1
|
Tang M, Wang H, Yang S, Sun J, Wang K, Yu X, Wang Y, Li G. Enhancing Gene Knockout Efficiency in the Multinucleate Fungus Botrytis cinerea through High-Pressure Double Selection Combined with RNAi Triggering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40489236 DOI: 10.1021/acs.jafc.5c02348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Gene knockout is often challenging for the notorious crop killer Botrytis cinerea due to its multinucleate nature. Here, we established an efficient method for gene knockout in B. cinerea based on high-pressure positive and negative double selection (HPDS). For knockout of the toxin biosynthesis gene BOA6, positive selections in the high-pressure mode significantly increased the proportion of homokaryotic mutants. When an HSVtk(Bc)-associated negative selection system was simultaneously introduced, all obtained transformants were confirmed as homokaryotic knockout mutants. For highly expressed locus oahA, we employed a reverse replacement strategy to reduce the positive selection marker expression by triggering RNAi, facilitating efficient knockout via HPDS. This strategy is also efficiently applicable to the field strain CLS1. We established a high-throughput gene knockout system by which 69 of 71 predicted genes encoding secreted proteins were knocked out in CLS1, indicating its efficient uses for large-scale gene knockout in B. cinerea.
Collapse
Affiliation(s)
- Maoyao Tang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Hongfu Wang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Song Yang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Jiao Sun
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong 037009, China
| | - Kexin Wang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Xiaoqian Yu
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Yangyizhou Wang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Guihua Li
- College of Plant Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
2
|
Shi H, Ding G, Wang Y, Wang J, Wang X, Wang D, Lu P. Genome-wide identification of long non-coding RNA for Botrytis cinerea during infection to tomato (Solanum lycopersicum) leaves. BMC Genomics 2025; 26:7. [PMID: 39762752 PMCID: PMC11702200 DOI: 10.1186/s12864-024-11171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Long non-coding RNA (lncRNA) plays important roles in animals and plants. In filamentous fungi, however, their biological function in infection stage has been poorly studied. Here, we investigated the landscape and regulation of lncRNA in the filamentous plant pathogenic fungus Botrytis cinerea by strand-specific RNA-seq of multiple infection stages. In total, 1837 lncRNAs have been identified in B. cinerea. A large number of lncRNAs were found to be antisense to mRNAs, forming 743 sense-antisense pairs, of which 55 antisense lncRNAs and their respective sense transcripts were induced in parallel as the infection stage. Although small RNAs were produced from these overlapping loci, antisense lncRNAs appeared not to be involved in gene silencing pathways. In addition, we found the alternative splicing events occurred in lncRNA. These results highlight the developmental stage-specific nature and functional potential of lncRNA expression in the infection stage and provide fundamental resources for studying infection stage-induced lncRNAs.
Collapse
Affiliation(s)
- Haojie Shi
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Guijuan Ding
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yun Wang
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jiaqi Wang
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiaoli Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Dan Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Ping Lu
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
3
|
Ruf A, Thieron H, Nasfi S, Lederer B, Fricke S, Adeshara T, Postma J, Blumenkamp P, Kwon S, Brinkrolf K, Feldbrügge M, Goesmann A, Kehr J, Steinbrenner J, Šečić E, Göhre V, Weiberg A, Kogel K, Panstruga R, Robatzek S, the exRNA consortium. Broad-scale phenotyping in Arabidopsis reveals varied involvement of RNA interference across diverse plant-microbe interactions. PLANT DIRECT 2024; 8:e70017. [PMID: 39553386 PMCID: PMC11565445 DOI: 10.1002/pld3.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 11/19/2024]
Abstract
RNA interference (RNAi) is a crucial mechanism in immunity against infectious microbes through the action of DICER-LIKE (DCL) and ARGONAUTE (AGO) proteins. In the case of the taxonomically diverse fungal pathogen Botrytis cinerea and the oomycete Hyaloperonospora arabidopsidis, plant DCL and AGO proteins have proven roles as negative regulators of immunity, suggesting functional specialization of these proteins. To address this aspect in a broader taxonomic context, we characterized the colonization pattern of an informative set of DCL and AGO loss-of-function mutants in Arabidopsis thaliana upon infection with a panel of pathogenic microbes with different lifestyles, and a fungal mutualist. Our results revealed that, depending on the interacting pathogen, AGO1 acts as a positive or negative regulator of immunity, while AGO4 functions as a positive regulator. Additionally, AGO2 and AGO10 positively modulated the colonization by a fungal mutualist. Therefore, analyzing the role of RNAi across a broader range of plant-microbe interactions has identified previously unknown functions for AGO proteins. For some pathogen interactions, however, all tested mutants exhibited wild-type-like infection phenotypes, suggesting that the roles of AGO and DCL proteins in these interactions may be more complex to elucidate.
