1
|
Lim YJ, Lee YH. Solo or in Concert: SUMOylation in Pathogenic Fungi. THE PLANT PATHOLOGY JOURNAL 2025; 41:140-152. [PMID: 40211619 PMCID: PMC11986368 DOI: 10.5423/ppj.rw.11.2024.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 04/14/2025]
Abstract
SUMOylation plays a pivotal role in DNA replication and repair, transcriptional stability, and stress response. Although SUMOylation is a conserved posttranslational modification (PTM) in eukaryotes, the number, type, and function of SUMOylation-associated components vary among mammals, plants, and fungi. SUMOylation shares overlapping features with ubiquitination, another well-known PTM. However, comparative studies on the interplay between these two PTMs are largely limited to yeast among fungal species. Recently, the role of SUMOylation in pathogenicity and its potential for crosstalk with ubiquitination have gained attention in fungal pathogens. In this review, we summarize recent findings on the distinct components of SUMOylation across organisms and describe its critical functions in fungal pathogens. Furthermore, we propose new research directions for SUMOylation in fungal pathogens, both independently and in coordination with other PTMs. This review aims to illuminate the potential for advancing PTM crosstalk research in fungal systems.
Collapse
Affiliation(s)
- You-Jin Lim
- Research Institute of Agriculture and Life Sciences and Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Yong-Hwan Lee
- Research Institute of Agriculture and Life Sciences and Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Interdisciplinary Program in Agricultural Genomics, Center for Fungal Genetic Resources, Plant Immunity Research Center, and Center for Plant Microbiome Research, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
2
|
Kamau SM, Li Y, Sun T, Liu F, Zhu QH, Zhang X, Sun J, Li Y. VdPAT1 encoding a pantothenate transporter protein is required for fungal growth, mycelial penetration and pathogenicity of Verticillium dahliae. Front Microbiol 2025; 15:1508765. [PMID: 39895932 PMCID: PMC11783681 DOI: 10.3389/fmicb.2024.1508765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Introduction The soil-borne vascular fungus Verticillium dahliae is a phytopathogenic fungus known to attack cotton crop causing Verticillium wilt. In previous study, we identified a pantothenate transporter gene (VdPAT1) in V. dahliae which can be induced by root exudates from a susceptible cotton variety. Methods In this study, we generated VdPAT1 deletion mutants and complementary strain via homologous recombination by a PEG-mediated transformation method and used for the gene functional characterization. Results and discussion The VdPAT1 deletion mutants displayed reduced colony growth, melanin production, spore yield and germination rate, showed abnormal mycelial branching and decreased ability of mycelial penetration and utilization of nutrients (carbon, amino acids and vitamin), leading to a lower pathogenicity. Comparative transcriptome analysis of wild-type and mutant strain cultivated on sterilized carboxymethyl cellophane membranes found that the amino sugar and nucleotide sugar metabolism pathway, which was related to chitin synthesis and degradation as well as UDP-glucose synthesis, was the most significantly down-regulated pathway in VdPAT1 deletion mutant. Chitin and β-1,3-glucan content determination found that the chitin content in VdPAT1 deletion mutants was significantly lower, while β-1,3-glucan content was higher than that of wild-type and complementary strains. The ratio change of chitin and β-1,3-glucan content in VdPAT1 deletion mutants might lead to abnormal branching of mycelium, resulting in the reduced penetration ability of V. dahliae. The decreased chitin content in VdPAT1 mutants impaired the fungal cell wall integrity, leading to their increased sensitivity to external stresses. Conclusion Together, the results demonstrated that VdPAT1 is required for growth, development, resistance to external stresses, mycelial penetration and pathogenicity of V. dahliae.
Collapse
Affiliation(s)
- Stephen Mwangi Kamau
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Yongtai Li
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Tiange Sun
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Feng Liu
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Xinyu Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Jie Sun
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Yanjun Li
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
3
|
Gupta D, Shukla R, Mishra K. SUMO-targeted Ubiquitin Ligases as crucial mediators of protein homeostasis in Candida glabrata. PLoS Pathog 2024; 20:e1012742. [PMID: 39642165 DOI: 10.1371/journal.ppat.1012742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/18/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
Candida glabrata is an opportunistic human pathogen, capable of causing severe systemic infections that are often resistant to standard antifungal treatments. To understand the importance of protein SUMOylation in the physiology and pathogenesis of C. glabrata, we earlier identified the components of SUMOylation pathway and demonstrated that the deSUMOylase CgUlp2 is essential for pathogenesis. In this work we show that the CgUlp2 is essential to maintain protein homeostasis via the SUMO-targeted ubiquitin ligase pathway. The dual loss of deSUMOylase and specific ubiquitin ligase, CgSlx8, results in heightened protein degradation, rendering the cells vulnerable to various stressors. This degradation affects crucial processes such as purine biosynthesis and compromises mitochondrial function in the mutants. Importantly, the absence of these ubiquitin ligases impedes the proliferation of C. glabrata in macrophages. These findings underscore the significance of SUMOylation and SUMO-mediated protein homeostasis as pivotal regulators of C. glabrata physiology and capacity to survive in host cells. Understanding these mechanisms could pave the way for the development of effective antifungal treatments.
