1
|
Warren WG, Osborn M, Duffy P, Yates A, O'Sullivan SE. Potential safety implications of fatty acid-binding protein inhibition. Toxicol Appl Pharmacol 2024; 491:117079. [PMID: 39218163 DOI: 10.1016/j.taap.2024.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Fatty acid-binding proteins (FABPs) are small intracellular proteins that regulate fatty acid metabolism, transport, and signalling. There are ten known human isoforms, many of which are upregulated and involved in clinical pathologies. As such, FABP inhibition may be beneficial in disease states such as cancer, and those involving the cardiovascular system, metabolism, immunity, and cognition. Recently, a potent, selective FABP5 inhibitor (ART26.12), with 90-fold selectivity to FABP3 and 20-fold selectivity to FABP7, was found to be remarkably benign, with a no-observed-adverse-effect level of 1000 mg/kg in rats and dogs, showing no genotoxicity, cardiovascular, central, or respiratory toxicity. To understand the potential implication of FABP inhibition more fully, this review systematically assessed literature investigating genetic knockout, knockdown, and pharmacological inhibition of FABP3, FABP4, FABP5, or FABP7. Analysis of the literature revealed that animals bred not to express FABPs showed the most biological effects, suggesting key roles of these proteins during development. FABP ablation sometimes exacerbated symptoms of disease models, particularly those linked to metabolism, inflammatory and immune responses, cardiac contractility, neurogenesis, and cognition. However, FABP inhibition (genetic silencing or pharmacological) had a positive effect in many more disease conditions. Several polymorphisms of each FABP gene have also been linked to pathological conditions, but it was unclear how several polymorphisms affected protein function. Overall, analysis of the literature to date suggests that pharmacological inhibition of FABPs in adults is of low risk.
Collapse
Affiliation(s)
- William G Warren
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom.
| | - Myles Osborn
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - Paul Duffy
- Apconix Ltd., Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - Andrew Yates
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | | |
Collapse
|
2
|
Liu J, Dai Q, Qu T, Ma J, Lv C, Wang H, Yu Y. Ameliorating effects of transcutaneous auricular vagus nerve stimulation on a mouse model of constipation-predominant irritable bowel syndrome. Neurobiol Dis 2024; 193:106440. [PMID: 38369213 DOI: 10.1016/j.nbd.2024.106440] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
Limited treatment options have been shown to alter the natural course of constipation-predominant irritable bowel syndrome (IBS-C). Therefore, safer and more effective approaches are urgently needed. We investigated the effects of transcutaneous auricular vagus nerve stimulation (taVNS) in a mouse model of IBS-C. In the current study, C57BL/6 mice were randomly divided into normal control, IBS-C model control, sham-electrostimulation (sham-ES), taVNS, and drug treatment groups. The effects of taVNS on fecal pellet number, fecal water content, and gastrointestinal transit were evaluated in IBS-C model mice. We assessed the effect of taVNS on visceral hypersensitivity using the colorectal distention test. 16S rRNA sequencing was used to analyze the fecal microbiota of the experimental groups. First, we found that taVNS increased fecal pellet number, fecal water content, and gastrointestinal transit in IBS-C model mice compared with the sham-ES group. Second, taVNS significantly decreased the abdominal withdrawal reflex (AWR) score compared with the sham-ES group, thus relieving visceral hyperalgesia. Third, the gut microbiota outcomes showed that taVNS restored Lactobacillus abundance while increasing Bifidobacterium probiotic abundance at the genus level. Notably, taVNS increased the number of c-kit-positive interstitial cells of Cajal (ICC) in the myenteric plexus region in IBS-C mice compared with the sham-ES group. Therefore, our study indicated that taVNS effectively ameliorated IBS-C in the gut microbiota and ICC.
