1
|
Ujimatsu R, Takino J, Aoki S, Nakamura M, Haba H, Minami A, Hiruma K. A fungal transcription factor converts a beneficial root endophyte into an anthracnose leaf pathogen. Curr Biol 2025; 35:1989-2005.e6. [PMID: 40215963 DOI: 10.1016/j.cub.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/26/2025] [Accepted: 03/13/2025] [Indexed: 05/08/2025]
Abstract
Plant-associated fungi exhibit diverse lifestyles. Fungal endophytes are resident inside plant tissue without showing any disease symptoms for at least a part of their life cycle, and some of them benefit plant growth and health. However, some can cause diseases in specific host environments or genotypes, implying a virulence mechanism, which may be induced by as-yet-unidentified regulatory factors in fungal endophytes. Here, we show that CtBOT6, a transcription factor encoded within a secondary metabolite gene cluster known as the abscisic acid (ABA)-botrydial gene (ABA-BOT) cluster in the root-associated fungus Colletotrichum tofieldiae, triggers virulence-related gene expression and drives the production of diverse metabolites encoded both within and outside the cluster. CtBOT6 overexpression is sufficient to shift a root-beneficial C. tofieldiae to a leaf pathogen, driving its transition along the mutualist-pathogen continuum. Our genetic analysis revealed that the ABA-BOT cluster is indispensable for fungal virulence caused by CtBOT6 activation, implying that compounds derived from the cluster affect these processes. Furthermore, transcriptome analysis of root colonization by C.tofieldiae strains overexpressing CtBOT6 revealed that the pathogenic state induced plant defense and senescence responses characteristic of necrotrophic interactions. Importantly, this state enabled the fungus to proliferate and reproduce in leaves, in addition to heavily colonizing roots, with these processes being partly dependent on the host ABA and ethylene pathways. Our findings indicate that the expression status of CtBOT6 serves as a critical determinant for the endophytic fungus to adapt to the different plant tissues and to manifest diverse infection strategies.
Collapse
Affiliation(s)
- Ren Ujimatsu
- Department of Life Sciences, Multidisciplinary Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Junya Takino
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Seishiro Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-0882, Japan
| | - Masami Nakamura
- Department of Life Sciences, Multidisciplinary Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hiromi Haba
- Department of Life Sciences, Multidisciplinary Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Atsushi Minami
- Department of Chemistry, Institute of Science Tokyo, Tokyo 152-8551, Japan
| | - Kei Hiruma
- Department of Life Sciences, Multidisciplinary Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo (CRIIM, UTokyo), Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
2
|
Choupannejad R, Sharifnabi B, Collemare J, Gholami J, Mehrabi R. The candidate transcription factors PnAtfA, PnCrz1, and PnVf19 contribute to fungal morphogenesis, abiotic stress tolerance, and pathogenicity in the wheat pathogen Parastagonospora nodorum. Fungal Biol 2025; 129:101565. [PMID: 40222766 DOI: 10.1016/j.funbio.2025.101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 04/15/2025]
Abstract
The necrotrophic fungus Parastagonospora nodorum, the causal agent of wheat glume blotch, is responsible for substantial economic losses in many wheat-growing regions. Despite the high number of transcription factor (TF)-encoding genes in the genome of P. nodorum, very little is known about their regulatory functions. Here, we assessed the role of three TFs in the regulation of P. nodorum virulence on wheat. We identified encoded in the genome of P. nodorum PnAtfA, PnCrz1, and PnVf19, homologous candidate TFs to Schizosaccharomyces pombe Atf1, Saccharomyces cerevisiae CRZ1, and S. cerevisiae Msn2, respectively. Targeted gene replacement of each gene led to reduced mycelial vegetative growth and loss of pathogenicity on wheat. Deletion of PnAtfA resulted in phenotype alteration with ΔPnCrz1 deletion mutants displayed abnormal colony morphology characterized by dense hyphal branching and loss of aerial hyphae development, showing that both PnAtfA and PnCrz1 regulate fungal morphogenesis. Additionally, deletion of PnAtfA and PnVf19 genes abolished pycnidiospore production whereas ΔPnCrz1 produced fewer pycnidiospores compared to the wild type. Furthermore, ΔPnCrz1 and ΔPnVf19 deletion mutants demonstrated increased sensitivity to hydrogen peroxide showing their involvement in oxidative stress response. The ΔPnVf19 deletion mutants exhibited increased sensitivity to sodium chloride, suggesting that PnVf19 is essential for osmotic tolerance response. Taken together, these findings suggest that the selected candidate TFs play a key role in the fungal morphogenesis, sporulation, oxidative and osmotic stress tolerance response, and full virulence in P. nodorum.
Collapse
Affiliation(s)
- Roya Choupannejad
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, Iran; Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| | - Bahram Sharifnabi
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Javad Gholami
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Rahim Mehrabi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran; Keygene N.V., P.O. Box 216, Wageningen, 6700 AE, The Netherlands
| |
Collapse
|
3
|
Zhao X, Qiu Y, Jiang A, Huang Y, Ma P, Yuan B, Chen L, Zhang C. Transcription Activator FgDDT Interacts With FgISW1 to Regulate Fungal Development and Pathogenicity in the Global Pathogen Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2025; 26:e70076. [PMID: 40151047 PMCID: PMC11950633 DOI: 10.1111/mpp.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Several DNA-binding homeobox and different transcription factor (DDT)-domain proteins form stable remodelling complexes with imitation switch (ISWI) chromatin remodelling factors. ISWI complexes have been reported to be involved in various biological processes in many eukaryotic species. However, in phytopathogenic fungi, the regulatory mechanisms underlying the functions of DDT-domain proteins in ISWI complexes remain unclear. Here, chromatin immunoprecipitation-sequencing (ChIP-seq) assays were used to demonstrate that FgDDT from Fusarium graminearum was enriched within the promoter regions of genes associated with metabolic and MAPK signalling pathways, thereby activating their expression. Moreover, two additional ISWI genes, FgISW1 and FgISW2, were identified and characterised, with subsequent analyses indicating that the ISWI components FgISW1 and FgDDT are essential for fungal development and pathogenicity rather than FgISW2. Further experiments revealed that FgDDT binds to FgISW1 to form an ISWI complex that activates the expression of functional genes in F. graminearum, consequently contributing to its pathogenicity and development. FgDDT was also observed as highly conserved in Fusarium species but exhibits low similarity to homologues in Homo sapiens and Arabidopsis thaliana, suggesting that functional studies of FgDDT are crucial to uncover its unique role within Fusarium. These findings provide a basis for further understanding the molecular mechanisms by which ISWI complexes function in fungi and contribute to their pathogenicity.
Collapse
Affiliation(s)
- Xiaozhen Zhao
- School of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Key Laboratory of Agri‐Products Quality and Biosafety (Anhui Agricultural University)Ministry of EducationHefeiChina
| | - Yuxin Qiu
- School of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Key Laboratory of Agri‐Products Quality and Biosafety (Anhui Agricultural University)Ministry of EducationHefeiChina
| | - Aning Jiang
- School of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Key Laboratory of Agri‐Products Quality and Biosafety (Anhui Agricultural University)Ministry of EducationHefeiChina
| | - Yan Huang
- School of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Key Laboratory of Agri‐Products Quality and Biosafety (Anhui Agricultural University)Ministry of EducationHefeiChina
| | - Peixue Ma
- School of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Key Laboratory of Agri‐Products Quality and Biosafety (Anhui Agricultural University)Ministry of EducationHefeiChina
| | - Bingqin Yuan
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Li Chen
- School of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Key Laboratory of Agri‐Products Quality and Biosafety (Anhui Agricultural University)Ministry of EducationHefeiChina
| | - Chengqi Zhang
- School of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Key Laboratory of Agri‐Products Quality and Biosafety (Anhui Agricultural University)Ministry of EducationHefeiChina
| |
Collapse
|
4
|
Zhang R, Inoue Y, Singkaravanit-Ogawa S, Ogawa T, Mise K, Mine A, Takano Y. Two homologous Zn 2Cys 6 transcription factors play crucial roles in host specificity of Colletotrichum orbiculare by controlling the expression of cucurbit-specific virulence effectors. THE NEW PHYTOLOGIST 2025; 246:237-250. [PMID: 39888001 DOI: 10.1111/nph.20426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Fungal plant pathogens preferentially express a set of effector genes at specific infection stages to successfully colonize the host. However, it remains unclear how effector gene expression is regulated during host infection. This study identified a Zn2Cys6 transcription factor, TFV1 (Transcription Factor for Virulence 1), whose deletion weakened virulence of Colletotrichum orbiculare on its cucurbit hosts. The additional deletion of a TFV1 paralog gene, TVL1 (TFV1-like 1), resulted in a further reduction in virulence on the cucurbits. Notably, TFV1 TVL1 double mutants retained wild-type virulence on the Solanaceae host Nicotiana benthamiana. Expression of putative effector genes, including four cucurbit host-specific virulence effectors (effector protein for cucurbit infection, EPC1-4), was commonly downregulated in the TFV1 knockout mutants. Yeast one-hybrid assays suggested that TFV1 binds to the putative promoter regions of EPC2, EPC3, and EPC4, indicating the importance of TFV1 for the induced expression of key effector genes in cucurbit infection. Among the effector-like genes whose expression was affected by TVL1 deletion, a novel LysM effector gene, EPC5, was identified as being specifically required for virulence on cucurbit hosts. Our study extends the knowledge of the regulatory mechanisms governing host- and stage-specific effectors in C. orbiculare.
Collapse
Affiliation(s)
- Ru Zhang
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshihiro Inoue
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | | | - Taiki Ogawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kazuyuki Mise
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Akira Mine
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshitaka Takano
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
5
|
Hernández-Álvarez E, Rodríguez-Sabina S, Labrador-García N, Pérez JH, Reyes CP, Llaría-López MÁ, Jiménez IA, Bazzocchi IL. Eco-Friendly Crop Protection: Argyrantemum frutescens, a Source of Biofungicides. PLANTS (BASEL, SWITZERLAND) 2025; 14:985. [PMID: 40219052 PMCID: PMC11990897 DOI: 10.3390/plants14070985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Plant-derived biopesticides are emerging as a promising and popular alternative for promoting cleaner and safer agricultural practices. The present work aims to explore Argyranthemum frutescens (Asteraceae) as a source of botanical pesticides and to validate this through a cultivation process. To this task, a bioassay-guided fractionation of the ethanolic root extracts from both wild and cultivated A. frutescens on phytopathogenic fungi of Botrytis cinerea, Fusarium oxysporum, and Alternaria alternata was conducted. This approach led to the identification of polyacetylenes with higher potency than commercial fungicides. Specifically, compounds 3 (capillin) and 5 (frutescinone) showed more than 90% growth inhibition at 0.05 mg/mL concentration on B. cinerea, while compounds 2 (capillinol) and 3 were also more active than positive controls, Fosbel-Plus and Azoxystrobin, against F. oxysporum. The structures of the isolated polyacetylenes (1-6, 9, and 10) and alkamides (7, 8, and 11) were determined through spectroscopic analysis, and the absolute configuration of stereocenter C1 of compounds 1, 2, 4 and 9 was determined by NMR-spectroscopy with (R)-(-)-α-methoxy-phenylacetic as a chiral derivatizing agent, and biogenetic considerations. Overall, this study supports the potential of polyacetylenes as promising agrochemical lead compounds against phytopathogens, and validates A. frutescens cultivation as a viable source of biopesticides.
Collapse
Affiliation(s)
- Eduardo Hernández-Álvarez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; (E.H.-Á.); (N.L.-G.); (J.H.P.); (I.A.J.)
| | - Samuel Rodríguez-Sabina
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, 38206 La Laguna, Tenerife, Spain;
| | - Noelia Labrador-García
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; (E.H.-Á.); (N.L.-G.); (J.H.P.); (I.A.J.)
| | - Javier Hernández Pérez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; (E.H.-Á.); (N.L.-G.); (J.H.P.); (I.A.J.)
| | - Carolina P. Reyes
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain;
| | - María Ángeles Llaría-López
- Área de Gestión del Medio Natural y Seguridad, Cabildo Insular de Tenerife, C/Las Macetas s/n, Pabellón Insular Santiago Martín, 38108 La Laguna, Tenerife, Spain;
| | - Ignacio A. Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; (E.H.-Á.); (N.L.-G.); (J.H.P.); (I.A.J.)
| | - Isabel L. Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; (E.H.-Á.); (N.L.-G.); (J.H.P.); (I.A.J.)
| |
Collapse
|
6
|
Song HJ, Li XF, Pei XR, Sun ZB, Pan HX. Transcription Factors in Biocontrol Fungi. J Fungi (Basel) 2025; 11:223. [PMID: 40137261 PMCID: PMC11943155 DOI: 10.3390/jof11030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Transcription factors are extensively found in fungi and are involved in the regulation of multiple biological processes, including growth, development, conidiation, morphology, stresses tolerance, and virulence, as well as the production of secondary metabolites. Biocontrol is a complex biological process through which several biocontrol behaviors, such as the secretion of cell wall-degrading enzymes and the production of secondary metabolites, are regulated by transcription factors. To date, biocontrol-related transcription factors have been reported in several biocontrol fungi, such as Beauveria bassiana, Clonostachys rosea, Coniothyrium minitans, and different species in the genera Metarhizium, Trichoderma, and Arthrobotrys. However, comprehensive reviews summarizing and analyzing transcription factors with biocontrol potential in these fungi are scarce. This review begins by giving a basic overview of transcription factors and their functions. Then, the role of biocontrol-related transcription factors in biocontrol fungi is discussed. Lastly, possible approaches for further work on transcription factors in biocontrol fungi are suggested. This review provides a basis for further elaborating the molecular mechanisms of transcription factors in the context of biocontrol.