Collapse
Affiliation(s)
| | - Hannah Thieron
- Unit for Plant Molecular Cell Biology, Institute for Biology IRWTH Aachen UniversityAachenGermany
| | - Sabrine Nasfi
- Institute of PhytopathologyCentre for BioSystems, Land Use and Nutrition, Justus Liebig UniversityGiessenGermany
| | | | - Sebastian Fricke
- Institute of Plant Science and MicrobiologyMolecular Plant Genetics, UniversitätHamburgGermany
| | - Trusha Adeshara
- Institute for Microbiology, Cluster of Excellence on Plant SciencesHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Johannes Postma
- Institute for Microbiology, Cluster of Excellence on Plant SciencesHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Patrick Blumenkamp
- Bioinformatics and Systems BiologyJustus Liebig University GiessenGermany
| | - Seomun Kwon
- Institute for Microbiology, Cluster of Excellence on Plant SciencesHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Karina Brinkrolf
- Bioinformatics and Systems BiologyJustus Liebig University GiessenGermany
| | - Michael Feldbrügge
- Institute for Microbiology, Cluster of Excellence on Plant SciencesHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Alexander Goesmann
- Bioinformatics and Systems BiologyJustus Liebig University GiessenGermany
| | - Julia Kehr
- Institute of Plant Science and MicrobiologyMolecular Plant Genetics, UniversitätHamburgGermany
| | - Jens Steinbrenner
- Institute of PhytopathologyCentre for BioSystems, Land Use and Nutrition, Justus Liebig UniversityGiessenGermany
| | - Ena Šečić
- Institute of PhytopathologyCentre for BioSystems, Land Use and Nutrition, Justus Liebig UniversityGiessenGermany
| | - Vera Göhre
- Institute for Microbiology, Cluster of Excellence on Plant SciencesHeinrich‐Heine University DüsseldorfDüsseldorfGermany
- Hochschule DarmstadtDarmstadtGermany
| | | | - Karl‐Heinz Kogel
- Institute of PhytopathologyCentre for BioSystems, Land Use and Nutrition, Justus Liebig UniversityGiessenGermany
- Institut de biologie moléculaire des plantes, CNRSUniversité de StrasbourgStrasbourgFrance
| | - Ralph Panstruga
- Unit for Plant Molecular Cell Biology, Institute for Biology IRWTH Aachen UniversityAachenGermany
| | | | | |
Collapse
|
4
|
Khalifa ME, Ayllón MA, Rodriguez Coy L, Plummer KM, Gendall AR, Chooi KM, van Kan JAL, MacDiarmid RM. Mycologists and Virologists Align: Proposing Botrytis cinerea for Global Mycovirus Studies. Viruses 2024; 16:1483. [PMID: 39339959 PMCID: PMC11437445 DOI: 10.3390/v16091483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Mycoviruses are highly genetically diverse and can significantly change their fungal host's phenotype, yet they are generally under-described in genotypic and biological studies. We propose Botrytis cinerea as a model mycovirus system in which to develop a deeper understanding of mycovirus epidemiology including diversity, impact, and the associated cellular biology of the host and virus interaction. Over 100 mycoviruses have been described in this fungal host. B. cinerea is an ideal model fungus for mycovirology as it has highly tractable characteristics-it is easy to culture, has a worldwide distribution, infects a wide range of host plants, can be transformed and gene-edited, and has an existing depth of biological resources including annotated genomes, transcriptomes, and isolates with gene knockouts. Focusing on a model system for mycoviruses will enable the research community to address deep research questions that cannot be answered in a non-systematic manner. Since B. cinerea is a major plant pathogen, new insights may have immediate utility as well as creating new knowledge that complements and extends the knowledge of mycovirus interactions in other fungi, alone or with their respective plant hosts. In this review, we set out some of the critical steps required to develop B. cinerea as a model mycovirus system and how this may be used in the future.