Collapse
Affiliation(s)
- Dipika Gupta
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Renu Shukla
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
4
|
Lim YJ, Yoon YJ, Lee H, Choi G, Kim S, Ko J, Kim JH, Kim KT, Lee YH. Nuclear localization sequence of MoHTR1, a Magnaporthe oryzae effector, for transcriptional reprogramming of immunity genes in rice. Nat Commun 2024; 15:9764. [PMID: 39528565 PMCID: PMC11555045 DOI: 10.1038/s41467-024-54272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Plant pathogens secrete nuclear effectors into the host nuclei to modulate the host immune system. Although several nuclear effectors of fungal pathogens have been recently reported, the molecular mechanism of NLS-associated transport vehicles of nuclear effectors and the roles of NLS in transcriptional reprogramming of host immunity genes remain enigmatic. We previously reported the MoHTR1, a nuclear effector of the rice blast fungus, Magnaporthe oryzae. MoHTR1 is translocated to rice nuclei but not in fungal nuclei. Here, we identify the core NLS (RxKK) responsible for MoHTR1's nuclear localization. MoHTR1 is translocated in the host nucleus through interaction with rice importin α. MoHTR1 NLS empowers it to translocate the cytoplasmic effectors of M. oryzae into rice nuclei. Furthermore, other nuclear effector candidates of the blast pathogen and rice proteins which have RxKK also exhibit nuclear localization, highlighting the crucial role of RxKK in this process. We also unveil the importance of SUMOylation in the stability of MoHTR1 and translocation of MoHTR1 to host nuclei. Moreover, MoHTR1 NLS is essential for the pathogenicity of M. oryzae by reprogramming immunity-associated genes in the host. Our findings provide insights into the significance of plant-specific NLS on fungal nuclear effectors and its role in plant-pathogen interactions.
Collapse
Affiliation(s)
- You-Jin Lim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Yoon-Ju Yoon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hyunjun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Republic of Korea
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jaeho Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jea Hyeoung Kim
- Department of Plant Medicine, Sunchon National University, Suncheon, Republic of Korea
| | - Ki-Tae Kim
- Department of Plant Medicine, Sunchon National University, Suncheon, Republic of Korea
- Department of Agricultural Life Science, Sunchon National University, Suncheon, Republic of Korea
| | - Yong-Hwan Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Republic of Korea.
- Center for Fungal Genetic Resources, Seoul National University, Seoul, Republic of Korea.
- Plant Immunity Research Center, Seoul National University, Seoul, Republic of Korea.
- Center for Plant Microbiome Research, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Song J, Chen H, Xie D, Li J, Huang B, Wang Z. The SUMO gene MrSmt3 is involved in SUMOylation, conidiation and stress response in Metarhizium robertsii. Sci Rep 2024; 14:22213. [PMID: 39333232 PMCID: PMC11436951 DOI: 10.1038/s41598-024-73039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Smt3, as a small ubiquitin-like modifier (SUMO), play an essential role in the regulation of protein SUMOylation, and thus this process can affect various important biological functions. Here, we investigated the roles of MrSmt3 (yeast SUMO/Smt3 homologs) in the entomopathogenic fungus Metarhizium robertsii. Our results of subcellular localization assays demonstrated that MrSmt3 was present in the cytoplasm and nucleus, whereas MrSmt3 was largely localized in the nucleus during oxidative stress. Importantly, disruption of MrSmt3 significantly decreased the level of protein SUMOylation under heat stress. Deletion of MrSmt3 led to a significant decrease in conidial production, and increased sensitivity to various stresses, including heat, oxidative, and cell wall-disturbing agents. However, bioassays of direct injection and topical inoculation demonstrated that deletion of MrSmt3 did not affect fungal virulence. Furthermore, RNA-seq analysis identified 1,484 differentially expressed genes (DEGs) of the WT and ΔMrSmt3 during conidiation, including 971 down-regulated DEGs and 513 up-regulated DEGs, and further analysis showed that the expression level of several classical conidiation-associated genes, such as transcription factor AbaA (MAA_00694), transcription factor bZIP (MAA_00888) and transcription factor Ste12 (MAA_10450), was down-regulated in the ΔMrSmt3 mutant. Specifically, the major downregulated DEGs were mainly associated with a variety of metabolic regulatory processes including metabolic process, organic substance metabolic process and primary metabolic process. Collectively, our findings highlight the important roles of the SUMO gene MrSmt3 in modulating SUMOylation, conidiation and stress response in M. robertsii.
Collapse
Affiliation(s)
- Jueping Song
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Hanyuan Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Dajie Xie
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Jie Li
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China.
| | - Zhangxun Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
6
|
Romero G, González S, Royero W, González A. Morphological and transcriptional analysis of Colletotrichum lindemuthianum race 7 during early stages of infection in common bean. Genet Mol Biol 2024; 47:e20220263. [PMID: 38593425 PMCID: PMC11003654 DOI: 10.1590/1678-4685-gmb-2022-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/26/2024] [Indexed: 04/11/2024] Open
Abstract
The infection process of the hemibiotrophic fungus Colletotrichum lindemuthianum has been independently studied at the microscopic and genomic levels. However, the relationship between the morphological changes and the pathogenicity mechanisms of the fungus at the early stages of the infection remains uncharacterized. Therefore, this study attempts to bridge this gap by integrating microscopic and transcriptional approaches to understand the infection process of C. lindemuthianum. Fungal structures were followed by fluorescence microscopy for 120 hours. Simultaneously, the transcriptomic profile was made using RNAseq. Morphological characterization shows that appressoria, infective vesicles, and secondary hypha formation occur before 72 hours. Additionally, we assembled 38,206 transcripts with lengths between 201 and 3,548 bp. The secretome annotation revealed the expression of 1,204 CAZymes, of which 17 exhibited secretion domains and were identified as chitinases and β-1,3-glucanases, 27 were effector candidates, and 30 were transport proteins mostly associated with ABC-type. Finally, we confirmed the presence and expression of CAC1 role during the appressoria formation of Clr7. This result represents the first report of adenylate cyclase expression evaluated under three different approaches. In conclusion, C. lindemuthianum colonizes the host through different infection structures complemented with the expression of multiple enzymes, where CAC1 favors disease development.
