1
|
Osdaghi E, Abachi H, Jacques M. Clavibacter michiganensis Reframed: The Story of How the Genomics Era Made a New Face for an Old Enemy. MOLECULAR PLANT PATHOLOGY 2025; 26:e70093. [PMID: 40391582 PMCID: PMC12089995 DOI: 10.1111/mpp.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/20/2025] [Accepted: 04/30/2025] [Indexed: 05/22/2025]
Abstract
OBJECTIVE Bacterial wilt and canker of tomato caused by the gram-positive corynebacterial species Clavibacter michiganensis is an economically important disease threatening the tomato industry in both open-air and greenhouse productions around the world. The disease occurs in many countries, with a particular importance in regions characterised by high temperature and water scarcity. Management of bacterial canker has been a major problem since its original description in 1909. This is due in part to the seedborne nature of the pathogen, allowing the bacterium to be transmitted over long distances via infected seeds, as well as a lack of effective treatment to clean seeds. Detection of the pathogen from seeds is difficult due to high competition on culture media with diverse members of the seed-associated microbiota. Identification of the pathogen can also be difficult owing to the presence of different colony variants on culture media. In this review, we provide a historical perspective and an updated overview on the aetiology, epidemiology and management strategies of the bacterial canker disease. We also gathered recent molecular findings in the pathogenicity mechanisms and bioecology of C. michiganensis to boost management of the bacterial canker disease in the 21st century tomato industry. TAXONOMY Class: Actinobacteria; Order: Micrococcales; Family: Microbacteriaceae; Genus: Clavibacter; Species: Clavibacter michiganensis. DISEASE SYMPTOMS Interveinal leaf chlorosis leading to necrotic areas. Canker on stems and lateral branches of the plant. Discolouration of vascular and pith tissues to dark yellow or brown. Small and early ripened fruits or discolouration of the placenta from white to yellow in the interior part of the ripening fruits. HOST RANGE Tomato (Solanum lycopersicum) is the main host of the pathogen while natural infection has also been reported on eggplant, pepper and wild nightshade plants. SYNONYMS (HISTORICAL/NON-PREFERRED SCIENTIFIC NAMES) Aplanobacter michiganensis; Pseudomonas michiganense; Pseudomonas michiganensis; Bacterium michiganense; Phytomonas michiganensis; Mycobacterium michiganense; Erwinia michiganensis (=michiganense); Corynebacterium michiganense; Corynebacterium michiganense pv. michiganense; Corynebacterium michiganense subsp. michiganense; Clavibacter michiganensis subsp. michiganensis. MICROBIOLOGICAL PROPERTIES The bacterium produces domed, round and shiny mucoid colonies on general culture media. Colonies are usually yellow-pigmented, while pink-pigmented strains are occasionally observed. Cells are gram-positive, aerobic, non-motile, non-spore-producing curved rods (coryneform). DISTRIBUTION Present in all continents. PHYTOSANITARY CATEGORIZATION EPPO A2 List no. 50, EU 2019/2072 RNQP Annex IV. See EPPO (https://gd.eppo.int/taxon/CORBMI/categorization) and CABI (https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.15338) databases for further country-specific categorisations. EPPO code: CORBMI.
Collapse
Affiliation(s)
- Ebrahim Osdaghi
- Department of Plant Protection, College of AgricultureUniversity of TehranKarajIran
| | - Hamid Abachi
- Department of Plant Protection, College of AgricultureUniversity of TehranKarajIran
| | - Marie‐Agnes Jacques
- Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM‐CFBPUniversité d'AngersAngersFrance
| |
Collapse
|
2
|
Rubí-Rangel LM, León-Félix J, Villicaña C. Exploring Viral Interactions in Clavibacter Species: In Silico Analysis of Prophage Prevalence and Antiviral Defenses. Life (Basel) 2025; 15:187. [PMID: 40003596 PMCID: PMC11856565 DOI: 10.3390/life15020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 02/27/2025] Open
Abstract
Clavibacter is a phytopathogenic genus that causes severe diseases in economically important crops, yet the role of prophages in its evolution, pathogenicity, and adaptation remains poorly understood. In this study, we used PHASTER, Prophage Hunter, and VirSorter2 to identify prophage-like sequences in publicly available Clavibacter genomes. Prophage predictions were checked by hand to make them more accurate. We identified 353 prophages, predominantly in chromosomes, with some detected phage-plasmids. Most prophages exhibited traits of advanced domestication, such as an unimodal genome length distribution, reduced numbers of integrases, and minimal transposable elements, suggesting long-term interactions with their bacterial hosts. Comparative genomic analyses uncovered high genetic diversity, with distinct prophage clusters showing species-specific and interspecies conservation patterns. Functional annotation revealed prophage-encoded genes were involved in sugar metabolism, heavy metal resistance, virulence factors, and antibiotic resistance, highlighting their contribution to host fitness and environmental adaptation. Defense system analyses revealed that, despite lacking CRISPR-Cas, Clavibacter genomes harbor diverse antiviral systems, including PD-Lambda-1, AbiE, and MMB_gp29_gp30, some encoded within prophages. These findings underscore the pervasive presence of prophages in Clavibacter and their role in shaping bacterial adaptability and evolution.
Collapse
Affiliation(s)
- Lucía Margarita Rubí-Rangel
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera a Eldorado Km 5.5, Campo El Diez, Culiacán 80110, Sinaloa, Mexico; (L.M.R.-R.); (J.L.-F.)
| | - Josefina León-Félix
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera a Eldorado Km 5.5, Campo El Diez, Culiacán 80110, Sinaloa, Mexico; (L.M.R.-R.); (J.L.-F.)
| | - Claudia Villicaña
- CONAHCYT-Centro de Investigación en Alimentación y Desarrollo A. C., Carretera a Eldorado Km 5.5, Campo El Diez, Culiacán 80110, Sinaloa, Mexico
| |
Collapse
|
3
|
Yañez-Olvera AG, Gómez-Díaz AG, Sélem-Mojica N, Rodríguez-Orduña L, Lara-Ávila JP, Varni V, Alcoba F, Croce V, Legros T, Torres A, Torres Ruíz A, Tarrats F, Vermunt A, Looije T, Cibrian-Jaramillo A, Valenzuela M, Siri MI, Barona-Gomez F. A host shift as the origin of tomato bacterial canker caused by Clavibacter michiganensis. Microb Genom 2024; 10:001309. [PMID: 39471242 PMCID: PMC11521342 DOI: 10.1099/mgen.0.001309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/25/2024] [Indexed: 11/01/2024] Open
Abstract
The Actinomycetota (formerly Actinobacteria) genus Clavibacter includes phytopathogens with devasting effects in several crops. Clavibacter michiganensis, the causal agent of tomato bacterial canker, is the most notorious species of the genus. Yet, its origin and natural reservoirs remain elusive, and its populations show pathogenicity profiles with unpredictable plant disease outcomes. Here, we generate and analyse a decade-long genomic dataset of Clavibacter from wild and commercial tomato cultivars, providing evolutionary insights that directed phenotypic characterization. Our phylogeny situates the last common ancestor of C. michiganensis next to Clavibacter isolates from grasses rather than to the sole strain we could isolate from wild tomatoes. Pathogenicity profiling of C. michiganensis isolates, together with C. phaseoli and C. californiensis as sister taxa and the wild tomato strain, was found to be congruent with the proposed phylogenetic relationships. We then identified gene enrichment after the evolutionary event, leading to the appearance of the C. michiganesis clade, including known pathogenicity factors but also hitherto unnoticed genes with the ability to encode adaptive traits for a pathogenic lifestyle. The holistic perspective provided by our evolutionary analyses hints towards a host shift event as the origin of C. michiganensis as a tomato pathogen and the existence of pathogenic genes that remain to be characterized.
Collapse
Affiliation(s)
- Alan Guillermo Yañez-Olvera
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Ambar Grissel Gómez-Díaz
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - Nelly Sélem-Mojica
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - Lorena Rodríguez-Orduña
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - José Pablo Lara-Ávila
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - Vanina Varni
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - Florencia Alcoba
- Laboratorio de Microbiología Molecular, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Valentina Croce
- Laboratorio de Microbiología Molecular, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | | | | | - Alfonso Torres Ruíz
- Departamento de Investigación y Desarrollo, Koppert México, Querétaro, Mexico
| | - Félix Tarrats
- Centro Universitario CEICKOR, Bernal, Querétaro, Mexico
| | | | | | | | | | - María Inés Siri
- Laboratorio de Microbiología Molecular, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
- Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
4
|
Omran BA, Rabbee MF, Baek KH. Biologically inspired nanoformulations for the control of bacterial canker pathogens Clavibacter michiganensis subsp. michiganensis and subsp. capsici. J Biotechnol 2024; 392:34-47. [PMID: 38925504 DOI: 10.1016/j.jbiotec.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Clavibacter michiganensis subsp. michiganensis (Cmm) and C. michiganensis subsp. capsici (Cmc) are phytopathogenic bacteria that cause bacterial canker disease in tomatoes and peppers, respectively. Bacterial canker disease poses serious challenges to solanaceous crops, causing significant yield losses and economic costs. Effective management necessitates the development of sustainable control strategies employing nanobiotechnology. In this study, the antibacterial effects of four Aspergillus sojae-mediated nanoformulations, including cobalt oxide nanoparticles (Co3O4 NPs), zinc oxide nanoparticles (ZnO NPs), cobalt ferrite nanoparticles (CoFe2O4 NPs), and CoFe2O4/functionalized multi-walled carbon nanotube (fMWCNT) bionanocomposite, were evaluated against Cmm and Cmc. The diameters of the zone of inhibition of A. sojae-mediated Co3O4 NPs, ZnO NPs, CoFe2O4 NPs, and CoFe2O4/fMWCNT bionanocomposite against Cmm and Cmc were 23.60 mm, 22.09 mm, 27.65 mm, 22.51 mm, and 19.33 mm, 17.66 mm, 21.64 mm, 18.77 mm, respectively. The broth microdilution assay was conducted to determine the minimal inhibitory and bactericidal concentrations. The MICs of Co3O4 NPs, ZnO NPs, CoFe2O4 NPs, and CoFe2O4/fMWCNT bionanocomposite against Cmm were 2.50 mg/mL, 1.25 mg/mL, 2.50 mg/mL, and 2.50 mg/mL, respectively. While, their respective MBCs against Cmm were 5.00 mg/mL, 2.50 mg/mL, 5.00 mg/mL, and 5.00 mg/mL. The respective MICs of Co3O4 NPs, ZnO NPs, CoFe2O4 NPs, and CoFe2O4/fMWCNT bionanocomposite against Cmc were 2.50 mg/mL, 1.25 mg/mL, 5.00 mg/mL, and 5.00 mg/mL. While, their respective MBCs against Cmc were 5.00 mg/mL, 2.50 mg/mL, 10.00 mg/mL, and 10.00 mg/mL. The morphological and ultrastructural changes of Cmm and Cmc cells were observed using field-emission scanning and transmission electron microscopy before and after treatment with sub-minimal inhibitory concentrations of the nanoformulations. Nanoformulation-treated bacterial cells became deformed and disrupted, displaying pits, deep cavities, and groove-like structures. The cell membrane detached from the bacterial cell wall, electron-dense particles accumulated in the cytoplasm, cellular components disintegrated, and the cells were lysed. Direct physical interactions between the prepared nanoformulations with Cmm and Cmc cells might be the major mechanism for their antibacterial potency. Further research is required for the in vivo application of the mycosynthesized nanoformulations as countermeasures to combat bacterial phytopathogens.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt.
| | - Muhammad Fazle Rabbee
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea.
| |
Collapse
|
5
|
Kumar Das P, Hotha S. Total Synthesis of Conjugation-Ready Hyperbranched Pentasaccharide of Clavibacter phaseoli VKM Ac-2641 T by [Au]/[Ag] Catalysis. Org Lett 2024; 26:6709-6713. [PMID: 39052645 DOI: 10.1021/acs.orglett.4c02386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Infections by Clavibacter spp. cause an economic burden to farmers. The components present in the cell wall glycopolymers (CWGs) are important for studying the host-pathogen interactions, colonization, and infection. A pentasaccharide containing a hyperbranched Ribf-, Galf-, and Manp- has recently been identified. Herein, we describe the first total synthesis of the conjugation-ready hyperbranched pentasaccharide of C. phaseoli VKM Ac-2641T using the [Au]/[Ag]-catalyzed glycosidation chemistry of ethynylcyclohexyl carbonate glycosyl donors. The pentasaccharide was synthesized in a highly convergent fashion from readily accessible monosaccharide building blocks.