Collapse
Affiliation(s)
- Mahmoud E Khalifa
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)/Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Lorena Rodriguez Coy
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kim M Plummer
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Anthony R Gendall
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kar Mun Chooi
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
5
|
You Y, Suraj HM, Matz L, Herrera Valderrama AL, Ruigrok P, Shi-Kunne X, Pieterse FPJ, Oostlander A, Beenen HG, Chavarro-Carrero EA, Qin S, Verstappen FWA, Kappers IF, Fleißner A, van Kan JAL. Botrytis cinerea combines four molecular strategies to tolerate membrane-permeating plant compounds and to increase virulence. Nat Commun 2024; 15:6448. [PMID: 39085234 PMCID: PMC11291775 DOI: 10.1038/s41467-024-50748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Saponins are plant secondary metabolites comprising glycosylated triterpenoids, steroids or steroidal alkaloids with a broad spectrum of toxicity to microbial pathogens and pest organisms that contribute to basal plant defense to biotic attack. Secretion of glycosyl hydrolases that enzymatically convert saponins into less toxic products was thus far the only mechanism reported to enable fungal pathogens to colonize their saponin-containing host plant(s). We studied the mechanisms that the fungus Botrytis cinerea utilizes to be tolerant to well-characterized, structurally related saponins from tomato and Digitalis purpurea. By gene expression studies, comparative genomics, enzyme assays and testing a large panel of fungal (knockout and complemented) mutants, we unraveled four distinct cellular mechanisms that participate in the mitigation of the toxic activity of these saponins and in virulence on saponin-producing host plants. The enzymatic deglycosylation that we identified is novel and unique to this fungus-saponin combination. The other three tolerance mechanisms operate in the fungal membrane and are mediated by protein families that are widely distributed in the fungal kingdom. We present a spatial and temporal model on how these mechanisms jointly confer tolerance to saponins and discuss the repercussions of these findings for other plant pathogenic fungi, as well as human pathogens.
Collapse
Affiliation(s)
- Yaohua You
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Department of Biology, Institute for Molecular Plant Physiology, RWTH University, Aachen, Germany
| | - H M Suraj
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Linda Matz
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Paul Ruigrok
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Xiaoqian Shi-Kunne
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Frank P J Pieterse
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Anne Oostlander
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Henriek G Beenen
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | | | - Si Qin
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Department of Plant Pathology, University of California Davis, Davis, USA
| | | | - Iris F Kappers
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Tang M, Wang Y, Wang K, Zhou Y, Zhao E, Zhang H, Zhang M, Yu H, Zhao X, Li G. Codon Optimization Enables the Geneticin Resistance Gene to Be Applied Efficiently to the Genetic Manipulation of the Plant Pathogenic Fungus Botrytis cinerea. PLANTS (BASEL, SWITZERLAND) 2024; 13:324. [PMID: 38276781 PMCID: PMC10821057 DOI: 10.3390/plants13020324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Botrytis cinerea can infect almost all of the important horticultural crops and cause severe economic losses globally every year. Modifying candidate genes and studying the phenotypic changes are among the most effective ways to unravel the pathogenic mechanism of this crop killer. However, few effective positive selection markers are used for B. cinerea genetic transformation, which limits multiple modifications to the genome, especially genes involving redundant functions. Here, we optimized a geneticin resistance gene, BcNPTII, based on the codon usage preference of B. cinerea. We found that BcNPTII can greatly increase the transformation efficiency of B. cinerea under G418 selection, with approximately 30 times higher efficiency than that of NPTII, which is applied efficiently to transform Magnaporthe oryzae. Using the gene replacement method, we successfully knocked out the second gene BOT2, with BcNPTII as the selection marker, from the mutant ΔoahA, in which OAHA was first replaced by the hygromycin resistance gene HPH in a field strain. We obtained the double knockout mutant ΔoahA Δbot2. Our data show that the codon-optimized BcNPTII is an efficient positive selection marker for B. cinerea transformation and can be used for various genetic manipulations in B. cinerea, including field wild-type strains.