Collapse
Affiliation(s)
- German Romero
- Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Bogotá, Colombia
| | - Sandra González
- Universidad Nacional de Colombia, Instituto de Biotecnología, Bogotá, Colombia
| | - Wendy Royero
- Universidad Nacional de Colombia, Instituto de Biotecnología, Bogotá, Colombia
| | - Adriana González
- Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Bogotá, Colombia
| |
Collapse
|
7
|
Azizullah, Noman M, Gao Y, Wang H, Xiong X, Wang J, Li D, Song F. The SUMOylation pathway regulates the pathogenicity of Fusarium oxysporum f. sp. niveum in watermelon through stabilizing the pH regulator FonPalC via SUMOylation. Microbiol Res 2024; 281:127632. [PMID: 38310728 DOI: 10.1016/j.micres.2024.127632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
SUMOylation is a key post-translational modification, where small ubiquitin-related modifier (SUMO) proteins regulate crucial biological processes, including pathogenesis, in phytopathogenic fungi. Here, we investigated the function and mechanism of the SUMOylation pathway in the pathogenicity of Fusarium oxysporum f. sp. niveum (Fon), the fungal pathogen that causes watermelon Fusarium wilt. Disruption of key SUMOylation pathway genes, FonSMT3, FonAOS1, FonUBC9, and FonMMS21, significantly reduced pathogenicity, impaired penetration ability, and attenuated invasive growth capacity of Fon. Transcription and proteomic analyses identified a diverse set of SUMOylation-regulated differentially expressed genes and putative FonSMT3-targeted proteins, which are predicted to be involved in infection, DNA damage repair, programmed cell death, reproduction, growth, and development. Among 155 putative FonSMT3-targeted proteins, FonPalC, a Pal/Rim-pH signaling regulator, was confirmed to be SUMOylated. The FonPalC protein accumulation was significantly decreased in SUMOylation-deficient mutant ∆Fonsmt3. Deletion of FonPalC resulted in impaired mycelial growth, decreased pathogenicity, enhanced osmosensitivity, and increased intracellular vacuolation in Fon. Importantly, mutations in conserved SUMOylation sites of FonPalC failed to restore the defects in ∆Fonpalc mutant, indicating the critical function of the SUMOylation in FonPalC stability and Fon pathogenicity. Identifying key SUMOylation-regulated pathogenicity-related proteins provides novel insights into the molecular mechanisms underlying Fon pathogenesis regulated by SUMOylation.
Collapse
Affiliation(s)
- Azizullah
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Muhammad Noman
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yizhou Gao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hui Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Xiong
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiajing Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dayong Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fengming Song
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
8
|
Bhadauria V, Zhang M, Ma W, Yang J, Zhao W, Peng YL. The Hidden Truths of Fungal Virulence and Adaptation on Hosts: Unraveling the Conditional Dispensability of Minichromosomes in the Hemibiotrophic Colletotrichum Pathogens. Int J Mol Sci 2023; 25:198. [PMID: 38203369 PMCID: PMC10779208 DOI: 10.3390/ijms25010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Colletotrichum spp. are ascomycete fungi and cause anthracnose disease in numerous crops of economic significance. The genomes of these fungi are distributed among ten core chromosomes and two to three minichromosomes. While the core chromosomes regulate fungal growth, development and virulence, the extent to which the minichromosomes are involved in these processes is still uncertain. Here, we discuss the minichromosomes of three hemibiotrophic Colletotrichum pathogens, i.e., C. graminicola, C. higginsianum and C. lentis. These minichromosomes are typically less than one megabase in length, characterized by containing higher repetitive DNA elements, lower GC content, higher frequency of repeat-induced point mutations (RIPMs) and sparse gene distribution. Molecular genetics and functional analyses have revealed that these pathogens harbor one conditionally dispensable minichromosome, which is dispensable for fungal growth and development but indispensable for fungal virulence on hosts. They appear to be strain-specific innovations and are highly compartmentalized into AT-rich and GC-rich blocks, resulting from RIPMs, which may help protect the conditionally dispensable minichromosomes from erosion of already scarce genes, thereby helping the Colletotrichum pathogens maintain adaptability on hosts. Overall, understanding the mechanisms underlying the conditional dispensability of these minichromosomes could lead to new strategies for controlling anthracnose disease in crops.
Collapse
Affiliation(s)
- Vijai Bhadauria
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.Z.); (W.M.); (J.Y.); (W.Z.); (Y.-L.P.)
- The Ministry of Agriculture and Rural Affairs for Key Laboratory of Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Manyu Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.Z.); (W.M.); (J.Y.); (W.Z.); (Y.-L.P.)
| | - Wendi Ma
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.Z.); (W.M.); (J.Y.); (W.Z.); (Y.-L.P.)
| | - Jun Yang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.Z.); (W.M.); (J.Y.); (W.Z.); (Y.-L.P.)
- The Ministry of Agriculture and Rural Affairs for Key Laboratory of Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wensheng Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.Z.); (W.M.); (J.Y.); (W.Z.); (Y.-L.P.)
- The Ministry of Agriculture and Rural Affairs for Key Laboratory of Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - You-Liang Peng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.Z.); (W.M.); (J.Y.); (W.Z.); (Y.-L.P.)
