.1038/s41598-024-69061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
In Southeast Asia (SEA) fastidious fungi of the Ceratobasidium genus are associated with proliferation of sprouts and vascular necrosis in cacao and cassava, crops that were introduced from the tropical Americas to this region. Here, we report the isolation and in vitro culture of a Ceratobasidium sp. isolated from cassava with symptoms of witches' broom disease (CWBD), a devastating disease of this crop in SEA. The genome characterization using a hybrid assembly strategy identifies the fungus as an isolate of the species C. theobromae, the causal agent of vascular streak dieback of cacao in SEA. Both fungi have a genome size > 31 Mb (G+C content 49%), share > 98% nucleotide identity of the Internal Transcribed Spacer (ITS) and > 94% in genes used for species-level identification. Using RNAscope® we traced the pathogen and confirmed its irregular distribution in the xylem and epidermis along the cassava stem, which explains the obtention of healthy planting material from symptom-free parts of a diseased plant. These results are essential for understanding the epidemiology of CWBD, as a basis for disease management including measures to prevent further spread and minimize the risk of introducing C. theobromae via long-distance movement of cassava materials to Africa and the Americas.
Collapse
Affiliation(s)
- Alejandra Gil-Ordóñez
- Cassava Program, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), The Americas Hub, Km 17, Recta Cali-Palmira, 763537, Palmira, Colombia
- Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Calle 13 # 100-00, 760032, Cali, Colombia
| | - Juan M Pardo
- Cassava Program, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), The Americas Hub, Km 17, Recta Cali-Palmira, 763537, Palmira, Colombia
| | - Samar Sheat
- Plant Virus Department, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124, Braunschweig, Germany
| | - Khamla Xaiyavong
- Cassava Program Asia Office, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), P.O. Box 783, Vientiane, Lao PDR
| | - Ana M Leiva
- Cassava Program, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), The Americas Hub, Km 17, Recta Cali-Palmira, 763537, Palmira, Colombia
| | - Warren Arinaitwe
- Cassava Program Asia Office, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), P.O. Box 783, Vientiane, Lao PDR
| | - Stephan Winter
- Plant Virus Department, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124, Braunschweig, Germany
| | - Jonathan Newby
- Cassava Program Asia Office, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), P.O. Box 783, Vientiane, Lao PDR
| | - Wilmer J Cuellar
- Cassava Program, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), The Americas Hub, Km 17, Recta Cali-Palmira, 763537, Palmira, Colombia.
| |
Collapse
|
9
|
Moll L, Giralt N, Planas M, Feliu L, Montesinos E, Bonaterra A, Badosa E. Prunus dulcis response to novel defense elicitor peptides and control of Xylella fastidiosa infections. PLANT CELL REPORTS 2024; 43:190. [PMID: 38976088 PMCID: PMC11231009 DOI: 10.1007/s00299-024-03276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
KEY MESSAGE New defense elicitor peptides have been identified which control Xylella fastidiosa infections in almond. Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), threatening the agricultural economy of relevant Mediterranean crops such as almond (Prunus dulcis). Plant defense elicitor peptides would be promising to manage diseases such as almond leaf scorch, but their effect on the host has not been fully studied. In this work, the response of almond plants to the defense elicitor peptide flg22-NH2 was studied in depth using RNA-seq, confirming the activation of the salicylic acid and abscisic acid pathways. Marker genes related to the response triggered by flg22-NH2 were used to study the effect of the application strategy of the peptide on almond plants and to depict its time course. The application of flg22-NH2 by endotherapy triggered the highest number of upregulated genes, especially at 6 h after the treatment. A library of peptides that includes BP100-flg15, HpaG23, FV7, RIJK2, PIP-1, Pep13, BP16-Pep13, flg15-BP100 and BP16 triggered a stronger defense response in almond plants than flg22-NH2. The best candidate, FV7, when applied by endotherapy on almond plants inoculated with X. fastidiosa, significantly reduced levels of the pathogen and decreased disease symptoms. Therefore, these novel plant defense elicitors are suitable candidates to manage diseases caused by X. fastidiosa, in particular almond leaf scorch.
Collapse
Affiliation(s)
- Luis Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Núria Giralt
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain.
| |
Collapse
|
10
|
Rocha J, Shapiro LR, Chimileski S, Kolter R. Complementary roles of EPS, T3SS and Expansin for virulence of Erwinia tracheiphila, the causative agent of cucurbit wilt. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600446. [PMID: 38979168 PMCID: PMC11230154 DOI: 10.1101/2024.06.24.600446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Erwinia tracheiphila (Smith) is a recently emerged plant pathogen that causes severe economic losses in cucurbit crops in temperate Eastern North America. E. tracheiphila is xylem restricted, and virulence is thought to be related to Exopolysaccharides (EPS) and biofilm formation, which occlude the passage of sap in xylem vessels and causes systemic wilt. However, the role of EPS and biofilm formation, and their contribution to disease in relation to other virulence loci are unknown. Here, we use deletion mutants to explore the roles of EPS, Hrp Type III secretion system (Hrp T3SS) and Expansin in plant colonization and virulence. Then, we quantify the expression of the genes encoding these factors during infection. Our results show that Exopolysaccharides are essential for E. tracheiphila survival in host plants, while Hrp T3SS and Expansin are dispensable for survival but needed for systemic wilt symptom development. EPS and Hrp T3SS display contrasting expression patterns in the plant, reflecting their relevance in different stages of the infection. Finally, we show that expression of the eps and hrpT3SS operons is downregulated in mildly increased temperatures, suggesting a link between expression of these virulence factors and geographic restriction of E. tracheiphila to temperate regions. Our work highlights how E. tracheiphila virulence is a complex trait where several loci are coordinated during infection. These results further shed light into the relationship between virulence factors and the ecology of this pathosystem, which will be essential for developing sustainable management strategies for this emerging pathogen.
Collapse
Affiliation(s)
- Jorge Rocha
- Department of Microbiology, Harvard Medical School. 77 Avenue Louis Pasteur, Boston MA, US 02115
- Progama de Agricultura en Zonas Áridas; Centro de Investigaciones Biológicas del Noroeste. Av. Instituto Politécnico Nacional 195, La Paz, B.C.S. México 23096
| | - Lori R Shapiro
- Department of Microbiology, Harvard Medical School. 77 Avenue Louis Pasteur, Boston MA, US 02115
| | - Scott Chimileski
- Department of Microbiology, Harvard Medical School. 77 Avenue Louis Pasteur, Boston MA, US 02115
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory; Woods Hole, MA, US 02543
| | - Roberto Kolter
- Department of Microbiology, Harvard Medical School. 77 Avenue Louis Pasteur, Boston MA, US 02115
| |
Collapse
|
11
|
Cieniewicz E, Schnabel E, Powell G, Snipes Z, Schnabel G. Detection and Characterization of Xylella fastidiosa subsp. fastidiosa in Rabbiteye Blueberry in South Carolina. PLANT DISEASE 2024; 108:1476-1480. [PMID: 38254326 DOI: 10.1094/pdis-11-23-2392-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Xylella fastidiosa causes bacterial leaf scorch in southern highbush (Vaccinium corymbosum interspecific hybrids) and is also associated with a distinct disease phenotype in rabbiteye blueberry (V. virgatum) cultivars in the southeastern United States. Both X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. multiplex have been reported to cause problems in southern highbush blueberry, but so far only X. fastidiosa subsp. multiplex has been reported in rabbiteye cultivars in Louisiana. In this study, we report detection of X. fastidiosa in rabbiteye blueberry plants in association with symptoms of foliar reddening and shoot dieback. High throughput sequencing of an X. fastidiosa-positive plant sample and comparative analyses identified the strain in one of these plants as being X. fastidiosa subsp. fastidiosa. We briefly discuss the implications of these findings, which may spur research into blueberry as a potential inoculum source that could enable spread to other susceptible fruit crops in South Carolina.
Collapse
Affiliation(s)
- Elizabeth Cieniewicz
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Elise Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Garner Powell
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Zachary Snipes
- Clemson Cooperative Extension, Charleston County Cooperative Extension Office, Charleston, SC 29401
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| |
Collapse
|
12
|
Wallis CM. Characterization of data observing Meloidogyne incognita, Neofusicoccum parvum, and Xylella fastidiosa infection effects on development of grapevine phenolic compound levels and resistance to subsequent Neofusicoccum parvum infections. Data Brief 2024; 54:110301. [PMID: 38524842 PMCID: PMC10957448 DOI: 10.1016/j.dib.2024.110301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
Grapevines encounter many different pathogens throughout their lifespans, including the bacterial pathogen Xylella fastidiosa, which causes Pierce's disease that results in vascular occlusion and eventual plant host death, the fungal pathogen Neofusicoccum parvum, which causes stem cankers that kill individual vines and reduce fruit yields, and the root knot nematode Meloidogyne incognita, which destroys root tissues that impacts host vigour. To date, little research has been conducted to examine how one infection could impact subsequent infections by the same or different pathogens despite this is important to ensure healthy vineyards. Therefore, grapevines initially infected with either X. fastidiosa, N. parvum, or M. incognita were subsequently infected with N. parvum eight weeks later to observe developing lesion lengths, which were assessed to determine grapevine resistance to infections. Collected data shows that when prior infections were present, the N. parvum lesions lengths were smaller. This suggests grapevines had induced resistance to combat infections. Further, defence-associated phenolics were measured by high-performance liquid chromatography to determine roles in observed resistance to the secondary N. parvum infections. Data shows that of the different phenolics examined, only stilbenoids were different due to infections, with lowered levels observed in plants that were infected compared with non-infected controls. These data provide insight into how infections by different pathogens could impact grapevine host resistance to new, subsequent pathogen infections.