Collapse
Affiliation(s)
- Pratim Kumar Das
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, India
| |
Collapse
|
6
|
Brochu AS, Dumonceaux TJ, Valenzuela M, Bélanger R, Pérez-López E. A New Multiplex TaqMan qPCR for Precise Detection and Quantification of Clavibacter michiganensis in Seeds and Plant Tissue. PLANT DISEASE 2024; 108:2272-2282. [PMID: 38381965 DOI: 10.1094/pdis-06-23-1194-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial canker of tomato caused by Clavibacter michiganensis (Cm) is one of the most devastating bacterial diseases affecting the tomato industry worldwide. As the result of Cm colonization of the xylem, the susceptible host shows typical symptoms of wilt, marginal leaf necrosis, stem cankers, and ultimately plant death. However, what makes Cm an even more dangerous pathogen is its ability to infect seeds and plants without causing symptoms. Unfortunately, there are no resistant cultivars or effective chemical or biological control methods available to growers against Cm. Its control relies heavily on prevention. The implementation of a rapid and accurate detection tool is imperative to monitor the presence of Cm and prevent its spread. In this study, we developed a specific and sensitive multiplex TaqMan qPCR assay to detect Cm and distinguish it from related bacterial species that affect tomato plants. Two Cm chromosomal virulence-related genes, rhuM and tomA, were used as specific targets. The plant internal control tubulin alpha-3 was included in each of the multiplexes to improve the reliability of the assay. Specificity was evaluated with 37 bacterial strains including other Clavibacter spp. and related and unrelated bacterial pathogens from different geographic locations affecting a wide variety of hosts. Results showed that the assay is able to discriminate Cm strains from other related bacteria. The assay was validated on tissue and seed samples following artificial infection, and all tested samples accurately detected the presence of Cm. The tool described here is highly specific, sensitive, and reliable for the detection of Cm and allows the quantification of Cm in seeds, roots, stems, and leaves. The diagnostic assay can also be adapted for multiple purposes such as seed certification programs, surveillance, biosafety, the effectiveness of control methods, border protection, and epidemiological studies.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Anne-Sophie Brochu
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
- L'Institute EDS, Université Laval, Québec City, Canada
| | - Tim J Dumonceaux
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, Saskatoon, SK, Canada
| | - Miryam Valenzuela
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry & Center of Biotechnology Dr. Daniel Alkalay Lowitt, Universidad Tecnica Federico Santa Maria, Valparaiso 2390123, Chile
| | - Richard Bélanger
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
| | - Edel Pérez-López
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
| |
Collapse
|
7
|
Hwang IS, Oh EJ, Oh CS. A novel virulence gene, cviA1 of Clavibacter michiganensis for necrosis development in the Nicotiana benthamiana plant. Microbiol Res 2024; 285:127743. [PMID: 38733725 DOI: 10.1016/j.micres.2024.127743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Clavibacter michiganensis is a Gram-positive bacterium that causes diverse disease symptoms in tomatoes and Nicotiana benthamiana, a surrogate host plant, including canker, blister lesions, and wilting. Previously, we reported that C. michiganensis also causes necrosis in N. benthamiana leaves. Here, to identify novel virulence genes of C. michiganensis required for necrosis development in N. benthamiana leaves, we screened 1,862 transposon-inserted mutants and identified a mutant strain that exhibited weak and delayed necrosis, whereas there was no discernible difference in blister lesions, canker, or wilting symptoms. Notably, this mutant caused canker similar to that of the wild-type strain, but caused mild wilting in tomato. This mutant carried a transposon in a chromosomal gene, called Clavibactervirulence gene A1 (cviA1). CviA1 encodes a 180-amino acid protein with a signal peptide (SP) at the N-terminus and two putative transmembrane domains (TMs) at the C-terminus. Interestingly, deletion of the SP or the C-terminus, including the two putative TMs, in CviA1 failed to restore full necrosis in the mutant, highlighting the importance of protein secretion and the putative TMs for necrosis. A paralog of cviA1, cviA2 is located on the large plasmid pCM2 of C. michiganensis. Despite its high similarity to cviA1, the introduction of cviA2 into the cviA1 mutant strain did not restore virulence. Similarly, the introduction of cviA1 into the Clavibacter capsici type strain PF008, which initially lacks cviA1, did not enhance necrosis symptoms. These results reveals that the chromosomal cviA1 gene in C. michiganensis plays an important role in necrosis development in N. benthamiana leaves.
Collapse
Affiliation(s)
- In Sun Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, the Republic of Korea
| | - Eom-Ji Oh
- Plant Immunity Research Center, Seoul National University, Seoul 08826, the Republic of Korea
| | - Chang-Sik Oh
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, the Republic of Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, the Republic of Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, the Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, the Republic of Korea.
| |
Collapse
|
8
|
Khojasteh M, Darzi Ramandi H, Taghavi SM, Taheri A, Rahmanzadeh A, Chen G, Foolad MR, Osdaghi E. Unraveling the genetic basis of quantitative resistance to diseases in tomato: a meta-QTL analysis and mining of transcript profiles. PLANT CELL REPORTS 2024; 43:184. [PMID: 38951262 DOI: 10.1007/s00299-024-03268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
KEY MESSAGE Whole-genome QTL mining and meta-analysis in tomato for resistance to bacterial and fungal diseases identified 73 meta-QTL regions with significantly refined/reduced confidence intervals. Tomato production is affected by a range of biotic stressors, causing yield losses and quality reductions. While sources of genetic resistance to many tomato diseases have been identified and characterized, stability of the resistance genes or quantitative trait loci (QTLs) across the resources has not been determined. Here, we examined 491 QTLs previously reported for resistance to tomato diseases in 40 independent studies and 54 unique mapping populations. We identified 29 meta-QTLs (MQTLs) for resistance to bacterial pathogens and 44 MQTLs for resistance to fungal pathogens, and were able to reduce the average confidence interval (CI) of the QTLs by 4.1-fold and 6.7-fold, respectively, compared to the average CI of the original QTLs. The corresponding physical length of the CIs of MQTLs ranged from 56 kb to 6.37 Mb, with a median of 921 kb, of which 27% had a CI lower than 500 kb and 53% had a CI lower than 1 Mb. Comparison of defense responses between tomato and Arabidopsis highlighted 73 orthologous genes in the MQTL regions, which were putatively determined to be involved in defense against bacterial and fungal diseases. Intriguingly, multiple genes were identified in some MQTL regions that are implicated in plant defense responses, including PR-P2, NDR1, PDF1.2, Pip1, SNI1, PTI5, NSL1, DND1, CAD1, SlACO, DAD1, SlPAL, Ph-3, EDS5/SID1, CHI-B/PR-3, Ph-5, ETR1, WRKY29, and WRKY25. Further, we identified a number of candidate resistance genes in the MQTL regions that can be useful for both marker/gene-assisted breeding as well as cloning and genetic transformation.
Collapse
Affiliation(s)
- Moein Khojasteh
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Plant Protection, University of Tehran, Karaj, 31587-77871, Iran
| | - Hadi Darzi Ramandi
- Department of Plant Production and Genetics, Faculty of Agriculture, Bu-Ali Sina University, P.O. Box 657833131, Hamedan, Iran
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran.
| | - Ayat Taheri
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Asma Rahmanzadeh
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
- Department of Plant Protection, University of Tehran, Karaj, 31587-77871, Iran
| | - Gongyou Chen
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Majid R Foolad
- Department of Plant Science and the Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Ebrahim Osdaghi
- Department of Plant Protection, University of Tehran, Karaj, 31587-77871, Iran.
| |
Collapse
|
9
|
Verma RK, Roman-Reyna V, Raanan H, Coaker G, Jacobs JM, Teper D. Allelic variations in the chpG effector gene within Clavibacter michiganensis populations determine pathogen host range. PLoS Pathog 2024; 20:e1012380. [PMID: 39028765 PMCID: PMC11290698 DOI: 10.1371/journal.ppat.1012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 07/31/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024] Open
Abstract
Plant pathogenic bacteria often have a narrow host range, which can vary among different isolates within a population. Here, we investigated the host range of the tomato pathogen Clavibacter michiganensis (Cm). We determined the genome sequences of 40 tomato Cm isolates and screened them for pathogenicity on tomato and eggplant. Our screen revealed that out of the tested isolates, five were unable to cause disease on any of the hosts, 33 were exclusively pathogenic on tomato, and two were capable of infecting both tomato and eggplant. Through comparative genomic analyses, we identified that the five non-pathogenic isolates lacked the chp/tomA pathogenicity island, which has previously been associated with virulence in tomato. In addition, we found that the two eggplant-pathogenic isolates encode a unique allelic variant of the putative serine hydrolase chpG (chpGC), an effector that is recognized in eggplant. Introduction of chpGC into a chpG inactivation mutant in the eggplant-non-pathogenic strain Cm101, failed to complement the mutant, which retained its ability to cause disease in eggplant and failed to elicit hypersensitive response (HR). Conversely, introduction of the chpG variant from Cm101 into an eggplant pathogenic Cm isolate (C48), eliminated its pathogenicity on eggplant, and enabled C48 to elicit HR. Our study demonstrates that allelic variation in the chpG effector gene is a key determinant of host range plasticity within Cm populations.
Collapse
Affiliation(s)
- Raj Kumar Verma
- Dept. of Plant Pathology and Weed Research, Agricultural Research Organization—Volcani Institute, Rishon LeZion, Israel
| | - Veronica Roman-Reyna
- Dept. Of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hagai Raanan
- Dept. of Plant Pathology and Weed Research, Agricultural Research Organization—Gilat Research Center, Negev, Israel
| | - Gitta Coaker
- Dept. of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Jonathan M. Jacobs
- Dept. of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Doron Teper
- Dept. of Plant Pathology and Weed Research, Agricultural Research Organization—Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
10
|
Bekircan Eski D, Gencer D, Darcan C. Whole-genome sequence of a novel lytic bacteriophage infecting Clavibacter michiganensis subsp. michiganensis from Turkey. J Gen Virol 2024; 105. [PMID: 39007232 DOI: 10.1099/jgv.0.002006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Clavibacter michiganensis subsp. michiganensis (Cmm) is an important plant-pathogenic bacterium that causes canker and wilt diseases. Biological control of the disease with bacteriophages is an alternative to conventional methods. In this study, Phage33 infecting Cmm was characterized based on morphological and genomic properties. Morphological characteristics such as shape and size were investigated using electron microscopy. The whole genome was sequenced using the Illumina Novaseq 6000 platform and the sequence was assembled and annotated. VICTOR and VIRIDIC were used for determining the phylogeny and comparing viral genomes, respectively. Electron microscopy showed that Phage33 has an icosahedral head with a diameter of ~55 nm and a long, thin, non-contractile tail ~169 nm in length. The genome of Phage33 is 56 324 bp in size, has a GC content of 62.49 % and encodes 67 open reading frames. Thirty-seven ORFs showed high homology to functionally annotated bacteriophage proteins in the NCBI database. The remaining 30 ORFs were identified as hypothetical with unknown functions. The genome contains no antimicrobial resistance, no lysogenicity and no virulence signatures, suggesting that it is a suitable candidate for biocontrol agents. The results of a blastn search showed similarity to the previously reported Xylella phage Sano, with an average nucleotide sequence identity of 92.37 % and query coverage of 91 %. This result was verified using VICTOR and VIRIDIC analysis, and suggests that Phage33 is a new member of the genus Sanovirus under the class Caudoviricetes.
Collapse
Affiliation(s)
- Duygu Bekircan Eski
- Department of Biotechnology, Bilecik Seyh Edebali University, 11100 Bilecik, Turkey
| | - Donus Gencer
- Department of Property Protection and Security, Şalpazarı Vocational School, Trabzon University, 61670 Şalpazarı, Trabzon, Turkey
| | - Cihan Darcan
- Department of Molecular Biology and Genetics, Bilecik Seyh Edebali University, 11100 Bilecik, Turkey
| |
Collapse
|
11
|
Hussain MA, Nijabat A, Rehman MMU, Qurashi R, Siddiqui MH, Alamri S, Mashwani ZUR, Leghari SUK, Shah MA, Zaman QU. Management of Tomato Bacterial Canker Disease by the Green Fabricated Silver Nanoparticles. BMC PLANT BIOLOGY 2024; 24:597. [PMID: 38914943 PMCID: PMC11197350 DOI: 10.1186/s12870-024-05238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
Bacterial canker disease caused by Clavibacter michiganensis is a substantial threat to the cultivation of tomatoes, leading to considerable economic losses and global food insecurity. Infection is characterized by white raised lesions on leaves, stem, and fruits with yellow to tan patches between veins, and marginal necrosis. Several agrochemical substances have been reported in previous studies to manage this disease but these were not ecofriendly. Thus present study was designed to control the bacterial canker disease in tomato using green fabricated silver nanoparticles (AgNps). Nanosilver particles (AgNPs) were synthesized utilizing Moringa oleifera leaf extract as a reducing and stabilizing agent. Synthesized AgNPs were characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Fourier transform infrared spectrometry (FTIR). FTIR showed presence of bioactive compounds in green fabricated AgNPs and UV-visible spectroscopy confirmed the surface plasmon resonance (SPR) band in the range of 350 nm to 355 nm. SEM showed the rectangular segments fused together, and XRD confirmed the crystalline nature of the synthesized AgNPs. The presence of metallic silver ions was confirmed by an EDX detector. Different concentrations (10, 20, 30, and 40 ppm) of the green fabricated AgNPs were exogenously applied on tomato before applying an inoculum of Clavibacter michigensis to record the bacterial canker disease incidence at different day intervals. The optimal concentration of AgNPs was found to be 30 µg/mg that exhibited the most favorable impact on morphological (shoot length, root length, plant fresh and dry weights, root fresh and dry weights) and physiological parameters (chlorophyll contents, membrane stability index, and relative water content) as well as biochemical parameters (proline, total soluble sugar and catalase activity). These findings indicated a noteworthy reduction in biotic stress through the increase of both enzymatic and non-enzymatic activities by the green fabricated AgNPs. This study marks a first biocompatible approach in assessing the potential of green fabricated AgNPs in enhancing the well-being of tomato plants that affected with bacterial canker and establishing an effective management strategy against Clavibacter michiganensis. This is the first study suggests that low concentration of green fabricated nanosilvers (AgNPs) from leaf extract of Moringa oleifera against Clavibacter michiganensis is a promisingly efficient and eco-friendly alternative approach for management of bacterial canker disease in tomato crop.