Collapse
Affiliation(s)
- Maoyao Tang
- College of Plant Sciences, Jilin University, Changchun 130062, China; (M.T.); (Y.W.); (K.W.); (M.Z.); (H.Y.); (X.Z.)
| | - Yangyizhou Wang
- College of Plant Sciences, Jilin University, Changchun 130062, China; (M.T.); (Y.W.); (K.W.); (M.Z.); (H.Y.); (X.Z.)
| | - Kexin Wang
- College of Plant Sciences, Jilin University, Changchun 130062, China; (M.T.); (Y.W.); (K.W.); (M.Z.); (H.Y.); (X.Z.)
| | - Yuanhang Zhou
- Research Management Department, Changchun Academy of Forestry, Changchun 130021, China;
| | - Enshuang Zhao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (H.Z.)
| | - Hao Zhang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (H.Z.)
| | - Mingzhe Zhang
- College of Plant Sciences, Jilin University, Changchun 130062, China; (M.T.); (Y.W.); (K.W.); (M.Z.); (H.Y.); (X.Z.)
| | - Hang Yu
- College of Plant Sciences, Jilin University, Changchun 130062, China; (M.T.); (Y.W.); (K.W.); (M.Z.); (H.Y.); (X.Z.)
| | - Xi Zhao
- College of Plant Sciences, Jilin University, Changchun 130062, China; (M.T.); (Y.W.); (K.W.); (M.Z.); (H.Y.); (X.Z.)
| | - Guihua Li
- College of Plant Sciences, Jilin University, Changchun 130062, China; (M.T.); (Y.W.); (K.W.); (M.Z.); (H.Y.); (X.Z.)
| |
Collapse
|
7
|
Kitagawa M, Tran TM, Jackson D. Traveling with purpose: cell-to-cell transport of plant mRNAs. Trends Cell Biol 2024; 34:48-57. [PMID: 37380581 DOI: 10.1016/j.tcb.2023.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/30/2023]
Abstract
Messenger RNAs (mRNAs) in multicellular organisms can act as signals transported cell-to-cell and over long distances. In plants, mRNAs traffic cell-to-cell via plasmodesmata (PDs) and over long distances via the phloem vascular system to control diverse biological processes - such as cell fate and tissue patterning - in destination organs. Research on long-distance transport of mRNAs in plants has made remarkable progress, including the cataloguing of many mobile mRNAs, characterization of mRNA features important for transport, identification of mRNA-binding proteins involved in their transport, and understanding of the physiological roles of mRNA transport. However, information on short-range mRNA cell-to-cell transport is still limited. This review discusses the regulatory mechanisms and physiological functions of mRNA transport at the cellular and whole plant levels.