Collapse
Affiliation(s)
- Christopher M. Wallis
- Crop Diseases, Pests and Genetics Research Unit, U.S. Department of Agriculture- Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 S. Riverbend Ave, Parlier, CA 93648, USA
| |
Collapse
|
13
|
Zecharia N, Miri V, Dror O, Hatib K, Holland D, Dani S, Bahar O. Seasonal Dynamics and Distribution of Xylella fastidiosa in Infected Almond Trees. PHYTOPATHOLOGY 2024; 114:1186-1195. [PMID: 38105220 DOI: 10.1094/phyto-07-23-0240-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
This research focused on studying the dynamics of the bacterial pathogen Xylella fastidiosa in almond trees across different developmental stages. The objective was to understand the seasonal distribution and concentration of X. fastidiosa within almond trees. Different tree organs, including leaves, shoots, branches, fruits, flowers, and roots, from 10 X. fastidiosa-infected almond trees were sampled over 2 years. The incidence and concentration of X. fastidiosa were determined using qPCR and isolation. Throughout the study, X. fastidiosa was consistently absent from fruits, flowers, and roots, whereas it was detected in leaves as well as in shoots and branches. We demonstrate that the absence of X. fastidiosa in the roots is likely linked to the inability of this isolate to infect the peach-almond hybrid rootstock GF677. X. fastidiosa incidence in shoots and branches remained consistent throughout the year, whereas in leaf petioles, it varied across developmental stages, with lower detection during the early and late stages of the season. Similarly, viable X. fastidiosa cells were isolated from shoots and branches at all developmental stages, but no successful isolations were achieved from leaf petioles during the vegetative and nut growth stage. Studying the progression of almond leaf scorch symptoms in trees with initial infections showed that once symptoms emerged on one branch, symptomless branches were likely already infected by the bacterium. Therefore, selectively pruning symptomatic branches is unlikely to cure the tree. This study enhances our understanding of X. fastidiosa dynamics in almond trees and may have practical applications for its detection and control.
Collapse
Affiliation(s)
- Noa Zecharia
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vanunu Miri
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Orit Dror
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Kamel Hatib
- Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Center, Ramat Yishay, Israel
| | - Doron Holland
- Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Center, Ramat Yishay, Israel
| | - Shtienberg Dani
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Ofir Bahar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
14
|
Walker NC, White SM, Ruiz SA, McKay Fletcher D, Saponari M, Roose T. A mathematical model of biofilm growth and spread within plant xylem: Case study of Xylella fastidiosa in olive trees. J Theor Biol 2024; 581:111737. [PMID: 38280544 DOI: 10.1016/j.jtbi.2024.111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 11/16/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
Xylem-limited bacterial pathogens cause some of the most destructive plant diseases. Though imposed measures to control these pathogens are generally ineffective, even among susceptible taxa, some hosts can limit bacterial loads and symptom expression. Mechanisms by which this resistance is achieved are poorly understood. In particular, it is still unknown how differences in vascular structure may influence biofilm growth and spread within a host. To address this, we developed a novel theoretical framework to describe biofilm behaviour within xylem vessels, adopting a polymer-based modelling approach. We then parameterised the model to investigate the relevance of xylem vessel diameters on Xylella fastidiosa resistance among olive cultivars. The functionality of all vessels was severely reduced under infection, with hydraulic flow reductions of 2-3 orders of magnitude. However, results suggest wider vessels act as biofilm incubators; allowing biofilms to develop over a long time while still transporting them through the vasculature. By contrast, thinner vessels become blocked much earlier, limiting biofilm spread. Using experimental data on vessel diameter distributions, we were able to determine that a mechanism of resistance in the olive cultivar Leccino is a relatively low abundance of the widest vessels, limiting X. fastidiosa spread.
Collapse
Affiliation(s)
- N C Walker
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK
| | - S M White
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
| | - S A Ruiz
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK
| | - D McKay Fletcher
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK; Rural Economy Environment and Society Research Group, SRUC, Edinburgh EH9 3JG, UK
| | - M Saponari
- Istituto per la Protezione Sostenibile delle Piante, CNR, Bari, Italy
| | - T Roose
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK.
| |
Collapse
|
15
|
Feitosa-Junior OR, Lubbe A, Kosina SM, Martins-Junior J, Barbosa D, Baccari C, Zaini PA, Bowen BP, Northen TR, Lindow SE, da Silva AM. The Exometabolome of Xylella fastidiosa in Contact with Paraburkholderia phytofirmans Supernatant Reveals Changes in Nicotinamide, Amino Acids, Biotin, and Plant Hormones. Metabolites 2024; 14:82. [PMID: 38392974 PMCID: PMC10890622 DOI: 10.3390/metabo14020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
Microbial competition within plant tissues affects invading pathogens' fitness. Metabolomics is a great tool for studying their biochemical interactions by identifying accumulated metabolites. Xylella fastidiosa, a Gram-negative bacterium causing Pierce's disease (PD) in grapevines, secretes various virulence factors including cell wall-degrading enzymes, adhesion proteins, and quorum-sensing molecules. These factors, along with outer membrane vesicles, contribute to its pathogenicity. Previous studies demonstrated that co-inoculating X. fastidiosa with the Paraburkholderia phytofirmans strain PsJN suppressed PD symptoms. Here, we further investigated the interaction between the phytopathogen and the endophyte by analyzing the exometabolome of wild-type X. fastidiosa and a diffusible signaling factor (DSF) mutant lacking quorum sensing, cultivated with 20% P. phytofirmans spent media. Liquid chromatography-mass spectrometry (LC-MS) and the Method for Metabolite Annotation and Gene Integration (MAGI) were used to detect and map metabolites to genomes, revealing a total of 121 metabolites, of which 25 were further investigated. These metabolites potentially relate to host adaptation, virulence, and pathogenicity. Notably, this study presents the first comprehensive profile of X. fastidiosa in the presence of a P. phytofirmans spent media. The results highlight that P. phytofirmans and the absence of functional quorum sensing affect the ratios of glutamine to glutamate (Gln:Glu) in X. fastidiosa. Additionally, two compounds with plant metabolism and growth properties, 2-aminoisobutyric acid and gibberellic acid, were downregulated when X. fastidiosa interacted with P. phytofirmans. These findings suggest that P. phytofirmans-mediated disease suppression involves modulation of the exometabolome of X. fastidiosa, impacting plant immunity.
Collapse
Affiliation(s)
- Oseias R Feitosa-Junior
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Andrea Lubbe
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Suzanne M Kosina
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joaquim Martins-Junior
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| | - Deibs Barbosa
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| | - Clelia Baccari
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Benjamin P Bowen
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Trent R Northen
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Aline M da Silva
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| |
Collapse
|
16
|
Abdelrazek S, Bush E, Oliver C, Liu H, Sharma P, Johnson MA, Donegan MA, Almeida RPP, Nita M, Vinatzer BA. A Survey of Xylella fastidiosa in the U.S. State of Virginia Reveals Wide Distribution of Both Subspecies fastidiosa and multiplex in Grapevine. PHYTOPATHOLOGY 2024; 114:35-46. [PMID: 37530473 DOI: 10.1094/phyto-06-23-0212-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Global travel and trade in combination with climate change are expanding the geographic distribution of plant pathogens. The bacterium Xylella fastidiosa is a prime example. Native to the Americas, it has spread to Europe, Asia, and the Middle East. To assess the risk that pathogen introductions pose to crops in newly invaded areas, it is key to survey their diversity, host range, and disease incidence in relation to climatic conditions where they are already present. We performed a survey of X. fastidiosa in grapevine in Virginia using a combination of quantitative PCR, multilocus sequencing, and metagenomics. We also analyzed samples from deciduous trees with leaf scorch symptoms. X. fastidiosa subspecies fastidiosa was identified in grapevines in all regions of the state, even in Northern Virginia, where the temperature was below -9°C for 10 days per year on average in the years preceding sampling. Unexpectedly, we also found for the first time grapevine samples infected with X. fastidiosa subspecies multiplex (Xfm). The Xfm lineage found in grapevines had been previously isolated from blueberries in the Southeastern United States and was distinct from that found in deciduous trees in Virginia. The obtained results will be important for risk assessment of X. fastidiosa introductions in other parts of the world.
Collapse
Affiliation(s)
- Sahar Abdelrazek
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
| | - Elizabeth Bush
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
| | - Charlotte Oliver
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Tech, Winchester, VA 22602
| | - Haijie Liu
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
| | - Parul Sharma
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
- Graduate Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061
| | - Marcela A Johnson
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
- Graduate Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061
| | - Monica A Donegan
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720
| | - Mizuho Nita
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Tech, Winchester, VA 22602
| | - Boris A Vinatzer
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
17
|
Castro C, Ndukwe I, Heiss C, Black I, Ingel BM, Guevara M, Sun Y, Azadi P, Sun Q, Roper MC. Xylella fastidiosa modulates exopolysaccharide polymer length and the dynamics of biofilm development with a β-1,4-endoglucanase. mBio 2023; 14:e0139523. [PMID: 37830811 PMCID: PMC10653819 DOI: 10.1128/mbio.01395-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE It is well established that exopolysaccharide (EPS) is an integral structural component of bacterial biofilms necessary for assembly and maintenance of the three-dimensional architecture of the biofilm. However, the process and role of EPS turnover within a developing biofilm is not fully understood. Here, we demonstrated that Xylella fastidiosa uses a self-produced endoglucanase to enzymatically process its own EPS to modulate EPS polymer length. This enzymatic processing of EPS dictates the early stages of X. fastidiosa's biofilm development, which, in turn, affects its behavior in planta. A deletion mutant that cannot produce the endoglucanase was hypervirulent, thereby linking enzymatic processing of EPS to attenuation of virulence in symptomatic hosts, which may be a vestige of X. fastidiosa's commensal behavior in many of its other non-symptomatic hosts.