- The Ministry of Agriculture and Rural Affairs for Key Laboratory of Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Wu XM, Zhang BS, Zhao YL, Wu HW, Gao F, Zhang J, Zhao JH, Guo HS. DeSUMOylation of a Verticillium dahliae enolase facilitates virulence by derepressing the expression of the effector VdSCP8. Nat Commun 2023; 14:4844. [PMID: 37563142 PMCID: PMC10415295 DOI: 10.1038/s41467-023-40384-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
The soil-borne fungus Verticillium dahliae, the most notorious plant pathogen of the Verticillium genus, causes vascular wilts in a wide variety of economically important crops. The molecular mechanism of V. dahliae pathogenesis remains largely elusive. Here, we identify a small ubiquitin-like modifier (SUMO)-specific protease (VdUlpB) from V. dahliae, and find that VdUlpB facilitates V. dahliae virulence by deconjugating SUMO from V. dahliae enolase (VdEno). We identify five lysine residues (K96, K254, K259, K313 and K434) that mediate VdEno SUMOylation, and SUMOylated VdEno preferentially localized in nucleus where it functions as a transcription repressor to inhibit the expression of an effector VdSCP8. Importantly, VdUlpB mediates deSUMOylation of VdEno facilitates its cytoplasmic distribution, which allows it to function as a glycolytic enzyme. Our study reveals a sophisticated pathogenic mechanism of VdUlpB-mediated enolase deSUMOylation, which fortifies glycolytic pathway for growth and contributes to V. dahliae virulence through derepressing the expression of an effector.
Collapse
Affiliation(s)
- Xue-Ming Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo-Sen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun-Long Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hua-Wei Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Gao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Nie XY, Xue Y, Li L, Jiang Z, Qin B, Wang Y, Wang S. A functional intact SUMOylation machinery in Aspergillus flavus contributes to fungal and aflatoxin contamination of food. Int J Food Microbiol 2023; 398:110241. [PMID: 37167787 DOI: 10.1016/j.ijfoodmicro.2023.110241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/08/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
SUMO adducts occur in Aspergillus flavus, and are implicated in fungal biology, while the underlying mechanism and the SUMOylation apparatus components in this saprophytic food spoilage mould, remain undefined. Herein, genes encoding SUMOylation cascade enzymes in A. flavus, including two heterodimeric SUMO E1 activating enzymes, a unique SUMO E2 conjugating enzyme, and one of SUMO E3 ligases, were identified and functionally analyzed. Global SUMO adducts immunoassay, multiple morphological comparison, aflatoxin attributes test, fungal infection and transcriptomic analyses collectively revealed that: E1 and E2 were essential for intracellular SUMOylation, and contributed to both stress response and fungal virulence-related events, including sporulation, colonization, aflatoxins biosynthesis; the primary E3 in this fungus, AfSizA, might serve as the molecular linkage of SUMOylation pathway to fungal virulence rather than SUMOylation-mediated stress adaptation. These findings demonstrated that SUMOylation machinery in A. flavus was functionally intact and contributed to multiple pathobiological processes, hence offering ideas and targets to control food contamination by this mycotoxigenic fungus.
Collapse
Affiliation(s)
- Xin-Yi Nie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Yang Xue
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ling Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhixin Jiang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bei Qin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
11
|
Shao W, Sun K, Ma T, Jiang H, Hahn M, Ma Z, Jiao C, Yin Y. SUMOylation regulates low-temperature survival and oxidative DNA damage tolerance in Botrytis cinerea. THE NEW PHYTOLOGIST 2023; 238:817-834. [PMID: 36651012 DOI: 10.1111/nph.18748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
SUMOylation as one of the protein post-translational modifications plays crucial roles in multiple biological processes of eukaryotic organisms. Botrytis cinerea is a devastating fungal pathogen and capable of infecting plant hosts at low temperature. However, the molecular mechanisms of low-temperature adaptation are largely unknown in fungi. Combining with biochemical methods and biological analyses, we report that SUMOylation regulates pathogen survival at low temperature and oxidative DNA damage response during infection in B. cinerea. The heat shock protein (Hsp70) BcSsb and E3 ubiquitin ligase BcRad18 were identified as substrates of SUMOylation; moreover, their SUMOylation both requires a single unique SUMO-interacting motif (SIM). SUMOylated BcSsb regulates β-tubulin accumulation, thereby affecting the stability of microtubules and consequently mycelial growth at low temperature. On the contrary, SUMOylated BcRad18 modulates mono-ubiquitination of the sliding clamp protein proliferating cell nuclear antigen (PCNA), which is involved in response to oxidative DNA damage during infection. Our study uncovers the molecular mechanisms of SUMOylation-mediated low-temperature survival and oxidative DNA damage tolerance during infection in a devastating fungal pathogen, which provides novel insights into low-temperature adaptation and pathogenesis for postharvest pathogens as well as new targets for inhibitor invention in disease control.