Collapse
Affiliation(s)
| | | | | | - Zhan-Bin Sun
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Han-Xu Pan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
7
|
Zhao L, Wei X, Chen F, Chen B, Li R. m 6A demethylase CpALKBH regulates CpZap1 mRNA stability to modulate the development and virulence of chestnut blight fungus. mBio 2025; 16:e0184424. [PMID: 39611846 PMCID: PMC11708048 DOI: 10.1128/mbio.01844-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
As the most abundant eukaryotic mRNA modification, N6-methyladenosine (m6A) plays a crucial role in regulating multiple biological processes. This methylation is regulated by methyltransferases and demethylases. However, the regulatory role and mode of action of m6A demethylases in fungi remain poorly understood. In this study, we demonstrate that CpALKBH is a demethylase in Cryphonectria parasitica that removes m6A modification from single-stranded RNA in vitro. The deletion of CpALKBH resulted in a significant increase in the m6A methylation levels, along with decreases in the growth rate, sporulation, and virulence in C. parasitica. Additionally, CpZap1-a transcription factor-was identified as a downstream target of CpALKBH demethylase based on RNA sequencing analysis. We confirmed that CpALKBH demethylase regulates CpZap1 mRNA stability in an m6A-dependent manner. Furthermore, through MazF assay, we found that methylation of CpZap1 at position 1935A is regulated by both CpALKBH demethylase and CpMTA1 methyltransferase. CpZap1 significantly influences the fungal phenotype and virulence, thereby restoring the abnormal phenotype observed in ∆CpALKBH mutants. Collectively, our findings highlight the essential role of CpALKBH as an m6A demethylase in the development and virulence of C. parasitica, while also elucidating the molecular mechanisms through which m6A modification impacts CpZap1 mRNA stability. IMPORTANCE N6-methyladenosine (m6A) is the most abundant eukaryotic mRNA modification and is involved in various biological processes. Methyltransferases and demethylases regulate the m6A modification, but the regulatory role of m6A demethylases in fungi remains poorly understood. Here, we demonstrated that CpALKBH functions as a demethylase in Cryphonectria parasitica. The deletion of CpALKBH leads to a significant increase in m6A levels and a reduction in fungal growth, sporulation, and virulence. We identified CpZap1 as a downstream target of CpALKBH, with CpALKBH regulating CpZap1 mRNA stability in an m6A-dependent manner. Additionally, our findings indicate that methylation at position 1935A of CpZap1 is regulated by both the CpALKBH demethylase and the CpMTA1 methyltransferase. Given its critical role in fungal development and virulence, overexpression of CpZap1 can rescue abnormal phenotypes of ∆CpALKBH mutant. Overall, these findings contribute to improving our understanding of the role of m6A demethylase in fungi.
Collapse
Affiliation(s)
- Lijiu Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiangyu Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Fengyue Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Macías-Rubalcava ML, Lappe-Oliveras P, Villanueva-Silva R. Disruption of cell wall and membrane integrity as antioomycete and antifungal mode of action by fusaric and 9,10-dehydrofusaric acids from endophytic fungus Fusarium lactis strain SME13-2. J Appl Microbiol 2025; 136:lxae301. [PMID: 39701832 DOI: 10.1093/jambio/lxae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/24/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
AIMS This study aimed to assess the mode of action of fusaric and 9,10-dehydrofusaric acids on cell respiration by measuring the hyphal oxygen consumption rate, and the effects on cell membrane integrity by determining the electrical conductivity of the mycelium. METHODS AND RESULTS Bioactivity-directed fractionation of the active culture medium and mycelium organic extracts from the Fusarium lactis strain SME13-2 isolated from Sapium macrocarpum led to the isolation of two known alkylpicolinic acid derivatives: fusaric acid and 9,10-dehydrofusaric acid, along with the known polyketide bikaverin. Fusaric acid and 9,10-dehydrofusaric acid exhibited antioomycete and antifungal activities, significantly inhibiting the radial growth of Phytophthora capsici, Pythium aphanidermatum, Alternaria alternata, and F. oxysporum. Additionally, they induced changes in colony morphology and negative effects on the ultrastructure of their hyphae. To date, the antimicrobial mode of action of fusaric acid and other alkylpicolinic acid derivatives is not thoroughly understood. Therefore, we investigated their effect on cellular respiration by measuring the oxygen consumption rate of the hyphae and their impact on cell membrane integrity by determining the electrical conductivity of the mycelium. Fusaric and 9,10-dehydrofusaric acids inhibited the respiration of the mycelium and altered the permeability of the cell membrane in the tested phytopathogenic microorganisms in a concentration and exposure time-dependent manner, exerting a greater effect on oomycetes. The disruption of cell membrane integrity resulted in the leakage of cytoplasmic electrolytes into the extracellular medium, which, coupled with respiratory inhibition, could lead to cell death. CONCLUSIONS Fusaric and 9,10-dehydrofusaric acids show potential for the development of new fungicides and anti-oomycetes agents.
Collapse
Affiliation(s)
- Martha Lydia Macías-Rubalcava
- Instituto de Química, Departamento de Productos Naturales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Delegación Coyoacán, Ciudad de México 04510, México
| | - Patricia Lappe-Oliveras
- Instituto de Biología, Departamento de Botánica, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Delegación Coyoacán, Ciudad de México 04510, México
| | - Rodrigo Villanueva-Silva
- Instituto de Química, Departamento de Productos Naturales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Delegación Coyoacán, Ciudad de México 04510, México
| |
Collapse
|
9
|
Yang H, Huang W, Fan S, Xue W, Liu Y, He Q, Song M, Wu W, Wang LF, Lin C. Systematic characterization of the bZIP gene family in Colletotrichum siamense and functional analysis of three family members. Int J Biol Macromol 2025; 286:138463. [PMID: 39645138 DOI: 10.1016/j.ijbiomac.2024.138463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The basic leucine zipper (bZIP) transcription factors (TFs) play important roles in many physiological processes of plant-pathogenic fungi, especially concerning fungal development, fungicide resistance, and pathogenicity. Colletotrichum siamense is the predominant species causing Colletotrichum leaf disease (CLD) in rubber trees. However, little is known about the bZIP genes in C. siamense. In this study, 25 bZIP genes were systematically identified in the genome of C. siamense, and molecular features were characterized. Evolutionarily, the CsbZIP genes were divided into 11 groups, with the members in the same group sharing similar gene structures and conserved protein motif organizations. Furthermore, protein-protein interaction (PPI) analysis revealed that 15 bZIP proteins had functional partners in common or interacted with other CsbZIP proteins. Additionally, the expression of 23 CsbZIP genes changed in response to the antifungal chemicals melatonin, prochloraz, and thymol, and the genes could be divided into three clusters based on their expression patterns. Finally, gene deletion mutants of CsbZIP01/09/17 were constructed and functional analysis indicated that these genes operated as important regulators of mycelial growth, fungicide resistance, ergosterol biosynthesis, and virulence in C. siamense. This study provided the foundations crucial for further investigation of the functions of CsbZIP TFs in fungicide resistance and virulence.
Collapse
Affiliation(s)
- Hong Yang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, State Key Laboratory Incubation Base for Cultivation and Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Weiyuan Huang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, State Key Laboratory Incubation Base for Cultivation and Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; College of Tropical Crops, Yunnan Agricultural University, Puer 665099, China
| | - Songle Fan
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, State Key Laboratory Incubation Base for Cultivation and Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wenxuan Xue
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, State Key Laboratory Incubation Base for Cultivation and Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; College of Tropical Crops, Yunnan Agricultural University, Puer 665099, China
| | - Yu Liu
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qiguang He
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, State Key Laboratory Incubation Base for Cultivation and Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Miao Song
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wei Wu
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Li Feng Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, State Key Laboratory Incubation Base for Cultivation and Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Chunhua Lin
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
10
|
Kroll E, Bayon C, Rudd J, Armer VJ, Magaji-Umashankar A, Ames R, Urban M, Brown NA, Hammond-Kosack K. A conserved fungal Knr4/Smi1 protein is crucial for maintaining cell wall stress tolerance and host plant pathogenesis. PLoS Pathog 2025; 21:e1012769. [PMID: 39787257 PMCID: PMC11717356 DOI: 10.1371/journal.ppat.1012769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025] Open
Abstract
Filamentous plant pathogenic fungi pose significant threats to global food security, particularly through diseases like Fusarium Head Blight (FHB) and Septoria Tritici Blotch (STB) which affects cereals. With mounting challenges in fungal control and increasing restrictions on fungicide use due to environmental concerns, there is an urgent need for innovative control strategies. Here, we present a comprehensive analysis of the stage-specific infection process of Fusarium graminearum in wheat spikes by generating a dual weighted gene co-expression network (WGCN). Notably, the network contained a mycotoxin-enriched fungal module (F12) that exhibited a significant correlation with a detoxification gene-enriched wheat module (W12). This correlation in gene expression was validated through quantitative PCR. By examining a fungal module with genes highly expressed during early symptomless infection that was correlated to a wheat module enriched in oxidative stress genes, we identified a gene encoding FgKnr4, a protein containing a Knr4/Smi1 disordered domain. Through comprehensive analysis, we confirmed the pivotal role of FgKnr4 in various biological processes, including oxidative stress tolerance, cell cycle stress tolerance, morphogenesis, growth, and pathogenicity. Further studies confirmed the observed phenotypes are partially due to the involvement of FgKnr4 in regulating the fungal cell wall integrity pathway by modulating the phosphorylation of the MAP-kinase MGV1. Orthologues of the FgKnr4 gene are widespread across the fungal kingdom but are absent in other Eukaryotes, suggesting the protein has potential as a promising intervention target. Encouragingly, the restricted growth and highly reduced virulence phenotypes observed for ΔFgknr4 were replicated upon deletion of the orthologous gene in the wheat fungal pathogen Zymoseptoria tritici. Overall, this study demonstrates the utility of an integrated network-level analytical approach to pinpoint genes of high interest to pathogenesis and disease control.
Collapse
Affiliation(s)
- Erika Kroll
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
- Department of Life Sciences, University of Bath, Bath, Somerset, United Kingdom
| | - Carlos Bayon
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Jason Rudd
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Victoria J. Armer
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Anjana Magaji-Umashankar
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Ryan Ames
- Biosciences and Living Systems Institute, University of Exeter, Devon, Exeter, United Kingdom
| | - Martin Urban
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Neil A. Brown
- Department of Life Sciences, University of Bath, Bath, Somerset, United Kingdom
| | - Kim Hammond-Kosack
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| |
Collapse
|
11
|
Liu Z, Ma K, Zhang P, Zhang S, Song X, Qin Y. F-box protein Fbx23 acts as a transcriptional coactivator to recognize and activate transcription factor Ace1. PLoS Genet 2025; 21:e1011539. [PMID: 39836692 PMCID: PMC11750091 DOI: 10.1371/journal.pgen.1011539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Protein ubiquitination is usually coupled with proteasomal degradation and is crucial in regulating protein quality. The E3 ubiquitin-protein ligase SCF (Skp1-Cullin-F-box) complex directly recognizes the target substrate via interaction between the F-box protein and the substrate. F-box protein is the determinant of substrate specificity. The limited number of identified ubiquitin ligase-substrate pairs is a major bottleneck in the ubiquitination field. Penicillium oxalicum contains many transcription factors, such as BrlA, CreA, XlnR, and Ace1, conserved in filamentous fungi that regulate the fungal development and transcription of (hemi)cellulase genes. Transcription factor Ace1 (also known as SltA) positively correlated with fungal growth and conidiation and negatively correlated with the expression of (hemi)cellulase genes. A ubiquitin ligase-substrate pair, SCFFbx23-Ace1, is identified in P. oxalicum. Most of PoFbx23 is present in free form within the nucleus. A small portion of PoFbx23 associates with Skp1 to form PoFbx23-Skp1 heterodimer or assembles with the three invariable core components (Skp1, Cul1, and Rbx1) of SCF to form the SCFFbx23 complex. Under glucose signal, PoFbx23 absence (Δfbx23) results in decreased transcription levels of the brlA gene which encodes the master regulator for asexual development and six spore pigmentation genes (abrB→abrA→aygB→arpA→arpB→albA) which encode the proteins in the dihydroxynaphthalene-melanin pathway, along with impaired conidiation. Under cellulose signal, transcription levels of (hemi)cellulase genes in the Δfbx23 mutant are significantly upregulated. When PoFbx23 is present, PoAce1 exists as a full-length version and several low-molecular-weight degraded versions. PoAce1 has polyubiquitin modification. Deleting the Pofbx23 gene does not affect Poace1 gene transcription but results in the remarkable accumulation of all versions of the PoAce1 protein. Accumulated PoAce1 protein is a dysfunctional form that no longer binds promoters of the target gene, including the cellulase genes cbh1 and eg1, the hemicellulase gene xyn11A, and the pigmentation-related gene abrB. PoFbx23 acts as a transcriptional coactivator, recognizing and activating PoAce1, allowing the latter to regulate the transcription of target genes with different effects (activating or repressing) under different signals.