Collapse
Affiliation(s)
- Muhammad Arif Hussain
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
- Department of Botany, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Aneela Nijabat
- Department of Botany, University of Mianwali, Mianwali, 42200, Pakistan.
| | | | - Rahmatullah Qurashi
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | | | | | | | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore, 54590, Pakistan.
| |
Collapse
|
12
|
Shokoohi E, Machado RAR, Masoko P. Bacterial communities associated with Acrobeles complexus nematodes recovered from tomato crops in South Africa. PLoS One 2024; 19:e0304663. [PMID: 38843239 PMCID: PMC11156337 DOI: 10.1371/journal.pone.0304663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024] Open
Abstract
The productivity of agricultural ecosystems is heavily influenced by soil-dwelling organisms. To optimize agricultural practices and management, it is critical to know the composition, abundance, and interactions of soil microorganisms. Our study focused on Acrobeles complexus nematodes collected from tomato fields in South Africa and analyzed their associated bacterial communities utilizing metabarcoding analysis. Our findings revealed that A. complexus forms associations with a wide range of bacterial species. Among the most abundant species identified, we found Dechloromonas sp., a bacterial species commonly found in aquatic sediments, Acidovorax temperans, a bacterial species commonly found in activated sludge, and Lactobacillus ruminis, a commensal motile lactic acid bacterium that inhabits the intestinal tracts of humans and animals. Through principal component analysis (PCA), we found that the abundance of A. complexus in the soil is negatively correlated with clay content (r = -0.990) and soil phosphate levels (r = -0.969) and positively correlated with soil sand content (r = 0.763). This study sheds light on the bacterial species associated to free-living nematodes in tomato crops in South Africa and highlights the occurrence of various potentially damaging and beneficial nematode-associated bacteria, which can in turn, impact soil health and tomato production.
Collapse
Affiliation(s)
- Ebrahim Shokoohi
- Department of Biochemistry, Microbiology, and Biotechnology, University of Limpopo, Sovenga, South Africa
| | - Ricardo A. R. Machado
- Experimental Biology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - Peter Masoko
- Department of Biochemistry, Microbiology, and Biotechnology, University of Limpopo, Sovenga, South Africa
| |
Collapse
|
13
|
Islam T, Haque MA, Barai HR, Istiaq A, Kim JJ. Antibiotic Resistance in Plant Pathogenic Bacteria: Recent Data and Environmental Impact of Unchecked Use and the Potential of Biocontrol Agents as an Eco-Friendly Alternative. PLANTS (BASEL, SWITZERLAND) 2024; 13:1135. [PMID: 38674544 PMCID: PMC11054394 DOI: 10.3390/plants13081135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The economic impact of phytopathogenic bacteria on agriculture is staggering, costing billions of US dollars globally. Pseudomonas syringae is the top most phytopathogenic bacteria, having more than 60 pathovars, which cause bacteria speck in tomatoes, halo blight in beans, and so on. Although antibiotics or a combination of antibiotics are used to manage infectious diseases in plants, they are employed far less in agriculture compared to human and animal populations. Moreover, the majority of antibiotics used in plants are immediately washed away, leading to environmental damage to ecosystems and food chains. Due to the serious risk of antibiotic resistance (AR) and the potential for environmental contamination with antibiotic residues and resistance genes, the use of unchecked antibiotics against phytopathogenic bacteria is not advisable. Despite the significant concern regarding AR in the world today, there are inadequate and outdated data on the AR of phytopathogenic bacteria. This review presents recent AR data on plant pathogenic bacteria (PPB), along with their environmental impact. In light of these findings, we suggest the use of biocontrol agents as a sustainable, eco-friendly, and effective alternative to controlling phytopathogenic bacteria.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh;
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Arif Istiaq
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St Louis, MO 63110-1010, USA
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
14
|
Oh EJ, Hwang IS, Kwon CT, Oh CS. A Putative Apoplastic Effector of Clavibacter capsici, ChpG Cc as Hypersensitive Response and Virulence (Hrv) Protein in Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:370-379. [PMID: 38148291 DOI: 10.1094/mpmi-09-23-0145-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Clavibacter bacteria use secreted apoplastic effectors, such as putative serine proteases, for virulence in host plants and for hypersensitive response (HR) induction in nonhost plants. Previously, we have shown that Clavibacter capsici ChpGCc is important for the necrosis development in pepper (Capsicum annuum) leaves. Here, we determine the function of ChpGCc, along with three paralogous proteins, for HR induction in the apoplastic space of a nonhost plant, Nicotiana tabacum. The full-length and signal peptide-deleted (ΔSP) mature forms of all proteins fused with the tobacco PR1b signal sequence were generated. The full-length and ΔSP forms of ChpGCc and only the ΔSP forms of ChpECc and Pat-1Cc, but none of the ChpCCc, triggered HR. Based on the predicted protein structures, ChpGCc carries amino acids for a catalytic triad and a disulfide bridge in positions like Pat-1Cm. Substituting these amino acids of ChpGCc with alanine abolished or reduced HR-inducing activity. To determine whether these residues are important for necrosis development in pepper, alanine-substituted chpGCc genes were transformed into the C. capsici PF008ΔpCM1 strain, which lacks the intact chpGCc gene. The strain with any variants failed to restore the necrosis-causing ability. These results suggest that ChpGCc has a dual function as a virulence factor in host plants and an HR elicitor in nonhost plants. Based on our findings and previous results, we propose Clavibacter apoplastic effectors, such as ChpGCc, Pat-1Cm, Chp-7Cs, and ChpGCm, as hypersensitive response and virulence (Hrv) proteins that display phenotypic similarities to the hypersensitive response and pathogenicity (Hrp) proteins found in gram-negative bacteria. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Eom-Ji Oh
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| | - In Sun Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Choon-Tak Kwon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Korea
| | - Chang-Sik Oh
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
15
|
Zhou H, Li QX, Zeng L, Cao C, Zhang T, Zhou Y, He H. Uracil hydrazones: design, synthesis, antimicrobial activities, and putative mode of action. PEST MANAGEMENT SCIENCE 2024; 80:414-425. [PMID: 37708309 DOI: 10.1002/ps.7771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Crop diseases caused by plant pathogenic fungi and bacteria have led to substantial losses in global food production. Chemical pesticides have been widely used as a primary means to mitigate these issues. Nevertheless, the persistent and excessive use of pesticides has resulted in the emergence of microbial resistance. Moreover, the improper application and excessive utilization of pesticides can contribute to environmental pollution and the persistence of pesticide residues. Consequently, the development of novel and highly effective bactericides and fungicides to combat plant pathogens holds immense practical importance. RESULTS A series of uracil hydrazones IV-B was deliberately designed and evaluated for their antimicrobial efficacy. The results of bioassays indicated that most IV-B exhibited >80% inhibition against the fungal species Monilia fructigena and Sclerotium rolfsii, as well as the bacterial species Clavibacter michiganensis subsp. michiganensis, Xanthomonas oryzae pv. oryzae, and Ralstonia solanacearum, at 50 μg/mL in vitro. In vivo, IV-B20 showed 89.9% of curative and 71.8% of protective activities against C. michiganensis subsp. michiganensis at 100 μg/mL superior to thiodiazole copper and copper hydroxide. IV-B20 also showed excellent protective activity against M. fructigena (96.3% at 200 μg/mL) and S. rolfsii (80.4% at 1000 μg/mL), which were greater than chlorothalonil and equivalent to thifluzamide. Mechanistic studies revealed that IV-B20 induced oxidative damage in pathogenic bacteria and promoted the leakage of cellular contents. CONCLUSION This study suggests that IV-B20 with uracil hydrazone skeleton has great potential as an antimicrobial candidate. These findings lay a foundation for practical application in agriculture. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Zhou
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Lei Zeng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Congwang Cao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Tuotuo Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Yuan Zhou
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Hongwu He
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
16
|
Pinto M, Soares C, Andreani T, Fidalgo F, Tavares F. Eucalyptus globulus Leaf Aqueous Extract Differentially Inhibits the Growth of Three Bacterial Tomato Pathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:1727. [PMID: 37111950 PMCID: PMC10146791 DOI: 10.3390/plants12081727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
As available tools for crop disease management are scarce, new, effective, and eco-friendly solutions are needed. So, this study aimed at assessing the antibacterial activity of a dried leaf Eucalyptus globulus Labill. aqueous extract (DLE) against Pseudomonas syringae pv. tomato (Pst), Xanthomonas euvesicatoria (Xeu), and Clavibacter michiganensis michiganensis (Cmm). For this, the inhibitory activity of different concentrations of DLE (0, 15, 30, 45, 60, 75, 90, 105, 120, 135, and 250 g L-1) was monitored against the type strains of Pst, Xeu, and Cmm through the obtention of their growth curves. After 48 h, results showed that the pathogen growth was strongly inhibited by DLE, with Xeu the most susceptible species (15 g L-1 MIC and IC50), followed by Pst (30 g L-1 MIC and IC50), and Cmm (45 and 35 g L-1 MIC and IC50, respectively). Additionally, using the resazurin assay, it was possible to verify that DLE considerably impaired cell viability by more than 86%, 85%, and 69% after Pst, Xeu, and Cmm were incubated with DLE concentrations equal to or higher than their MIC, respectively. However, only the treatment with DLE at 120 g L-1 did not induce any hypersensitive response in all pathogens when treated bacterial suspensions were infiltrated onto tobacco leaves. Overall, DLE can represent a great strategy for the prophylactic treatment of tomato-associated bacterial diseases or reduce the application of environmentally toxic approaches.
Collapse
Affiliation(s)
- Mafalda Pinto
- GreenUPorto-Sustainable Agrifood Production Research Centre/INOV4AGRO, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Cristiano Soares
- GreenUPorto-Sustainable Agrifood Production Research Centre/INOV4AGRO, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Tatiana Andreani
- GreenUPorto-Sustainable Agrifood Production Research Centre/INOV4AGRO, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Fidalgo
- GreenUPorto-Sustainable Agrifood Production Research Centre/INOV4AGRO, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernando Tavares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| |
Collapse
|
17
|
Wu J, Ohura T, Ogura R, Wang J, Choi JH, Kobori H, D’Alessandro-Gabazza CN, Toda M, Yasuma T, Gabazza EC, Takikawa Y, Hirai H, Kawagishi H. Bioactive Compounds from the Mushroom-Forming Fungus Chlorophyllum molybdites. Antibiotics (Basel) 2023; 12:596. [PMID: 36978462 PMCID: PMC10044768 DOI: 10.3390/antibiotics12030596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
A novel compound (1) along with two known compounds (2 and 3) were isolated from the culture broth of Chlorophyllum molybdites, and three known compounds (4-6) were isolated from its fruiting bodies. The planar structure of 1 was determined by the interpretation of spectroscopic data. By comparing the specific rotation of the compound with that of the analog compound, the absolute configuration of 1 was determined to be R. This is the first time that compounds 2-4 were isolated from a mushroom-forming fungus. Compound 2 showed significant inhibition activity against Axl and immune checkpoints (PD-L1, PD-L2). In the bioassay to examine growth inhibitory activity against the phytopathogenic bacteria Peptobacterium carotovorum, Clavibacter michiganensis and Burkholderia glumae, compounds 2 and 3 inhibited the growth of P. carotovorum and C. michiganensis. In the bioassay to examine plant growth regulatory activity, compounds 1-4 showed a significant regulatory activity on lettuce growth.
Collapse
Affiliation(s)
- Jing Wu
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Takeru Ohura
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Ryuhei Ogura
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Junhong Wang
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jae-Hoon Choi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hajime Kobori
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Iwade Research Institute of Mycology Co., Ltd., Suehirocho 1-9, Tsu 514-0012, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu 524-8507, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu 524-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu 524-8507, Japan
| | - Yuichi Takikawa
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
| | - Hirofumi Hirai
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
18
|
Benchlih S, Esmaeel Q, Aberkani K, Tahiri A, Belabess Z, Lahlali R, Barka EA. Modes of Action of Biocontrol Agents and Elicitors for sustainable Protection against Bacterial Canker of Tomato. Microorganisms 2023; 11:microorganisms11030726. [PMID: 36985299 PMCID: PMC10054590 DOI: 10.3390/microorganisms11030726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Tomato is one of the world’s most commonly grown and consumed vegetables. However, it can be attacked by the Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis (Cmm), which causes bacterial canker on tomato plants, resulting in significant financial losses in field production and greenhouses worldwide. The current management strategies rely principally on the application of various chemical pesticides and antibiotics, which represent a real danger to the environment and human safety. Plant growth-promoting rhizobacteria (PGPR) have emerged as an attractive alternative to agrochemical crop protection methods. PGPR act through several mechanisms to support plant growth and performance, while also preventing pathogen infection. This review highlights the importance of bacterial canker disease and the pathogenicity of Cmm. We emphasize the application of PGPR as an ecological and cost-effective approach to the biocontrol of Cmm, specifying the complex modes of biocontrol agents (BCAs), and presenting their direct/indirect mechanisms of action that enable them to effectively protect tomato crops. Pseudomonas and Bacillus are considered to be the most interesting PGPR species for the biological control of Cmm worldwide. Improving plants’ innate defense mechanisms is one of the main biocontrol mechanisms of PGPR to manage bacterial canker and to limit its occurrence and gravity. Herein, we further discuss elicitors as a new management strategy to control Cmm, which are found to be highly effective in stimulating the plant immune system, decreasing disease severity, and minimizing pesticide use.