Collapse
Affiliation(s)
- Wenyong Shao
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kewei Sun
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Tianling Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Huixian Jiang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Matthias Hahn
- Department of Biology, University of Kaiserslautern, PO Box 3049, 67653, Kaiserslautern, Germany
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chen Jiao
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
12
|
Jian Y, Chen X, Sun K, Liu Z, Cheng D, Cao J, Liu J, Cheng X, Wu L, Zhang F, Luo Y, Hahn M, Ma Z, Yin Y. SUMOylation regulates pre-mRNA splicing to overcome DNA damage in fungi. THE NEW PHYTOLOGIST 2023; 237:2298-2315. [PMID: 36539920 DOI: 10.1111/nph.18692] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Pathogenic fungi are subject to DNA damage stress derived from host immune responses during infection. Small ubiquitin-like modifier (SUMO) modification and precursor (pre)-mRNA splicing are both involved in DNA damage response (DDR). However, the mechanisms of how SUMOylation and splicing coordinated in DDR remain largely unknown. Combining with biochemical analysis, RNA-Seq method, and biological analysis, we report that SUMO pathway participates in DDR and virulence in Fusarium graminearum, a causal agent of Fusarium head blight of cereal crops world-wide. Interestingly, a key transcription factor FgSR is SUMOylated upon DNA damage stress. SUMOylation regulates FgSR nuclear-cytoplasmic partitioning and its phosphorylation by FgMec1, and promotes its interaction with chromatin remodeling complex SWI/SNF for activating the expression of DDR-related genes. Moreover, the SWI/SNF complex was found to further recruit splicing-related NineTeen Complex, subsequently modulates pre-mRNA splicing during DDR. Our findings reveal a novel function of SUMOylation in DDR by regulating a transcription factor to orchestrate gene expression and pre-mRNA splicing to overcome DNA damage during the infection of F. graminearum, which advances the understanding of the delicate regulation of DDR by SUMOylation in pathogenic fungi, and extends the knowledge of cooperation of SUMOylation and pre-mRNA splicing in DDR in eukaryotes.
Collapse
Affiliation(s)
- Yunqing Jian
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xia Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kewei Sun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zunyong Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Danni Cheng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jie Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiaofei Cheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Wu
- Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Feng Zhang
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Matthias Hahn
- Department of Biology, University of Kaiserslautern, PO Box 3049, 67653, Kaiserslautern, Germany
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
13
|
The SUMOylation Pathway Components Are Required for Vegetative Growth, Asexual Development, Cytotoxic Responses, and Programmed Cell Death Events in Fusarium oxysporum f. sp. niveum. J Fungi (Basel) 2023; 9:jof9010094. [PMID: 36675915 PMCID: PMC9866417 DOI: 10.3390/jof9010094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
SUMOylation is an essential protein modification process that regulates numerous crucial cellular and biochemical processes in phytopathogenic fungi, and thus plays important roles in multiple biological functions. The present study characterizes the SUMOylation pathway components, including SMT3 (SUMO), AOS1 (an E1 enzyme), UBC9 (an E2 enzyme), and MMS21 (an E3 ligase), in Fusarium oxysporum f. sp. niveum (Fon), the causative agent of watermelon Fusarium wilt, in terms of the phylogenetic relationship, gene/protein structures, and basic biological functions. The SUMOylation components FonSMT3, FonAOS1, FonUBC9, and FonMMS21 are predominantly located in the nucleus. FonSMT3, FonAOS1, FonUBC9, and FonMMS21 are highly expressed in the germinating macroconidia, but their expression is downregulated gradually in infected watermelon roots with the disease progression. The disruption of FonUBA2 and FonSIZ1 seems to be lethal in Fon. The deletion mutant strains for FonSMT3, FonAOS1, FonUBC9, and FonMMS21 are viable, but exhibit significant defects in vegetative growth, asexual reproduction, conidial morphology, spore germination, responses to metal ions and DNA-damaging agents, and apoptosis. The disruption of FonSMT3, FonAOS1, FonUBC9, and FonMMS21 enhances sensitivity to cell wall-perturbing agents, but confers tolerance to digestion by cell wall-degrading enzymes. Furthermore, the disruption of FonSMT3, FonAOS1, and FonUBC9 negatively regulates autophagy in Fon. Overall, these results demonstrate that the SUMOylation pathway plays vital roles in regulating multiple basic biological processes in Fon, and, thus, can serve as a potential target for developing a disease management approach to control Fusarium wilt in watermelon.
Collapse
|
14
|
Lee H, Choi G, Lim YJ, Lee YH. Comparative profiling of canonical and non-canonical small RNAs in the rice blast fungus, Magnaporthe oryzae. Front Microbiol 2022; 13:995334. [PMID: 36225371 PMCID: PMC9549407 DOI: 10.3389/fmicb.2022.995334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
RNA interference (RNAi) is divided into canonical, Dicer-dependent and non-canonical, Dicer-independent pathways according to Dicer protein dependency. However, sRNAs processed in a Dicer-independent manner have not been reported in plant pathogenic fungi, including Magnaporthe oryzae. We comparatively profiled the Dicer-dependent and -independent sRNAs of M. oryzae. Dicer-dependent sRNAs were 19–24-nt in length, had low strand-specificity, and showed a preference for uracil at the 5′-end. By contrast, Dicer-independent sRNAs presented irregular patterns in length distribution, high strand-specificity, and a preference for cytosine at the penultimate position. Dicer-dependent sRNA loci were mainly associated with LTR-transposons, while Dicer-independent sRNAs were associated with protein-coding genes and transposons. We identified MoERI-1, a non-canonical RNAi component, and profiled the sRNA and mRNA transcriptomes of ΔMoeri-1 at the mycelia and conidiation stages, as the mutant showed increased conidiation. We found that genes involved in conidiation and cell cycle were upregulated by MoERI-1 deletion. Furthermore, a comparison between sRNA and mRNA transcriptome revealed that MoERI-1-dependent sRNAs mediate the regulation of gene expression. Overall, these results showed that M. oryzae has non-canonical RNAi pathways distinct to the Dicer-dependent manner and exploits MoERI-1-dependent sRNAs to regulate the conidiation process.