Collapse
Affiliation(s)
- Zhongjiao Liu
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Kexuan Ma
- National Glycoengineering Research Center, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Panpan Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Siqi Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Xin Song
- National Glycoengineering Research Center, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yuqi Qin
- National Glycoengineering Research Center, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
12
|
Vaghefi N, Bar I, Lawley JW, Sambasivam PT, Christie M, Ford R. Population-level whole-genome sequencing of Ascochyta rabiei identifies genomic loci associated with isolate aggressiveness. Microb Genom 2024; 10:001326. [PMID: 39576742 PMCID: PMC11893274 DOI: 10.1099/mgen.0.001326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
Ascochyta blight caused by the ascomycete Ascochyta rabiei poses a major biotic threat to chickpea (Cicer arietinum) industries worldwide and incurs substantial costs to the Australian multimillion-dollar chickpea industry in both disease control and yield loss. The fungus was introduced to Australia in the 1970s from an unknown source population and, within a few decades, successfully established in all Australian agroecological chickpea-growing regions. Although genetically highly clonal, a broad range of phenotypic variation in terms of aggressiveness exists among the Australian A. rabiei isolates. More recently, highly aggressive isolates capable of causing severe disease symptoms on moderate to highly resistant chickpea cultivars have increased in frequency. To identify genetic loci potentially associated with A. rabiei aggressiveness on Australian chickpea cultivars, we performed deep genome sequencing of 230 isolates collected from a range of agroecological chickpea-growing regions between 2013 and 2020. Population genetic analyses using genome-wide SNP data identified three main clusters of genetically closely related isolates in Australia. Phylogenetic analyses showed that highly aggressive phenotypes developed multiple times independently throughout the phylogeny. The results point to a minor contribution of multiple genetic regions and most likely epigenomic variations to aggressiveness of A. rabiei isolates on Australian chickpea cultivars.
Collapse
Affiliation(s)
- Niloofar Vaghefi
- Faculty of Science, University of Melbourne, Parkville, Vic 3010, Australia
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Qld 4350, Australia
| | - Ido Bar
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Qld 4111, Australia
| | - Jonathan Wanderley Lawley
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Qld 4111, Australia
| | - Prabhakaran Thanjavur Sambasivam
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Qld 4111, Australia
| | - Melody Christie
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Qld 4111, Australia
| | - Rebecca Ford
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Qld 4111, Australia
| |
Collapse
|
13
|
Fu T, Song YW, Gao G, Kim KS. Novel cellular functions of Cys 2-His 2 zinc finger proteins in anthracnose development and dissemination on pepper fruits by Colletotrichum scovillei. mBio 2024; 15:e0066724. [PMID: 39248570 PMCID: PMC11481868 DOI: 10.1128/mbio.00667-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Colletotrichum species are notorious for causing anthracnose on many fruits, leading to significant economic losses worldwide. As a model, we functionally characterized cys2-his2 (C2H2) zinc finger proteins (CsCZFs) in Colletotrichum scovillei, a major causal agent of pepper fruit anthracnose in many countries. In all, 62 CsCZFs were identified by in silico genomic analysis. Twelve were selected based on their expression profiles to generate targeted deletion mutants for functional investigation. ΔCsczf1 markedly reduced conidiation and constitutive expression of CsCZF1 partially recovered conidiation in an asexual reproduction-defective mutant, ΔCshox2. Deletion of CsCZF12, orthologous to the calcineurin-responsive transcription factor Crz1, impaired autophagy in C. scovillei. ΔCsczf9 was defective in surface recognition, appressorium formation, and suppression of host defenses. CsCZF9 was identified as an essential and novel regulator under the control of the mitogen-activated protein kinase (CsPMK1) in an early step of appressorium development in C. scovillei. This study provides novel insights into CsCZF-mediated regulation of differentiation and pathogenicity in C. scovillei, contributing to understanding the regulatory mechanisms governing fruit anthracnose epidemics.IMPORTANCEThe phytopathogenic fungus Colletotrichum scovillei is known to cause serious anthracnose on chili pepper. However, the molecular mechanism underlying anthracnose caused by this fungus remains largely unknown. Here, we systematically analyzed the functional roles of cys2-his2 zinc finger proteins (CsCZFs) in the dissemination and pathogenic development of this fungus. Our results showed that CsCZF1 plays an important role in conidiation and constitutive expression of CsCZF1 restored conidiation in an asexual reproduction-defective mutant, ΔCshox2. The CsCZF9, a novel target of the mitogen-activated protein kinase (CsPMK1), is essential for surface recognition to allow appressorium formation and suppression of host defenses in C. scovillei. The CsCZF12, orthologous to the calcineurin-responsive transcription factor Crz1, is involved in the autophagy of C. scovillei. Our findings reveal a comprehensive mechanism underlying CsCZF-mediated regulation of differentiation and pathogenicity of C. scovillei, which contributes to the understanding of fruit anthracnose epidemics and the development of novel strategies for disease management.
Collapse
Affiliation(s)
- Teng Fu
- Division of Bio-Resource Sciences, Interdisciplinary Program in Smart Agriculture, and Bioherb Research Institute, Kangwon National University, Chuncheon, South Korea
| | - Yong-Won Song
- Division of Bio-Resource Sciences, Interdisciplinary Program in Smart Agriculture, and Bioherb Research Institute, Kangwon National University, Chuncheon, South Korea
| | - Guoyang Gao
- Division of Bio-Resource Sciences, Interdisciplinary Program in Smart Agriculture, and Bioherb Research Institute, Kangwon National University, Chuncheon, South Korea
| | - Kyoung Su Kim
- Division of Bio-Resource Sciences, Interdisciplinary Program in Smart Agriculture, and Bioherb Research Institute, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
14
|
Zhang Y, Jia C, Liu Y, Li G, Li B, Shi W, Zhang Y, Hou J, Qin Q, Zhang M, Qin J. The Fungal Transcription Factor BcTbs1 from Botrytis cinerea Promotes Pathogenicity via Host Cellulose Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20816-20830. [PMID: 39261294 DOI: 10.1021/acs.jafc.4c03744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Zn(II)2Cys6 proteins constitute the largest group of fungal-specific transcription factors. However, little is known about their functions in the crop killer Botrytis cinerea. In this work, a T-DNA insertion strain M13448 was identified which was inserted into the Zn(II)2Cys6 TF-encoding gene BcTBS1. Knockout of BcTBS1 did not affect mycelia growth, appressorium formation, and sclerotium germination, but impaired fungal conidiation, conidial morphogenesis, conidial germination, infection cushion development, and sclerotial formation. Accordingly, ΔBctbs1 mutants showed reduced virulence in its host plants. Further study proved that BcTBS1, BCIN_15g03870, and BCIN_12g06630 were induced by cellulose. Subsequent cellulase activity assays revealed that the loss of BcTBS1 significantly decreased cellulase activity. In addition, we verified that the BCIN_15g03870 and BCIN_12g06630 genes were positive regulated by BcTBS1 by quantitative real-time reverse-transcription-polymerase chain reaction (qRT-PCR). Taken together, these results suggested that BcTBS1 can promote pathogenicity by modulating cellulase-encoding genes that participate in host cellulose degradation.
Collapse
Affiliation(s)
- Yinshan Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yue Liu
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Guihua Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Bin Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Wuliang Shi
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yubin Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jie Hou
- Engineering Research Centre of Forestry Biotechnology of Jilin Province in Beihua University, Jilin 132013, China
| | - Qingming Qin
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Mingzhe Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jianchun Qin
- College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
15
|
John E, Verdonk C, Singh KB, Oliver RP, Lenzo L, Morikawa S, Soyer JL, Muria-Gonzalez J, Soo D, Mousley C, Jacques S, Tan KC. Regulatory insight for a Zn2Cys6 transcription factor controlling effector-mediated virulence in a fungal pathogen of wheat. PLoS Pathog 2024; 20:e1012536. [PMID: 39312592 PMCID: PMC11419344 DOI: 10.1371/journal.ppat.1012536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
The regulation of virulence in plant-pathogenic fungi has emerged as a key area of importance underlying host infections. Recent work has highlighted individual transcription factors (TFs) that serve important roles. A prominent example is PnPf2, a member of the Zn2Cys6 family of fungal TFs, which controls the expression of effectors and other virulence-associated genes in Parastagonospora nodorum during infection of wheat. PnPf2 orthologues are similarly important for other major fungal pathogens during infection of their respective host plants, and have also been shown to control polysaccharide metabolism in model saprophytes. In each case, the direct genomic targets and associated regulatory mechanisms were unknown. Significant insight was made here by investigating PnPf2 through chromatin-immunoprecipitation (ChIP) and mutagenesis approaches in P. nodorum. Two distinct binding motifs were characterised as positive regulatory elements and direct PnPf2 targets identified. These encompass known effectors and other components associated with the P. nodorum pathogenic lifestyle, such as carbohydrate-active enzymes and nutrient assimilators. The results support a direct involvement of PnPf2 in coordinating virulence on wheat. Other prominent PnPf2 targets included TF-encoding genes. While novel functions were observed for the TFs PnPro1, PnAda1, PnEbr1 and the carbon-catabolite repressor PnCreA, our investigation upheld PnPf2 as the predominant transcriptional regulator characterised in terms of direct and specific coordination of virulence on wheat, and provides important mechanistic insights that may be conserved for homologous TFs in other fungi.
Collapse
Affiliation(s)
- Evan John
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Callum Verdonk
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Karam B. Singh
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Perth, Australia
| | - Richard P. Oliver
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Leon Lenzo
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Shota Morikawa
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Jessica L. Soyer
- Université Paris-Saclay, INRAE, UR BIOGER, Thiverval-Grignon, France
| | - Jordi Muria-Gonzalez
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Daniel Soo
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Carl Mousley
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Silke Jacques
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| |
Collapse
|
16
|
Yang J, Li B, Pan YT, Wang P, Sun ML, Kim KT, Sun H, Ye JR, Jiao Z, Lee YH, Huang L. Phospho-code of a conserved transcriptional factor underpins fungal virulence. BMC Biol 2024; 22:179. [PMID: 39183278 PMCID: PMC11346053 DOI: 10.1186/s12915-024-01978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Cell wall integrity (CWI) is crucial for fungal growth, pathogenesis, and adaptation to extracellular environments. Calcofluor white (CFW) is a cell wall perturbant that inhibits fungal growth, yet little is known about how phytopathogenic fungi respond to the CFW-induced stress. RESULTS In this study, we unveiled a significant discovery that CFW triggered the translocation of the transcription factor CgCrzA from the cytoplasm to the nucleus in Colletotrichum gloeosporioides. This translocation was regulated by an interacting protein, CgMkk1, a mitogen-activated protein kinase involved in the CWI pathway. Further analysis revealed that CgMkk1 facilitated nuclear translocation by phosphorylating CgCrzA at the Ser280 residue. Using chromatin immunoprecipitation sequencing, we identified two downstream targets of CgCrzA, namely CgCHS5 and CgCHS6, which are critical for growth, cell wall integrity, and pathogenicity as chitin synthase genes. CONCLUSIONS These findings provide a novel insight into the regulatory mechanism of CgMkk1-CgCrzA-CgChs5/6, which enables response of the cell wall inhibitor CFW and facilitates infectious growth for C. gloeosporioides.
Collapse
Affiliation(s)
- Jiyun Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Bing Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Yu-Ting Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Ping Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Mei-Ling Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon, 57922, Korea
| | - Hui Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Zhen Jiao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
17
|
Morikawa S, Verdonk C, John E, Lenzo L, Sbaraini N, Turo C, Li H, Jiang D, Chooi YH, Tan KC. The Velvet transcription factor PnVeA regulates necrotrophic effectors and secondary metabolism in the wheat pathogen Parastagonospora nodorum. BMC Microbiol 2024; 24:299. [PMID: 39127645 PMCID: PMC11316297 DOI: 10.1186/s12866-024-03454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
The fungus Parastagonospora nodorum causes septoria nodorum blotch on wheat. The role of the fungal Velvet-family transcription factor VeA in P. nodorum development and virulence was investigated here. Deletion of the P. nodorum VeA ortholog, PnVeA, resulted in growth abnormalities including pigmentation, abolished asexual sporulation and highly reduced virulence on wheat. Comparative RNA-Seq and RT-PCR analyses revealed that the deletion of PnVeA also decoupled the expression of major necrotrophic effector genes. In addition, the deletion of PnVeA resulted in an up-regulation of four predicted secondary metabolite (SM) gene clusters. Using liquid-chromatography mass-spectrometry, it was observed that one of the SM gene clusters led to an accumulation of the mycotoxin alternariol. PnVeA is essential for asexual sporulation, full virulence, secondary metabolism and necrotrophic effector regulation.