Collapse
Affiliation(s)
- Salma Benchlih
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707-USC INRAE1488, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Faculté Poly-Disciplinaire de Nador, University Mohammed Premier, Oujda 60000, Morocco
| | - Qassim Esmaeel
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707-USC INRAE1488, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Kamal Aberkani
- Faculté Poly-Disciplinaire de Nador, University Mohammed Premier, Oujda 60000, Morocco
| | - Abdessalem Tahiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
| | - Zineb Belabess
- Plant Protection Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Km 13, Route Haj Kaddour, BP.578, Meknes 50001, Morocco
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
- Correspondence: (R.L.); (E.A.B.)
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707-USC INRAE1488, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Correspondence: (R.L.); (E.A.B.)
| |
Collapse
|
19
|
Deletion of pbpC Enhances Bacterial Pathogenicity on Tomato by Affecting Biofilm Formation, Exopolysaccharides Production, and Exoenzyme Activities in Clavibacter michiganensis. Int J Mol Sci 2023; 24:ijms24065324. [PMID: 36982399 PMCID: PMC10049144 DOI: 10.3390/ijms24065324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/14/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Penicillin-binding proteins (PBPs) are considered essential for bacterial peptidoglycan biosynthesis and cell wall assembly. Clavibacter michiganensis is a representative Gram-positive bacterial species that causes bacterial canker in tomato. pbpC plays a significant role in maintaining cell morphological characteristics and stress responses in C. michiganensis. The current study demonstrated that the deletion of pbpC commonly enhances bacterial pathogenicity in C. michiganensis and revealed the mechanisms through which this occurs. The expression of interrelated virulence genes, including celA, xysA, xysB, and pelA, were significantly upregulated in △pbpC mutants. Compared with those in wild-type strains, exoenzyme activities, the formation of biofilm, and the production of exopolysaccharides (EPS) were significantly increased in △pbpC mutants. It is noteworthy that EPS were responsible for the enhancement in bacterial pathogenicity, with the degree of necrotic tomato stem cankers intensifying with the injection of a gradient of EPS from C. michiganensis. These findings highlight new insights into the role of pbpC affecting bacterial pathogenicity, with an emphasis on EPS, advancing the current understanding of phytopathogenic infection strategies for Gram-positive bacteria.
Collapse
|
20
|
Nishioka T, Takai Y, Mishima T, Tanimoto H, Okada K, Misawa T, Kusakari S. Inactivation efficacy of low-pressure plasma treatment against seed-borne tomato pathogen Clavibacter michiganensis and effect of seed setting position and mesh sheet usage. JOURNAL OF MICROORGANISM CONTROL 2023; 28:123-128. [PMID: 37866894 DOI: 10.4265/jmc.28.3_123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Clavibacter michiganensis, a gram-positive actinomycete, is a major seed-borne tomato pathogen. We investigated the inactivation efficacy of low-pressure plasma treatment against C. michiganensis inoculated on tomato seeds by placing them on a mesh sheet above the bottom dielectric glass plate. The 2- and 5-minute plasma treatment reduced C. michiganensis populations on the tomato seeds by 0.8 and 1.8 log cfu/seed, respectively. The reduction rates were similar to those of C. michiganensis on shirona (cruciferous) seeds, which have different shapes and surface structures. In contrast, the inactivation of C. michiganensis cells using plasma was more difficult than that of X. campestris cells. Additionally, it was found that placing seeds on a mesh sheet laid on the dielectric glass plate was remarkably effective in inactivating the pathogens on tomato seeds. Since the tomato seeds were susceptible to damage from plasma treatment, methods to reduce its damage need to be investigated.
Collapse
Affiliation(s)
- Terumi Nishioka
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture
| | - Yuichiro Takai
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture
| | - Tomoko Mishima
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture
- Present address: Industrial Technology Center of Nagasaki
| | - Hideo Tanimoto
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture
| | - Kiyotsugu Okada
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture
| | | | - Shinichi Kusakari
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture
| |
Collapse
|
21
|
Muthu Narayanan M, Ahmad N, Shivanand P, Metali F. The Role of Endophytes in Combating Fungal- and Bacterial-Induced Stress in Plants. Molecules 2022; 27:6549. [PMID: 36235086 PMCID: PMC9571366 DOI: 10.3390/molecules27196549] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Plants are subjected to multifaceted stresses that significantly jeopardize crop production. Pathogenic microbes influence biotic stress in plants, which ultimately causes annual crop loss worldwide. Although the use of pesticides and fungicides can curb the proliferation of pathogens in plants and enhance crop production, they pollute the environment and cause several health issues in humans and animals. Hence, there is a need for alternative biocontrol agents that offer an eco-friendly mode of controlling plant diseases. This review discusses fungal- and bacterial-induced stress in plants, which causes various plant diseases, and the role of biocontrol defense mechanisms, for example, the production of hydrolytic enzymes, secondary metabolites, and siderophores by stress-tolerant fungi and bacteria to combat plant pathogens. It is observed that beneficial endophytes could sustain crop production and resolve the issues regarding crop yield caused by bacterial and fungal pathogens. The collated literature review indicates that future research is necessary to identify potential biocontrol agents that can minimize the utility of synthetic pesticides and increase the tenable agricultural production.
Collapse
Affiliation(s)
| | | | - Pooja Shivanand
- Environmental and Life Sciences Program, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan BE1410, Brunei
| | | |
Collapse
|
22
|
Verma RK, Teper D. Immune recognition of the secreted serine protease ChpG restricts the host range of Clavibacter michiganensis from eggplant varieties. MOLECULAR PLANT PATHOLOGY 2022; 23:933-946. [PMID: 35441490 PMCID: PMC9190982 DOI: 10.1111/mpp.13215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 05/06/2023]
Abstract
Bacterial wilt and canker caused by Clavibacter michiganensis (Cm) inflict considerable damage in tomato-growing regions around the world. Cm has a narrow host range and can cause disease in tomato but not in many eggplant varieties. The pathogenicity of Cm is dependent on secreted serine proteases, encoded by the chp/tomA pathogenicity island (PI), and the pCM2 plasmid. Screening combinations of PI deletion mutants and plasmid-cured strains found that Cm-mediated hypersensitive response (HR) in the Cm-resistant eggplant variety Black Queen is dependent on the chp/tomA PI. Singular reintroduction of PI-encoded serine proteases into Cm∆PI identified that the HR is elicited by the protease ChpG. Eggplant leaves infiltrated with a chpG marker exchange mutant (CmΩchpG) did not display an HR, and infiltration of purified ChpG protein elicited immune responses in eggplant but not in Cm-susceptible tomato. Virulence assays found that while wild-type Cm and the CmΩchpG complemented strain were nonpathogenic on eggplant, CmΩchpG caused wilt and canker symptoms. Additionally, bacterial populations in CmΩchpG-inoculated eggplant stem tissues were c.1000-fold higher than wild-type and CmΩchpG-complemented Cm strains. Pathogenicity tests conducted in multiple Cm-resistance eggplant varieties demonstrated that immunity to Cm is dependent on ChpG in all tested varieties, indicating that ChpG-recognition is conserved in eggplant. ChpG-mediated avirulence interactions were disabled by alanine substitution of serine231 of the serine protease catalytic triad, suggesting that protease activity is required for immune recognition of ChpG. Our study identified ChpG as a novel avirulence protein that is recognized in resistant eggplant varieties and restricts the host range of Cm.
Collapse
Affiliation(s)
- Raj Kumar Verma
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteRishon LeZionIsrael
| | - Doron Teper
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteRishon LeZionIsrael
| |
Collapse
|
23
|
Advances in the Characterization of the Mechanism Underlying Bacterial Canker Development and Tomato Plant Resistance. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacterial canker caused by the Gram-positive actinobacterium Clavibacter michiganensis is one of the most serious bacterial diseases of tomatoes, responsible for 10–100% yield losses worldwide. The pathogen can systemically colonize tomato vascular bundles, leading to wilting, cankers, bird’s eye lesions, and plant death. Bactericidal agents are insufficient for managing this disease, because the pathogen can rapidly migrate through the vascular system of plants and induce systemic symptoms. Therefore, the use of resistant cultivars is necessary for controlling this disease. We herein summarize the pathogenicity of C. michiganensis in tomato plants and the molecular basis of bacterial canker pathogenesis. Moreover, advances in the characterization of resistance to this pathogen in tomatoes are introduced, and the status of genetics-based research is described. Finally, we propose potential future research on tomato canker resistance. More specifically, there is a need for a thorough analysis of the host–pathogen interaction, the accelerated identification and annotation of resistance genes and molecular mechanisms, the diversification of resistance resources or exhibiting broad-spectrum disease resistance, and the production of novel and effective agents for control or prevention. This review provides researchers with the relevant information for breeding tomato cultivars resistant to bacterial cankers.
Collapse
|
24
|
Kong Q, Zhang W, An M, Kulyar MFEA, Shang Z, Tan Z, Xu Y, Li J, Liu S. Characterization of Bacterial Microbiota Composition in Healthy and Diarrheal Early-Weaned Tibetan Piglets. Front Vet Sci 2022; 9:799862. [PMID: 35280137 PMCID: PMC8905297 DOI: 10.3389/fvets.2022.799862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
The occurrence of diarrhea in Tibetan piglets is highly notable, but the microorganisms responsible are yet unclear. Its high incidence results in serious economic losses for the Tibetan pig industry. Moreover, the dynamic balance of intestinal microflora plays a crucial role in maintaining host health, as it is a prime cause of diarrhea. Therefore, the present study was performed to analyze the characteristics of bacterial microbiota structure in healthy, diarrheal and treated weaned piglets in Tibet autonomous region for providing a theoretical basis to prevent and control diarrhea. The study was based on the V3–V4 region of the 16S rRNA gene and gut microbiota functions following the metagenome analysis of fresh fecal samples (n = 5) from different groups. The Shannon and Simpson indices differed substantially between diarrheal and treated groups (p < 0.05). According to our findings, the beta diversities, especially between healthy and diarrheal groups, were found different. Firmicutes, Bacteroidetes and Proteobacteria were the dominant phyla in three groups. Furthermore, the abundance of Fusobacteria in the diarrheal group was higher than the other groups. The dominant genera in the diarrheal group were Fusobacterium, Butyricimonas, Sutterella, Peptostreptococcus, and Pasteurella. Moreover, Lactobacillus, Megasphaera and Clavibacter were distinctly less abundant in this group. It is noteworthy that the specific decrease in the abundance of pathogenic bacteria after antibiotic treatment in piglets was noticed, while the level of Lactobacillus was evidently increased. In conclusion, fecal microbial composition and structure variations were discovered across the three groups. Also, the ecological balance of the intestinal microflora was disrupted in diarrheal piglets. It might be caused by a reduction in the relative number of beneficial bacteria and an increase in the abundance of pathogenic bacteria. In the context of advocating for non-resistant feeding, we suspect that the addition of probiotics to feed may prevent early-weaning diarrhea in piglets. Moreover, our findings might help for preventing diarrhea in weaned Tibetan piglets with a better understanding of microbial population dynamics.
Collapse
Affiliation(s)
- Qinghui Kong
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Qinghui Kong
| | - Wenqian Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Miao An
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | | | - Zhenda Shang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
- Tibetan Plateau Feed Processing Engineering Research Center, Linzhi, China
| | - Zhankun Tan
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
- Tibetan Plateau Feed Processing Engineering Research Center, Linzhi, China
| | - Yefen Xu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
| | - Jiakui Li
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Jiakui Li
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, China
- Tibetan Plateau Feed Processing Engineering Research Center, Linzhi, China
- Suozhu Liu
| |
Collapse
|
25
|
Makhubu FN, Nkadimeng SM, Fouche G, Khosa MC, McGaw LJ. Isolation and characterisation of nematicidal compound, leolorin C, from Leonotis leonurus acetone leaf extract. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114802. [PMID: 34752900 DOI: 10.1016/j.jep.2021.114802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leonotis leonurus (L.) R.Br. (Lamiaceae) is a perennial shrub native to South Africa used to treat various diseases including digestive tract problems, intestinal worms and constipation. AIM OF THE STUDY The aim was to isolate and characterise nematicidal compounds from leaves of L. leonurus. MATERIALS AND METHODS Bioassay-guided fractionation was carried out using the free-living nematode Caenorhabditis elegans as a model organism. Structural elucidation of the purified compound was carried out using NMR spectroscopic analyses and UPLC-QTOF-MS. The fractions and the isolated compound were tested for nematicidal activity on motility of plant-parasitic Meloidogyne incognita juveniles (J2s) and J2 hatch inhibition. Further screening was done to determine the minimum inhibitory concentration (MIC) of the fractions against bacterial phytopathogens and cytotoxicity against Vero kidney cells. RESULTS Leoleorin C isolated from L. leonurus had moderate activity against C. elegans juveniles (34%) but was not active against J2 motility and J2 hatch of M. incognita. Thus, activity against the free-living C. elegans did not correspond with efficacy against plant-parasitic nematodes. Leoleorin C was not active against the tested bacterial phytopathogens, but some activity was observed in the bioautography assay against Clavibacter michiganensis subsp. michiganensis, the organism causing bacterial canker in tomatoes. The plant extract, fractions and leolorin C were relatively non-toxic to Vero cells with LC50 values greater than 0.01 mg/mL. CONCLUSION The crude extract of L. leonurus and fractions may be useful in developing complementary treatments for controlling nematodes and phytopathogens. This study does not support the use of free-living nematodes as a model to isolate anti-parasitic compounds from plants.