Collapse
Affiliation(s)
- Hyunjun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - You-Jin Lim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Center for Plant Microbiome Research, Seoul National University, Seoul, South Korea
- *Correspondence: Yong-Hwan Lee,
| |
Collapse
|
15
|
Shabbir A, Batool W, Yu D, Lin L, An Q, Xiaomin C, Guo H, Yuan S, Malota S, Wang Z, Norvienyeku J. Magnaporthe oryzae Chloroplast Targeting Endo-β-1,4-Xylanase I MoXYL1A Regulates Conidiation, Appressorium Maturation and Virulence of the Rice Blast Fungus. RICE (NEW YORK, N.Y.) 2022; 15:44. [PMID: 35960402 PMCID: PMC9374862 DOI: 10.1186/s12284-022-00584-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Endo-β-1,4-Xylanases are a group of extracellular enzymes that catalyze the hydrolysis of xylan, a principal constituent of the plant primary cell wall. The contribution of Endo-β-1,4-Xylanase I to both physiology and pathogenesis of the rice blast fungus M. oryzae is unknown. Here, we characterized the biological function of two endoxylanase I (MoXYL1A and MoXYL1B) genes in the development of M. oryzae using targeted gene deletion, biochemical analysis, and fluorescence microscopy. Phenotypic analysis of ∆Moxyl1A strains showed that MoXYL1A is required for the full virulence of M. oryzae but is dispensable for the vegetative growth of the rice blast fungus. MoXYL1B, in contrast, did not have a clear role in the infectious cycle but has a critical function in asexual reproduction of the fungus. The double deletion mutant was severely impaired in pathogenicity and virulence as well as asexual development. We found that MoXYL1A deletion compromised appressorium morphogenesis and function, leading to failure to penetrate host cells. Fluorescently tagged MoXYL1A and MoXYL1B displayed cytoplasmic localization in M. oryzae, while analysis of MoXYL1A-GFP and MoXYL1B-GFP in-planta revealed translocation and accumulation of these effector proteins into host cells. Meanwhile, sequence feature analysis showed that MoXYL1A possesses a transient chloroplast targeting signal peptide, and results from an Agrobacterium infiltration assay confirmed co-localization of MoXYL1A-GFP with ChCPN10C-RFP in the chloroplasts of host cells. MoXYL1B, accumulated to the cytoplasm of the host. Taken together, we conclude that MoXYL1A is a secreted effector protein that likely promotes the virulence of M. oryzae by interfering in the proper functioning of the host chloroplast, while the related xylanase MoXYL1B does not have a major role in virulence of M. oryzae.
Collapse
Affiliation(s)
- Ammarah Shabbir
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Wajjiha Batool
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108 China
| | - Dan Yu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Lili Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Qiuli An
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Chen Xiaomin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Hengyuan Guo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Shuangshuang Yuan
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Sekete Malota
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zonghua Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Justice Norvienyeku
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| |
Collapse
|
16
|
Deciphering the Host-Pathogen Interactome of the Wheat-Common Bunt System: A Step towards Enhanced Resilience in Next Generation Wheat. Int J Mol Sci 2022; 23:ijms23052589. [PMID: 35269732 PMCID: PMC8910311 DOI: 10.3390/ijms23052589] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Common bunt, caused by two fungal species, Tilletia caries and Tilletia laevis, is one of the most potentially destructive diseases of wheat. Despite the availability of synthetic chemicals against the disease, organic agriculture relies greatly on resistant cultivars. Using two computational approaches—interolog and domain-based methods—a total of approximately 58 M and 56 M probable PPIs were predicted in T. aestivum–T. caries and T. aestivum–T. laevis interactomes, respectively. We also identified 648 and 575 effectors in the interactions from T. caries and T. laevis, respectively. The major host hubs belonged to the serine/threonine protein kinase, hsp70, and mitogen-activated protein kinase families, which are actively involved in plant immune signaling during stress conditions. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the host proteins revealed significant GO terms (O-methyltransferase activity, regulation of response to stimulus, and plastid envelope) and pathways (NF-kappa B signaling and the MAPK signaling pathway) related to plant defense against pathogens. Subcellular localization suggested that most of the pathogen proteins target the host in the plastid. Furthermore, a comparison between unique T. caries and T. laevis proteins was carried out. We also identified novel host candidates that are resistant to disease. Additionally, the host proteins that serve as transcription factors were also predicted.
Collapse
|
17
|
Liu W, Triplett L, Chen XL. Emerging Roles of Posttranslational Modifications in Plant-Pathogenic Fungi and Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:99-124. [PMID: 33909479 DOI: 10.1146/annurev-phyto-021320-010948] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Posttranslational modifications (PTMs) play crucial roles in regulating protein function and thereby control many cellular processes and biological phenotypes in both eukaryotes and prokaryotes. Several recent studies illustrate how plant fungal and bacterial pathogens use these PTMs to facilitate development, stress response, and host infection. In this review, we discuss PTMs that have key roles in the biological and infection processes of plant-pathogenic fungi and bacteria. The emerging roles of PTMs during pathogen-plant interactions are highlighted. We also summarize traditional tools and emerging proteomics approaches for PTM research. These discoveries open new avenues for investigating the fundamental infection mechanisms of plant pathogens and the discovery of novel strategies for plant disease control.