Collapse
Affiliation(s)
- Jie Liu
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Qian Dai
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230001, Anhui Province, China
| | - Tong Qu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230001, Anhui Province, China
| | - Jun Ma
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Chaolan Lv
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Haitao Wang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230001, Anhui Province, China.
| | - Yue Yu
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China.
| |
Collapse
|
3
|
Hu M, Fang C, Liu Y, Gao M, Zhang D, Shi G, Yin Z, Zheng R, Zhang J. Comparative study of the laxative effects of konjac oligosaccharides and konjac glucomannan on loperamide-induced constipation in rats. Food Funct 2021; 12:7709-7717. [PMID: 34286775 DOI: 10.1039/d1fo01237a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Dietary fiber is the basic therapeutic method to relieve the symptoms of chronic constipation. The aim of this study was to compare the laxative effect of konjac glucomannan (KGM) and konjac oligosaccharides (KOS) on constipated rats. KGM and KOS were administered to loperamide-induced constipated rats at dosages of 100 mg per kg bw and 400 mg per kg bw for 15 days. Feces were collected to evaluate the defecation function. X-ray imaging and an electrophysiological system were used to determine gastrointestinal (GI) motility. Immunohistochemistry and western blotting were used to measure the protein levels. Magnetic resonance imaging (MRI) was performed to assess flatulence. Our results demonstrated that low-dose KOS (L-KOS) exerted the best laxative effect. Compared to the normal control (NC) group, the fecal number in the L-KOS group increased by 39.4%, and the fecal weight significantly increased by 31.9% which was higher than those in the low-dose KGM (L-KGM) and high-dose KGM (H-KGM) groups. The fecal moisture content and transit scores were significantly increased only in the L-KOS group. Meanwhile, less GI gas was produced by KOS. Additionally, further investigations suggested that KOS could upregulate the protein expression of stem cell factors (SCF)/c-kit, and significantly promoted the secretion of mucus. In conclusion, compared to KGM, KOS had a conspicuous laxative effect especially at a low dosage. The potential laxative mechanisms of KOS probably are regulating the SCF/c-kit signalling pathway and increasing mucus secretion. These findings indicated that as a kind of functional oligosaccharide, KOS is more conducive to alleviating constipation compared to polysaccharides.
Collapse
Affiliation(s)
- Mengmeng Hu
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Jacenik D, Bagüés A, López-Gómez L, López-Tofiño Y, Iriondo-DeHond A, Serra C, Banovcanová L, Gálvez-Robleño C, Fichna J, del Castillo MD, Uranga JA, Abalo R. Changes in Fatty Acid Dietary Profile Affect the Brain-Gut Axis Functions of Healthy Young Adult Rats in a Sex-Dependent Manner. Nutrients 2021; 13:1864. [PMID: 34070787 PMCID: PMC8228732 DOI: 10.3390/nu13061864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary modifications, including those affecting dietary fat and its fatty acid (FA) composition, may be involved in the development of brain-gut axis disorders, with different manifestations in males and females. Our aim was to evaluate the impact of three purified diets with different FA composition on the brain-gut axis in rats of both sexes. Male and female Wistar rats fed a cereal-based standard diet from weaning were used. At young adult age (2-3 months old), animals were divided into three groups and treated each with a different refined diet for 6 weeks: a control group fed on AIN-93G diet containing 7% soy oil (SOY), and two groups fed on AIN-93G modified diets with 3.5% soy oil replaced by 3.5% coconut oil (COCO) or 3.5% evening primrose oil (EP). Different brain-gut axis parameters were evaluated during 4-6 weeks of dietary intervention. Compared with SOY diet (14% saturated FAs, and 58% polyunsaturated FAs), COCO diet (52.2% saturated FAs and 30% polyunsaturated FAs) produced no changes in brain functions and minor gastrointestinal modifications, whereas EP diet (11.1% saturated FAs and 70.56% polyunsaturated FAs) tended to decrease self-care behavior and colonic propulsion in males, and significantly increased exploratory behavior, accelerated gastrointestinal transit, and decreased cecum and fecal pellet density in females. Changes in FA composition, particularly an increase in ω-6 polyunsaturated FAs, seem to facilitate the development of brain-gut axis alterations in a sex-dependent manner, with a relatively higher risk in females.