Collapse
Affiliation(s)
- F N Makhubu
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa.
| | - S M Nkadimeng
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa.
| | - G Fouche
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa; Department of Chemistry, University of Pretoria, Pretoria, South Africa.
| | - M C Khosa
- Institute of Tropical and Subtropical Crops, Agricultural Research Council, Mbombela, South Africa.
| | - L J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa.
| |
Collapse
|
26
|
Jang H, Kim ST, Sang MK. Suppressive Effect of Bioactive Extracts of Bacillus sp. H8-1 and Bacillus sp. K203 on Tomato Wilt Caused by Clavibacter michiganensis subsp. michiganensis. Microorganisms 2022; 10:microorganisms10020403. [PMID: 35208859 PMCID: PMC8880269 DOI: 10.3390/microorganisms10020403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
Tomatoes are cultivated worldwide, and are economically important. Clavibacter michiganensis subsp. michiganensis (Cmm) is a pathogen that causes canker and wilting in tomatoes, resulting in serious damage to tomato plants. We aimed to control Cmm proliferation using substances produced by useful microorganisms. The water extracts of strains H8-1 and K203 inhibited wilting caused by Cmm and slowed the pathogenic colonization in tomato plants. The relative expressions of celA, celB, pat1, and pelA of Cmm treated with the bacterial water extracts were reduced by 0.41-, 0.01-, 0.15-, and 0.14-fold for H8-1, respectively, and 0.45-, 0.02-, 0.13-, and 0.13-fold for K203, respectively, compared to controls at 72 h after treatments. In tomato plants inoculated with Cmm, when water extracts of H8-1 and K203 were treated, relative expression of ACO encoding 1-aminocyclopropane-1-carboxylic acid oxidase was suppressed by 0.26- and 0.23-fold, respectively, while PR1a was increased by 1.94- and 2.94-fold, respectively; PI2 expression was increased by 3.27-fold in water extract of H8-1-treated plants. As antioxidant enzymes of plants inoculated with Cmm, peroxidase and glutathione peroxidase levels were increased in K203-water-extract-treated plants, and catalase was increased in the case of the H8-1 water extract at 10 days after inoculation. In terms of soil enzyme activity, each water extract tended to increase urease activity and microbial diversity; in addition, K203 water extract increased plant growth. Thus, H8-1 and K203 water extracts can be used as potential biocontrol agents against Cmm.
Collapse
Affiliation(s)
- Hwajin Jang
- Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.J.); (S.T.K.)
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Sang Tae Kim
- Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.J.); (S.T.K.)
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Mee Kyung Sang
- Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.J.); (S.T.K.)
- Correspondence: ; Tel.: +82-63-238-3055; Fax: +82-63-238-3834
| |
Collapse
|
27
|
Wang L, Tian Q, Zhou P, Zhao W, Sun X. Evaluation of Droplet Digital PCR for the Detection of Black Canker Disease in Tomato. PLANT DISEASE 2022; 106:395-405. [PMID: 34569829 DOI: 10.1094/pdis-02-21-0317-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Clavibacter michiganensis subsp. michiganensis, the cause of bacterial canker disease, is one of the most destructive pathogens in greenhouse and field tomato. The pathogen is now present in all main production areas of tomato and is widely distributed in the European and Mediterranean Plant Protection Organization region. The inspection and quarantine of the plant pathogens relies heavily on accurate detection tools. Primers and probes reported in previous studies do not distinguish the C. michiganensis subsp. michiganensis pathogen from other closely related subspecies of C. michiganensis, especially the nonpathogenic subspecies that were identified from tomato seeds recently. Here, we have developed a droplet digital PCR (ddPCR) method for the identification of this specific bacterium with primers/TaqMan probe set designed based on the pat-1 gene of C. michiganensis subsp. michiganensis. This new primers/probe set has been evaluated by real-time PCR (qPCR) and ddPCR. The detection results suggest that the ddPCR method established in this study was highly specific for the target strains. The result showed the positive amplification for all five C. michiganensis subsp. michiganensis strains, and no amplification was observed for the other 43 tested bacteria, including the closely related C. michiganensis strains. The detection threshold of ddPCR was 10.8 CFU/ml for both pure C. michiganensis subsp. michiganensis cell suspensions and infected tomato seed, which was 100-fold more sensitive than qPCR performed using the same primers and probe. The data obtained suggest that our established ddPCR could detect C. michiganensis subsp. michiganensis even with low bacterial load, which could facilitate both C. michiganensis subsp. michiganensis inspection for pathogen quarantine and the routine pathogen detection for disease control of black canker in tomato.
Collapse
Affiliation(s)
- Li Wang
- Laboratory of Plant Immunity and Plant Disease Ecological Control, College of Plant Protection, Southwest University, Chongqing 400716, China
- Institute of Plant Quarantine Research, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Guizhou Academy of Forestry, Guiyang 550011, China
| | - Qian Tian
- Institute of Plant Quarantine Research, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Pei Zhou
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wenjun Zhao
- Institute of Plant Quarantine Research, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Xianchao Sun
- Laboratory of Plant Immunity and Plant Disease Ecological Control, College of Plant Protection, Southwest University, Chongqing 400716, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400716, China
| |
Collapse
|
28
|
Abebe AM, Oh CS, Kim HT, Choi G, Seo E, Yeam I, Lee JM. QTL-Seq Analysis for Identification of Resistance Loci to Bacterial Canker in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 12:809959. [PMID: 35154207 PMCID: PMC8826648 DOI: 10.3389/fpls.2021.809959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Bacterial canker caused by Clavibacter michiganensis (Cm) is one of the most economically important vascular diseases causing unilateral leaf wilting, stem canker, a bird's-eye lesion on fruit, and whole plant wilting in tomato. There is no commercially available cultivar with bacterial canker resistance, and genomics-assisted breeding can accelerate the development of cultivars with enhanced resistance. Solanum lycopersicum "Hawaii 7998" was found to show bacterial canker resistance. A Quantitative trait loci (QTL)-seq was performed to identify the resistance loci using 909 F2 individuals derived from a cross between S. lycopersicum "E6203" (susceptible) and "Hawaii 7998," and a genomic region (37.24-41.15 Mb) associated with bacterial canker resistance on chromosome 6 (Rcm6) was found. To dissect the Rcm6 region, 12 markers were developed and several markers were associated with the resistance phenotypes. Among the markers, the Rcm6-9 genotype completely matched with the phenotype in the 47 cultivars. To further validate the Rcm6 as a resistance locus and the Rcm6-9 efficiency, subsequent analysis using F2 and F3 progenies was conducted. The progeny individuals with homozygous resistance allele at the Rcm6-9 showed significantly lower disease severity than those possessing homozygous susceptibility alleles. Genomes of five susceptible and two resistant cultivars were analyzed and previously known R-genes were selected to find candidate genes for Rcm6. Nucleotide-binding leucine-rich repeat, receptor-like kinase, and receptor-like protein were identified to have putative functional mutations and show differential expression upon the Cm infection. The DNA markers and candidate genes will facilitate marker-assisted breeding and provide genetic insight of bacterial canker resistance in tomato.
Collapse
Affiliation(s)
- Alebel Mekuriaw Abebe
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
| | - Hyoung Tae Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Giwon Choi
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Eunyoung Seo
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Inhwa Yeam
- Department of Horticulture and Breeding, Andong National University, Andong, South Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
29
|
Jagdale S, Rao U, Giri AP. Effectors of Root-Knot Nematodes: An Arsenal for Successful Parasitism. FRONTIERS IN PLANT SCIENCE 2021; 12:800030. [PMID: 35003188 PMCID: PMC8727514 DOI: 10.3389/fpls.2021.800030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/23/2021] [Indexed: 05/13/2023]
Abstract
Root-knot nematodes (RKNs) are notorious plant-parasitic nematodes first recorded in 1855 in cucumber plants. They are microscopic, obligate endoparasites that cause severe losses in agriculture and horticulture. They evade plant immunity, hijack the plant cell cycle, and metabolism to modify healthy cells into giant cells (GCs) - RKN feeding sites. RKNs secrete various effector molecules which suppress the plant defence and tamper with plant cellular and molecular biology. These effectors originate mainly from sub-ventral and dorsal oesophageal glands. Recently, a few non-oesophageal gland secreted effectors have been discovered. Effectors are essential for the entry of RKNs in plants, subsequently formation and maintenance of the GCs during the parasitism. In the past two decades, advanced genomic and post-genomic techniques identified many effectors, out of which only a few are well characterized. In this review, we provide molecular and functional details of RKN effectors secreted during parasitism. We list the known effectors and pinpoint their molecular functions. Moreover, we attempt to provide a comprehensive insight into RKN effectors concerning their implications on overall plant and nematode biology. Since effectors are the primary and prime molecular weapons of RKNs to invade the plant, it is imperative to understand their intriguing and complex functions to design counter-strategies against RKN infection.
Collapse
Affiliation(s)
- Shounak Jagdale
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ashok P. Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
30
|
Stevens DM, Tang A, Coaker G. A Genetic Toolkit for Investigating Clavibacter Species: Markerless Deletion, Permissive Site Identification, and an Integrative Plasmid. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1336-1345. [PMID: 34890250 DOI: 10.1094/mpmi-07-21-0171-ta] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of knockout mutants and expression variants are critical for understanding genotype-phenotype relationships. However, advances in these techniques in gram-positive actinobacteria have stagnated over the last decade. Actinobacteria in the Clavibacter genus are composed of diverse crop pathogens that cause a variety of wilt and cankering diseases. Here, we present a suite of tools for genetic manipulation in the tomato pathogen Clavibacter michiganensis including a markerless deletion system, an integrative plasmid, and an R package for identification of permissive sites for plasmid integration. The vector pSelAct-KO is a recombination-based, markerless knockout system that uses dual selection to engineer seamless deletions of a region of interest, providing opportunities for repeated higher-order genetic knockouts. The efficacy of pSelAct-KO was demonstrated in C. michiganensis and was confirmed using whole-genome sequencing. We developed permissR, an R package to identify permissive sites for chromosomal integration, which can be used in conjunction with pSelAct-Express, a nonreplicating integrative plasmid that enables recombination into a permissive genomic location. Expression of enhanced green fluorescent protein by pSelAct-Express was verified in two candidate permissive regions predicted by permissR in C. michiganensis. These molecular tools are essential advances for investigating gram-positive actinobacteria, particularly for important pathogens in the Clavibacter genus.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Danielle M Stevens
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis, CA 95616, U.S.A
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, U.S.A
| | - Andrea Tang
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, U.S.A
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, U.S.A
| |
Collapse
|
31
|
Marcelino-Pérez G, Ruiz-Medrano R, Gallardo-Hernández S, Xoconostle-Cázares B. Adsorption of Recombinant Human β-Defensin 2 and Two Mutants on Mesoporous Silica Nanoparticles and Its Effect against Clavibacter michiganensis subsp. michiganensis. NANOMATERIALS 2021; 11:nano11082144. [PMID: 34443974 PMCID: PMC8400394 DOI: 10.3390/nano11082144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/06/2021] [Accepted: 08/14/2021] [Indexed: 12/14/2022]
Abstract
Solanum lycopersicum L. is affected among other pests and diseases, by the actinomycete Clavibacter michiganensis subsp. michiganensis (Cmm), causing important economic losses worldwide. Antimicrobial peptides (AMPs) are amphipathic cationic oligopeptides with which the development of pathogenic microorganisms has been inhibited. Therefore, in this study, we evaluate antimicrobial activity of mesoporous silica nanoparticles (MSN5.4) loaded with human β-defensin-2 (hβD2) and two mutants (TRX-hβD2-M and hβD2-M) against Cmm. hβD2, TRX-hβD2-M and hβD2-M presented a half-maximum inhibitory concentration (IC50) of 3.64, 1.56 and 6.17 μg/mL, respectively. MSNs had average particle sizes of 140 nm (SEM) and a tunable pore diameter of 4.8 up to 5.4 nm (BJH). AMPs were adsorbed more than 99% into MSN and a first release after 24 h was observed. The MSN loaded with the AMPs inhibited the growth of Cmm in solid and liquid media. It was also determined that MSNs protect AMPs from enzymatic degradation when the MSN/AMPs complexes were exposed to a pepsin treatment. An improved AMP performance was registered when it was adsorbed in the mesoporous matrix. The present study could expand the applications of MSNs loaded with AMPs as a biological control and provide new tools for the management of phytopathogenic microorganisms.
Collapse
Affiliation(s)
- Gabriel Marcelino-Pérez
- Programa de Doctorado en Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Ciudad de México 07360, Mexico;
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Ciudad de México 07360, Mexico;
| | - Salvador Gallardo-Hernández
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Ciudad de México 07360, Mexico
- Correspondence: (S.G.-H.); (B.X.-C.)
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Ciudad de México 07360, Mexico;
- Correspondence: (S.G.-H.); (B.X.-C.)
| |
Collapse
|
32
|
Tsitsekian D, Daras G, Karamanou K, Templalexis D, Koudounas K, Malliarakis D, Koufakis T, Chatzopoulos D, Goumas D, Ntoukakis V, Hatzopoulos P, Rigas S. Clavibacter michiganensis Downregulates Photosynthesis and Modifies Monolignols Metabolism Revealing a Crosstalk with Tomato Immune Responses. Int J Mol Sci 2021; 22:8442. [PMID: 34445148 PMCID: PMC8395114 DOI: 10.3390/ijms22168442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
The gram-positive pathogenic bacterium Clavibacter michiganensis subsp. michiganensis (Cmm) causes bacterial canker disease in tomato, affecting crop yield and fruit quality. To understand how tomato plants respond, the dynamic expression profile of host genes was analyzed upon Cmm infection. Symptoms of bacterial canker became evident from the third day. As the disease progressed, the bacterial population increased in planta, reaching the highest level at six days and remained constant till the twelfth day post inoculation. These two time points were selected for transcriptomics. A progressive down-regulation of key genes encoding for components of the photosynthetic apparatus was observed. Two temporally separated defense responses were observed, which were to an extent interdependent. During the primary response, genes of the phenylpropanoid pathway were diverted towards the synthesis of monolignols away from S-lignin. In dicots, lignin polymers mainly consist of G- and S-units, playing an important role in defense. The twist towards G-lignin enrichment is consistent with previous findings, highlighting a response to generate an early protective barrier and to achieve a tight interplay between lignin recomposition and the primary defense response mechanism. Upon progression of Cmm infection, the temporal deactivation of phenylpropanoids coincided with the upregulation of genes that belong in a secondary response mechanism, supporting an elegant reprogramming of the host transcriptome to establish a robust defense apparatus and suppress pathogen invasion. This high-throughput analysis reveals a dynamic reorganization of plant defense mechanisms upon bacterial infection to implement an array of barriers preventing pathogen invasion and spread.