Collapse
Affiliation(s)
- Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Lindsay Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA;
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
18
|
Zhang X, Zhang Z, Chen XL. The Redox Proteome of Thiol Proteins in the Rice Blast Fungus Magnaporthe oryzae. Front Microbiol 2021; 12:648894. [PMID: 33776980 PMCID: PMC7987659 DOI: 10.3389/fmicb.2021.648894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
Redox modification, a post-translational modification, has been demonstrated to be significant for many physiological pathways and biological processes in both eukaryotes and prokaryotes. However, little is known about the global profile of protein redox modification in fungi. To explore the roles of redox modification in the plant pathogenic fungi, a global thiol proteome survey was performed in the model fungal pathogen Magnaporthe oryzae. A total of 3713 redox modification sites from 1899 proteins were identified through a mix sample containing mycelia with or without oxidative stress, conidia, appressoria, and invasive hyphae of M. oryzae. The identified thiol-modified proteins were performed with protein domain, subcellular localization, functional classification, metabolic pathways, and protein–protein interaction network analyses, indicating that redox modification is associated with a wide range of biological and cellular functions. These results suggested that redox modification plays important roles in fungal growth, conidium formation, appressorium formation, as well as invasive growth. Interestingly, a large number of pathogenesis-related proteins were redox modification targets, suggesting the significant roles of redox modification in pathogenicity of M. oryzae. This work provides a global insight into the redox proteome of the pathogenic fungi, which built a groundwork and valuable resource for future studies of redox modification in fungi.
Collapse
Affiliation(s)
- Xinrong Zhang
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, China
| | - Zhenhua Zhang
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Department of Genetics, University Medical Center Groningen, Groningen, Netherlands
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Gupta D, Garapati HS, Kakumanu AV, Shukla R, Mishra K. SUMOylation in fungi: A potential target for intervention. Comput Struct Biotechnol J 2020; 18:3484-3493. [PMID: 33294142 PMCID: PMC7691676 DOI: 10.1016/j.csbj.2020.10.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/31/2022] Open
Abstract
SUMOylation is a post-translational, reversible modification process which occurs in eukaryotes. Small Ubiquitin like MOdifier or (SUMO) proteins are a family of small proteins that are covalently attached to and detached from other proteins to modify the target protein function. In pathogenic fungi, SUMO has been identified and preliminary studies indicate its importance either for survival and/or for virulence. In this review we provide an overview of the current state of knowledge of SUMOylation in fungi and the effects on pathogenesis. Subsequently we identify the orthologs of the SUMOylation pathway components across fungi. We also show the level of conservation of the proteins involved and identify the similarities/differences in the orthologs across fungi and the human and plant hosts to identify potential targets of intervention.
Collapse
Affiliation(s)
- Dipika Gupta
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Hita Sony Garapati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Akhil V.S. Kakumanu
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Renu Shukla
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
20
|
F-box only and CUE proteins are crucial ubiquitination-associated components for conidiation and pathogenicity in the rice blast fungus, Magnaporthe oryzae. Fungal Genet Biol 2020; 144:103473. [DOI: 10.1016/j.fgb.2020.103473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 08/11/2020] [Accepted: 09/19/2020] [Indexed: 11/21/2022]
|
21
|
Zhang MM, Wang ZQ, Xu X, Huang S, Yin WX, Luo C. MfOfd1 is crucial for stress responses and virulence in the peach brown rot fungus Monilinia fructicola. MOLECULAR PLANT PATHOLOGY 2020; 21:820-833. [PMID: 32319202 PMCID: PMC7214477 DOI: 10.1111/mpp.12933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 06/01/2023]
Abstract
Monilinia fructicola is the most widely distributed species among the Monilinia genus in the world, and causes blossom blight, twig canker, and fruit rot on Rosaceae fruits. To date, studies on genomics and pathogenicity are limited in M. fructicola. In this study, we identified a redox-related gene, MfOfd1, which was significantly up-regulated at 1 hr after inoculation of M. fructicola on peach fruits. We used the clustered regulatory inter-spaced short palindromic repeats (CRISPR)/Cas9 system combined with homologous recombination to determine the function of the MfOfd1 gene. The results showed that the sporulation of knockdown transformants was reduced by 53% to 83%. The knockdown transformants showed increased sensitivity to H2 O2 and decreased virulence on peach fruits compared to the wild-type isolate Bmpc7. It was found that H2 O2 could stimulate the expression of MfOfd1 in the wild-type isolate. The transformants were also more sensitive to exogenous osmotic stress, such as glycerol, d-sorbitol, and NaCl, and to dicarboximide fungicides (iprodione and dimethachlon). These results indicate that the MfOfd1 gene plays an important role in M. fructicola in sporulation, oxidative response, osmotic stress tolerance, and virulence.
Collapse
Affiliation(s)
- Ming-Ming Zhang
- The Key Lab of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Zuo-Qian Wang
- Institute of Plant Protection and Soil FertilizerHubei Academy of Agricultural ScienceWuhanChina
| | - Xiao Xu
- The Key Lab of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Song Huang
- The Key Lab of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Wei-Xiao Yin
- Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chao‐Xi Luo
- The Key Lab of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
- Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
22
|
Nie H, Zhang L, Zhuang H, Yang X, Qiu D, Zeng H. Secreted protein MoHrip2 is required for full virulence of Magnaporthe oryzae and modulation of rice immunity. Appl Microbiol Biotechnol 2019; 103:6153-6167. [PMID: 31154490 DOI: 10.1007/s00253-019-09937-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/04/2023]
Abstract
MoHrip2, identified from Magnaporthe oryzae as an elicitor, can activate plant defense responses either in the form of recombinant protein in vitro or ectopic expressed protein in rice. However, its intrinsic function in the infective interaction of M. oryzae-rice is largely unknown. Here, we found that mohrip2 expression was significantly induced at stages of fungal penetration and colonization. Meanwhile, the induced MoHrip2 mainly accumulated in the rice apoplast by outlining the entire invasive hyphae during infection, and its secretion was via the conventional endoplasmic reticulum (ER)-to-Golgi pathway, demonstrating the nature of MoHrip2 as an apoplastic effector. What's more, the disease facilitating function of MoHrip2 was revealed by the significantly compromised virulence of Δmohrip2 mutants on rice seedlings and even on the wounded rice leaves. Inoculations of these mutant strains on rice leaf sheaths showed a reduction in penetration and subsequent expansion of fungal growth, which is probably due to activated host immunity including the expression of certain defense-related genes and the production of certain phytoalexins. Altogether, these results demonstrated the necessity of MoHrip2 in suppression of host immunity and the full virulence of M. oryzae.