Collapse
Affiliation(s)
- Claudia Castro
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| | - Ikenna Ndukwe
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| | - Brian M. Ingel
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| | - Matthew Guevara
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| | - Yuling Sun
- Department of Computer Science, Wellesley College, Wellesley, Massachusetts, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| | - Qiang Sun
- Department of Biology, University of Wisconsin, Stevens Point, Wisconsin, USA
| | - M. Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| |
Collapse
|
18
|
Ingel B, Castro C, Burbank L, Her N, De Anda NI, Way H, Wang P, Roper MC. Xylella fastidiosa Requires the Type II Secretion System for Pathogenicity and Survival in Grapevine. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:636-646. [PMID: 37188464 DOI: 10.1094/mpmi-03-23-0027-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Xylella fastidiosa is a xylem-limited bacterial pathogen that causes Pierce's disease (PD) of grapevine. In host plants, this bacterium exclusively colonizes the xylem, which is primarily non-living at maturity. Understanding how X. fastidiosa interfaces with this specialized conductive tissue is at the forefront of investigation for this pathosystem. Unlike many bacterial plant pathogens, X. fastidiosa lacks a type III secretion system and cognate effectors that aid in host colonization. Instead, X. fastidiosa utilizes plant cell-wall hydrolytic enzymes and lipases as part of its xylem colonization strategy. Several of these virulence factors are predicted to be secreted via the type II secretion system (T2SS), the main terminal branch of the Sec-dependent general secretory pathway. In this study, we constructed null mutants in xpsE and xpsG, which encode for the ATPase that drives the T2SS and the major structural pseudopilin of the T2SS, respectively. Both mutants were non-pathogenic and unable to effectively colonize Vitis vinifera grapevines, demonstrating that the T2SS is required for X. fastidiosa infection processes. Furthermore, we utilized mass spectrometry to identify type II-dependent proteins in the X. fastidiosa secretome. In vitro, we identified six type II-dependent proteins in the secretome that included three lipases, a β-1,4-cellobiohydrolase, a protease, and a conserved hypothetical protein. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Brian Ingel
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Claudia Castro
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Lindsey Burbank
- USDA Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648, U.S.A
| | - Nancy Her
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - N Itzel De Anda
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Hannah Way
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Peng Wang
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| |
Collapse
|
19
|
Bodino N, Cavalieri V, Dongiovanni C, Saponari M, Bosco D. Bioecological Traits of Spittlebugs and Their Implications for the Epidemiology and Control of the Xylella fastidiosa Epidemic in Apulia (Southern Italy). PHYTOPATHOLOGY 2023; 113:1647-1660. [PMID: 36945728 DOI: 10.1094/phyto-12-22-0460-ia] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spatial-temporal dynamics of spittlebug populations, together with transmission biology, are of major importance to outline the disease epidemiology of Xylella fastidiosa subsp. pauca in Apulian olive groves. The spread rate of X. fastidiosa is mainly influenced by (i) the pathogen colonization of the host plant; (ii) the acquisition of the pathogen by the vector from an infected plant, and its inoculation to healthy plants; (iii) the vector population dynamics and abundance at different spatial scales; and (iv) the dispersal of the vector. In this contribution we summarize the recent advances in research on insect vectors' traits-points ii, iii, and iv-focusing on those most relevant to X. fastidiosa epidemic in Apulia. Among the vectors' bioecological traits influencing the X. fastidiosa epidemic in olive trees, we emphasize the following: natural infectivity and transmission efficiency, phenological timing of both nymphal and adult stage, the role of seminatural vegetation as a vector reservoir in the agroecosystem and landscape, and preferential and directional dispersal capabilities. Despite the research on X. fastidiosa vectors carried out in Europe in the last decade, key uncertainties on insect vectors remain, hampering a thorough understanding of pathogen epidemiology and the development of effective and targeted management strategies. Our goal is to provide a structured and contextualized review of knowledge on X. fastidiosa vectors' key traits in the Apulian epidemic, highlighting information gaps and stimulating novel research pathways on X. fastidiosa pathosystems in Europe. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Nicola Bodino
- CNR-Istituto per la Protezione Sostenibile delle Piante, 10135 Torino, Italy
| | - Vincenzo Cavalieri
- CNR-Istituto per la Protezione Sostenibile delle Piante, SS Bari, 70126 Bari, Italy
| | - Crescenza Dongiovanni
- CRSFA-Centro di Ricerca, Sperimentazione e Formazione in Agricoltura Basile Caramia, 70010 Locorotondo (BA), Italy
| | - Maria Saponari
- CNR-Istituto per la Protezione Sostenibile delle Piante, SS Bari, 70126 Bari, Italy
| | - Domenico Bosco
- CNR-Istituto per la Protezione Sostenibile delle Piante, 10135 Torino, Italy
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, 10095 Grugliasco (TO), Italy
| |
Collapse
|
20
|
Castro C, Massonnet M, Her N, DiSalvo B, Jablonska B, Jeske DR, Cantu D, Roper MC. Priming grapevine with lipopolysaccharide confers systemic resistance to Pierce's disease and identifies a peroxidase linked to defense priming. THE NEW PHYTOLOGIST 2023; 239:687-704. [PMID: 37149885 DOI: 10.1111/nph.18945] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023]
Abstract
Priming is an adaptive mechanism that fortifies plant defense by enhancing activation of induced defense responses following pathogen challenge. Microorganisms have signature microbe-associated molecular patterns (MAMPs) that induce the primed state. The lipopolysaccharide (LPS) MAMP isolated from the xylem-limited pathogenic bacterium, Xylella fastidiosa, acts as a priming stimulus in Vitis vinifera grapevines. Grapevines primed with LPS developed significantly less internal tyloses and external disease symptoms than naive vines. Differential gene expression analysis indicated major transcriptomic reprogramming during the priming and postpathogen challenge phases. Furthermore, the number of differentially expressed genes increased temporally and spatially in primed vines, but not in naive vines during the postpathogen challenge phase. Using a weighted gene co-expression analysis, we determined that primed vines have more genes that are co-expressed in both local and systemic petioles than naive vines indicating an inherent synchronicity that underlies the systemic response to this vascular pathogen specific to primed plants. We identified a cationic peroxidase, VviCP1, that was upregulated during the priming and postpathogen challenge phases in an LPS-dependent manner. Transgenic expression of VviCP1 conferred significant disease resistance, thus, demonstrating that grapevine is a robust model for mining and expressing genes linked to defense priming and disease resistance.
Collapse
Affiliation(s)
- Claudia Castro
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Mélanie Massonnet
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - Nancy Her
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Biagio DiSalvo
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Barbara Jablonska
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Daniel R Jeske
- Department of Statistics, University of California, Riverside, CA, 92521, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
21
|
Morales-Cruz A, Aguirre-Liguori J, Massonnet M, Minio A, Zaccheo M, Cochetel N, Walker A, Riaz S, Zhou Y, Cantu D, Gaut BS. Multigenic resistance to Xylella fastidiosa in wild grapes (Vitis sps.) and its implications within a changing climate. Commun Biol 2023; 6:580. [PMID: 37253933 DOI: 10.1038/s42003-023-04938-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
Xylella fastidiosa is a bacterium that infects crops like grapevines, coffee, almonds, citrus and olives. There is little understanding of the genes that contribute to plant resistance, the genomic architecture of resistance, and the potential role of climate in shaping resistance, in part because major crops like grapevines (Vitis vinifera) are not resistant to the bacterium. Here we study a wild grapevine species, V. arizonica, that segregates for resistance. Using genome-wide association, we identify candidate resistance genes. Resistance-associated kmers are shared with a sister species of V. arizonica but not with more distant species, suggesting that resistance evolved more than once. Finally, resistance is climate dependent, because individuals from low ( < 10 °C) temperature locations in the wettest quarter were typically susceptible to infection, likely reflecting a lack of pathogen pressure in colder climates. In fact, climate is as effective a predictor of resistance phenotypes as some genetic markers. We extend our climate observations to additional crops, predicting that increased pathogen pressure is more likely for grapevines and almonds than some other susceptible crops.
Collapse
Affiliation(s)
- Abraham Morales-Cruz
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Jonas Aguirre-Liguori
- Dept. of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Mélanie Massonnet
- Dept. of Viticulture and Enology, University of California, Davis, CA, USA
| | - Andrea Minio
- Dept. of Viticulture and Enology, University of California, Davis, CA, USA
| | - Mirella Zaccheo
- Dept. of Viticulture and Enology, University of California, Davis, CA, USA
| | - Noe Cochetel
- Dept. of Viticulture and Enology, University of California, Davis, CA, USA
| | - Andrew Walker
- Dept. of Viticulture and Enology, University of California, Davis, CA, USA
| | - Summaira Riaz
- San Joaquin Valley Agricultural Center, United States Dept of Agriculture, Parlier, CA, USA
| | - Yongfeng Zhou
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- Agricultural Genomics Institute at Shenzhen, The Chinese Academy of Agricultural Sciences, No. 7 Pengfei Road, Shenzen, 518120, China.
| | - Dario Cantu
- Dept. of Viticulture and Enology, University of California, Davis, CA, USA.