Collapse
Affiliation(s)
- Shota Morikawa
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Callum Verdonk
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Evan John
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Leon Lenzo
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Nicolau Sbaraini
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Chala Turo
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Hang Li
- School of Molecular Sciences, University of Western Australia, Perth, Australia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - David Jiang
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia.
| |
Collapse
|
18
|
Yang Y, Xiong D, Zhao D, Huang H, Tian C. Genome sequencing of Elaeocarpus spp. stem blight pathogen Pseudocryphonectria elaeocarpicola reveals potential adaptations to colonize woody bark. BMC Genomics 2024; 25:714. [PMID: 39048950 PMCID: PMC11267912 DOI: 10.1186/s12864-024-10615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Elaeocarpus spp. stem blight, caused by Pseudocryphonectria elaeocarpicola, is a destructive disease, which will significantly reduce the productivity and longevity of Elaeocarpus spp. plants, especially in the Guangdong Province of China. However, few information is available for P. elaeocarpicola. To unravel the potential adaptation mechanism of stem adaptation, the whole genome of P. elaeocarpicola was sequenced by using the DNBSEQ and PacBio platforms. RESULTS P. elaeocarpicola harbors 44.49 Mb genome with 10,894 predicted coding genes. Genome analysis revealed that the P. elaeocarpicola genome encodes a plethora of pathogenicity-related genes. Analysis of carbohydrate-active enzymes (CAZymes) revealed a rich variety of enzymes participated in plant cell wall degradation, which could effectively degrade cellulose, hemicellulose and xyloglucans in the plant cell wall and promote the invasion of the host plant. There are 213 CAZyme families found in P. elaeocarpicola, among which glycoside hydrolase (GH) family has the largest number, far exceeding other tested fungi by 53%. Besides, P. elaeocarpicola has twice as many genes encoding chitin and cellulose degradation as Cryphonectria parasitica, which belong to the same family. The predicted typical secreted proteins of P. elaeocarpicola are numerous and functional, including many known virulence effector factors, indicating that P. elaeocarpicola has great potential to secrete virulence effectors to promote pathogenicity on host plants. AntiSMASH revealed that the genome encoded 61 secondary metabolic gene clusters including 86 secondary metabolic core genes which was much higher than C. parasitica (49). Among them, two gene cluster of P. elaeocarpicola, cluster12 and cluster52 showed 100% similarity with the mycotoxins synthesis clusters from Aspergillus steynii and Alternaria alternata, respectively. In addition, we annotated cytochrome P450 related enzymes, transporters, and transcription factors in P. elaeocarpicola, which are important virulence determinants of pathogenic fungi. CONCLUSIONS Taken together, our study represents the first genome assembly for P. elaeocarpicola and reveals the key virulence factors in the pathogenic process of P. elaeocarpicola, which will promote our understanding of its pathogenic mechanism. The acquired knowledge lays a foundation for further exploration of molecular interactions with the host and provide target for management strategies in future research.
Collapse
Affiliation(s)
- Yuchen Yang
- State Key laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| | - Dianguang Xiong
- State Key laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China.
| | - Danyang Zhao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, Guangdong, China
| | - Huayi Huang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, Guangdong, China.
| | - Chengming Tian
- State Key laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
19
|
Qian H, Lin L, Zhang Z, Gu X, Shen D, Yin Z, Ye W, Dou D, Wang Y. A MYB-related transcription factor regulates effector gene expression in an oomycete pathogen. MOLECULAR PLANT PATHOLOGY 2024; 25:e13468. [PMID: 38808392 PMCID: PMC11134190 DOI: 10.1111/mpp.13468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
Phytophthora pathogens possess hundreds of effector genes that exhibit diverse expression patterns during infection, yet how the expression of effector genes is precisely regulated remains largely elusive. Previous studies have identified a few potential conserved transcription factor binding sites (TFBSs) in the promoters of Phytophthora effector genes. Here, we report a MYB-related protein, PsMyb37, in Phytophthora sojae, the major causal agent of root and stem rot in soybean. Yeast one-hybrid and electrophoretic mobility shift assays showed that PsMyb37 binds to the TACATGTA motif, the most prevalent TFBS in effector gene promoters. The knockout mutant of PsMyb37 exhibited significantly reduced virulence on soybean and was more sensitive to oxidative stress. Consistently, transcriptome analysis showed that numerous effector genes associated with suppressing plant immunity or scavenging reactive oxygen species were down-regulated in the PsMyb37 knockout mutant during infection compared to the wild-type P. sojae. Several promoters of effector genes were confirmed to drive the expression of luciferase in a reporter assay. These results demonstrate that a MYB-related transcription factor contributes to the expression of effector genes in P. sojae.
Collapse
Affiliation(s)
- Hui Qian
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Long Lin
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Zhichao Zhang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Xinyi Gu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Danyu Shen
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Zhiyuan Yin
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Wenwu Ye
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Daolong Dou
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yuanchao Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| |
Collapse
|
20
|
Utomo C, Tanjung ZA, Aditama R, Pratomo ADM, Buana RFN, Putra HSG, Tryono R, Liwang T. Whole-genome sequencing of Ganoderma boninense, the causal agent of basal stem rot disease in oil palm, via combined short- and long-read sequencing. Sci Rep 2024; 14:10520. [PMID: 38714765 PMCID: PMC11076493 DOI: 10.1038/s41598-024-60713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/26/2024] [Indexed: 05/10/2024] Open
Abstract
The hemibiotrophic Basidiomycete pathogen Ganoderma boninense (Gb) is the dominant causal agent of oil palm basal stem rot disease. Here, we report a complete chromosomal genome map of Gb using a combination of short-read Illumina and long-read Pacific Biosciences (PacBio) sequencing platforms combined with chromatin conformation capture data from the Chicago and Hi-C platforms. The genome was 55.87 Mb in length and assembled to a high contiguity (N50: 304.34 kb) of 12 chromosomes built from 112 scaffolds, with a total of only 4.34 Mb (~ 7.77%) remaining unplaced. The final assemblies were evaluated for completeness of the genome by using Benchmarking Universal Single Copy Orthologs (BUSCO) v4.1.4, and based on 4464 total BUSCO polyporales group searches, the assemblies yielded 4264 (95.52%) of the conserved orthologs as complete and only a few fragmented BUSCO of 42 (0.94%) as well as a missing BUSCO of 158 (3.53%). Genome annotation predicted a total of 21,074 coding genes, with a GC content ratio of 59.2%. The genome features were analyzed with different databases, which revealed 2471 Gene Ontology/GO (11.72%), 5418 KEGG (Kyoto Encyclopedia of Genes and Genomes) Orthologous/KO (25.71%), 13,913 Cluster of Orthologous Groups of proteins/COG (66.02%), 60 ABC transporter (0.28%), 1049 Carbohydrate-Active Enzymes/CAZy (4.98%), 4005 pathogen-host interactions/PHI (19%), and 515 fungal transcription factor/FTFD (2.44%) genes. The results obtained in this study provide deep insight for further studies in the future.
Collapse
Affiliation(s)
- Condro Utomo
- Department of Biotechnology, PT SMART Tbk, Bogor, 16810, Indonesia.
| | | | - Redi Aditama
- Section of Bioinformatics, PT SMART Tbk, Bogor, 16810, Indonesia
| | | | | | | | - Reno Tryono
- Section of Genetic Engineering, PT SMART Tbk, Bogor, 16810, Indonesia
| | - Tony Liwang
- Division of Plant Production and Biotechnology, PT SMART Tbk, Bogor, 16810, Indonesia
| |
Collapse
|
21
|
Schalamun M, Hinterdobler W, Schinnerl J, Brecker L, Schmoll M. The transcription factor STE12 influences growth on several carbon sources and production of dehydroacetic acid (DHAA) in Trichoderma reesei. Sci Rep 2024; 14:9625. [PMID: 38671155 PMCID: PMC11053031 DOI: 10.1038/s41598-024-59511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The filamentous ascomycete Trichoderma reesei, known for its prolific cellulolytic enzyme production, recently also gained attention for its secondary metabolite synthesis. Both processes are intricately influenced by environmental factors like carbon source availability and light exposure. Here, we explore the role of the transcription factor STE12 in regulating metabolic pathways in T. reesei in terms of gene regulation, carbon source utilization and biosynthesis of secondary metabolites. We show that STE12 is involved in regulating cellulase gene expression and growth on carbon sources associated with iron homeostasis. STE12 impacts gene regulation in a light dependent manner on cellulose with modulation of several CAZyme encoding genes as well as genes involved in secondary metabolism. STE12 selectively influences the biosynthesis of the sorbicillinoid trichodimerol, while not affecting the biosynthesis of bisorbibutenolide, which was recently shown to be regulated by the MAPkinase pathway upstream of STE12 in the signaling cascade. We further report on the biosynthesis of dehydroacetic acid (DHAA) in T. reesei, a compound known for its antimicrobial properties, which is subject to regulation by STE12. We conclude, that STE12 exerts functions beyond development and hence contributes to balance the energy distribution between substrate consumption, reproduction and defense.
Collapse
Affiliation(s)
- Miriam Schalamun
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| | - Wolfgang Hinterdobler
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
- MyPilz GmbH, Wienerbergstrasse 55/13-15, 1120, Vienna, Austria
| | - Johann Schinnerl
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Monika Schmoll
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430, Tulln, Austria.
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
22
|
Nuzhnaya TV, Sorokan AV, Burkhanova GF, Maksimov IV, Veselova SV. The Role of Cytokinins and Abscisic Acid in the Growth, Development and Virulence of the Pathogenic Fungus Stagonospora nodorum (Berk.). Biomolecules 2024; 14:517. [PMID: 38785924 PMCID: PMC11117529 DOI: 10.3390/biom14050517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Cytokinins (CKs) and abscisic acid (ABA) play an important role in the life of both plants and pathogenic fungi. However, the role of CKs and ABA in the regulation of fungal growth, development and virulence has not been sufficiently studied. We compared the ability of two virulent isolates (SnB and Sn9MN-3A) and one avirulent isolate (Sn4VD) of the pathogenic fungus Stagonospora nodorum Berk. to synthesize three groups of hormones (CKs, ABA and auxins) and studied the effect of exogenous ABA and zeatin on the growth, sporulation and gene expression of necrotrophic effectors (NEs) and transcription factors (TFs) in them. Various isolates of S. nodorum synthesized different amounts of CKs, ABA and indoleacetic acid. Using exogenous ABA and zeatin, we proved that the effect of these hormones on the growth and sporulation of S. nodorum isolates can be opposite, depends on both the genotype of the isolate and on the concentration of the hormone and is carried out through the regulation of carbohydrate metabolism. ABA and zeatin regulated the expression of fungal TF and NE genes, but correlation analysis of these parameters showed that this effect depended on the genotype of the isolate. This study will contribute to our understanding of the role of the hormones ABA and CKs in the biology of the fungal pathogen S. nodorum.
Collapse
Affiliation(s)
- Tatyana V. Nuzhnaya
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (A.V.S.); (G.F.B.); (I.V.M.)
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Antonina V. Sorokan
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (A.V.S.); (G.F.B.); (I.V.M.)
| | - Guzel F. Burkhanova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (A.V.S.); (G.F.B.); (I.V.M.)
| | - Igor V. Maksimov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (A.V.S.); (G.F.B.); (I.V.M.)
| | - Svetlana V. Veselova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (A.V.S.); (G.F.B.); (I.V.M.)
| |
Collapse
|
23
|
Jemil N, Besbes I, Gharbi Y, Triki MA, Cheffi M, Manresa A, Nasri M, Hmidet N. Bacillus methylotrophicus DCS1: Production of Different Lipopeptide Families, In Vitro Antifungal Activity and Suppression of Fusarium Wilt in Tomato Plants. Curr Microbiol 2024; 81:142. [PMID: 38625396 DOI: 10.1007/s00284-024-03660-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/02/2024] [Indexed: 04/17/2024]
Abstract
The present work aims to quantitatively and qualitatively monitor the production of lipopeptide mixtures by Bacillus methylotrophicus DCS1 strain in Landy medium and to investigate the antifungal activities of DCS1 strain and its produced lipopeptides. The in vitro activities were tested by the direct confrontation and agar well diffusion methods, while the in vivo study was carried out in order to test the efficiency of DCS1 bacterial suspension in the control of Fusarium wilt in tomato plants. Identification of lipopeptides by mass spectrometry (LC/MSD-TOF) showed that lipopeptide isoforms produced during the first 24 h and 48 h of fermentation are identical, belonging to bacillomycin D and fengycins A and B homologues with a difference in the yield of production. After 72 h of fermentation corresponding to the end of incubation period, B. methylotrophicus DCS1 is able to produce a mixture of surfactin, pumilacidin, iturin A/mycosubtilin, iturin C1, bacillomycin D and fengycins A and B isoforms. The results of in vitro antifungal experiments suggest that B. methylotrophicus DCS1 has a significant potential as a biocontrol agent, owing to lipopeptides produced, endowed with antifungal activity against several phytopathogenic fungi. The curative treatment of tomato plants with DCS1 bacterial suspension was more effective in the protection against Fusarium oxysporum f. sp. radicis-lycopersici (FORL) than the preventive treatment by comparing the average number of leaves remaining healthy after 30 days of each treatment and the appearance of tomato plants roots. The results indicate that B. methylotrophicus DCS1 exhibit a significant suppression of Fusarium wilt symptoms in tomato plants comparable to that of commercial fungicides and could be an alternative to chemically synthesized pesticides.