Collapse
Affiliation(s)
- Munenori Kitagawa
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Thu M Tran
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
8
|
Cheng AP, Lederer B, Oberkofler L, Huang L, Johnson NR, Platten F, Dunker F, Tisserant C, Weiberg A. A fungal RNA-dependent RNA polymerase is a novel player in plant infection and cross-kingdom RNA interference. PLoS Pathog 2023; 19:e1011885. [PMID: 38117848 PMCID: PMC10766185 DOI: 10.1371/journal.ppat.1011885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/04/2024] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
Small RNAs act as fungal pathogen effectors that silence host target genes to promote infection, a virulence mechanism termed cross-kingdom RNA interference (RNAi). The essential pathogen factors of cross-kingdom small RNA production are largely unknown. We here characterized the RNA-dependent RNA polymerase (RDR)1 in the fungal plant pathogen Botrytis cinerea that is required for pathogenicity and cross-kingdom RNAi. B. cinerea bcrdr1 knockout (ko) mutants exhibited reduced pathogenicity and loss of cross-kingdom small RNAs. We developed a "switch-on" GFP reporter to study cross-kingdom RNAi in real-time within the living plant tissue which highlighted that bcrdr1 ko mutants were compromised in cross-kingdom RNAi. Moreover, blocking seven pathogen cross-kingdom small RNAs by expressing a short-tandem target mimic RNA in transgenic Arabidopsis thaliana led to reduced infection levels of the fungal pathogen B. cinerea and the oomycete pathogen Hyaloperonospora arabidopsidis. These results demonstrate that cross-kingdom RNAi is significant to promote host infection and making pathogen small RNAs an effective target for crop protection.
Collapse
Affiliation(s)
- An-Po Cheng
- Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Bernhard Lederer
- Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Lorenz Oberkofler
- Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Lihong Huang
- Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Nathan R. Johnson
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Fabian Platten
- Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Florian Dunker
- Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Constance Tisserant
- Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Arne Weiberg
- Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Martinsried, Germany
| |
Collapse
|
9
|
Qiao SA, Gao Z, Roth R. A perspective on cross-kingdom RNA interference in mutualistic symbioses. THE NEW PHYTOLOGIST 2023; 240:68-79. [PMID: 37452489 PMCID: PMC10952549 DOI: 10.1111/nph.19122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/24/2023] [Indexed: 07/18/2023]
Abstract
RNA interference (RNAi) is arguably one of the more versatile mechanisms in cell biology, facilitating the fine regulation of gene expression and protection against mobile genomic elements, whilst also constituting a key aspect of induced plant immunity. More recently, the use of this mechanism to regulate gene expression in heterospecific partners - cross-kingdom RNAi (ckRNAi) - has been shown to form a critical part of bidirectional interactions between hosts and endosymbionts, regulating the interplay between microbial infection mechanisms and host immunity. Here, we review the current understanding of ckRNAi as it relates to interactions between plants and their pathogenic and mutualistic endosymbionts, with particular emphasis on evidence in support of ckRNAi in the arbuscular mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Serena A Qiao
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Zongyu Gao
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Ronelle Roth
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| |
Collapse
|
10
|
Mann CWG, Sawyer A, Gardiner DM, Mitter N, Carroll BJ, Eamens AL. RNA-Based Control of Fungal Pathogens in Plants. Int J Mol Sci 2023; 24:12391. [PMID: 37569766 PMCID: PMC10418863 DOI: 10.3390/ijms241512391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Our duty to conserve global natural ecosystems is increasingly in conflict with our need to feed an expanding population. The use of conventional pesticides not only damages the environment and vulnerable biodiversity but can also still fail to prevent crop losses of 20-40% due to pests and pathogens. There is a growing call for more ecologically sustainable pathogen control measures. RNA-based biopesticides offer an eco-friendly alternative to the use of conventional fungicides for crop protection. The genetic modification (GM) of crops remains controversial in many countries, though expression of transgenes inducing pathogen-specific RNA interference (RNAi) has been proven effective against many agronomically important fungal pathogens. The topical application of pathogen-specific RNAi-inducing sprays is a more responsive, GM-free approach to conventional RNAi transgene-based crop protection. The specific targeting of essential pathogen genes, the development of RNAi-nanoparticle carrier spray formulations, and the possible structural modifications to the RNA molecules themselves are crucial to the success of this novel technology. Here, we outline the current understanding of gene silencing pathways in plants and fungi and summarize the pioneering and recent work exploring RNA-based biopesticides for crop protection against fungal pathogens, with a focus on spray-induced gene silencing (SIGS). Further, we discuss factors that could affect the success of RNA-based control strategies, including RNA uptake, stability, amplification, and movement within and between the plant host and pathogen, as well as the cost and design of RNA pesticides.