- Dept. of Viticulture and Enology, One Shields Avenue, University of California Davis, Davis, CA, 95616-5270, USA.
| | - Brandon S Gaut
- Dept. of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA.
- Dept. of Ecology and Evolutionary Biology, 321 Steinhaus Hall UC Irvine, Irvine, CA, 92617-2525, USA.
| |
Collapse
|
22
|
Brown DJ, Redak RA. Fitness Costs Associated With Insecticide Resistance in Populations of Homalodisca vitripennis Germar (Hemiptera: Cicadellidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:560-564. [PMID: 36708025 DOI: 10.1093/jee/toad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 05/30/2023]
Abstract
The glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is an important vector of bacterial Xyllela diseases throughout the southern and southwestern portions of the United States. Strong insect control measures, such that population densities of the insect vector are significantly reduced, are often necessary to limit the spread of Xylella fastidiosa. Glassy-winged sharpshooter populations within the Central Valley of California have developed a high resistance to imidacloprid (resistance ratio greater than 3,200) and tolerance to pyrethroids (ratio of less than 10) due to frequent applications of these materials. The purpose of this study was to determine the potential effects of insecticide resistance upon a variety of sharpshooter life history parameters associated with reproductive fitness. Our results indicate that individuals from susceptible populations of glassy-winged sharpshooters exhibited significantly higher fecundity and longer adult lifespans than those from the resistant populations. Additionally, resistant individuals were on average slightly larger than susceptible individuals. These results provide a strong indication that resistance to neonicotinoids imposes a reproductive fitness cost in an insecticide-free environment.
Collapse
Affiliation(s)
- Dylan J Brown
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Richard A Redak
- Department of Entomology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
23
|
Pollard CRJ, Marzano M. On a handshake: business-to-business trust in the biosecurity behaviours of the UK live plant trade. Biol Invasions 2023; 25:2531-2547. [PMID: 37366402 PMCID: PMC10290619 DOI: 10.1007/s10530-023-03054-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
The movement of plants through the ornamental plant trade presents a major source of risk for the introduction and spread of plant pests and pathogens. To minimise the likelihood of infested or infected plants moving through the value chain, individual businesses can adopt a range of biosecurity practices to prevent introduction on site, as well as detecting and then containing or eradicating any plant pests or pathogens present. However, a major additional source of risk is the arrival of unhealthy plants sourced from a supplier. Using the example of bacterial plant pathogen Xylella fastidiosa which has a large host range and potentially devastating economic and environmental impacts, we highlight the importance of trust when businesses navigate the risks of sourcing plants. Through interviews and a survey with a range of plant businesses, we show (i) how two general types of risk-relational risk associated with suppliers acting in good faith, and performance risk associated with suppliers having the ability to perform as expected-can be applied to the challenge of sourcing healthy plants, (ii) how businesses respond to these risks through behaviours based on trust and control, and (iii) the potential outcomes of trust-based and control-based behaviours in the presence of a hard to detect pathogen such as Xylella fastidiosa. We conclude that trust is a significant component in decision-making in the live plant trade, and as such any behavioural interventions designed to encourage better biosecurity practices in the industry should capitalise on this understanding to strengthen responses and avoid undermining of effort.
Collapse
|
24
|
Lovell-Read FA, Parnell S, Cunniffe NJ, Thompson RN. Using 'sentinel' plants to improve early detection of invasive plant pathogens. PLoS Comput Biol 2023; 19:e1010884. [PMID: 36730434 PMCID: PMC9928126 DOI: 10.1371/journal.pcbi.1010884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/14/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Infectious diseases of plants present an ongoing and increasing threat to international biosecurity, with wide-ranging implications. An important challenge in plant disease management is achieving early detection of invading pathogens, which requires effective surveillance through the implementation of appropriate monitoring programmes. However, when monitoring relies on visual inspection as a means of detection, surveillance is often hindered by a long incubation period (delay from infection to symptom onset) during which plants may be infectious but not displaying visible symptoms. 'Sentinel' plants-alternative susceptible host species that display visible symptoms of infection more rapidly-could be introduced to at-risk populations and included in monitoring programmes to act as early warning beacons for infection. However, while sentinel hosts exhibit faster disease progression and so allow pathogens to be detected earlier, this often comes at a cost: faster disease progression typically promotes earlier onward transmission. Here, we construct a computational model of pathogen transmission to explore this trade-off and investigate how including sentinel plants in monitoring programmes could facilitate earlier detection of invasive plant pathogens. Using Xylella fastidiosa infection in Olea europaea (European olive) as a current high profile case study, for which Catharanthus roseus (Madagascan periwinkle) is a candidate sentinel host, we apply a Bayesian optimisation algorithm to determine the optimal number of sentinel hosts to introduce for a given sampling effort, as well as the optimal division of limited surveillance resources between crop and sentinel plants. Our results demonstrate that including sentinel plants in monitoring programmes can reduce the expected prevalence of infection upon outbreak detection substantially, increasing the feasibility of local outbreak containment.
Collapse
Affiliation(s)
| | - Stephen Parnell
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Robin N. Thompson
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
25
|
Natural Recombination among Type I Restriction-Modification Systems Creates Diverse Genomic Methylation Patterns among Xylella fastidiosa Strains. Appl Environ Microbiol 2023; 89:e0187322. [PMID: 36598481 PMCID: PMC9888226 DOI: 10.1128/aem.01873-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Xylella fastidiosa is an important bacterial plant pathogen causing high-consequence diseases in agricultural crops around the world. Although as a species X. fastidiosa can infect many host plants, there is significant variability between strains regarding virulence on specific host plant species and other traits. Natural competence and horizontal gene transfer are believed to occur frequently in X. fastidiosa and likely influence the evolution of this pathogen. However, some X. fastidiosa strains are difficult to manipulate genetically using standard transformation techniques. Several type I restriction-modification (R-M) systems are encoded in the X. fastidiosa genome, which may influence horizontal gene transfer and recombination. Type I R-M systems themselves may undergo recombination, exchanging target recognition domains (TRDs) between specificity subunits (hsdS) to generate novel alleles with new target specificities. In this study, several conserved type I R-M systems were compared across 129 X. fastidiosa genome assemblies representing all known subspecies and 32 sequence types. Forty-four unique TRDs were identified among 50 hsdS alleles, which are arrayed in 31 allele profiles that are generally conserved within a monophyletic cluster of strains. Inactivating mutations were identified in type I R-M systems of specific strains, showing heterogeneity in the complements of functional type I R-M systems across X. fastidiosa. Genomic DNA methylation patterns were characterized in 20 X. fastidiosa strains and associated with type I R-M system allele profiles. Overall, these data suggest hsdS genes recombine among Xylella strains and/or unknown donors, and the resulting TRD reassortment establishes differential epigenetic modifications across Xylella lineages. IMPORTANCE Economic impacts on agricultural production due to X. fastidiosa have been severe in the Americas, Europe, and parts of Asia. Despite a long history of research on this pathogen, certain fundamental questions regarding the biology, pathogenicity, and evolution of X. fastidiosa have still not been answered. Wide-scale whole-genome sequencing has begun to provide more insight into X. fastidiosa genetic diversity and horizontal gene transfer, but the mechanics of genomic recombination in natural settings and the extent to which this directly influences bacterial phenotypes such as plant host range are not well understood. Genome methylation is an important factor in horizontal gene transfer and bacterial recombination that has not been comprehensively studied in X. fastidiosa. This study characterizes methylation associated with type I restriction-modification systems across a wide range of X. fastidiosa strains and lays the groundwork for a better understanding of X. fastidiosa biology and evolution through epigenetics.
Collapse
|
26
|
Luchi N, Migliorini D, Pecori F, Santini A. Real-Time Portable LAMP Assay for a Rapid Detection of Xylella fastidiosa In-Field. Methods Mol Biol 2023; 2659:51-60. [PMID: 37249884 DOI: 10.1007/978-1-0716-3159-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Early diagnosis is part of a decision-making process which in the case of plant diseases may prevent the spread of invasive plant pathogens and assist in their eradication. Significant advantages could be obtained from moving testing technology closer to the sampling site, thereby reducing the detection time. This chapter describes a portable real-time LAMP assay for a specific detection of Xylella fastidiosa in-field. The LAMP assay, including DNA extraction, allows a complete and specific in-field analysis in just 40 minutes, enabling the detection of pathogen DNA in host tissues.
Collapse
Affiliation(s)
- Nicola Luchi
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Florence, Italy.
| | - Duccio Migliorini
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Florence, Italy
| | - Francesco Pecori
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Florence, Italy
| | - Alberto Santini
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Florence, Italy
| |
Collapse
|
27
|
Is Plant Microbiota a Driver of Resistance to the Vector-Borne Pathogen Xylella fastidiosa? Pathogens 2022; 11:pathogens11121492. [PMID: 36558826 PMCID: PMC9782604 DOI: 10.3390/pathogens11121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Xylella fastidiosa is a vector-borne plant vascular bacterial pathogen that causes several economically important diseases, including Pierce's disease (PD) in grapevine and olive quick decline syndrome (OQDS) in olive trees, among others [...].