Collapse
Affiliation(s)
- Nawel Jemil
- Laboratory of Enzymatic Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173-3038, Sfax, Tunisia.
| | - Imen Besbes
- Laboratory of Enzymatic Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173-3038, Sfax, Tunisia
| | - Yaakoub Gharbi
- Laboratory of Genetic Resources of Olive Tree : Characterization, Valorization and Phytosanitary Protection, Olive Tree Institute, University of Sfax, 3038, Sfax, Tunisia
| | - Mohamed Ali Triki
- Laboratory of Genetic Resources of Olive Tree : Characterization, Valorization and Phytosanitary Protection, Olive Tree Institute, University of Sfax, 3038, Sfax, Tunisia
| | - Manel Cheffi
- Laboratory of Genetic Resources of Olive Tree : Characterization, Valorization and Phytosanitary Protection, Olive Tree Institute, University of Sfax, 3038, Sfax, Tunisia
| | - Angeles Manresa
- Section of Microbiology, Department of Biology, Health and Environment, Faculty of Pharmacy, University of Barcelona, Joan XXIII S/N, 08028, Barcelona, Spain
| | - Moncef Nasri
- Laboratory of Enzymatic Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173-3038, Sfax, Tunisia
| | - Noomen Hmidet
- Laboratory of Enzymatic Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173-3038, Sfax, Tunisia
| |
Collapse
|
24
|
Clairet C, Gay EJ, Porquier A, Blaise F, Marais CL, Balesdent MH, Rouxel T, Soyer JL, Fudal I. Regulation of effector gene expression as concerted waves in Leptosphaeria maculans: a two-player game. THE NEW PHYTOLOGIST 2024; 242:247-261. [PMID: 38358035 DOI: 10.1111/nph.19581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
Effector genes, encoding molecules involved in disease establishment, are concertedly expressed throughout the lifecycle of plant-pathogenic fungi. However, little is known about how effector gene expression is regulated. Since many effector genes are located in repeat-rich regions, the role of chromatin remodeling in their regulation was recently investigated, notably establishing that the repressive histone modification H3K9me3, deposited by KMT1, was involved in several fungal species including Leptosphaeria maculans. Nevertheless, previous data suggest that a second regulatory layer, probably involving a specific transcription factor (TF), might be required. In L. maculans, a Dothideomycete causing stem canker of oilseed rape, we identified the ortholog of Pf2, a TF belonging to the Zn2Cys6 fungal-specific family, and described as essential for pathogenicity and effector gene expression. We investigated its role together with KMT1, by inactivating and over-expressing LmPf2 in a wild-type strain and a ∆kmt1 mutant. Functional analyses of the corresponding transformants highlighted an essential role of LmPf2 in the establishment of pathogenesis and we found a major effect of LmPf2 on the induction of effector gene expression once KMT1 repression is lifted. Our results show, for the first time, a dual control of effector gene expression.
Collapse
Affiliation(s)
- Colin Clairet
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Elise J Gay
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Antoine Porquier
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Françoise Blaise
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | | | | | - Thierry Rouxel
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Jessica L Soyer
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Isabelle Fudal
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| |
Collapse
|
25
|
Liang H, Li F, Huang Y, Yu Q, Huang Z, Zeng Q, Chen B, Meng J. FsCGBP, a Cutinase G-Box Binding Protein, Regulates the Growth, Development, and Virulence of Fusarium sacchari, the Pathogen of Sugarcane Pokkah Boeng Disease. J Fungi (Basel) 2024; 10:246. [PMID: 38667917 PMCID: PMC11051240 DOI: 10.3390/jof10040246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Fusarium sacchari is a causal agent of sugarcane Pokkah boeng, an important fungal disease that causes a considerable reduction in yield and sugar content in susceptible varieties of sugarcane worldwide. Despite its importance, the fungal factors that regulate the virulence of this pathogen remain largely unknown. In our previous study, mapping of an insertional mutant defect in virulence resulted in the identification of a cutinase G-box binding protein gene, designated FsCGBP, that encodes a C2H2-type transcription factor (TF). FsCGBP was shown to localize in the nuclei, and the transcript level of FsCGBP was significantly upregulated during the infection process or in response to abiotic stresses. Deletion or silencing of FsCGBP resulted in a reduction in mycelial growth, conidial production, and virulence and a delay in conidial germination in the F. sacchari. Cutinase genes FsCUT2, FsCUT3, and FsCUT4 and the mitogen-activated protein kinase (MAPK) genes FsHOG1, FsMGV1, and FsGPMK1, which were significantly downregulated in ΔFsCGBP. Except for FsHOG1, all of these genes were found to be transcriptionally activated by FsCGBP using the yeast one-hybrid system in vitro. The deletion of individual cutinase genes did not result in any of the phenotypes exhibited in the ΔFsCGBP mutant, except for cutinase activity. However, disruption of the MAPK pathway upon deletion of FsMGV1 or FsGPMK1 resulted in phenotypes similar to those of the ΔFsCGBP mutant. The above results suggest that FsCGBP functions by regulating the MAPK pathway and cutinase genes, providing new insights into the mechanism of virulence regulation in F. sacchari.
Collapse
Affiliation(s)
- Haoming Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Fang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yundan Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Quan Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhenxin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Quan Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jiaorong Meng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
26
|
Sánchez-Torres P, González-Candelas L, Ballester AR. Discovery and Transcriptional Profiling of Penicillium digitatum Genes That Could Promote Fungal Virulence during Citrus Fruit Infection. J Fungi (Basel) 2024; 10:235. [PMID: 38667906 PMCID: PMC11051341 DOI: 10.3390/jof10040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Green mold caused by Penicillium digitatum (Pers.:Fr.) Sacc is the most prevalent postharvest rot concerning citrus fruits. Using the subtractive suppression hybridization (SSH) technique, different P. digitatum genes have been identified that could be involved in virulence during citrus infection in the early stages, a crucial moment that determines whether the infection progresses or not. To this end, a comparison of two P. digitatum strains with high and low virulence has been carried out. We conducted a study on the gene expression profile of the most relevant genes. The results indicate the importance of transcription and regulation processes as well as enzymes involved in the degradation of the plant cell wall. The most represented expressed sequence tag (EST) was identified as PDIP_11000, associated with the FluG domain, which is putatively involved in the activation of conidiation. It is also worth noting that PDIP_02280 encodes a pectin methyl esterase, a cell wall remodeling protein with a high expression level in the most virulent fungal strains, which is notably induced during citrus infection. Furthermore, within the group with the greatest representation and showing significant induction in the early stages of infection, regulatory proteins (PDIP_68700, PDIP_76160) and a chaperone (PDIP_38040) stand out. To a lesser extent, but not less relevant, it is worth distinguishing different regulatory proteins and transcription factors, such as PDIP_00580, PDIP_49640 and PDIP_78930.
Collapse
Affiliation(s)
- Paloma Sánchez-Torres
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, 46113 Valencia, Spain
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, Paterna, 46980 Valencia, Spain
| | - Luis González-Candelas
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, Paterna, 46980 Valencia, Spain
| | - Ana Rosa Ballester
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, Paterna, 46980 Valencia, Spain
| |
Collapse
|
27
|
Li Q, Feng Y, Li J, Hai Y, Si L, Tan C, Peng J, Hu Z, Li Z, Li C, Hao D, Tang W. Multi-omics approaches to understand pathogenicity during potato early blight disease caused by Alternaria solani. Front Microbiol 2024; 15:1357579. [PMID: 38529180 PMCID: PMC10961351 DOI: 10.3389/fmicb.2024.1357579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024] Open
Abstract
Potato early blight (PEB), a foliar disease of potato during the growing period, caused by Alternaria sp., is common in major potato-producing areas worldwide. Effective agents to control this disease or completely resistant potato varieties are absent. Large-scale use of fungicides is limited due to possibility of increase in pathogen resistance and the requirements of ecological agriculture. In this study, we focused on the composition and infection characteristics of early blight pathogens in Yunnan Province and screened candidate pathogenesis-related pathways and genes. We isolated 85 strains of Alternaria sp. fungi from typical early blight spots in three potato-growing regions in Yunnan Province from 2018 to 2022, and identified 35 strains of Alternaria solani and 50 strains of Alternaria alternata by morphological characterization and ITS sequence comparison, which were identified as the main and conditional pathogens causing early blight in potato, respectively. Scanning electron microscope analysis confirmed only A. solani producing appressorium at 4 h after inoculation successfully infected the leaf cells. Via genome assembly and annotation, combine transcriptome and proteomic analysis, the following pathogenicity-related unit, transcription factors and metabolic pathway were identified: (1) cell wall-degrading enzymes, such as pectinase, keratinase, and cellulase; (2) genes and pathways related to conidia germination and pathogenicity, such as ubiquitination and peroxisomes; and (3) transcription factors, such as Zn-clus, C2H2, bZIP, and bHLH. These elements were responsible for PEB epidemic in Yunnan.
Collapse
Affiliation(s)
- Qing Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Yan Feng
- School of Economics and Management, Yunnan Normal University, Kunming, China
| | - Jianmei Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Yang Hai
- Yunnan YinMore Modern Agriculture Co., Ltd., Kunming, China
| | - Liping Si
- Yunnan YinMore Modern Agriculture Co., Ltd., Kunming, China
| | - Chen Tan
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Jing Peng
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Zuo Hu
- Zhaotong Academy of Agricultural Sciences, Zhaotong, China
| | - Zhou Li
- Zhaotong Academy of Agricultural Sciences, Zhaotong, China
| | - Canhui Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Dahai Hao
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Wei Tang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| |
Collapse
|
28
|
Sun J, Zhao J, Liu M, Li J, Cheng J, Li W, Yuan M, Xiao S, Xue C. SreC-dependent adaption to host iron environments regulates the transition of trophic stages and developmental processes of Curvularia lunata. MOLECULAR PLANT PATHOLOGY 2024; 25:e13444. [PMID: 38481338 PMCID: PMC10938068 DOI: 10.1111/mpp.13444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism of plant pathogens rapidly adapting to the dynamic host iron environments to assimilate iron for invasion and colonization remains largely unexplored. Here, we found that the GATA transcription factor SreC in Curvularia lunata is required for virulence and adaption to the host iron excess environment. SreC directly binds to the ATGWGATAW element in an iron-dependent manner to regulate the switch between different iron assimilation pathways, conferring adaption to host iron environments in different trophic stages of C. lunata. SreC also regulates the transition of trophic stages and developmental processes in C. lunata. SreC-dependent adaption to host iron environments is essential to the infectious growth and survival of C. lunata. We also demonstrate that CgSreA (a SreC orthologue) plays a similar role in Colletotrichum graminicola. We conclude that Sre mediates adaption to the host iron environment during infection, and the function is conserved in hemibiotrophic fungi.
Collapse
Affiliation(s)
- Jiaying Sun
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Jiamei Zhao
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Miaomiao Liu
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Jiayang Li
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Jie Cheng
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Wenling Li
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Mingyue Yuan
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
- Section of Microbial Ecology, Department of BiologyLund UniversityLundSweden
| | - Shuqin Xiao
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Chunsheng Xue
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| |
Collapse
|
29
|
Huang Y, Zhaxi Z, Fu Y, Xie J, Chen T, Li B, Yu X, Lin Y, Jiang D, Cheng J. The Transcription Factor SsZNC1 Mediates Virulence, Sclerotial Development, and Osmotic Stress Response in Sclerotinia sclerotiorum. J Fungi (Basel) 2024; 10:135. [PMID: 38392807 PMCID: PMC10890190 DOI: 10.3390/jof10020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Sclerotinia sclerotiorum is a fungal pathogen with a broad range of hosts, which can cause diseases and pose a great threat to many crops. Fungal-specific Zn2Cys6 transcription factors (TFs) constitute a large family prevalent among plant pathogens. However, the function of Zn2Cys6 TFs remains largely unknown. In this study, we identified and characterized SsZNC1, a Zn2Cys6 TF in S. sclerotiorum, which is involved in virulence, sclerotial development, and osmotic stress response. The expression of SsZNC1 was significantly up-regulated in the early stages of S. sclerotiorum infection on Arabidopsis leaves. The target deletion of SsZNC1 resulted in reduced virulence on Arabidopsis and oilseed rape. In addition, sclerotial development ability and growth ability under hyperosmotic conditions of SsZNC1 knockout transformants were reduced. A transcriptomic analysis unveiled its regulatory role in key cellular functions, including cellulose catabolic process, methyltransferase activity, and virulence, etc. Together, our results indicated that SsZNC1, a core regulatory gene involved in virulence, sclerotial development and stress response, provides new insight into the transcription regulation and pathogenesis of S. sclerotiorum.