Collapse
Affiliation(s)
- Dikran Tsitsekian
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (D.T.); (G.D.); (K.K.); (D.T.); (K.K.)
| | - Gerasimos Daras
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (D.T.); (G.D.); (K.K.); (D.T.); (K.K.)
| | - Konstantina Karamanou
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (D.T.); (G.D.); (K.K.); (D.T.); (K.K.)
| | - Dimitris Templalexis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (D.T.); (G.D.); (K.K.); (D.T.); (K.K.)
| | - Konstantinos Koudounas
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (D.T.); (G.D.); (K.K.); (D.T.); (K.K.)
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 37200 Tours, France
| | - Dimitris Malliarakis
- Laboratory of Plant Pathology-Bacteriology, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, 71004 Heraklio, Greece; (D.M.); (D.G.)
| | | | | | - Dimitris Goumas
- Laboratory of Plant Pathology-Bacteriology, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, 71004 Heraklio, Greece; (D.M.); (D.G.)
| | - Vardis Ntoukakis
- School of Life Sciences and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK;
| | - Polydefkis Hatzopoulos
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (D.T.); (G.D.); (K.K.); (D.T.); (K.K.)
| | - Stamatis Rigas
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (D.T.); (G.D.); (K.K.); (D.T.); (K.K.)
| |
Collapse
|
33
|
Wang S, Vetukuri RR, Kushwaha SK, Hedley PE, Morris J, Studholme DJ, Welsh LRJ, Boevink PC, Birch PRJ, Whisson SC. Haustorium formation and a distinct biotrophic transcriptome characterize infection of Nicotiana benthamiana by the tree pathogen Phytophthora kernoviae. MOLECULAR PLANT PATHOLOGY 2021; 22:954-968. [PMID: 34018655 PMCID: PMC8295517 DOI: 10.1111/mpp.13072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 05/29/2023]
Abstract
Phytophthora species cause some of the most serious diseases of trees and threaten forests in many parts of the world. Despite the generation of genome sequence assemblies for over 10 tree-pathogenic Phytophthora species and improved detection methods, there are many gaps in our knowledge of how these pathogens interact with their hosts. To facilitate cell biology studies of the infection cycle we examined whether the tree pathogen Phytophthora kernoviae could infect the model plant Nicotiana benthamiana. We transformed P. kernoviae to express green fluorescent protein (GFP) and demonstrated that it forms haustoria within infected N. benthamiana cells. Haustoria were also formed in infected cells of natural hosts, Rhododendron ponticum and European beech (Fagus sylvatica). We analysed the transcriptome of P. kernoviae in cultured mycelia, spores, and during infection of N. benthamiana, and detected 12,559 transcripts. Of these, 1,052 were predicted to encode secreted proteins, some of which may function as effectors to facilitate disease development. From these, we identified 87 expressed candidate RXLR (Arg-any amino acid-Leu-Arg) effectors. We transiently expressed 12 of these as GFP fusions in N. benthamiana leaves and demonstrated that nine significantly enhanced P. kernoviae disease progression and diversely localized to the cytoplasm, nucleus, nucleolus, and plasma membrane. Our results show that N. benthamiana can be used as a model host plant for studying this tree pathogen, and that the interaction likely involves suppression of host immune responses by RXLR effectors. These results establish a platform to expand the understanding of Phytophthora tree diseases.
Collapse
Affiliation(s)
- Shumei Wang
- Division of Plant SciencesUniversity of DundeeJames Hutton InstituteInvergowrie, DundeeUK
| | - Ramesh R. Vetukuri
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
| | - Sandeep K. Kushwaha
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
- National Institute of Animal BiotechnologyHyderabadIndia
| | - Pete E. Hedley
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | - Jenny Morris
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | - David J. Studholme
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Lydia R. J. Welsh
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | - Petra C. Boevink
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | - Paul R. J. Birch
- Division of Plant SciencesUniversity of DundeeJames Hutton InstituteInvergowrie, DundeeUK
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | | |
Collapse
|
34
|
Vallejo-Pérez MR, Sosa-Herrera JA, Navarro-Contreras HR, Álvarez-Preciado LG, Rodríguez-Vázquez ÁG, Lara-Ávila JP. Raman Spectroscopy and Machine-Learning for Early Detection of Bacterial Canker of Tomato: The Asymptomatic Disease Condition. PLANTS (BASEL, SWITZERLAND) 2021; 10:1542. [PMID: 34451590 PMCID: PMC8399098 DOI: 10.3390/plants10081542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022]
Abstract
Bacterial canker of tomato is caused by Clavibacter michiganensis subsp. michiganensis (Cmm). The disease is highly destructive, because it produces latent asymptomatic infections that favor contagion rates. The present research aims consisted on the implementation of Raman spectroscopy (RS) and machine-learning spectral analysis as a method for the early disease detection. Raman spectra were obtained from infected asymptomatic tomato plants (BCTo) and healthy controls (HTo) with 785 nm excitation laser micro-Raman spectrometer. Spectral data were normalized and processed by principal component analysis (PCA), then the classifiers algorithms multilayer perceptron (PCA + MLP) and linear discriminant analysis (PCA + LDA) were implemented. Bacterial isolation and identification (16S rRNA gene sequencing) were realized of each plant studied. The Raman spectra obtained from tomato leaf samples of HTo and BCTo exhibited peaks associated to cellular components, and the most prominent vibrational bands were assigned to carbohydrates, carotenoids, chlorophyll, and phenolic compounds. Biochemical changes were also detectable in the Raman spectral patterns. Raman bands associated with triterpenoids and flavonoids compounds can be considered as indicators of Cmm infection during the asymptomatic stage. RS is an efficient, fast and reliable technology to differentiate the tomato health condition (BCTo or HTo). The analytical method showed high performance values of sensitivity, specificity and accuracy, among others.
Collapse
Affiliation(s)
- Moisés Roberto Vallejo-Pérez
- Consejo Nacional de Ciencia y Tecnología-Universidad Autónoma de San Luis Potosí, CIACYT, Alvaro Obregon 64, Col. Centro, San Luis Potosí 78000, Mexico
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Col Lomas 2a. Sección, San Luis Potosí 78210, Mexico; (H.R.N.-C.); (L.G.Á.-P.); (Á.G.R.-V.)
| | - Jesús Antonio Sosa-Herrera
- Consejo Nacional de Ciencia y Tecnología-Centro de Investigación en Ciencias de Información Geoespacial A. C., Laboratorio Nacional de Geointeligencia, Aguascalientes 20313, Mexico;
| | - Hugo Ricardo Navarro-Contreras
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Col Lomas 2a. Sección, San Luis Potosí 78210, Mexico; (H.R.N.-C.); (L.G.Á.-P.); (Á.G.R.-V.)
| | - Luz Gabriela Álvarez-Preciado
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Col Lomas 2a. Sección, San Luis Potosí 78210, Mexico; (H.R.N.-C.); (L.G.Á.-P.); (Á.G.R.-V.)
| | - Ángel Gabriel Rodríguez-Vázquez
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Col Lomas 2a. Sección, San Luis Potosí 78210, Mexico; (H.R.N.-C.); (L.G.Á.-P.); (Á.G.R.-V.)
| | - José Pablo Lara-Ávila
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, Km. 14.5 Carretera San Luis Potosí, Matehuala, Ejido Palma de la Cruz, Soledad de Graciano Sánchez, San Luis Potosí 78321, Mexico;
| |
Collapse
|
35
|
Valenzuela M, González M, Velásquez A, Dorta F, Montenegro I, Besoain X, Salvà-Serra F, Jaén-Luchoro D, Moore ERB, Seeger M. Analyses of Virulence Genes of Clavibacter michiganensis subsp. michiganensis Strains Reveal Heterogeneity and Deletions That Correlate with Pathogenicity. Microorganisms 2021; 9:microorganisms9071530. [PMID: 34361965 PMCID: PMC8305413 DOI: 10.3390/microorganisms9071530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 12/04/2022] Open
Abstract
Clavibacter michiganensis subsp. michiganensis (Cmm) is the causal agent of bacterial canker of tomato. Differences in virulence between Cmm strains have been reported. The aim of this study was the characterization of nine Cmm strains isolated in Chile to reveal the causes of their differences in virulence. The virulence assays in tomato seedlings revealed different levels of severity associated with the strains, with two highly virulent strains and one causing only mild symptoms. The two most virulent showed increased cellulase activity, and no cellulase activity was observed in the strain causing mild symptoms. In three strains, including the two most virulent strains, PCR amplification of the 10 virulence genes analyzed was observed. In the strain causing mild symptoms, no amplification was observed for five genes, including celA. Sequence and cluster analyses of six virulence genes grouped the strains, as has been previously reported, except for gene pelA1. Gene sequence analysis from the genomes of five Chilean strains revealed the presence of deletions in the virulence genes, celB, xysA, pat-1, and phpA. The results of this study allow us to establish correlations between the differences observed in disease severity and the presence/absence of genes and deletions not previously reported.
Collapse
Affiliation(s)
- Miryam Valenzuela
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Valparaíso 2390136, Chile;
- Correspondence: (M.V.); (M.S.)
| | - Marianela González
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile;
| | - Alexis Velásquez
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Valparaíso 2390136, Chile;
| | - Fernando Dorta
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Valparaíso 2390136, Chile;
| | - Iván Montenegro
- Escuela de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2540064, Chile;
| | - Ximena Besoain
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile;
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-41346 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, SE-41346 Gothenburg, Sweden
- Microbiology, Department of Biology, University of the Balearic Islands, 071 22 Palma de Mallorca, Spain
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-41346 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, SE-41346 Gothenburg, Sweden
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-41346 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, SE-41346 Gothenburg, Sweden
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Valparaíso 2390136, Chile;
- Correspondence: (M.V.); (M.S.)
| |
Collapse
|
36
|
Peritore-Galve FC, Tancos MA, Smart CD. Bacterial Canker of Tomato: Revisiting a Global and Economically Damaging Seedborne Pathogen. PLANT DISEASE 2021; 105:1581-1595. [PMID: 33107795 DOI: 10.1094/pdis-08-20-1732-fe] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The gram-positive actinobacterium Clavibacter michiganensis is the causal agent of bacterial canker of tomato, an economically impactful disease with a worldwide distribution. This seedborne pathogen systemically colonizes tomato xylem leading to unilateral leaflet wilt, marginal leaf necrosis, stem and petiole cankers, and plant death. Additionally, splash dispersal of the bacterium onto fruit exteriors causes bird's-eye lesions, which are characterized as necrotic centers surrounded by white halos. The pathogen can colonize developing seeds systemically through xylem and through penetration of fruit tissues from the exterior. There are currently no commercially available resistant cultivars, and bactericidal sprays have limited efficacy for managing the disease once the pathogen is in the vascular system. In this review, we summarize research on epidemiology, host colonization, the bacterial genetics underlying virulence, and management of bacterial canker. Finally, we highlight important areas of research into this pathosystem that have the potential to generate new strategies for prevention and mitigation of bacterial canker.
Collapse
Affiliation(s)
- F Christopher Peritore-Galve
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Matthew A Tancos
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Frederick, MD 21702
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| |
Collapse
|
37
|
Basim H, Basim E, Tombuloglu H, Unver T. Comparative transcriptome analysis of resistant and cultivated tomato lines in response to Clavibacter michiganensis subsp. michiganensis. Genomics 2021; 113:2455-2467. [PMID: 34052318 DOI: 10.1016/j.ygeno.2021.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022]
Abstract
Clavibacter michiganensis subsp. michiganensis (Cmm) is a gram-positive bacterium causing destructive bacterial wilt and canker disease in tomato. Herein, a comparative transcriptome analysis was performed on Cmm-resistant and -susceptible tomato lines. Tomato seedlings were inoculated with Cmm and harvested for transcriptome analysis after 4 and 8 day time-points. Twenty-four transcriptome libraries were profiled by RNA sequencing approach. Total of 545 million clean reads was generated. 1642 and 2715 differentially expressed genes (DEG) were identified in susceptible lines within 4 and 8 days after inoculation (DAI), respectively. In resistant lines, 1731 and 1281 DEGs were found following 4 and 8 DAI, respectively. Gene Ontology analysis resulted in a higher number of genes involved in biological processes and molecular functions in susceptible lines. On the other hand, such biological processes, "defense response", and "response to stress" were distinctly indicated in resistant lines which were not found in susceptible ones upon inoculation, according to the gene set enrichment analyses. Upon Cmm-inoculation, several defense responsive genes were found to be differentially expressed. Of which 26 genes were in the resistant line and three were in the susceptible line. This study helps to understand the transcriptome response of Cmm-resistant and -susceptible tomato lines. The results provide comprehensive data for molecular breeding studies, for the purpose to control of the pathogen in tomato.