Collapse
Affiliation(s)
- Haizhen Nie
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lin Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huiqian Zhuang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongmei Zeng
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
23
|
Fang Y, Klosterman SJ, Tian C, Wang Y. Insights into VdCmr1-mediated protection against high temperature stress and UV irradiation in Verticillium dahliae. Environ Microbiol 2019; 21:2977-2996. [PMID: 31136051 DOI: 10.1111/1462-2920.14695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022]
Abstract
The fungus Verticillium dahliae causes vascular wilt disease on more than 200 plant species worldwide. This fungus can survive for years in soil as melanized microsclerotia. We found that VdCmr1, a transcription factor, is required for the melanin production and increased survival following UV irradiation in V. dahliae but not for microsclerotia production or virulence. Here, we provided evidence how VdCmr1 protects against high temperature (HT) and UV irradiation in V. dahliae. The results indicate that VdCmr1 mediates entry to the diapause period in V. dahliae in response to HT and contributes to the expression of proteins to minimize protein misfolding and denaturation. VdCmr1 deletion results in the misregulation of DNA repair machinery, suggestive of reduced DNA repair capacity following UV irradiation and in correlation with the low survival rate of UV-treated VdCmr1 mutants. We discovered a putative VdCmr1-dependent gene cluster associated with secondary metabolism and stress responses. We also functionally characterized two VdCmr1-responsive genes participating in HT and UV response. These results shed further light on the roles of VdCmr1 in protection from HT or UV irradiation, and the additional insights into the mechanisms of this protection may be useful to exploit for more effective disease control.
Collapse
Affiliation(s)
- Yulin Fang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Steven J Klosterman
- U.S. Department of Agriculture-Agricultural Research Service, Salinas, CA, 93905, USA
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
24
|
Nie HZ, Zhang L, Zhuang HQ, Shi WJ, Yang XF, Qiu DW, Zeng HM. The Secreted Protein MoHrip1 Is Necessary for the Virulence of Magnaporthe oryzae. Int J Mol Sci 2019; 20:E1643. [PMID: 30987045 PMCID: PMC6480625 DOI: 10.3390/ijms20071643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Secreted effectors from Magnaporthe oryzae play critical roles in the interaction with rice to facilitate fungal infection and disease development. M. oryzae-secreted protein MoHrip1 can improve plant defense as an elicitor in vitro, however, its biological function in fungal infection is not clear. In this study, we found that the expression of mohrip1 was significantly induced in the stages of fungal penetration and colonization. Although dispensable for the growth and conidiation, MoHrip1 was necessary for the full virulence of M. oryzae. Deletion of mohrip1 remarkably compromised fungal virulence on rice seedlings and even on rice leaves with wounds. Rice sheath inoculation assay further demonstrated the defects of mohrip1-deleted mutants on penetration and proliferation in rice cells. Additionally, compared with WT and complementation strain, the inoculation of mohrip1-deleted mutants induced a higher expression of specific defense related genes and a higher production of specific defensive compounds in rice leaves. These data collectively indicated that MoHrip1 is necessary for fungal penetration and invasive expansion, and further full virulence of rice blast fungus.
Collapse
Affiliation(s)
- Hai-Zhen Nie
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lin Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hui-Qian Zhuang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wen-Jiong Shi
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiu-Fen Yang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - De-Wen Qiu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hong-Mei Zeng
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
25
|
Fang YL, Xia LM, Wang P, Zhu LH, Ye JR, Huang L. The MAPKKK CgMck1 Is Required for Cell Wall Integrity, Appressorium Development, and Pathogenicity in Colletotrichum gloeosporioides. Genes (Basel) 2018; 9:E543. [PMID: 30413120 PMCID: PMC6267176 DOI: 10.3390/genes9110543] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathway plays key roles in sensing extracellular signals and transmitting them from the cell membrane to the nucleus in response to various environmental stimuli. A MAPKKK protein CgMck1 in Colletotrichum gloeosporioides was characterized. Phenotypic analyses of the ∆Cgmck1 mutant showed that the CgMck1 was required for vegetative growth, fruiting body development, and sporulation. Additionally, the CgMCK1 deletion mutant showed significant defects in cell wall integrity, and responses to osmotic stresses. The mutant abolished the ability to develop appressorium, and lost pathogenicity to host plants. The ∆Cgmck1 mutant also exhibited a higher sensitivity to antifungal bacterium agent Bacillus velezensis. The deletion mutants of downstream MAPK cascades components CgMkk1 and CgMps1 showed similar defects to the ∆Cgmck1 mutant. In conclusion, CgMck1 is involved in the regulation of vegetative growth, asexual development, cell wall integrity, stresses resistance, and infection morphogenesis in C. gloeosporioides.
Collapse
Affiliation(s)
- Yu-Lan Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Li-Ming Xia
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Ping Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Li-Hua Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
26
|
Littlejohn GR. SUMO enters the ring: the emerging role of SUMOylation in Magnaporthe oryzae pathogenicity. THE NEW PHYTOLOGIST 2018; 219:848-849. [PMID: 29998531 DOI: 10.1111/nph.15336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- George R Littlejohn
- School of Biological and Marine Sciences, University of Plymouth, Portland Square Building, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|