Collapse
|
28
|
Aguirre-Liguori JA, Morales-Cruz A, Gaut BS. Evaluating the persistence and utility of five wild Vitis species in the context of climate change. Mol Ecol 2022; 31:6457-6472. [PMID: 36197804 PMCID: PMC10092629 DOI: 10.1111/mec.16715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 01/13/2023]
Abstract
Crop wild relatives (CWRs) have the capacity to contribute novel traits to agriculture. Given climate change, these contributions may be especially vital for the persistence of perennial crops, because perennials are often clonally propagated and consequently do not evolve rapidly. By studying the landscape genomics of samples from five Vitis CWRs (V. arizonica, V. mustangensis, V. riparia, V. berlandieri and V. girdiana) in the context of projected climate change, we addressed two goals. The first was to assess the relative potential of different CWR accessions to persist in the face of climate change. By integrating species distribution models with adaptive genetic variation, additional genetic features such as genomic load and a phenotype (resistance to Pierce's Disease), we predicted that accessions from one species (V. mustangensis) are particularly well-suited to persist in future climates. The second goal was to identify which CWR accessions may contribute to bioclimatic adaptation for grapevine (V. vinifera) cultivation. To do so, we evaluated whether CWR accessions have the allelic capacity to persist if moved to locations where grapevines are cultivated in the United States. We identified six candidates from V. mustangensis and hypothesized that they may prove useful for contributing alleles that can mitigate climate impacts on viticulture. By identifying candidate germplasm, this study takes a conceptual step toward assessing the genomic and bioclimatic characteristics of CWRs.
Collapse
Affiliation(s)
- Jonas A Aguirre-Liguori
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Abraham Morales-Cruz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| |
Collapse
|
29
|
Trkulja V, Tomić A, Iličić R, Nožinić M, Milovanović TP. Xylella fastidiosa in Europe: From the Introduction to the Current Status. THE PLANT PATHOLOGY JOURNAL 2022; 38:551-571. [PMID: 36503185 PMCID: PMC9742796 DOI: 10.5423/ppj.rw.09.2022.0127] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 06/12/2023]
Abstract
Xylella fastidiosa is xylem-limited bacterium capable of infecting a wide range of host plants, resulting in Pierce's disease in grapevine, citrus variegated chlorosis, olive quick decline syndrome, peach phony disease, plum leaf scald, alfalfa dwarf, margin necrosis and leaf scorch affecting oleander, coffee, almond, pecan, mulberry, red maple, oak, and other types of cultivated and ornamental plants and forest trees. In the European Union, X. fastidiosa is listed as a quarantine organism. Since its first outbreak in the Apulia region of southern Italy in 2013 where it caused devastating disease on Olea europaea (called olive leaf scorch and quick decline), X. fastidiosa continued to spread and successfully established in some European countries (Corsica and PACA in France, Balearic Islands, Madrid and Comunitat Valenciana in Spain, and Porto in Portugal). The most recent data for Europe indicates that X. fastidiosa is present on 174 hosts, 25 of which were newly identified in 2021 (with further five hosts discovered in other parts of the world in the same year). From the six reported subspecies of X. fastidiosa worldwide, four have been recorded in European countries (fastidiosa, multiplex, pauca, and sandyi). Currently confirmed X. fastidiosa vector species are Philaenus spumarius, Neophilaenus campestris, and Philaenus italosignus, whereby only P. spumarius (which has been identified as the key vector in Apulia, Italy) is also present in Americas. X. fastidiosa control is currently based on pathogen-free propagation plant material, eradication, territory demarcation, and vector control, as well as use of resistant plant cultivars and bactericidal treatments.
Collapse
Affiliation(s)
- Vojislav Trkulja
- Agricultural Institute of Republic of Srpska, Knjaza Milosa 17, 78000 Banja Luka,
Bosnia and Herzegovina
| | - Andrija Tomić
- University of East Sarajevo, Faculty of Agriculture, Vuka Karadžića 30, 71123 East Sarajevo,
Bosnia and Herzegovina
| | - Renata Iličić
- University of Novi Sad, Faculty of Agriculture, Trg Dositeja Obradovića 8, 21000 Novi Sad,
Serbia
| | - Miloš Nožinić
- Agricultural Institute of Republic of Srpska, Knjaza Milosa 17, 78000 Banja Luka,
Bosnia and Herzegovina
| | | |
Collapse
|
30
|
Shu X, Xu D, Jiang Y, Liang J, Xiang T, Wang Y, Zhang W, Han X, Jiao C, Zheng A, Li P, Yin D, Wang A. Functional Analyses of a Small Secreted Cysteine-Rich Protein ThSCSP_14 in Tilletia horrida. Int J Mol Sci 2022; 23:ijms232315042. [PMID: 36499367 PMCID: PMC9736875 DOI: 10.3390/ijms232315042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Tilletia horrida is a biotrophic basidiomycete fungus that causes rice kernel smut, one of the most significant diseases in hybrid rice-growing areas worldwide. Little is known about the pathogenic mechanisms and functions of effectors in T. horrida. Here, we performed functional studies of the effectors in T. horrida and found that, of six putative effectors tested, only ThSCSP_14 caused the cell death phenotype in epidermal cells of Nicotiana benthamiana leaves. ThSCSP_14 was upregulated early on during the infection process, and the encoded protein was secreted. The predicted signal peptide (SP) of ThSCSP_14 was required for its ability to induce the necrosis phenotype. Furthermore, the ability of ThSCSP_14 to trigger cell death in N. benthamiana depended on suppressing the G2 allele of Skp1 (SGT1), required for Mla12 resistance (RAR1), heat-shock protein 90 (HSP90), and somatic embryogenesis receptor-like kinase (SERK3). It is important to note that ThSCSP_14 induced a plant defense response in N. benthamiana leaves. Hence, these results demonstrate that ThSCSP_14 is a possible effector that plays an essential role in T. horrida-host interactions.
Collapse
Affiliation(s)
- Xinyue Shu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Deze Xu
- Food Crop Research Institute, Hubei Academy of Agriculture Sciences, Wuhan 430064, China
| | - Yuqi Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Liang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Xiang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxuan Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Weike Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue Han
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunhai Jiao
- Food Crop Research Institute, Hubei Academy of Agriculture Sciences, Wuhan 430064, China
| | - Aiping Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Desuo Yin
- Food Crop Research Institute, Hubei Academy of Agriculture Sciences, Wuhan 430064, China
- Correspondence: (D.Y.); (A.W.)
| | - Aijun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (D.Y.); (A.W.)
| |
Collapse
|
31
|
Wani AK, Akhtar N, Singh R, Chopra C, Kakade P, Borde M, Al-Khayri JM, Suprasanna P, Zimare SB. Prospects of advanced metagenomics and meta-omics in the investigation of phytomicrobiome to forecast beneficial and pathogenic response. Mol Biol Rep 2022; 49:12165-12179. [PMID: 36169892 DOI: 10.1007/s11033-022-07936-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 12/01/2022]
Abstract
Microorganisms dwell in diverse plant niches as non-axenic biotic components that are beneficial as well pathogenic for the host. They improve nutrients-uptake, stress tolerance, phytohormone synthesis, and strengthening the defense system through phyllosphere, rhizosphere, and endosphere. The negative consequences of the microbial communities are largely in the form of diseases characterized by certain symptoms such as gall, cankers, rots etc. Uncultivable and unspecified nature of different phytomicrobiomes communities is a challenge in the management of plant disease, a leading cause for the loss of the plant products. Metagenomics has opened a new gateway for the exploration of microorganisms that are hitherto unknown, enables investigation of the functional aspect of microbial gene products through metatranscriptomics and metabolomics. Metagenomics offers advantages of characterizing previously unknown microorganisms from extreme environments like hot springs, glaciers, deep seas, animal gut etc. besides bioprospecting gene products such as Taq polymerase, bor encoded indolotryptoline, hydrolases, and polyketides. This review provides a detailed account of the phytomicrobiome networks and highlights the importance and limitations of metagenomics and other meta-omics approaches for the understanding of plant microbial diversity with special focus on the disease control and its management.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, 144411, Phagwara, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, 144411, Phagwara, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, 144411, Phagwara, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, 144411, Phagwara, India
| | - Prachi Kakade
- Department of Botany, Amdar Shashikant Shinde Mahavidyalay, 415012, Medha, Satara, India
| | - Mahesh Borde
- Department of Botany, Savitribai Phule Pune University, 411007, Pune, India
| | - Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, 31982, Al- Ahsa, Saudi Arabia
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, 400094, Mumbai, India
| | - Saurabha B Zimare
- Department of Botany, Amdar Shashikant Shinde Mahavidyalay, 415012, Medha, Satara, India. .,Department of Botany, D. P. Bhosale College, Koregaon, , Satara, 415501, Maharashtra, India.
| |
Collapse
|
32
|
Sun Q. Structural variation and spatial polysaccharide profiling of intervessel pit membranes in grapevine. ANNALS OF BOTANY 2022; 130:595-609. [PMID: 35869610 PMCID: PMC9510951 DOI: 10.1093/aob/mcac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Intervessel pit membranes (PMs) are important cell wall structures in the vessel system that may impact a plant's water transport and its susceptibility to vascular diseases. Functional roles of intervessel PMs largely depend on their structure and polysaccharide composition, which are the targets of this study. METHODS With grapevine used as a model plant, this study applied an immunogold-scanning electron microscopy technique to simultaneously analyse at high resolution intervessel PM structures and major pectic and hemicellulosic polysaccharides that make up intervessel PMs. KEY RESULTS Intervessel PMs in functional xylem showed significant structural variation, with about 90 % of them being structurally intact with smooth or relatively smooth surfaces and the remaining 10 % with progressively degraded structures. The results also elucidated details of the removal process of cell wall materials from the intervessel PM surface toward its depth during its natural degradation. Four groups of pectic and hemicellulosic polysaccharides were immunolocalized in intervessel PMs and differed in their spatial distribution and abundance. Weakly methyl-esterified homogalacturonans (WMe-HGs, detected by JIM5) were abundant in the surface layer, heavily methyl-esterified homogalacturonans (HMe-HGs, detected by JIM7) and xylans detected by CCRC-M140 were mostly found in deeper layers, and fucosylated xyloglucans (F-XyGs, detected by CCRC-M1) were more uniformly distributed at different depths of the intervessel PM. CONCLUSIONS Intervessel PMs displayed diverse structural variations in grapevine. They contained certain major groups of pectic and hemicellulosic polysaccharides with different spatial distributions and abundance. This information is crucial to reveal the polysaccharide profiling of the primary cell wall and to understand the roles of intervessel PMs in the regulation of water transport as well as in a plant's susceptibility to vascular diseases.