Collapse
Affiliation(s)
- Huseyin Basim
- Department of Plant Protection, Faculty of Agriculture, Akdeniz University, 07070 Antalya, Turkey.
| | - Esin Basim
- Department of Organic Agriculture, Technical Sciences Vocational School, Akdeniz University, 07070 Antalya, Turkey
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Turgay Unver
- Ficus Biotechnology, Ostim OSB Mah, 100. Yil Blv, No:55, Yenimahalle, Ankara, Turkey
| |
Collapse
|
38
|
Li MSM, Piccoli DA, McDowell T, MacDonald J, Renaud J, Yuan ZC. Evaluating the biocontrol potential of Canadian strain Bacillus velezensis 1B-23 via its surfactin production at various pHs and temperatures. BMC Biotechnol 2021; 21:31. [PMID: 33926450 PMCID: PMC8082884 DOI: 10.1186/s12896-021-00690-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/08/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Microorganisms, including Bacillus species are used to help control plant pathogens, thereby reducing reliance on synthetic pesticides in agriculture. Bacillus velezensis strain 1B-23 has been shown to reduce symptoms of bacterial disease caused by Clavibacter michiganensis subsp. michiganensis in greenhouse-grown tomatoes, with in vitro studies implicating the lipopeptide surfactin as a key antimicrobial. While surfactin is known to be effective against many bacterial pathogens, it is inhibitory to a smaller proportion of fungi which nonetheless cause the majority of crop diseases. In addition, knowledge of optimal conditions for surfactin production in B. velezensis is lacking. RESULTS Here, B. velezensis 1B-23 was shown to inhibit in vitro growth of 10 fungal strains including Candida albicans, Cochliobolus carbonum, Cryptococcus neoformans, Cylindrocarpon destructans Fusarium oxysporum, Fusarium solani, Monilinia fructicola, and Rhizoctonia solani, as well as two strains of C. michiganensis michiganensis. Three of the fungal strains (C. carbonum, C. neoformans, and M. fructicola) and the bacterial strains were also inhibited by purified surfactin (surfactin C, or [Leu7] surfactin C15) from B. velezensis 1B-23. Optimal surfactin production occurred in vitro at a relatively low temperature (16 °C) and a slightly acidic pH of 6.0. In addition to surfactin, B. velenzensis also produced macrolactins, cyclic dipeptides and minor amounts of iturins which could be responsible for the bioactivity against fungal strains which were not inhibited by purified surfactin C. CONCLUSIONS Our study indicates that B. velezensis 1B-23 has potential as a biocontrol agent against both bacterial and fungal pathogens, and may be particularly useful in slightly acidic soils of cooler climates.
Collapse
Affiliation(s)
- Michelle S M Li
- Department of Microbiology and Immunology, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| | - David A Piccoli
- Department of Microbiology and Immunology, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| | - Tim McDowell
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada
| | - Jacqueline MacDonald
- Department of Microbiology and Immunology, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| | - Justin Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada
| | - Ze-Chun Yuan
- Department of Microbiology and Immunology, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada. .,London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada.
| |
Collapse
|
39
|
Anzalone A, Di Guardo M, Bella P, Ghadamgahi F, Dimaria G, Zago R, Cirvilleri G, Catara V. Bioprospecting of Beneficial Bacteria Traits Associated With Tomato Root in Greenhouse Environment Reveals That Sampling Sites Impact More Than the Root Compartment. FRONTIERS IN PLANT SCIENCE 2021; 12:637582. [PMID: 33927735 PMCID: PMC8078776 DOI: 10.3389/fpls.2021.637582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/10/2021] [Indexed: 05/06/2023]
Abstract
Tomato is subject to several diseases that affect both field- and greenhouse-grown crops. To select cost-effective potential biocontrol agents, we used laboratory throughput screening to identify bacterial strains with versatile characteristics suitable for multipurpose uses. The natural diversity of tomato root-associated bacterial communities was bioprospected under a real-world environment represented by an intensive tomato cultivation area characterized by extraseasonal productions in the greenhouse. Approximately 400 tomato root-associated bacterial isolates, in majority Gram-negative bacteria, were isolated from three compartments: the soil close to the root surface (rhizosphere, R), the root surface (rhizoplane, RP), and the root interior (endorhizosphere, E). A total of 33% of the isolates produced siderophores and were able to solubilize phosphates and grow on NA with 8% NaCl. A total of 30% of the root-associated bacteria showed antagonistic activity against all the tomato pathogens tested, i.e., Clavibacter michiganesis pv. michiganensis, Pseudomonas syringae pv. tomato, Pseudomonas corrugata and Xanthomonas euvesicatoria pv. perforans, and Fusarium oxysporum f. sp. lycopersici. We found that the sampling site rather than the root compartment of isolation influenced bacterial composition in terms of analyzed phenotype. This was demonstrated through a diversity analysis including general characteristics and PGPR traits, as well as biocontrol activity in vitro. Analysis of 16S rRNA gene (rDNA) sequencing of 77 culturable endophytic bacteria that shared multiple beneficial activity revealed a predominance of bacteria in Bacillales, Enterobacteriales, and Pseudomonadales. Their in vitro antagonistic activity showed that Bacillus species were significantly more active than the isolates in the other taxonomic group. In planta activity against phytopathogenic bacteria of a subset of Bacillus and Pseudomonas isolates was also assessed.
Collapse
Affiliation(s)
- Alice Anzalone
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Mario Di Guardo
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Patrizia Bella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Farideh Ghadamgahi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Giulio Dimaria
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | | | - Gabriella Cirvilleri
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Vittoria Catara
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| |
Collapse
|
40
|
A Novel Isolate of Bacillus cereus Promotes Growth in Tomato and Inhibits Clavibacter michiganensis Infection under Greenhouse Conditions. PLANTS 2021; 10:plants10030506. [PMID: 33803105 PMCID: PMC8001772 DOI: 10.3390/plants10030506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022]
Abstract
The need to produce food in a sustainable way to counteract the effects of excessive use of agrochemicals opens the door to the generation of new technologies that are not based on fossil fuels and are less toxic to ecosystems. Plant growth-promoting bacteria (PGPB) could represent an alternative to chemical biofertilizers and pesticides offering protection for biotic and abiotic stresses. In this work, a bacterial isolate from roots of castor bean (Ricinus communis) was identified and named as Bacillus cereus strain “Amazcala” (B.c-A). This isolate displayed the ability to solubilize inorganic phosphate and produce gibberellic acid (GA3). Moreover, this bacterium provided significant increases in height, stem width, dry weight, and total chlorophyll content in tomato plants. Interestingly, B.c-A also significantly decreased the severity of bacterial canker disease on tomato caused by Clavibacter michiganensis (Cmm) in preventive disease assays under greenhouse conditions. Based on our results, B.c-A can be considered as PGPB and a useful tool in Cmm disease control on tomato plant under greenhouse conditions.
Collapse
|
41
|
Pang Z, Dong F, Liu Q, Lin W, Hu C, Yuan Z. Soil Metagenomics Reveals Effects of Continuous Sugarcane Cropping on the Structure and Functional Pathway of Rhizospheric Microbial Community. Front Microbiol 2021; 12:627569. [PMID: 33746921 PMCID: PMC7973049 DOI: 10.3389/fmicb.2021.627569] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/08/2021] [Indexed: 12/25/2022] Open
Abstract
The continuous cropping of plants can result in the disruption of the soil microbial community and caused significant declines in yields. However, there are few reports on the effects of continuous cropping of sugarcane on the microbial community structure and functional pathway. In the current study, we analyzed the structural and functional changes of microbial community structure in the rhizospheric soil of sugarcane in different continuous cropping years using Illumina Miseq high-throughput sequencing and metagenomics analysis. We collected rhizosphere soils from fields of no continuous cropping history (NCC), 10 years of continuous cropping (CC10), and 30 years of continuous cropping (CC30) periods in the Fujian province. The results demonstrated that continuous sugarcane cropping resulted in significant changes in the physicochemical properties of soil and the composition of soil bacterial and fungal communities. With the continuous cropping, the crop yield dramatically declined from NCC to CC30. Besides, the redundancy analysis (RDA) of the dominant bacterial and fungal phyla and soil physicochemical properties revealed that the structures of the bacterial and fungal communities were mainly driven by pH and TS. Analysis of potential functional pathways during the continuous cropping suggests that different KEGG pathways were enriched in different continuous cropping periods. The significant reduction of bacteria associated with rhizospheric soil nitrogen and sulfur cycling functions and enrichment of pathogenic bacteria may be responsible for the reduction of effective nitrogen and total sulfur content in rhizospheric soil of continuous sugarcane as well as the reduction of sugarcane yield and sugar content. Additionally, genes related to nitrogen and sulfur cycling were identified in our study, and the decreased abundance of nitrogen translocation genes and AprAB and DsrAB in the dissimilatory sulfate reduction pathway could be the cause of declined biomass. The findings of this study may provide a theoretical basis for uncovering the mechanism of obstacles in continuous sugarcane cropping and provide better guidance for sustainable development of the sugarcane.
Collapse
Affiliation(s)
- Ziqin Pang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- Province and Ministry Co-sponsored Collaborative Innovation Center of Sugar Industry, Nanning, China
| | - Fei Dong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiang Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chaohua Hu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhaonian Yuan
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- Province and Ministry Co-sponsored Collaborative Innovation Center of Sugar Industry, Nanning, China
| |
Collapse
|
42
|
Hamamoto E, Kimura N, Nishino S, Ishihara A, Otani H, Osaki-Oka K. Antimicrobial activity of the volatile compound 3,5-dichloro-4-methoxybenzaldehyde, produced by the mushroom Porostereum spadiceum, against plant-pathogenic bacteria and fungi. J Appl Microbiol 2021; 131:1431-1439. [PMID: 33524179 DOI: 10.1111/jam.15020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/27/2022]
Abstract
AIMS In this study, volatile compounds released from mycelia of some aromatic mushrooms were investigated for their inhibitory activity against plant-pathogenic bacteria and fungi. METHODS AND RESULTS A screening revealed that volatile compounds from mycelia of Porostereum spadiceum remarkably inhibited the colony formation of plant-pathogenic bacteria, including Clavibacter michiganensis subsp. michiganensis and Ralstonia solanacearum while also inhibiting the conidial germination of plant-pathogenic fungi including Alternaria brassicicola and Colletotrichum orbiculare. The volatile compounds were isolated from the culture filtrate of P. spadiceum, and 3,4-dichloro-4-methoxybenzaldehyde (DCMB) was identified as a major compound. DCMB significantly inhibited bacterial colonization at 10 μg ml-1 and fungal conidial germination at 0·1-1 μg ml-1 as a vapour. CONCLUSIONS This is the first report on the production of the volatile compound DCMB by P. spadiceum and on the antimicrobial activity of DCMB against plant-pathogenic bacteria and fungi at low concentrations. It may be possible to use the compound as an agent for protecting crops from bacterial and fungal diseases during cultivation and storage. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides an understanding of antimicrobial activity of the mushroom volatile compound that may be useful as a novel biological control agent for protecting various plant diseases.
Collapse
Affiliation(s)
- E Hamamoto
- Faculty of Agriculture, Tottori University, Tottori, Japan.,Kumiai Chemical Industry Co., Ltd, Tokyo, Japan
| | - N Kimura
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - S Nishino
- Faculty of Agriculture, Tottori University, Tottori, Japan.,Odawara Research Center, Nippon Soda Co., Ltd., Kanagawa, Japan
| | - A Ishihara
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - H Otani
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - K Osaki-Oka
- Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
43
|
Hanika K, Schipper D, Chinnappa S, Oortwijn M, Schouten HJ, Thomma BPHJ, Bai Y. Impairment of Tomato WAT1 Enhances Resistance to Vascular Wilt Fungi Despite Severe Growth Defects. FRONTIERS IN PLANT SCIENCE 2021; 12:721674. [PMID: 34589102 PMCID: PMC8473820 DOI: 10.3389/fpls.2021.721674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/25/2021] [Indexed: 05/18/2023]
Abstract
Verticillium dahliae is a particularly notorious vascular wilt pathogen of tomato and poses a reoccurring challenge to crop protection as limited qualitative resistance is available. Therefore, alternative approaches for crop protection are pursued. One such strategy is the impairment of disease susceptibility (S) genes, which are plant genes targeted by pathogens to promote disease development. In Arabidopsis and cotton, the Walls Are Thin 1 (WAT1) gene has shown to be a S gene for V. dahliae. In this study, we identified the tomato WAT1 homolog Solyc04g080940 (SlWAT1). Transient and stable silencing of SlWAT1, based on virus-induced gene silencing (VIGS) and RNAi, respectively, did not consistently lead to reduced V. dahliae susceptibility in tomato. However, CRISPR-Cas9 tomato mutant lines carrying targeted deletions in SlWAT1 showed significantly enhanced resistance to V. dahliae, and furthermore also to Verticillium albo-atrum and Fusarium oxysporum f. sp. lycopersici (Fol). Thus, disabling the tomato WAT1 gene resulted in broad-spectrum resistance to various vascular pathogens in tomato. Unfortunately these tomato CRISPR mutant lines suffered from severe growth defects. In order to overcome the pleiotropic effect caused by the impairment of the tomato WAT1 gene, future efforts should be devoted to identifying tomato SlWAT1 mutant alleles that do not negatively impact tomato growth and development.