Collapse
Affiliation(s)
- Yongkun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhima Zhaxi
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yanping Fu
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Tao Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yang Lin
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
30
|
Lambou K, Tag A, Lassagne A, Collemare J, Clergeot PH, Barbisan C, Perret P, Tharreau D, Millazo J, Chartier E, De Vries RP, Hirsch J, Morel JB, Beffa R, Kroj T, Thomas T, Lebrun MH. The bZIP transcription factor BIP1 of the rice blast fungus is essential for infection and regulates a specific set of appressorium genes. PLoS Pathog 2024; 20:e1011945. [PMID: 38252628 PMCID: PMC10833574 DOI: 10.1371/journal.ppat.1011945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The rice blast fungus Magnaporthe oryzae differentiates specialized cells called appressoria that are required for fungal penetration into host leaves. In this study, we identified the novel basic leucine zipper (bZIP) transcription factor BIP1 (B-ZIP Involved in Pathogenesis-1) that is essential for pathogenicity. BIP1 is required for the infection of plant leaves, even if they are wounded, but not for appressorium-mediated penetration of artificial cellophane membranes. This phenotype suggests that BIP1 is not implicated in the differentiation of the penetration peg but is necessary for the initial establishment of the fungus within plant cells. BIP1 expression was restricted to the appressorium by both transcriptional and post-transcriptional control. Genome-wide transcriptome analysis showed that 40 genes were down regulated in a BIP1 deletion mutant. Most of these genes were specifically expressed in the appressorium. They encode proteins with pathogenesis-related functions such as enzymes involved in secondary metabolism including those encoded by the ACE1 gene cluster, small secreted proteins such as SLP2, BAS2, BAS3, and AVR-Pi9 effectors, as well as plant cuticle and cell wall degrading enzymes. Interestingly, this BIP1 network is different from other known infection-related regulatory networks, highlighting the complexity of gene expression control during plant-fungal interactions. Promoters of BIP1-regulated genes shared a GCN4/bZIP-binding DNA motif (TGACTC) binding in vitro to BIP1. Mutation of this motif in the promoter of MGG_08381.7 from the ACE1 gene cluster abolished its appressorium-specific expression, showing that BIP1 behaves as a transcriptional activator. In summary, our findings demonstrate that BIP1 is critical for the expression of early invasion-related genes in appressoria. These genes are likely needed for biotrophic invasion of the first infected host cell, but not for the penetration process itself. Through these mechanisms, the blast fungus strategically anticipates the host plant environment and responses during appressorium-mediated penetration.
Collapse
Affiliation(s)
- Karine Lambou
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Andrew Tag
- Department of Biology, Texas A&M University. College Station, Texas, United States of America
| | - Alexandre Lassagne
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Jérôme Collemare
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Pierre-Henri Clergeot
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- ASP Bourgogne Franche-Comté, Dijon, France
| | | | - Philippe Perret
- Biochemistry Department, Bayer Crop Science SAS, Lyon, France
- Bayer S.A.S. Crop Science Division Global Toxicology- Sophia Antipolis Cedex, France
| | - Didier Tharreau
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Plant Health Institute of Montpellier (PHIM), CIRAD, Montpellier, France
| | - Joelle Millazo
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Plant Health Institute of Montpellier (PHIM), CIRAD, Montpellier, France
| | - Elia Chartier
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Ronald P. De Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Judith Hirsch
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Pathologie Végétale, INRAE, Montfavet, France
| | - Jean-Benoit Morel
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Roland Beffa
- Biochemistry Department, Bayer Crop Science SAS, Lyon, France
| | - Thomas Kroj
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Terry Thomas
- Department of Biology, Texas A&M University. College Station, Texas, United States of America
| | - Marc-Henri Lebrun
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- Université Paris-Saclay, INRAE, UR 1290 BIOGER, Palaiseau, France
| |
Collapse
|
31
|
Masmoudi F, Pothuvattil NS, Tounsi S, Saadaoui I, Trigui M. Synthesis of silver nanoparticles using Bacillus velezensis M3-7 lipopeptides: Enhanced antifungal activity and potential use as a biocontrol agent against Fusarium crown rot disease of wheat seedlings. Int J Food Microbiol 2023; 407:110420. [PMID: 37783113 DOI: 10.1016/j.ijfoodmicro.2023.110420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Bacillus velezensis M3-7 is a hyperactive mutant, 12-fold improved in its antifungal activity, obtained during a previous study from the wild strain BLB371 after a combination of random mutagenesis and medium component optimization. This study explores the use of this mutant in synthesizing silver nanoparticles (Ag-NPs) for the control of Fusarium crown rot disease (FCR) in wheat seedlings. LC-MS/MS analysis proved that both strains co-produced different families of lipopeptides and that mutagenesis caused the hyper-production of iturin A C14 and C15, the liberation of iturin A C10 and C12, and the inhibition of fengycin release. Our aim was a further improvement in the antifungal activity of the wild strain and the mutant M3-7 in order to control Fusarium crown rot disease (FCR) in wheat seedlings. Therefore, a nanotechnology approach was adopted, and different lipopeptide concentrations produced by the wild strain and the mutant M3-7 were used as capping agents to synthesize silver nanoparticles (Ag-NPs) with enhanced antifungal activity. Ag-NPs formed using 3 mg·mL-1 of the mutant lipopeptides were found to exhibit a good distribution, improved antifungal activity, a promising potential to be used as a biofortified agent for seed germination, and an effective compound to control FCR in wheat seedlings.
Collapse
Affiliation(s)
- Fatma Masmoudi
- Biotechnology Program, Center of Sustainable Development, College of Art and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | | | - Slim Tounsi
- Laboratory of Biopesticides (LBPES), Center of Biotechnology of Sfax, Sfax University, Sfax, Tunisia
| | - Imen Saadaoui
- Biotechnology Program, Center of Sustainable Development, College of Art and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biological and Environmental Sciences, College of Art and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohamed Trigui
- Laboratory of Environmental Sciences and Sustainable Development (LASED) Sfax Preparatory Engineering Institute, BP 1172-3018, University of Sfax, Tunisia
| |
Collapse
|
32
|
Li J, Zhang D, Du Y, Song J, Li R, Dai X, Chen J, Li G, Liu Z. Genome Sequence Resource of Cladosporium velox Strain C4 Causing Cotton Boll Disease in Xinjiang, China. PLANT DISEASE 2023; 107:4010-4015. [PMID: 37368501 DOI: 10.1094/pdis-11-22-2694-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Cladosporium spp., as one of the largest and most heterogeneous genera of hyphomycetes, are widely distributed worldwide. This genus is usually adaptable to a wide variety of extreme environments. However, only 11 genomes of Cladosporium genus have been publicly released. From 2017, we found for the first time that Cladosporium velox could cause cotton boll disease and lead to stiffness and cracking boll in Xinjiang, China. Herein, we provide a high-quality reference genome for the C. velox strain C4 isolated from cotton boll in Xinjiang, China. The genome size and encoding gene number of the C. velox strain C4 and C. cucumerinum strain CCNX2, which was recently released and caused the cucumber scab, showed minor differences. This resource will contribute to future research that aims to elucidate the genetic basis of C. velox pathogenicity and could expand our knowledge of Cladosporium spp. genomic characteristics that will be valuable for the development of Cladosporium disease control measures.
Collapse
Affiliation(s)
- Jingwen Li
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Dandan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yejuan Du
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jian Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Ran Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Xiaofeng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Guoying Li
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zheng Liu
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
33
|
Sun X, Liu D, Zhao X. Transcription factors: switches for regulating growth and development in macrofungi. Appl Microbiol Biotechnol 2023; 107:6179-6191. [PMID: 37624406 DOI: 10.1007/s00253-023-12726-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Macrofungi (or mushrooms) act as an extraordinarily important part to human health due to their nutritional and/or medicinal value, but the detailed researches in growth and development mechanisms have yet to be explored further. Transcription factors (TFs) play indispensable roles in signal transduction and affect growth, development, and metabolism of macrofungi. In recent years, increasing research effort has been employed to probe the relationship between the development of macrofungi and TFs. Herein, the present review comprehensively summarized the functional TFs researched in macrofungi, including modulating mycelial growth, fructification, sclerotial formation, sexual reproduction, spore formation, and secondary metabolism. Meanwhile, the possible effect mechanisms of TFs on the growth and development of some macrofungi were also revealed. Specific examples of functional characterizations of TFs in macrofungi (such as Schizophyllum commune and Coprinopsis cinerea) were described to a better comprehension of regulatory effect. Future research prospects in the field of TFs of macrofungi are discussed. We illustrated the functional versatility of the TFs in macrofungi based on specific examples. A systematical realization of the interaction and possible mechanisms between TFs and macrofungi can supply possible solutions to regulate genetic characteristics, which supply novel insights into the regulation of growth, development and metabolism of macrofungi. KEY POINTS: • The functional TFs researched in macrofungi were summarized. • The possible effect mechanisms of TFs in macrofungal were described. • The multiple physiological functions of TFs in macrofungi were discussed.
Collapse
Affiliation(s)
- Xueyan Sun
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Dongmei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
34
|
Carreón-Anguiano KG, Gómez-Tah R, Pech-Balan E, Ek-Hernández GE, De los Santos-Briones C, Islas-Flores I, Canto-Canché B. Pseudocercospora fijiensis Conidial Germination Is Dominated by Pathogenicity Factors and Effectors. J Fungi (Basel) 2023; 9:970. [PMID: 37888226 PMCID: PMC10607838 DOI: 10.3390/jof9100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Conidia play a vital role in the survival and rapid spread of fungi. Many biological processes of conidia, such as adhesion, signal transduction, the regulation of oxidative stress, and autophagy, have been well studied. In contrast, the contribution of pathogenicity factors during the development of conidia in fungal phytopathogens has been poorly investigated. To date, few reports have centered on the pathogenicity functions of fungal phytopathogen conidia. Pseudocercospora fijiensis is a hemibiotrophic fungus and the causal agent of the black Sigatoka disease in bananas and plantains. Here, a conidial transcriptome of P. fijiensis was characterized computationally. Carbohydrates, amino acids, and lipid metabolisms presented the highest number of annotations in Gene Ontology. Common conidial functions were found, but interestingly, pathogenicity factors and effectors were also identified. Upon analysis of the resulting proteins against the Pathogen-Host Interaction (PHI) database, 754 hits were identified. WideEffHunter and EffHunter effector predictors identified 618 effectors, 265 of them were shared with the PHI database. A total of 1107 conidial functions devoted to pathogenesis were found after our analysis. Regarding the conidial effectorome, it was found to comprise 40 canonical and 578 non-canonical effectors. Effectorome characterization revealed that RXLR, LysM, and Y/F/WxC are the largest effector families in the P. fijiensis conidial effectorome. Gene Ontology classification suggests that they are involved in many biological processes and metabolisms, expanding our current knowledge of fungal effectors.
Collapse
Affiliation(s)
- Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Rufino Gómez-Tah
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Efren Pech-Balan
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Gemaly Elisama Ek-Hernández
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - César De los Santos-Briones
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico;
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| |
Collapse
|
35
|
Stuer N, Van Damme P, Goormachtig S, Van Dingenen J. Seeking the interspecies crosswalk for filamentous microbe effectors. TRENDS IN PLANT SCIENCE 2023; 28:1045-1059. [PMID: 37062674 DOI: 10.1016/j.tplants.2023.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Both pathogenic and symbiotic microorganisms modulate the immune response and physiology of their host to establish a suitable niche. Key players in mediating colonization outcome are microbial effector proteins that act either inside (cytoplasmic) or outside (apoplastic) the plant cells and modify the abundance or activity of host macromolecules. We compile novel insights into the much-disputed processes of effector secretion and translocation of filamentous organisms, namely fungi and oomycetes. We report how recent studies that focus on unconventional secretion and effector structure challenge the long-standing image of effectors as conventionally secreted proteins that are translocated with the aid of primary amino acid sequence motifs. Furthermore, we emphasize the potential of diverse, unbiased, state-of-the-art proteomics approaches in the holistic characterization of fungal and oomycete effectomes.
Collapse
Affiliation(s)
- Naomi Stuer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Karel Lodewijk Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium.
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium.
| |
Collapse
|
36
|
Carreras-Villaseñor N, Martínez-Rodríguez LA, Ibarra-Laclette E, Monribot-Villanueva JL, Rodríguez-Haas B, Guerrero-Analco JA, Sánchez-Rangel D. The biological relevance of the FspTF transcription factor, homologous of Bqt4, in Fusarium sp. associated with the ambrosia beetle Xylosandrus morigerus. Front Microbiol 2023; 14:1224096. [PMID: 37520351 PMCID: PMC10375492 DOI: 10.3389/fmicb.2023.1224096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Transcription factors in phytopathogenic fungi are key players due to their gene expression regulation leading to fungal growth and pathogenicity. The KilA-N family encompasses transcription factors unique to fungi, and the Bqt4 subfamily is included in it and is poorly understood in filamentous fungi. In this study, we evaluated the role in growth and pathogenesis of the homologous of Bqt4, FspTF, in Fusarium sp. isolated from the ambrosia beetle Xylosandrus morigerus through the characterization of a CRISPR/Cas9 edited strain in Fsptf. The phenotypic analysis revealed that TF65-6, the edited strain, modified its mycelia growth and conidia production, exhibited affectation in mycelia and culture pigmentation, and in the response to certain stress conditions. In addition, the plant infection process was compromised. Untargeted metabolomic and transcriptomic analysis, clearly showed that FspTF may regulate secondary metabolism, transmembrane transport, virulence, and diverse metabolic pathways such as lipid metabolism, and signal transduction. These data highlight for the first time the biological relevance of an orthologue of Bqt4 in Fusarium sp. associated with an ambrosia beetle.