Collapse
Affiliation(s)
- Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Ana Bagüés
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), URJC, 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
| | - Laura López-Gómez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, 28922 Alcorcón, Spain
| | - Yolanda López-Tofiño
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, 28922 Alcorcón, Spain
| | - Amaia Iriondo-DeHond
- Food Bioscience Group, Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain; (A.I.-D.); (M.D.d.C.)
| | - Cristina Serra
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
| | - Laura Banovcanová
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
| | - Carlos Gálvez-Robleño
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, 28922 Alcorcón, Spain
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Maria Dolores del Castillo
- Food Bioscience Group, Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain; (A.I.-D.); (M.D.d.C.)
| | - José Antonio Uranga
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, 28922 Alcorcón, Spain
| | - Raquel Abalo
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, 28922 Alcorcón, Spain
- Working Group of Basic Sciences in Pain and Analgesia of the Spanish Pain Society (Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor), 28046 Madrid, Spain
| |
Collapse
|
5
|
Mosińska P, Tarasiuk A, Fabisiak A, Krajewska J, Niewinna K, Bartoszek A, Binienda A, Sałaga M, Fichna J. Dietary fatty acid content influences the expression of genes involved in the lipid turnover and inflammation in mouse colon and spleen. Pharmacol Rep 2019; 71:899-908. [PMID: 31421543 DOI: 10.1016/j.pharep.2019.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Dietary interventions can improve gastrointestinal (GI) symptoms. We determined the effects of fatty acids (FAs) supplementation with medium- and long-chain saturated FAs on mouse GI motility and correlated them with the expression of genes for free FA receptors (FFAR)1-4, FA binding protein 4 (FABP4) and inflammation. METHODS Forty-eight BalbC were assigned to: standard diet (STD), diet rich in medium-chain saturated FAs (COCO) and long-chain saturated FAs (HF) (7% by weight). Body weight (BW) and food intake (FI) were monitored for 8-weeks. GI motility was determined by fecal pellet output (FPO) and colon bead expulsion tests. FABP4 inhibitor, BMS309403 (1mg/kg, ip) was injected to half of each group 2 days/week. mRNA expression of FABP4, (FFAR)1-4, and pro-inflammatory cytokines were measured in colonic and splenic tissues using real-time PCR. RESULTS COCO and HF decreased FI. COCO accelerated overall GI transit (p<0.05). COCO increased the mRNA expression of FFAR2 (p<0.001) and TNFα (p<0.01); HF increased the expression of FABP4 and FFAR4 (p<0.05), and FFAR2 (p<0.001) in the colon, and decreased FFAR1 and FFAR4 (p<0.001), TNFα (p<0.01) and IL-1β (p<0.05) in splenic tissues. BMS309403 decreased the FI and delayed colonic transit in STD+BMS and COCO+BMS vs. STD (p<0.05). HF+BMS increased colonic expression of FFAR3 (p<0.01), TNFα (p<0.01), IL-6 (p<0.01), and reduced FFAR4 (p<0.05); COCO+BMS decreased TNFα (p<0.01). CONCLUSION Diversification in the dietary lipid content affected GI motility in mice and the expression of FFARs and pro-inflammatory cytokines in vivo.
Collapse
Affiliation(s)
- Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Adam Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland; Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Julia Krajewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Karolina Niewinna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Adrian Bartoszek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Agata Binienda
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Maciej Sałaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland.
| |
Collapse
|
6
|
Chain length of dietary fatty acids determines gastrointestinal motility and visceromotor function in mice in a fatty acid binding protein 4-dependent manner. Eur J Nutr 2019; 59:2481-2496. [PMID: 31562532 PMCID: PMC7413912 DOI: 10.1007/s00394-019-02094-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/19/2019] [Indexed: 12/14/2022]
Abstract
Purpose We hypothesize that different types of dietary fatty acids (FAs) affect gastrointestinal (GI) motility and visceromotor function and that this effect can be regulated by the fatty acid binding protein 4 (FABP4). Methods Mice were fed for 60 days with standard diet (STD), STD with 7% (by weight) coconut oil, rich in medium-chain FAs (MCFAs) (COCO), or with 7% evening primrose oil, rich in long-chain FAs (LCFAs) (EPO). In each group, half of the mice received FABP4 inhibitor, BMS309403 (1 mg/kg; i.p.) twice a week. Body weight (BW) and food intake were measured; well-established tests were performed to characterize the changes in GI motility and visceral pain. White adipose tissue and colonic samples were collected for cell culturing and molecular studies. Results COCO significantly increased GI transit, but not colonic motility. COCO