Collapse
Affiliation(s)
- Christopher W. G. Mann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
| | - Anne Sawyer
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Donald M. Gardiner
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
| | - Andrew L. Eamens
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
11
|
Turbant F, Waeytens J, Blache A, Esnouf E, Raussens V, Węgrzyn G, Achouak W, Wien F, Arluison V. Interactions and Insertion of Escherichia coli Hfq into Outer Membrane Vesicles as Revealed by Infrared and Orientated Circular Dichroism Spectroscopies. Int J Mol Sci 2023; 24:11424. [PMID: 37511182 PMCID: PMC10379585 DOI: 10.3390/ijms241411424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The possible carrier role of Outer Membrane Vesicles (OMVs) for small regulatory noncoding RNAs (sRNAs) has recently been demonstrated. Nevertheless, to perform their function, these sRNAs usually need a protein cofactor called Hfq. In this work we show, by using a combination of infrared and circular dichroism spectroscopies, that Hfq, after interacting with the inner membrane, can be translocated into the periplasm, and then be exported in OMVs, with the possibility to be bound to sRNAs. Moreover, we provide evidence that Hfq interacts with and is inserted into OMV membranes, suggesting a role for this protein in the release of sRNA outside the vesicle. These findings provide clues to the mechanism of host-bacteria interactions which may not be defined solely by protein-protein and protein-outer membrane contacts, but also by the exchange of RNAs, and in particular sRNAs.
Collapse
Affiliation(s)
- Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Jehan Waeytens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Anaïs Blache
- Lab of Microbial Ecology of the Rhizosphere, (LEMiRE), BIAM, CEA, CNRS, Aix Marseille University, 13115 Saint Paul Lez Durance, France
| | - Emeline Esnouf
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Vincent Raussens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Wafa Achouak
- Lab of Microbial Ecology of the Rhizosphere, (LEMiRE), BIAM, CEA, CNRS, Aix Marseille University, 13115 Saint Paul Lez Durance, France
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- UFR Sciences du Vivant, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
12
|
Kusch S, Singh M, Thieron H, Spanu PD, Panstruga R. Site-specific analysis reveals candidate cross-kingdom small RNAs, tRNA and rRNA fragments, and signs of fungal RNA phasing in the barley-powdery mildew interaction. MOLECULAR PLANT PATHOLOGY 2023; 24:570-587. [PMID: 36917011 DOI: 10.1111/mpp.13324] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
The establishment of host-microbe interactions requires molecular communication between both partners, which may involve the mutual transfer of noncoding small RNAs. Previous evidence suggests that this is also true for powdery mildew disease in barley, which is caused by the fungal pathogen Blumeria hordei. However, previous studies lacked spatial resolution regarding the accumulation of small RNAs upon host infection by B. hordei. Here, we analysed site-specific small RNA repertoires in the context of the barley-B. hordei interaction. To this end, we dissected infected leaves into separate fractions representing different sites that are key to the pathogenic process: epiphytic fungal mycelium, infected plant epidermis, isolated haustoria, a vesicle-enriched fraction from infected epidermis, and extracellular vesicles. Unexpectedly, we discovered enrichment of specific 31-33-base 5'-terminal fragments of barley 5.8S ribosomal RNA in extracellular vesicles and infected epidermis, as well as particular B. hordei transfer RNA fragments in haustoria. We describe canonical small RNAs from both the plant host and the fungal pathogen that may confer cross-kingdom RNA interference activity. Interestingly, we found first evidence of phased small interfering RNAs in B. hordei, a feature usually attributed to plants, which may be associated with the posttranscriptional control of fungal coding genes, pseudogenes, and transposable elements. Our data suggest a key and possibly site-specific role for cross-kingdom RNA interference and noncoding RNA fragments in the host-pathogen communication between B. hordei and its host barley.