Collapse
|
33
|
Using Genomes and Evolutionary Analyses to Screen for Host-Specificity and Positive Selection in the Plant Pathogen Xylella fastidiosa. Appl Environ Microbiol 2022; 88:e0122022. [PMID: 36094203 PMCID: PMC9499020 DOI: 10.1128/aem.01220-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Xylella fastidiosa infects several economically important crops in the Americas, and it also recently emerged in Europe. Here, using a set of Xylella genomes reflective of the genus-wide diversity, we performed a pan-genome analysis based on both core and accessory genes for two purposes: (i) to test associations between genetic divergence and plant host species and (ii) to identify positively selected genes that are potentially involved in arms-race dynamics. For the former, tests yielded significant evidence for the specialization of X. fastidiosa to plant host species. This observation contributes to a growing literature suggesting that the phylogenetic history of X. fastidiosa lineages affects the host range. For the latter, our analyses uncovered evidence of positive selection across codons for 5.3% (67 of 1,257) of the core genes and 5.4% (201 of 3,691) of the accessory genes. These genes are candidates to encode interacting factors with plant and insect hosts. Most of these genes had unknown functions, but we did identify some tractable candidates, including nagZ_2, which encodes a beta-glucosidase that is important for Neisseria gonorrhoeae biofilm formation; cya, which modulates gene expression in pathogenic bacteria, and barA, a membrane associated histidine kinase that has roles in cell division, metabolism, and pili formation. IMPORTANCEXylella fastidiosa causes devasting diseases to several critical crops. Because X. fastidiosa colonizes and infects many plant species, it is important to understand whether the genome of X. fastidiosa has genetic determinants that underlie specialization to specific host plants. We analyzed genome sequences of X. fastidiosa to investigate evolutionary relationships and to test for evidence of positive selection on specific genes. We found a significant signal between genome diversity and host plants, consistent with bacterial specialization to specific plant hosts. By screening for positive selection, we identified both core and accessory genes that may affect pathogenicity, including genes involved in biofilm formation.
Collapse
|
34
|
Feitosa-Junior OR, Souza APS, Zaini PA, Baccari C, Ionescu M, Pierry PM, Uceda-Campos G, Labroussaa F, Almeida RPP, Lindow SE, da Silva AM. The XadA Trimeric Autotransporter Adhesins in Xylella fastidiosa Differentially Contribute to Cell Aggregation, Biofilm Formation, Insect Transmission and Virulence to Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:857-866. [PMID: 35704683 DOI: 10.1094/mpmi-05-22-0108-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface adhesion strategies are widely employed by bacterial pathogens during establishment and systemic spread in their host. A variety of cell-surface appendages such as pili, fimbriae, and afimbrial adhesins are involved in these processes. The phytopathogen Xylella fastidiosa employs several of these structures for efficient colonization of its insect and plant hosts. Among the adhesins encoded in the X. fastidiosa genome, three afimbrial adhesins, XadA1, Hsf/XadA2, and XadA3, are predicted to be trimeric autotransporters with a C-terminal YadA-anchor membrane domain. We analyzed the individual contributions of XadA1, XadA2, and XadA3 to various cellular behaviors both in vitro and in vivo. Using isogenic X. fastidiosa mutants, we found that cell-cell aggregation and biofilm formation were severely impaired in the absence of XadA3. No significant reduction of cell-surface attachment was found with any mutant under flow conditions. Acquisition by insect vectors and transmission to grapevines were reduced in the XadA3 deletion mutant. While the XadA3 mutant was hypervirulent in grapevines, XadA1 or XadA2 deletion mutants conferred lower disease severity than the wild-type strain. This insight of the importance of these adhesive proteins and their individual contributions to different aspects of X. fastidiosa biology should guide new approaches to reduce pathogen transmission and disease development. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Oseias R Feitosa-Junior
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula S Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo A Zaini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Department of Plant Sciences, University of California, Davis, CA, U.S.A
| | - Clelia Baccari
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Michael Ionescu
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Paulo M Pierry
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Guillermo Uceda-Campos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Fabien Labroussaa
- Department of Environmental Science, Policy and Management, University of California, Berkeley, U.S.A
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, U.S.A
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Aline M da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Kotsaridis K, Tsakiri D, Sarris PF. Understanding enemy's weapons to an effective prevention: common virulence effects across microbial phytopathogens kingdoms. Crit Rev Microbiol 2022:1-15. [PMID: 35709325 DOI: 10.1080/1040841x.2022.2083939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plant-pathogens interaction is an ongoing confrontation leading to the emergence of new diseases. The majority of the invading microorganisms inject effector proteins into the host cell, to bypass the sophisticated defense system of the host. However, the effectors could also have other specialized functions, which can disrupt various biological pathways of the host cell. Pathogens can enrich their effectors arsenal to increase infection success or expand their host range. This usually is accomplished by the horizontal gene transfer. Nowadays, the development of specialized software that can predict proteins structure, has changed the experimental designing in effectors' function research. Different effectors of distinct plant pathogens tend to fold alike and have the same function and focussed structural studies on microbial effectors can help to uncover their catalytic/functional activities, while the structural similarity can enable cataloguing the great number of pathogens' effectors. In this review, we collectively present phytopathogens' effectors with known enzymatic functions and proteins structure, originated from all the kingdoms of microbial plant pathogens. Presentation of their common domains and motifs is also included. We believe that the in-depth understanding of the enemy's weapons will help the development of new strategies to prevent newly emerging or re-emerging plant pathogens.
Collapse
Affiliation(s)
| | | | - Panagiotis F Sarris
- Department of Biology, University of Crete, Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece.,Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
36
|
Comparative Genomics of Xylella fastidiosa Explores Candidate Host-Specificity Determinants and Expands the Known Repertoire of Mobile Genetic Elements and Immunity Systems. Microorganisms 2022; 10:microorganisms10050914. [PMID: 35630358 PMCID: PMC9148166 DOI: 10.3390/microorganisms10050914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Xylella fastidiosa causes diseases in many plant species. Originally confined to the Americas, infecting mainly grapevine, citrus, and coffee, X. fastidiosa has spread to several plant species in Europe causing devastating diseases. Many pathogenicity and virulence factors have been identified, which enable the various X. fastidiosa strains to successfully colonize the xylem tissue and cause disease in specific plant hosts, but the mechanisms by which this happens have not been fully elucidated. Here we present thorough comparative analyses of 94 whole-genome sequences of X. fastidiosa strains from diverse plant hosts and geographic regions. Core-genome phylogeny revealed clades with members sharing mostly a geographic region rather than a host plant of origin. Phylogenetic trees for 1605 orthologous CDSs were explored for potential candidates related to host specificity using a score of mapping metrics. However, no candidate host-specificity determinants were strongly supported using this approach. We also show that X. fastidiosa accessory genome is represented by an abundant and heterogeneous mobilome, including a diversity of prophage regions. Our findings provide a better understanding of the diversity of phylogenetically close genomes and expand the knowledge of X. fastidiosa mobile genetic elements and immunity systems.
Collapse
|
37
|
Jung H, Kim HS, Han G, Park J, Seo YS. Comparative Analyses of Four Complete Genomes in Pseudomonas amygdali Revealed Differential Adaptation to Hostile Environments and Secretion Systems. THE PLANT PATHOLOGY JOURNAL 2022; 38:167-174. [PMID: 35385921 PMCID: PMC9343901 DOI: 10.5423/ppj.nt.11.2021.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Pseudomonas amygdali is a hemibiotrophic phytopathogen that causes disease in woody and herbaceous plants. Complete genomes of four P. amygdali pathovars were comparatively analyzed to decipher the impact of genomic diversity on host colonization. The pan-genome indicated that 3,928 core genes are conserved among pathovars, while 504-1,009 are unique to specific pathovars. The unique genome contained many mobile elements and exhibited a functional distribution different from the core genome. Genes involved in O-antigen biosynthesis and antimicrobial peptide resistance were significantly enriched for adaptation to hostile environments. While the type III secretion system was distributed in the core genome, unique genomes revealed a different organization of secretion systems as follows: type I in pv. tabaci, type II in pv. japonicus, type IV in pv. morsprunorum, and type VI in pv. lachrymans. These findings provide genetic insight into the dynamic interactions of the bacteria with plant hosts.