and EPO delayed the onset of diarrhea, but none affected the effect of loperamide. EPO reduced BW and increased the visceromotor response (VMR) to colorectal distension (CRD). COCO and EPO reduced differentiation of preadipocytes. Treatment with BMS309403: (1) reversed the effects induced by COCO in physiological conditions and in mouse models of diarrhea; (2) prevented the effects of EPO on BW, VMR to CRD and castor oil-induced diarrhea; (3) affected proliferation of preadipocytes; (4) changed the expression of Fabp4 in colonic and adipocyte samples from COCO and EPO. Conclusion Modifying dietary intake of MCFAs and LCFAs may be used to control GI motility or visceral pain and thus modulate the symptoms of functional GI disorders. The effect is dependent on the expression of FABP4. Electronic supplementary material The online version of this article (10.1007/s00394-019-02094-2) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Mosińska P, Martín-Ruiz M, González A, López-Miranda V, Herradón E, Uranga JA, Vera G, Sánchez-Yáñez A, Martín-Fontelles MI, Fichna J, Abalo R. Changes in the diet composition of fatty acids and fiber affect the lower gastrointestinal motility but have no impact on cardiovascular parameters: In vivo and in vitro studies. Neurogastroenterol Motil 2019; 31:e13651. [PMID: 31145538 DOI: 10.1111/nmo.13651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/30/2019] [Accepted: 05/17/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Food and diet are central issues for proper functioning of the cardiovascular (CV) system and gastrointestinal (GI) tract. We hypothesize that different types of dietary FAs affect CV parameters as well as GI motor function and visceral sensitivity. METHODS Male Wistar rats were fed with control diet (CTRL), diet supplemented with 7% soybean oil (SOY), SOY + 3.5% virgin coconut oil (COCO), and SOY + 3.5% evening primrose oil (EP) for 4 weeks. The content of insoluble fiber in CTRL was higher than in SOY, COCO, or EP. Body weight gain and food/water intake were measured. At day 28, biometric, biochemical, CV parameters, GI motor function (X-ray and colon bead expulsion test), and visceral sensitivity were evaluated. Changes in propulsive colonic activity were determined in vitro. The colon and adipose tissue were histologically studied; the number of mast cells (MCs) in the colon was calculated. RESULTS SOY, COCO, and EP had increased body weight gain but decreased food intake vs CTRL. Water consumption, biometric, biochemical, and CV parameters were comparable between groups. SOY increased the sensitivity to colonic distention. All groups maintained regular propulsive neurogenic contractions; EP delayed colonic motility (P < 0.01). SOY, COCO, and EP displayed decreased size of the cecum, lower number and size of fecal pellets, and higher infiltration of MCs to the colon (P < 0.001). CONCLUSIONS AND INFERENCES Dietary FAs supplementation and lower intake of insoluble fiber can induce changes in the motility of the lower GI tract, in vivo and in vitro, but CV function and visceral sensitivity are not generally affected.
Collapse
Affiliation(s)
- Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio González
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Visitación López-Miranda
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Esperanza Herradón
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - José A Uranga
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Gema Vera
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Adrián Sánchez-Yáñez
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Mª Isabel Martín-Fontelles
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Raquel Abalo
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| |
Collapse
|
8
|
Sochal M, Mosińska P, Fichna J. Diagnostic value of chemerin in lower gastrointestinal diseases-a review. Peptides 2018; 108:19-24. [PMID: 30165089 DOI: 10.1016/j.peptides.2018.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/21/2018] [Accepted: 08/26/2018] [Indexed: 12/14/2022]
Abstract
Chemerin is a protein secreted among others by adipose tissue and liver, with a dual pro- and anti-inflammatory role in the body. These molecules exert systemic effects by modulating tissue-specific immune response and metabolism. Chemerin isoforms correlate with the turnover of fatty acids and lipoproteins that could affect intestinal inflammation. Although chemerin may interact with three types of receptors, CMKLR1 is the best studied. In this paper we reviewed current knowledge about the relationship between chemerin and lower gastrointestinal (GI) diseases, such as irritable bowel syndrome (IBS), inflammatory bowel disease (IBD) and colorectal cancer (CRC). A more detailed understanding of the role of the adipose tissue in the GI tract will not only unravel the pathophysiology of chronic intestinal diseases, but may also indicate a new therapeutic tool for their management.
Collapse
Affiliation(s)
- Marcin Sochal
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| |
Collapse
|