Collapse
Affiliation(s)
- Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Mansi Singh
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Hannah Thieron
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Pietro D Spanu
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
13
|
Roth MG, Westrick NM, Baldwin TT. Fungal biotechnology: From yesterday to tomorrow. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1135263. [PMID: 37746125 PMCID: PMC10512358 DOI: 10.3389/ffunb.2023.1135263] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 09/26/2023]
Abstract
Fungi have been used to better the lives of everyday people and unravel the mysteries of higher eukaryotic organisms for decades. However, comparing progress and development stemming from fungal research to that of human, plant, and bacterial research, fungi remain largely understudied and underutilized. Recent commercial ventures have begun to gain popularity in society, providing a new surge of interest in fungi, mycelia, and potential new applications of these organisms to various aspects of research. Biotechnological advancements in fungal research cannot occur without intensive amounts of time, investments, and research tool development. In this review, we highlight past breakthroughs in fungal biotechnology, discuss requirements to advance fungal biotechnology even further, and touch on the horizon of new breakthroughs with the highest potential to positively impact both research and society.
Collapse
Affiliation(s)
- Mitchell G. Roth
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
| | - Nathaniel M. Westrick
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas T. Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
14
|
Qin S, Veloso J, Puccetti G, van Kan JAL. Molecular characterization of cross-kingdom RNA interference in Botrytis cinerea by tomato small RNAs. FRONTIERS IN PLANT SCIENCE 2023; 14:1107888. [PMID: 36968352 PMCID: PMC10031073 DOI: 10.3389/fpls.2023.1107888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Previous studies have suggested that plants can modulate gene expression in pathogenic fungi by producing small RNAs (sRNAs) that can be translocated into the fungus and mediate gene silencing, which may interfere with the infection mechanism of the intruder. We sequenced sRNAs and mRNAs in early phases of the Solanum lycopersicum (tomato)-Botrytis cinerea interaction and examined the potential of plant sRNAs to silence their predicted mRNA targets in the fungus. Almost a million unique plant sRNAs were identified that could potentially target 97% of all fungal genes. We selected three fungal genes for detailed RT-qPCR analysis of the correlation between the abundance of specific plant sRNAs and their target mRNAs in the fungus. The fungal Bcspl1 gene, which had been reported to be important for the fungal virulence, showed transient down-regulation around 20 hours post inoculation and contained a unique target site for a single plant sRNA that was present at high levels. In order to study the functionality of this plant sRNA in reducing the Bcspl1 transcript level, we generated a fungal mutant that contained a 5-nucleotide substitution that would abolish the interaction between the transcript and the sRNA without changing the encoded protein sequence. The level of the mutant Bcspl1 transcript showed a transient decrease similar to wild type transcript, indicating that the tomato sRNA was not responsible for the downregulation of the Bcspl1 transcript. The virulence of the Bcspl1 target site mutant was identical to the wild type fungus.
Collapse
Affiliation(s)
- Si Qin
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Javier Veloso
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
- Departamento de Biología Funcional, Escuela Politécnica Superior de Ingeniería, Universidad de Santiago de Compostela, Lugo, Spain
| | - Guido Puccetti
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Jan A. L. van Kan
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
15
|
Corrigendum. MOLECULAR PLANT PATHOLOGY 2023; 24:284-285. [PMID: 36779303 PMCID: PMC9923388 DOI: 10.1111/mpp.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|