Collapse
Affiliation(s)
- Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - Hong-Seop Kim
- Korea Seed & Variety Service, Pyeongchang 25343, Korea
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - Jungwook Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
- Environmental Microbiology Research Team, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| |
Collapse
|
38
|
Marcus IM, White D, Backus EA, Walker SL, Roper MC. Fluid dynamic simulations at the interface of the blue-green sharpshooter functional foregut and grapevine xylem sap with implications for transmission of Xylella fastidiosa. PLoS One 2022; 17:e0265762. [PMID: 35316301 PMCID: PMC8939801 DOI: 10.1371/journal.pone.0265762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/07/2022] [Indexed: 12/03/2022] Open
Abstract
Xylella fastidiosa is a multi-continental, lethal, plant pathogenic bacterium that is transmitted by sharpshooter leafhoppers (Insecta: Hemiptera: Cicadellidae: Cicadellinae) and adult spittlebugs (Hemiptera: Aphrophoridae). The bacterium forms biofilms in plant xylem and the functional foregut of the insect. These biofilms serve as sources of inoculum for insect acquisition and subsequent inoculation to a healthy plant. In this study, 3D fluid dynamic simulations were performed for bidirectional cibarial propulsion of xylem sap through tube-like grapevine xylem and an anatomically accurate model of the functional foregut of the blue-green sharpshooter, Graphocephala atropunctata. The analysis supports a model of how fluid dynamics influence X. fastidiosa transmission. The model supports the hypothesis that X. fastidiosa inoculation is mostly driven by detachment of bacteria from the foregut due to high-velocity flow during egestion (outward fluid flow from the stylets). Acquisition occurs by fluid dynamics during both egestion and ingestion (fluid uptake through the stylets and swallowing). These simulation results are supported by previously reported X. fastidiosa colonization patterns in the functional foregut and sharpshooter stylet probing behaviors. The model indicates that xylem vessel diameter influences drag forces imposed on xylem wall-adherent bacteria; thus, vessel diameter may be an important component of the complex transmission process. Results from this study are directly applicable to development of novel grapevine resistance traits via electropenetrographic monitoring of vector acquisition and inoculation behaviors.
Collapse
Affiliation(s)
- Ian M. Marcus
- Drexel University, Department of Civil, Architectural, and Environmental Engineering, Philadelphia, PA, United States of America
| | - Daniel White
- University of California, Riverside, Department of Chemical and Environmental Engineering, Riverside, CA, United States of America
| | - Elaine A. Backus
- USDA Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States of America
| | - Sharon L. Walker
- Drexel University, Department of Civil, Architectural, and Environmental Engineering, Philadelphia, PA, United States of America
- University of California, Riverside, Department of Chemical and Environmental Engineering, Riverside, CA, United States of America
| | - M. Caroline Roper
- University of California, Riverside, Department of Microbiology and Plant Pathology, Riverside, CA, United States of America
- * E-mail:
| |
Collapse
|
39
|
Extracellular vesicles from phytobacteria: Properties, functions and uses. Biotechnol Adv 2022; 58:107934. [DOI: 10.1016/j.biotechadv.2022.107934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/20/2022]
|
40
|
Advances in the Characterization of the Mechanism Underlying Bacterial Canker Development and Tomato Plant Resistance. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacterial canker caused by the Gram-positive actinobacterium Clavibacter michiganensis is one of the most serious bacterial diseases of tomatoes, responsible for 10–100% yield losses worldwide. The pathogen can systemically colonize tomato vascular bundles, leading to wilting, cankers, bird’s eye lesions, and plant death. Bactericidal agents are insufficient for managing this disease, because the pathogen can rapidly migrate through the vascular system of plants and induce systemic symptoms. Therefore, the use of resistant cultivars is necessary for controlling this disease. We herein summarize the pathogenicity of C. michiganensis in tomato plants and the molecular basis of bacterial canker pathogenesis. Moreover, advances in the characterization of resistance to this pathogen in tomatoes are introduced, and the status of genetics-based research is described. Finally, we propose potential future research on tomato canker resistance. More specifically, there is a need for a thorough analysis of the host–pathogen interaction, the accelerated identification and annotation of resistance genes and molecular mechanisms, the diversification of resistance resources or exhibiting broad-spectrum disease resistance, and the production of novel and effective agents for control or prevention. This review provides researchers with the relevant information for breeding tomato cultivars resistant to bacterial cankers.
Collapse
|
41
|
Sertedakis M, Kotsaridis K, Tsakiri D, Mermigka G, Dominguez‐Ferreras A, Ntoukakis V, Sarris P. Expression of putative effectors of different Xylella fastidiosa strains triggers cell death-like responses in various Nicotiana model plants. MOLECULAR PLANT PATHOLOGY 2022; 23:148-156. [PMID: 34628713 PMCID: PMC8659589 DOI: 10.1111/mpp.13147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 06/12/2023]
Abstract
The wide host range of Xylella fastidiosa (Xf) indicates the existence of yet uncharacterized virulence mechanisms that help pathogens to overcome host defences. Various bioinformatics tools combined with prediction of the functions of putative virulence proteins are valuable approaches to study microbial pathogenicity. We collected a number of putative effectors from three Xf strains belonging to different subspecies: Temecula-1 (subsp. fastidiosa), CoDiRO (subsp. pauca), and Ann-1 (subsp. sandyi). We designed an in planta Agrobacterium-based expression system that drives the expressed proteins to the cell apoplast, in order to investigate their ability to activate defence in Nicotiana model plants. Multiple Xf proteins differentially elicited cell death-like phenotypes in different Nicotiana species. These proteins are members of different enzymatic groups: (a) hydrolases/hydrolase inhibitors, (b) serine proteases, and (c) metal transferases. We also classified the Xf proteins according to their sequential and structural similarities via the I-TASSER online tool. Interestingly, we identified similar proteins that were able to differentially elicit cell death in different cultivars of the same species. Our findings provide a basis for further studies on the mechanisms that underlie both defence activation in Xf resistant hosts and pathogen adaptation in susceptible hosts.
Collapse
Affiliation(s)
| | - Konstantinos Kotsaridis
- Department of BiologyUniversity of CreteHeraklionGreece
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
| | - Dimitra Tsakiri
- Department of BiologyUniversity of CreteHeraklionGreece
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
| | - Glykeria Mermigka
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
| | | | | | - Panagiotis F. Sarris
- Department of BiologyUniversity of CreteHeraklionGreece
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
- BiosciencesUniversity of ExeterExeterUK
| |
Collapse
|
42
|
Frem M, Fucilli V, Nigro F, El Moujabber M, Abou Kubaa R, La Notte P, Bozzo F, Choueiri E. The potential direct economic impact and private management costs of an invasive alien species: Xylella fastidiosa on Lebanese wine grapes. NEOBIOTA 2021. [DOI: 10.3897/neobiota.70.72280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Since its outbreak in 2013 in Italy, the harmful bacterium Xylella fastidiosa has continued to spread throughout the Euro-Mediterranean basin and, more recently, in the Middle East region. Xylella fastidiosa subsp. fastidiosa is the causal agent of Pierce’s disease on grapevines. At present, this alien subspecies has not been reported in Lebanon but if this biological invader was to spread with no cost-effective and sustainable management, it would put Lebanese vineyards at a certain level of risk. In the absence of an Xylella fastidiosa subsp. fastidiosa outbreak, the gross revenue generated by Lebanese wine growers is estimated as close to US$22 million/year for an average period of 5 years (2015–2019). The potential quantitative economic impacts of an Xylella fastidiosa subsp. fastidiosa outbreak and particularly, the private control costs have not been assessed yet for this country as well as for others which Xylella fastidiosa may invade. Here, we have aimed to estimate the potential direct economic impact on growers’ livelihoods and provide the first estimate of the private management costs that a theoretical Xylella fastidiosa subsp. fastidiosa outbreak in Lebanon would involve. For this purpose, we used a Partial Budget approach at the farm gate. For the country as a whole, we estimated that a hypothetical full spread of Xylella fastidiosa subsp. fastidiosa on Lebanese wine grapes would lead to maximum potential gross revenue losses of almost US$ 11 million for an average recovery period of 4 years, to around US$ 82.44 million for an average grapevine life span period of 30 years in which infected plants are not replaced at all. The first yearly estimated additional management cost is US$853 per potentially infected hectare. For a recovery period of 4 years, the aggregate estimated additional cost would reach US$2374/ha, while the aggregate net change in profit would be US$-4046/ha. Furthermore, additional work will be needed to estimate the public costs of an Xylella fastidiosa subsp. fastidiosa outbreak in Lebanon. The observed costs in this study support the concerned policy makers and stakeholders to implement a set of reduction management options against Xylella fastidiosa subsp. fastidiosa at both national and wine growers’ levels. This re-emerging alien biota should not be neglected in this country. This understanding of the potential direct economic impact of Xylella fastidiosa subsp. fastidiosa and the private management costs can also benefit further larger-scale studies covering other potential infection areas and plant hosts.