Collapse
Affiliation(s)
- Nohemí Carreras-Villaseñor
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Luis A. Martínez-Rodríguez
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Enrique Ibarra-Laclette
- Laboratorio de Genómica y Transcriptómica, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Juan L. Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Benjamín Rodríguez-Haas
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - José A. Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Diana Sánchez-Rangel
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
- Investigadora Por Mexico-CONAHCyT, Xalapa, Mexico
| |
Collapse
|
37
|
Okal EJ, Heng G, Magige EA, Khan S, Wu S, Ge Z, Zhang T, Mortimer PE, Xu J. Insights into the mechanisms involved in the fungal degradation of plastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115202. [PMID: 37390726 DOI: 10.1016/j.ecoenv.2023.115202] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Fungi are considered among the most efficient microbial degraders of plastics, as they produce salient enzymes and can survive on recalcitrant compounds with limited nutrients. In recent years, studies have reported numerous species of fungi that can degrade different types of plastics, yet there remain many gaps in our understanding of the processes involved in biodegradation. In addition, many unknowns need to be resolved regarding the fungal enzymes responsible for plastic fragmentation and the regulatory mechanisms which fungi use to hydrolyse, assimilate and mineralize synthetic plastics. This review aims to detail the main methods used in plastic hydrolysis by fungi, key enzymatic and molecular mechanisms, chemical agents that enhance the enzymatic breakdown of plastics, and viable industrial applications. Considering that polymers such as lignin, bioplastics, phenolics, and other petroleum-based compounds exhibit closely related characteristics in terms of hydrophobicity and structure, and are degraded by similar fungal enzymes as plastics, we have reasoned that genes that have been reported to regulate the biodegradation of these compounds or their homologs could equally be involved in the regulation of plastic degrading enzymes in fungi. Thus, this review highlights and provides insight into some of the most likely regulatory mechanisms by which fungi degrade plastics, target enzymes, genes, and transcription factors involved in the process, as well as key limitations to industrial upscaling of plastic biodegradation and biological approaches that can be employed to overcome these challenges.
Collapse
Affiliation(s)
- Eyalira Jacob Okal
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Gui Heng
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Ephie A Magige
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Sehroon Khan
- Department of Biotechnology, Faculty of Natural Sciences, University of Science and Technology Bannu, 28100 Bannu, Khyber Pakhtunkhwa, Pakistan
| | - Shixi Wu
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Zhiqiang Ge
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Tianfu Zhang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Peter E Mortimer
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| |
Collapse
|
38
|
Meng FZ, Wang ZQ, Luo M, Wei WK, Yin LF, Yin WX, Schnabel G, Luo CX. The velvet family proteins mediate low resistance to isoprothiolane in Magnaporthe oryzae. PLoS Pathog 2023; 19:e1011011. [PMID: 37276223 DOI: 10.1371/journal.ppat.1011011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/24/2023] [Indexed: 06/07/2023] Open
Abstract
Isoprothiolane (IPT) resistance has emerged in Magnaporthe oryzae, due to the long-term usage of IPT to control rice blast in China, yet the mechanisms of the resistance remain largely unknown. Through IPT adaptation on PDA medium, we obtained a variety of IPT-resistant mutants. Based on their EC50 values to IPT, the resistant mutants were mainly divided into three distinct categories, i.e., low resistance (LR, 6.5 ≤ EC50 < 13.0 μg/mL), moderate resistance 1 (MR-1, 13.0 ≤ EC50 < 25.0 μg/mL), and moderate resistance 2 (MR-2, 25.0 ≤ EC50 < 35.0 μg/mL). Molecular analysis of MoIRR (Magnaporthe oryzae isoprothiolane resistance related) gene demonstrated that it was associated only with the moderate resistance in MR-2 mutants, indicating that other mechanisms were associated with resistance in LR and MR-1 mutants. In this study, we mainly focused on the characterization of low resistance to IPT in M. oryzae. Mycelial growth and conidial germination were significantly reduced, indicating fitness penalties in LR mutants. Based on the differences of whole genome sequences between parental isolate and LR mutants, we identified a conserved MoVelB gene, encoding the velvet family transcription factor, and genetic transformation of wild type isolate verified that MoVelB gene was associated with the low resistance. Based on molecular analysis, we further demonstrated that the velvet family proteins VelB and VeA were indispensable for IPT toxicity and the deformation of the VelB-VeA-LaeA complex played a vital role for the low IPT-resistance in M. oryzae, most likely through the down-regulation of the secondary metabolism-related genes or CYP450 genes to reduce the toxicity of IPT.
Collapse
Affiliation(s)
- Fan-Zhu Meng
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zuo-Qian Wang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Mei Luo
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen-Kai Wei
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liang-Fen Yin
- The Experimental Teaching Center of Crop Science, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei-Xiao Yin
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Chao-Xi Luo
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Experimental Teaching Center of Crop Science, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
39
|
Masmoudi F, Alsafran M, Jabri HA, Hosseini H, Trigui M, Sayadi S, Tounsi S, Saadaoui I. Halobacteria-Based Biofertilizers: A Promising Alternative for Enhancing Soil Fertility and Crop Productivity under Biotic and Abiotic Stresses-A Review. Microorganisms 2023; 11:1248. [PMID: 37317222 DOI: 10.3390/microorganisms11051248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 06/16/2023] Open
Abstract
Abiotic and biotic stresses such as salt stress and fungal infections significantly affect plant growth and productivity, leading to reduced crop yield. Traditional methods of managing stress factors, such as developing resistant varieties, chemical fertilizers, and pesticides, have shown limited success in the presence of combined biotic and abiotic stress factors. Halotolerant bacteria found in saline environments have potential as plant promoters under stressful conditions. These microorganisms produce bioactive molecules and plant growth regulators, making them a promising agent for enhancing soil fertility, improving plant resistance to adversities, and increasing crop production. This review highlights the capability of plant-growth-promoting halobacteria (PGPH) to stimulate plant growth in non-saline conditions, strengthen plant tolerance and resistance to biotic and abiotic stressors, and sustain soil fertility. The major attempted points are: (i) the various abiotic and biotic challenges that limit agriculture sustainability and food safety, (ii) the mechanisms employed by PGPH to promote plant tolerance and resistance to both biotic and abiotic stressors, (iii) the important role played by PGPH in the recovery and remediation of agricultural affected soils, and (iv) the concerns and limitations of using PGHB as an innovative approach to boost crop production and food security.
Collapse
Affiliation(s)
- Fatma Masmoudi
- Biotechnology Program, Center for Sustainable Development, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohammed Alsafran
- Central Laboratories Unit (CLU), Office of VP for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar
- Agricultural Research Station (ARS), Office of VP for Research and Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hareb Al Jabri
- Biotechnology Program, Center for Sustainable Development, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biological and Environmental Sciences, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hoda Hosseini
- Biotechnology Program, Center for Sustainable Development, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohammed Trigui
- Laboratory of Environmental Sciences and Sustainable Development (LASED), Sfax Preparatory Engineering Institute, University of Sfax, Sfax 3018, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Slim Tounsi
- Laboratory of Biopesticides (LBPES), Center of Biotechnology of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Imen Saadaoui
- Biotechnology Program, Center for Sustainable Development, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biological and Environmental Sciences, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
40
|
Mayer C, Vogt A, Uslu T, Scalzitti N, Chennen K, Poch O, Thompson JD. CeGAL: Redefining a Widespread Fungal-Specific Transcription Factor Family Using an In Silico Error-Tracking Approach. J Fungi (Basel) 2023; 9:jof9040424. [PMID: 37108879 PMCID: PMC10141177 DOI: 10.3390/jof9040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
In fungi, the most abundant transcription factor (TF) class contains a fungal-specific ‘GAL4-like’ Zn2C6 DNA binding domain (DBD), while the second class contains another fungal-specific domain, known as ‘fungal_trans’ or middle homology domain (MHD), whose function remains largely uncharacterized. Remarkably, almost a third of MHD-containing TFs in public sequence databases apparently lack DNA binding activity, since they are not predicted to contain a DBD. Here, we reassess the domain organization of these ‘MHD-only’ proteins using an in silico error-tracking approach. In a large-scale analysis of ~17,000 MHD-only TF sequences present in all fungal phyla except Microsporidia and Cryptomycota, we show that the vast majority (>90%) result from genome annotation errors and we are able to predict a new DBD sequence for 14,261 of them. Most of these sequences correspond to a Zn2C6 domain (82%), with a small proportion of C2H2 domains (4%) found only in Dikarya. Our results contradict previous findings that the MHD-only TF are widespread in fungi. In contrast, we show that they are exceptional cases, and that the fungal-specific Zn2C6–MHD domain pair represents the canonical domain signature defining the most predominant fungal TF family. We call this family CeGAL, after the highly characterized members: Cep3, whose 3D structure is determined, and GAL4, a eukaryotic TF archetype. We believe that this will not only improve the annotation and classification of the Zn2C6 TF but will also provide critical guidance for future fungal gene regulatory network analyses.
Collapse
Affiliation(s)
- Claudine Mayer
- Complex Systems and Translational Bioinformatics (CSTB), ICube Laboratory, UMR7357, University of Strasbourg, 1 rue Eugène Boeckel, 67000 Strasbourg, France
- Faculté des Sciences, Université Paris Cité, UFR Sciences du Vivant, 75013 Paris, France
- Correspondence: (C.M.); (J.D.T.)
| | - Arthur Vogt
- Complex Systems and Translational Bioinformatics (CSTB), ICube Laboratory, UMR7357, University of Strasbourg, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Tuba Uslu
- Complex Systems and Translational Bioinformatics (CSTB), ICube Laboratory, UMR7357, University of Strasbourg, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Nicolas Scalzitti
- Complex Systems and Translational Bioinformatics (CSTB), ICube Laboratory, UMR7357, University of Strasbourg, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Kirsley Chennen
- Complex Systems and Translational Bioinformatics (CSTB), ICube Laboratory, UMR7357, University of Strasbourg, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Olivier Poch
- Complex Systems and Translational Bioinformatics (CSTB), ICube Laboratory, UMR7357, University of Strasbourg, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Julie D. Thompson
- Complex Systems and Translational Bioinformatics (CSTB), ICube Laboratory, UMR7357, University of Strasbourg, 1 rue Eugène Boeckel, 67000 Strasbourg, France
- Correspondence: (C.M.); (J.D.T.)
| |
Collapse
|
41
|
Kwon G, Yu J, Kim KH. Identifying transcription factors associated with Fusarium graminearum virus 2 accumulation in Fusarium graminearum by phenome-based investigation. Virus Res 2023; 326:199061. [PMID: 36738934 DOI: 10.1016/j.virusres.2023.199061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/06/2023]
Abstract
Fusarium graminearum virus 2 (FgV2) infection induces phenotypic changes like reduction of growth rate and virulence with an alteration of the transcriptome, including various transcription factor (TFs) gene transcripts in Fusarium graminearum. Transcription factors are the primary regulator in many cellular processes and are significant in virus-host interactions. However, a detailed study about specific TFs to understand interactions between FgV2 and F. graminearum has yet to be conducted. We transferred FgV2 to a F. graminearum TF gene deletion mutant library to identify host TFs related to FgV2 infection. FgV2-infected TF mutants were classified into three groups depending on colony growth. The FgV2 accumulation level was generally higher in TF mutants showing more reduced growth. Among these FgV2-infected TF mutants, we found several possible TFs that might be involved in FgV2 accumulation, generation of defective interfering RNAs, and transcriptional regulation of FgDICER-2 and FgAGO-1 in response to virus infection. We also investigated the relation between FgV2 accumulation and production of reactive oxygen species (ROS) and DNA damage in fungal host cells by using DNA damage- or ROS-responsive TF deletion mutants. Our studies provide insights into the host factors related to FgV2 infection and bases for further investigation to understand interactions between FgV2 and F. graminearum.
Collapse
Affiliation(s)
- Gudam Kwon
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jisuk Yu
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, South Korea.