Collapse
Affiliation(s)
- Katharina Hanika
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Danny Schipper
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Shravya Chinnappa
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Marian Oortwijn
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Henk J. Schouten
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Bart P. H. J. Thomma
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
- *Correspondence: Yuling Bai,
| |
Collapse
|
44
|
de Freire Bastos MDC, Miceli de Farias F, Carlin Fagundes P, Varella Coelho ML. Staphylococcins: an update on antimicrobial peptides produced by staphylococci and their diverse potential applications. Appl Microbiol Biotechnol 2020; 104:10339-10368. [PMID: 33128614 DOI: 10.1007/s00253-020-10946-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022]
Abstract
Staphylococcins are antimicrobial peptides or proteins produced by staphylococci. They can be separated into different classes, depending on their amino acid composition, structural complexity, and steps involved in their production. In this review, an overview of the current knowledge on staphylococcins will be presented with emphasis on the information collected in the last decade, including a brief description of new peptides. Most staphylococcins characterized to date are either lantibiotics or linear class II bacteriocins. Recently, gene clusters coding for production of circular bacteriocins, sactipeptides, and thiopeptides have been mined from the genome of staphylococcal isolates. In contrast to class II bacteriocins, lantibiotics, sactipeptides, and thiopeptides undergo post-translational modifications that can be quite extensive, depending on the peptide. Few staphylococcins inhibit only some staphylococcal species, but most of them have proven to target pathogens belonging to different genera and involved in a variety of infectious diseases of clinical or agronomic importance. Therefore, these peptides exhibit potential application as anti-infective drugs in different areas. This review will also cover this diverse and remarkable potential. To be commercialized, however, staphylococcin production should be cost-effective and result in high bacteriocin yields, which are not generally achieved from the culture supernatant of their native producers. Such low yields make their production quite costly and not suitable at large industrial scale. Efforts already made to overcome this limitation, minimizing costs and time of production of some staphylococcins and employing either chemical synthesis or in vivo biosynthesis, will be addressed in this review as well. KEY POINTS: • Staphylococci produce a variety of antimicrobial peptides known as staphylococcins. • Most staphylococcins are post-translationally modified peptides. • Staphylococcins exhibit potential biotechnological applications. Graphical abstract.
Collapse
Affiliation(s)
- Maria do Carmo de Freire Bastos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Felipe Miceli de Farias
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Patrícia Carlin Fagundes
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Marcus Lívio Varella Coelho
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.,Instituto Nacional da Propriedade Industrial, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
45
|
Méndez V, Valenzuela M, Salvà-Serra F, Jaén-Luchoro D, Besoain X, Moore ERB, Seeger M. Comparative Genomics of Pathogenic Clavibacter michiganensis subsp. michiganensis Strains from Chile Reveals Potential Virulence Features for Tomato Plants. Microorganisms 2020; 8:microorganisms8111679. [PMID: 33137950 PMCID: PMC7692107 DOI: 10.3390/microorganisms8111679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
The genus Clavibacter has been associated largely with plant diseases. The aims of this study were to characterize the genomes and the virulence factors of Chilean C. michiganensis subsp. michiganensis strains VL527, MSF322 and OP3, and to define their phylogenomic positions within the species, Clavibacter michiganensis. VL527 and MSF322 genomes possess 3,396,632 and 3,399,199 bp, respectively, with a pCM2-like plasmid in strain VL527, with pCM1- and pCM2-like plasmids in strain MSF322. OP3 genome is composed of a chromosome and three plasmids (including pCM1- and pCM2-like plasmids) of 3,466,104 bp. Genomic analyses confirmed the phylogenetic relationships of the Chilean strains among C.michiganensis subsp. michiganensis and showed their low genomic diversity. Different virulence levels in tomato plants were observable. Phylogenetic analyses of the virulence factors revealed that the pelA1 gene (chp/tomA region)—that grouped Chilean strains in three distinct clusters—and proteases and hydrolases encoding genes, exclusive for each of the Chilean strains, may be involved in these observed virulence levels. Based on genomic similarity (ANIm) analyses, a proposal to combine and reclassify C. michiganensis subsp. phaseoli and subsp. chilensis at the species level, as C. phaseoli sp. nov., as well as to reclassify C. michiganensis subsp. californiensis as the species C. californiensis sp. nov. may be justified.
Collapse
Affiliation(s)
- Valentina Méndez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
- Correspondence: (V.M.); (M.S.)
| | - Miryam Valenzuela
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
- Microbiology, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
| | - Ximena Besoain
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile;
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
- Correspondence: (V.M.); (M.S.)
| |
Collapse
|
46
|
Hwang IS, Oh EJ, Oh CS. Transcriptional Changes of Plant Defense-Related Genes in Response to Clavibacter Infection in Pepper and Tomato. THE PLANT PATHOLOGY JOURNAL 2020; 36:450-458. [PMID: 33082729 PMCID: PMC7542022 DOI: 10.5423/ppj.oa.07.2020.0124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Pepper and tomato plants infected with two Clavibacter species, C. capsici and C. michiganensis have shown different patterns of disease development depending on their virulence. Here, we investigated how pepper and tomato plants respond to infection by the high-virulent or low-virulent Clavibacter strains. For this, we chose two strains of each Clavibacter species to show different virulence level in the host plants. Although low-virulent strains showed less disease symptoms, they grew almost the same level as the high-virulent strains in both plants. To further examine the response of host plants to Clavibacter infection, we analyzed the expression patterns of plant defense-related genes in the leaves inoculated with different strains of C. capsici and C. michiganensis. Pepper plants infected with high-virulent C. capsici strain highly induced the expression of CaPR1, CaDEF, CaPR4b, CaPR10, and CaLOX1 at 5 days after inoculation (dai), but their expression was much less in low-virulent Clavibacter infection. Expression of CaSAR8.2 was induced at 2 dai, regardless of virulence level. Expression of GluA, Pin2, and PR2 in tomato plants infected with high-virulent C. michiganensis were much higher at 5 dai, compared with mock or low-virulent strain. Expression of PR1a, Osmotin-like, Chitinase, and Chitinase class 2 was increased, regardless of virulence level. Expression of LoxA gene was not affected by Clavibacter inoculation. These results suggested that Clavibacter infection promotes induction of certain defense-related genes in host plants and that differential expression of those genes by low-virulent Clavibacter infection might be affected by their endophytic lifestyle in plants.
Collapse
Affiliation(s)
- In Sun Hwang
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin 704, Korea
| | - Eom-Ji Oh
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin 704, Korea
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
47
|
Orzali L, Valente MT, Scala V, Loreti S, Pucci N. Antibacterial Activity of Essential Oils and Trametes versicolor Extract against Clavibacter michiganensis subsp. michiganensis and Ralstonia solanacearum for Seed Treatment and Development of a Rapid In Vivo Assay. Antibiotics (Basel) 2020; 9:antibiotics9090628. [PMID: 32967338 PMCID: PMC7557780 DOI: 10.3390/antibiotics9090628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022] Open
Abstract
Clavibacter michiganensis subsp. michiganensis (Smith) Davis et al. (Cmm) and Ralstonia solanacearum Yabuuchi et al. (Smith) (Rs) are important seed-borne bacterial pathogens of tomato (Solanum lycopersicum) listed as A2 pests in the EPPO (European and Mediterranean Plant Protection Organization) region. At present, there are few strategies to control these pathogens, and seed control with eco-compatible approaches is widely encouraged. In this work, the essential oils (EOs) of oregano (Origanum vulgare), garlic (Allium sativum), basil (Ocimum basilicum), cinnamon (Cinnamomum zeylanicum), clove buds (Syzygium aromaticum), thyme (Thymus vulgaris), and Trametes versicolor extract (Tve) were tested in vitro for their antimicrobial activity against Cmm and Rs (broth microdilution method). The tested EOs and the Tve extract caused a significant inhibition of bacterial growth, with very promising MBC (minimum bactericidal concentration) and MIC90 (minimum inhibitory concentration causing a 90% growth inhibition) values. Moreover, an in vivo germination test showed no major reduction in seed germination when the substances were applied as seed treatment. A rapid molecular screening method has been developed, through real-time PCR, for the specific quantification of Cmm in the presence of a vegetable matrix to test in vivo the antimicrobial efficacy of oregano and cinnamon oil on seed treatment without resorting to whole plant essays, which are time- and space-consuming.
Collapse
|
48
|
The endosphere bacteriome of diseased and healthy tomato plants. Arch Microbiol 2020; 202:2629-2642. [PMID: 32710156 DOI: 10.1007/s00203-020-01987-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022]
Abstract
Here we analyze the microbial community of healthy and diseased tomato plants to evaluate its impact on plant health. The organisms found in all samples mainly belonged to 4 phyla: Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. The Proteobacteria were the highest relative abundant within the endophytic communities of different plant organs of diseased tomato. Among endophytic bacteria of tomato, only a few taxa could be cultured. Here we showed that only a few taxa of bacteria inhabiting tomato plants could be cultured and that all plant organs have a highly diverse endophytic bacterial, whose activity might affect plant growth and development as well as health. The roots seem to be an important barrier for microbes and leaves appear to be the organs with the higher diversity which is incidentally related to plant health. Fruits also contain a complex bacterial community that appeared to be unaffected by foliar diseases such as gray leaf spot at least under the conditions studied.
Collapse
|
49
|
Khoshbakht T, Karami A, Tahmasebi A, Maggi F. The Variability of Thymol and Carvacrol Contents Reveals the Level of Antibacterial Activity of the Essential Oils from Different Accessions of Oliveria decumbens. Antibiotics (Basel) 2020; 9:antibiotics9070409. [PMID: 32674440 PMCID: PMC7400187 DOI: 10.3390/antibiotics9070409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/17/2022] Open
Abstract
Oliveria decumbens (Apiaceae) is an aromatic herb traditionally employed in the Persian medicine for the treatment of infectious and gastrointestinal disorders. In the present study, we analyzed the chemical composition of essential oils obtained from different Iranian populations and evaluated their efficacy on a panel of human pathogens (Staphylococcus aureus and Escherichia coli), probiotic (Bacillus subtilis), and phytopathogens (Clavibacter michiganensis, Curtobacterium flaccumfaciens, Xanthomonas citri, and Agrobacterium tumefaciens). The gas chromatographic-mass spectrometry analysis put in evidence four main volatile constituents such as thymol (20.3–36.4%), carvacrol (18.8–33.1%), γ-terpinene (10.6–25.9%), and p-cymene (9.5–17.3%), though with significant variability from an essential oil to another. Notably, the oils from the populations sited in Nourabad Mamasani and Dehdasht showed the highest amount of the phenolic monoterpenes thymol (36.4 and 35.2%, respectively) and carvacrol (33.1 and 30.6%, respectively). The antibacterial activity of O. decumbens essential oils was assessed by the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods, showing high activity for the samples from Nourabad Mamasani and Dehdasht populations exhibiting high level of the above phenolics. The obtained MIC and MBC values (mg/ml) were in the ranges 0.0625–2 mg/ml and 1–16 mg/ml, respectively. Noteworthy, in some cases, the antibacterial activity of O. decumbens essential oils was higher than that of chloramphenicol used as positive control. The average MBCs displayed by the O. decumbens samples showed that C. flaccumfaciens had the highest sensitivity to the essential oils. Based on these results, our work shed light on selected O. decumbens populations deserving proper breeding and cultivation strategies in order to warrantee production of bioactive essential oils to be used at pharmaceutical and agricultural level to combat several pathogens.
Collapse
Affiliation(s)
- Tahereh Khoshbakht
- Department of Horticultural Science, School of Agriculture, Shiraz University, 71441-65186 Shiraz, Iran; (T.K.); (A.K.)
| | - Akbar Karami
- Department of Horticultural Science, School of Agriculture, Shiraz University, 71441-65186 Shiraz, Iran; (T.K.); (A.K.)
| | - Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, 84156-83111 Bandar Abbas, Iran;
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
- Correspondence: ; Tel.: +39-0737-404506
| |
Collapse
|
50
|
Peritore-Galve FC, Miller C, Smart CD. Characterizing Colonization Patterns of Clavibacter michiganensis During Infection of Tolerant Wild Solanum Species. PHYTOPATHOLOGY 2020; 110:574-581. [PMID: 31725349 DOI: 10.1094/phyto-09-19-0329-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clavibacter michiganensis is the Gram-positive causal agent of bacterial canker of tomato, an economically devastating disease with a worldwide distribution. C. michiganensis colonizes the xylem, leading to unilateral wilt, stem canker, and plant death. C. michiganensis can also infect developing tomato fruit through splash dispersal, forming exterior bird's eye lesions. There are no documented sources of qualitative resistance in Solanum spp.; however, quantitative trait loci conferring tolerance in Solanum arcanum and Solanum habrochaites have been identified. Mechanisms of tolerance and C. michiganensis colonization patterns in wild tomato species remain poorly understood. This study describes differences in symptom development and colonization patterns of the wild type (WT) and a hypervirulent bacterial expansin knockout (ΔCmEXLX2) in wild and cultivated tomato genotypes. Overall, WT and ΔCmEXLX2 cause less severe symptoms in wild tomato species and are impeded in spread and colonization of the vascular system. Laser scanning confocal microscopy and scanning electron microscopy were used to observe preferential colonization of protoxylem vessels and reduced intravascular spread in wild tomatoes. Differences in C. michiganensis in vitro growth and aggregation were determined in xylem sap, which may suggest that responses to pathogen colonization are occurring, leading to reduced colonization density in wild tomato species. Finally, wild tomato fruit was determined to be susceptible to C. michiganensis through in vivo inoculations and assessing lesion numbers and size. Fruit symptom severity was in some cases unrelated to severity of symptoms during vascular infection, suggesting different mechanisms for colonization of different tissues.
Collapse
Affiliation(s)
- F Christopher Peritore-Galve
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Christine Miller
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27606
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| |
Collapse
|