Collapse
|
43
|
Costa J, Pothier JF, Boch J, Stefani E, Jacques M, Catara V, Koebnik R. Integrating science on Xanthomonadaceae for sustainable plant disease management in Europe. MOLECULAR PLANT PATHOLOGY 2021; 22:1461-1463. [PMID: 34755430 PMCID: PMC8578814 DOI: 10.1111/mpp.13150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 05/27/2023]
Affiliation(s)
- Joana Costa
- Centre for Functional EcologyDepartment of Life SciencesUniversity of CoimbraCoimbraPortugal
- Laboratory for PhytopathologyInstituto Pedro NunesCoimbraPortugal
| | - Joël F. Pothier
- Institute for Natural Resource SciencesEnvironmental Genomics and Systems Biology Research GroupZurich University of Applied SciencesWädenswilSwitzerland
| | - Jens Boch
- Department of Plant BiotechnologyInstitute of Plant GeneticsLeibniz Universität HannoverHannoverGermany
| | - Emilio Stefani
- Department of Life SciencesUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
| | | | - Vittoria Catara
- Department of Agriculture, Food and EnvironmentUniversity of CataniaCataniaItaly
| | - Ralf Koebnik
- Plant Health Institute of MontpellierUniversity of Montpellier, CIRAD, INRAE, Institut AgroIRDMontpellierFrance
| |
Collapse
|
44
|
Castillo AI, Tsai CW, Su CC, Weng LW, Lin YC, Cho ST, Almeida RPP, Kuo CH. Genetic differentiation of Xylella fastidiosa following the introduction into Taiwan. Microb Genom 2021; 7:000727. [PMID: 34898423 PMCID: PMC8767338 DOI: 10.1099/mgen.0.000727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
The economically important plant pathogen Xylella fastidiosa has been reported in multiple regions of the globe during the last two decades, threatening a growing list of plants. Particularly, X. fastidiosa subspecies fastidiosa causes Pierce's disease (PD) of grapevines, which is a problem in the USA, Spain, and Taiwan. In this work, we studied PD-causing subsp. fastidiosa populations and compared the genome sequences of 33 isolates found in Central Taiwan with 171 isolates from the USA and two from Spain. Phylogenetic relationships, haplotype networks, and genetic diversity analyses confirmed that subsp. fastidiosa was recently introduced into Taiwan from the Southeast USA (i.e. the PD-I lineage). Recent core-genome recombination events were detected among introduced subsp. fastidiosa isolates in Taiwan and contributed to the development of genetic diversity. The genetic diversity observed includes contributions through recombination from unknown donors, suggesting that higher genetic diversity exists in the region. Nevertheless, no recombination event was detected between X. fastidiosa subsp. fastidiosa and the endemic sister species Xylella taiwanensis, which is the causative agent of pear leaf scorch disease. In summary, this study improved our understanding of the genetic diversity of an important plant pathogenic bacterium after its invasion to a new region.
Collapse
Affiliation(s)
- Andreina I. Castillo
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Chi-Wei Tsai
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Chiou-Chu Su
- Division of Pesticide Application, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Taichung 413, Taiwan, ROC
| | - Ling-Wei Weng
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan, ROC
| | - Yu-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Rodrigo P. P. Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| |
Collapse
|
45
|
The Threat of Pests and Pathogens and the Potential for Biological Control in Forest Ecosystems. FORESTS 2021. [DOI: 10.3390/f12111579] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Forests are an essential component of the natural environment, as they support biodiversity, sequester carbon, and play a crucial role in biogeochemical cycles—in addition to producing organic matter that is necessary for the function of terrestrial organisms. Forests today are subject to threats ranging from natural occurrences, such as lightning-ignited fires, storms, and some forms of pollution, to those caused by human beings, such as land-use conversion (deforestation or intensive agriculture). In recent years, threats from pests and pathogens, particularly non-native species, have intensified in forests. The damage, decline, and mortality caused by insects, fungi, pathogens, and combinations of pests can lead to sizable ecological, economic, and social losses. To combat forest pests and pathogens, biocontrol may be an effective alternative to chemical pesticides and fertilizers. This review of forest pests and potential adversaries in the natural world highlights microbial inoculants, as well as research efforts to further develop biological control agents against forest pests and pathogens. Recent studies have shown promising results for the application of microbial inoculants as preventive measures. Other studies suggest that these species have potential as fertilizers.
Collapse
|
46
|
Moll L, Badosa E, Planas M, Feliu L, Montesinos E, Bonaterra A. Antimicrobial Peptides With Antibiofilm Activity Against Xylella fastidiosa. Front Microbiol 2021; 12:753874. [PMID: 34819923 PMCID: PMC8606745 DOI: 10.3389/fmicb.2021.753874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022] Open
Abstract
Xylella fastidiosa is a plant pathogen that was recently introduced in Europe and is causing havoc to its agriculture. This Gram-negative bacterium invades the host xylem, multiplies, and forms biofilm occluding the vessels and killing its host. In spite of the great research effort, there is no method that effectively prevents or cures hosts from infections. The main control strategies up to now are eradication, vector control, and pathogen-free plant material. Antimicrobial peptides have arisen as promising candidates to combat this bacterium due to their broad spectrum of activity and low environmental impact. In this work, peptides previously reported in the literature and newly designed analogs were studied for its bactericidal and antibiofilm activity against X. fastidiosa. Also, their hemolytic activity and effect on tobacco leaves when infiltrated were determined. To assess the activity of peptides, the strain IVIA 5387.2 with moderate growth, able to produce biofilm and susceptible to antimicrobial peptides, was selected among six representative strains found in the Mediterranean area (DD1, CFBP 8173, Temecula, IVIA 5387.2, IVIA 5770, and IVIA 5901.2). Two interesting groups of peptides were identified with bactericidal and/or antibiofilm activity and low-moderate toxicity. The peptides 1036 and RIJK2 with dual (bactericidal-antibiofilm) activity against the pathogen and moderate toxicity stand out as the best candidates to control X. fastidiosa diseases. Nevertheless, peptides with only antibiofilm activity and low toxicity are also promising agents as they could prevent the occlusion of xylem vessels caused by the pathogen. The present work contributes to provide novel compounds with antimicrobial and antibiofilm activity that could lead to the development of new treatments against diseases caused by X. fastidiosa.
Collapse
Affiliation(s)
- Luís Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| |
Collapse
|
47
|
Burbank LP, Roper MC. Microbe Profile: Xylella fastidiosa - a devastating agricultural pathogen with an endophytic lifestyle. MICROBIOLOGY-SGM 2021; 167. [PMID: 34596503 PMCID: PMC8698212 DOI: 10.1099/mic.0.001091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Xylella fastidiosa is a vector-borne plant vascular pathogen that has caused devastating disease outbreaks in diverse agricultural crops worldwide. A major global quarantine pathogen, X. fastidiosa can infect hundreds of plant species and can be transmitted by many different xylem sap-feeding insects. Several decades of research have revealed a complex lifestyle dependent on adaptation to the xylem and insect environments and interactions with host plant tissues.
Collapse
Affiliation(s)
- Lindsey P Burbank
- U.S. Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, California, USA
| | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| |
Collapse
|
48
|
Castro C, DiSalvo B, Roper MC. Xylella fastidiosa: A reemerging plant pathogen that threatens crops globally. PLoS Pathog 2021; 17:e1009813. [PMID: 34499674 PMCID: PMC8428566 DOI: 10.1371/journal.ppat.1009813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Claudia Castro
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Biagio DiSalvo
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - M. Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| |
Collapse
|
49
|
Weng LW, Lin YC, Su CC, Huang CT, Cho ST, Chen AP, Chou SJ, Tsai CW, Kuo CH. Complete Genome Sequence of Xylella taiwanensis and Comparative Analysis of Virulence Gene Content With Xylella fastidiosa. Front Microbiol 2021; 12:684092. [PMID: 34093511 PMCID: PMC8176220 DOI: 10.3389/fmicb.2021.684092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
The bacterial genus Xylella contains plant pathogens that are major threats to agriculture in America and Europe. Although extensive research was conducted to characterize different subspecies of Xylella fastidiosa (Xf), comparative analysis at above-species levels was lacking due to the unavailability of appropriate data sets. Recently, a bacterium that causes pear leaf scorch (PLS) in Taiwan was described as the second Xylella species (i.e., Xylella taiwanensis; Xt). In this work, we report the complete genome sequence of Xt type strain PLS229T. The genome-scale phylogeny provided strong support that Xf subspecies pauca (Xfp) is the basal lineage of this species and Xylella was derived from the paraphyletic genus Xanthomonas. Quantification of genomic divergence indicated that different Xf subspecies share ∼87–95% of their chromosomal segments, while the two Xylella species share only ∼66–70%. Analysis of overall gene content suggested that Xt is most similar to Xf subspecies sandyi (Xfs). Based on the existing knowledge of Xf virulence genes, the homolog distribution among 28 Xylella representatives was examined. Among the 11 functional categories, those involved in secretion and metabolism are the most conserved ones with no copy number variation. In contrast, several genes related to adhesins, hydrolytic enzymes, and toxin-antitoxin systems are highly variable in their copy numbers. Those virulence genes with high levels of conservation or variation may be promising candidates for future studies. In summary, the new genome sequence and analysis reported in this work contributed to the study of several important pathogens in the family Xanthomonadaceae.
Collapse
Affiliation(s)
- Ling-Wei Weng
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chiou-Chu Su
- Division of Pesticide Application, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Taichung, Taiwan
| | - Ching-Ting Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ai-Ping Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Jen Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Wei Tsai
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
50
|
Peritore-Galve FC, Tancos MA, Smart CD. Bacterial Canker of Tomato: Revisiting a Global and Economically Damaging Seedborne Pathogen. PLANT DISEASE 2021; 105:1581-1595. [PMID: 33107795 DOI: 10.1094/pdis-08-20-1732-fe] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The gram-positive actinobacterium Clavibacter michiganensis is the causal agent of bacterial canker of tomato, an economically impactful disease with a worldwide distribution. This seedborne pathogen systemically colonizes tomato xylem leading to unilateral leaflet wilt, marginal leaf necrosis, stem and petiole cankers, and plant death. Additionally, splash dispersal of the bacterium onto fruit exteriors causes bird's-eye lesions, which are characterized as necrotic centers surrounded by white halos. The pathogen can colonize developing seeds systemically through xylem and through penetration of fruit tissues from the exterior. There are currently no commercially available resistant cultivars, and bactericidal sprays have limited efficacy for managing the disease once the pathogen is in the vascular system. In this review, we summarize research on epidemiology, host colonization, the bacterial genetics underlying virulence, and management of bacterial canker. Finally, we highlight important areas of research into this pathosystem that have the potential to generate new strategies for prevention and mitigation of bacterial canker.
Collapse
Affiliation(s)
- F Christopher Peritore-Galve
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Matthew A Tancos
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Frederick, MD 21702
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| |
Collapse
|