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
42
|
Dissecting Metabolic Regulation in Mycelial Growth and Fruiting Body Developmental Stages of Cordyceps militaris through Integrative Transcriptome Analysis. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Juárez-Montiel M, Clark-Flores D, Tesillo-Moreno P, de la Vega-Camarillo E, Andrade-Pavón D, Hernández-García JA, Hernández-Rodríguez C, Villa-Tanaca L. Vacuolar proteases and autophagy in phytopathogenic fungi: A review. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:948477. [PMID: 37746183 PMCID: PMC10512327 DOI: 10.3389/ffunb.2022.948477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/11/2022] [Indexed: 09/26/2023]
Abstract
Autophagy (macroautophagy) is a survival and virulence mechanism of different eukaryotic pathogens. Autophagosomes sequester cytosolic material and organelles, then fuse with or enter into the vacuole or lysosome (the lytic compartment of most fungal/plant cells and many animal cells, respectively). Subsequent degradation of cargoes delivered to the vacuole via autophagy and endocytosis maintains cellular homeostasis and survival in conditions of stress, cellular differentiation, and development. PrA and PrB are vacuolar aspartyl and serine endoproteases, respectively, that participate in the autophagy of fungi and contribute to the pathogenicity of phytopathogens. Whereas the levels of vacuolar proteases are regulated by the expression of the genes encoding them (e.g., PEP4 for PrA and PRB1 for PrB), their activity is governed by endogenous inhibitors. The aim of the current contribution is to review the main characteristics, regulation, and role of vacuolar soluble endoproteases and Atg proteins in the process of autophagy and the pathogenesis of three fungal phytopathogens: Ustilago maydis, Magnaporthe oryzae, and Alternaria alternata. Aspartyl and serine proteases are known to participate in autophagy in these fungi by degrading autophagic bodies. However, the gene responsible for encoding the vacuolar serine protease of U. maydis has yet to be identified. Based on in silico analysis, this U. maydis gene is proposed to be orthologous to the Saccharomyces cerevisiae genes PRB1 and PBI2, known to encode the principal protease involved in the degradation of autophagic bodies and its inhibitor, respectively. In fungi that interact with plants, whether phytopathogenic or mycorrhizal, autophagy is a conserved cellular degradation process regulated through the TOR, PKA, and SNF1 pathways by ATG proteins and vacuolar proteases. Autophagy plays a preponderant role in the recycling of cell components as well as in the fungus-plant interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| |
Collapse
|
44
|
Phenotypic plasticity of Monilinia spp. in response to light wavelengths: From in vitro development to virulence on nectarines. Int J Food Microbiol 2022; 373:109700. [DOI: 10.1016/j.ijfoodmicro.2022.109700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/20/2022] [Accepted: 05/01/2022] [Indexed: 11/23/2022]
|
45
|
Chen H, He S, Zhang S, A R, Li W, Liu S. The Necrotroph Botrytis cinerea BcSpd1 Plays a Key Role in Modulating Both Fungal Pathogenic Factors and Plant Disease Development. FRONTIERS IN PLANT SCIENCE 2022; 13:820767. [PMID: 35845699 PMCID: PMC9280406 DOI: 10.3389/fpls.2022.820767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Botrytis cinerea is a necrotrophic microbe that causes gray mold disease in a broad range of hosts. In the present study, we conducted molecular microbiology and transcriptomic analyses of the host-B. cinerea interaction to investigate the plant defense response and fungal pathogenicity. Upon B. cinerea infection, plant defense responses changed from activation to repression; thus, the expression of many defense genes decreased in Arabidopsis thaliana. B. cinerea Zn(II)2Cys6 transcription factor BcSpd1 was involved in the suppression of plant defense as ΔBcSpd1 altered wild-type B05.10 virulence by recovering part of the defense responses at the early infection stage. BcSpd1 affected genes involved in the fungal sclerotium development, infection cushion formation, biosynthesis of melanin, and change in environmental pH values, which were reported to influence fungal virulence. Specifically, BcSpd1 bound to the promoter of the gene encoding quercetin dioxygenase (BcQdo) and positively affected the gene expression, which was involved in catalyzing antifungal flavonoid degradation. This study indicates BcSpd1 plays a key role in the necrotrophic microbe B. cinerea virulence toward plants by regulating pathogenicity-related compounds and thereby suppressing early plant defense.
Collapse
Affiliation(s)
| | | | | | | | | | - Shouan Liu
- Laboratory of Molecular Plant Pathology, Jilin University, Changchun, China
| |
Collapse
|
46
|
Xu R, Zhou S, Song J, Zhong H, Zhu T, Gong Y, Zhou Y, Bian Y. Comparative Transcriptome Analysis Provides Insights Into the Mechanism by Which 2,4-Dichlorophenoxyacetic Acid Improves Thermotolerance in Lentinula edodes. Front Microbiol 2022; 13:910255. [PMID: 35801117 PMCID: PMC9253865 DOI: 10.3389/fmicb.2022.910255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
As the widest cultivated edible mushroom worldwide, Lentinula edodes suffers serious yield and quality losses from heat stress during growth and development, and in our previous study, exogenous 2,4-Dichlorophenoxyacetic acid (2,4-D) was found to improve the thermotolerance of L. edodes strain YS3357, but the molecular mechanism remains unclear. Here, we explored the potential protective mechanism of exogenous 2,4-D against heat stress by transcriptome analysis. 2,4-D possible improve the thermotolerance of L. edodes through regulating antioxidant genes, transcription factors, energy-provision system, membrane fluidity, and cell wall remodeling. Furthermore, 2,4-D was also found to regulate the saturation levels of fatty acids and ATP content in L. edodes mycelium under heat stress. This study proposed a regulatory network of 2,4-D in regulating L. edodes response to heat stress, providing a theoretical basis for improving L. edodes thermotolerance, and facilitating the understanding of the molecular mechanism of exogenous hormones in alleviating abiotic stress damage to macrofungi.
Collapse
|
47
|
Transcription factor lineages in plant-pathogenic fungi, connecting diversity with fungal virulence. Fungal Genet Biol 2022; 161:103712. [PMID: 35667520 DOI: 10.1016/j.fgb.2022.103712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 12/27/2022]
Abstract
Plant-pathogenic fungi span diverse taxonomic lineages. Their host-infection strategies are often specialised and require the coordinated regulation of molecular virulence factors. Transcription factors (TFs) are fundamental regulators of gene expression, yet relatively few virulence-specific regulators are characterised in detail and their evolutionary trajectories are not well understood. Hence, this study compared the full range of TFs across taxonomically-diverse fungal proteomes and classified their lineages through an orthology analysis. The primary aims were to characterise differences in the range and profile of TF lineages broadly linked to plant-host association or pathogenic lifestyles, and to better characterise the evolutionary origin and trajectory of experimentally-validated virulence regulators. We observed significantly fewer TFs among obligate, host-associated pathogens, largely attributed to contractions in several Zn2Cys6 TF-orthogroup lineages. We also present novel insight into the key virulence-regulating TFs Ste12, Pf2 and EBR1, providing evidence for their ancestral origins, expansion and/or loss. Ultimately, the analysis presented here provides both primary evidence for TF evolution in fungal phytopathogenicity, as well as a practical phylogenetic resource to guide further detailed investigation on the regulation of virulence within key pathogen lineages.
Collapse
|
48
|
Louet C, Blot C, Shelest E, Guerillot P, Zannini F, Pétrowski J, Frey P, Duplessis S. Annotation survey and life-cycle transcriptomics of transcription factors in rust fungi (Pucciniales) identify a possible role for cold shock proteins in dormancy exit. Fungal Genet Biol 2022; 161:103698. [PMID: 35483517 DOI: 10.1016/j.fgb.2022.103698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022]
Abstract
Fungi of the order Pucciniales are obligate plant biotrophs causing rust diseases. They exhibit a complex life cycle with the production of up to five spore types, infection of two unrelated hosts and an overwintering stage. Transcription factors (TFs) are key regulators of gene expression in eukaryote cells. In order to better understand genetic programs expressed during major transitions of the rust life cycle, we surveyed the complement of TFs in fungal genomes with an emphasis on Pucciniales. We found that despite their large gene numbers, rust genomes have a reduced repertoire of TFs compared to other fungi. The proportions of C2H2 and Zinc cluster -two of the most represented TF families in fungi- indicate differences in their evolutionary relationships in Pucciniales and other fungal taxa. The regulatory gene family encoding cold shock protein (CSP) showed a striking expansion in Pucciniomycotina with specific duplications in the order Pucciniales. The survey of expression profiles collected by transcriptomics along the life cycle of the poplar rust fungus revealed TF genes related to major biological transitions, e.g. response to environmental cues and host infection. Particularly, poplar rust CSPs were strongly expressed in basidia produced after the overwintering stage suggesting a possible role in dormancy exit. Expression during transition from dormant telia to basidia confirmed the specific expression of the three poplar rust CSP genes. Their heterologous expression in yeast improved cell growth after cold stress exposure, suggesting a probable regulatory function when the poplar rust fungus exits dormancy. This study addresses for the first time TF and regulatory genes involved in developmental transition in the rust life cycle opening perspectives to further explore molecular regulation in the biology of the Pucciniales.
Collapse
Affiliation(s)
| | - Carla Blot
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | - Ekaterina Shelest
- School of biological Sciences, University of Portsmouth, King Henry 1 Street, PO1 D2Y, Portsmouth, United Kingdom
| | | | | | | | - Pascal Frey
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | | |
Collapse
|
49
|
Cai M, Tan Z, Wu X, Liang X, Liu Y, Xie Y, Li X, Xiao C, Gao X, Chen S, Hu H, Wu Q. Comparative transcriptome analysis of genes and metabolic pathways involved in sporulation in Ganoderma lingzhi. G3 (BETHESDA, MD.) 2022; 12:jkab448. [PMID: 35079793 PMCID: PMC8895980 DOI: 10.1093/g3journal/jkab448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022]
Abstract
Over the past decades, Ganoderma lingzhi spores have received considerable attention as a great potential pharmaceutical resource. However, the genetic regulation of sporulation is not well understood. In this study, a comparative transcriptome analysis of the low-sporing HZ203 and high-sporing YW-1 was performed to characterize the mechanism underlying sporulation. A total of 917 differentially expressed genes were identified in HZ203 and 1,450 differentially expressed genes in YW-1. Differentially expressed genes involved in sporulation were identified, which included HOP1, Mek1, MSH4, MSH5, and Spo5 in meiosis. Positive regulatory pathways of sporulation were proposed as 2 transcriptional factors had high connectivity with MSH4 and Spo5. Furthermore, we found that the pathways associated with energy production were enriched in the high-sporing genotype, such as the glyoxylate and dicarboxylate metabolism, starch and sucrose metabolism. Finally, we performed a weighted gene coexpression network analysis and found that the hub genes of the module which exhibit strong positive relationship with the high-sporing phase purportedly participate in signal transduction, carbohydrate transport and metabolism. The dissection of differentially expressed genes during sporulation extends our knowledge about the genetic and molecular networks mediating spore morphogenesis and sheds light on the importance of energy source during sporulation.
Collapse
Affiliation(s)
- Manjun Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoxian Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaowei Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuanchao Liu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Xiangmin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Chun Xiao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiong Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shaodan Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Huiping Hu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
50
|
Jiao W, Yu H, Cong J, Xiao K, Zhang X, Liu J, Zhang Y, Pan H. Transcription factor SsFoxE3 activating SsAtg8 is critical for sclerotia, compound appressoria formation, and pathogenicity in Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2022; 23:204-217. [PMID: 34699137 PMCID: PMC8743022 DOI: 10.1111/mpp.13154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Sclerotinia sclerotiorum, the notorious necrotrophic phytopathogenic fungus with wide distribution, is responsible for sclerotium disease in more than 600 plant species, including many economic crops such as soybean, oilseed rape, and sunflower. The compound appressorium is a crucial multicellular infection structure that is a prerequisite for infecting healthy tissues. Previously, the Forkhead-box family transcription factors (FOX TFs) SsFoxE2 and SsFKH1 were shown to play a key regulatory role in the hyphae growth, sexual reproduction, and pathogenicity of S. sclerotiorum. However, little is known about the roles of SsFoxE3 regulating growth and development and pathogenicity. Here, we report SsFoxE3 contributes to sclerotium formation and deletion of SsFoxE3 leads to reduced formation of compound appressoria and developmental delays. Transcripts of SsFoxE3 were greatly increased during the initial stage of infection and SsFoxE3 deficiency reduced virulence on the host, while stabbing inoculation could partially restore pathogenicity. The SsFoxE3 mutant showed sensitivity to H2 O2 , and the expression of reactive oxygen species detoxification and autophagy-related genes were reduced. Moreover, expression of SsAtg8 was also decreased during the infection process of the SsFoxE3 mutant. Yeast 1-hybrid tests suggested that SsFoxE3 interacted with the promoter of SsAtg8. Disruption of SsAtg8 resulted in a phenotype similar to that of the SsFoxE3 mutant. Comparative analysis of the level of autophagy in the wild type and SsFoxE3 mutant showed that N starvation-induced autophagy was reduced in the SsFoxE3 mutant. Taken together, our findings indicate that SsFoxE3 plays an important role in compound appressorium formation and is involved in transcriptional activation of SsAtg8 during infection by S. sclerotiorum.
Collapse
Affiliation(s)
- Wenli Jiao
- College of Plant SciencesJilin UniversityChangchunChina
| | - Huilin Yu
- College of Plant SciencesJilin UniversityChangchunChina
| | - Jie Cong
- College of Plant SciencesJilin UniversityChangchunChina
| | - Kunqin Xiao
- College of Plant SciencesJilin UniversityChangchunChina
| | | | - Jinliang Liu
- College of Plant SciencesJilin UniversityChangchunChina
| | - Yanhua Zhang
- College of Plant SciencesJilin UniversityChangchunChina
| | - Hongyu Pan
- College of Plant SciencesJilin UniversityChangchunChina
| |
Collapse
|