1
|
Chen Y, Feng S, Li Y, Zhang C, Chao G, Zhang S. Gut microbiota and intestinal immunity-A crosstalk in irritable bowel syndrome. Immunology 2024; 172:1-20. [PMID: 38174581 DOI: 10.1111/imm.13749] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Irritable bowel syndrome (IBS), one of the most prevalent functional gastrointestinal disorders, is characterized by recurrent abdominal pain and abnormal defecation habits, resulting in a severe healthcare burden worldwide. The pathophysiological mechanisms of IBS are multi-factorially involved, including food antigens, visceral hypersensitivity reactions, and the brain-gut axis. Numerous studies have found that gut microbiota and intestinal mucosal immunity play an important role in the development of IBS in crosstalk with multiple mechanisms. Therefore, based on existing evidence, this paper elaborates that the damage and activation of intestinal mucosal immunity and the disturbance of gut microbiota are closely related to the progression of IBS. Combined with the application prospect, it also provides references for further in-depth exploration and clinical practice.
Collapse
Affiliation(s)
- Yuxuan Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuyan Feng
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Li
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, China
| | - Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, China
| | - Shuo Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Leech T, Peiris M. Mucosal neuroimmune mechanisms in gastro-oesophageal reflux disease (GORD) pathogenesis. J Gastroenterol 2024; 59:165-178. [PMID: 38221552 PMCID: PMC10904498 DOI: 10.1007/s00535-023-02065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
Gastro-oesophageal reflux disease (GORD) is a chronic condition characterised by visceral pain in the distal oesophagus. The current first-line treatment for GORD is proton pump inhibitors (PPIs), however, PPIs are ineffective in a large cohort of patients and long-term use may have adverse effects. Emerging evidence suggests that nerve fibre number and location are likely to play interrelated roles in nociception in the oesophagus of GORD patients. Simultaneously, alterations in cells of the oesophageal mucosa, namely epithelial cells, mast cells, dendritic cells, and T lymphocytes, have been a focus of GORD research for several years. The oesophagus of GORD patients exhibits both macro- and micro-inflammation as a response to chronic acidic reflux at the epithelium. In other conditions of the GI tract, such as IBS and IBD, well-characterised bidirectional processes between immune cells and mucosal nerve fibres contribute to pathogenesis and symptom generation. Sensory alterations in these conditions such as nerve fibre outgrowth and hypersensitivity can be driven by inflammatory processes, which promote visceral pain signalling. This review will examine what is currently known of the molecular pathways linking inflammation and sensory perception leading to the development of GORD symptoms and explore potentially relevant mechanisms in other GI regions which may indicate new areas in GORD research.
Collapse
Affiliation(s)
- Tom Leech
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
| |
Collapse
|
3
|
Hayes BW, Choi HW, Rathore APS, Bao C, Shi J, Huh Y, Kim MW, Mencarelli A, Bist P, Ng LG, Shi C, Nho JH, Kim A, Yoon H, Lim D, Hannan JL, Todd Purves J, Hughes FM, Ji RR, Abraham SN. Recurrent infections drive persistent bladder dysfunction and pain via sensory nerve sprouting and mast cell activity. Sci Immunol 2024; 9:eadi5578. [PMID: 38427717 PMCID: PMC11149582 DOI: 10.1126/sciimmunol.adi5578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
Urinary tract infections (UTIs) account for almost 25% of infections in women. Many are recurrent (rUTI), with patients frequently experiencing chronic pelvic pain and urinary frequency despite clearance of bacteriuria after antibiotics. To elucidate the basis for these bacteria-independent bladder symptoms, we examined the bladders of patients with rUTI. We noticed a notable increase in neuropeptide content in the lamina propria and indications of enhanced nociceptive activity. In mice subjected to rUTI, we observed sensory nerve sprouting that was associated with nerve growth factor (NGF) produced by recruited monocytes and tissue-resident mast cells. Treatment of rUTI mice with an NGF-neutralizing antibody prevented sprouting and alleviated pelvic sensitivity, whereas instillation of native NGF into naïve mice bladders mimicked nerve sprouting and pain behavior. Nerve activation, pain, and urinary frequency were each linked to the presence of proximal mast cells, because mast cell deficiency or treatment with antagonists against receptors of several direct or indirect mast cell products was each effective therapeutically. Thus, our findings suggest that NGF-driven sensory sprouting in the bladder coupled with chronic mast cell activation represents an underlying mechanism driving bacteria-independent pain and voiding defects experienced by patients with rUTI.
Collapse
Affiliation(s)
- Byron W Hayes
- Department of Pathology, Duke University Medical Center; Durham, NC, USA
| | - Hae Woong Choi
- Division of Life Sciences, Korea University; Seoul, 02841, South Korea
| | - Abhay PS Rathore
- Department of Pathology, Duke University Medical Center; Durham, NC, USA
- Program in Emerging Infectious Diseases, Duke-National University of Singapore; Singapore 169857, Singapore
| | - Chunjing Bao
- Department of Pathology, Duke University Medical Center; Durham, NC, USA
| | - Jianling Shi
- Department of Pathology, Duke University Medical Center; Durham, NC, USA
| | - Yul Huh
- Department of Cell Biology, Duke University Medical Center; Durham, NC, USA
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center; Durham, NC, US
| | - Michael W Kim
- Department of Pathology, Duke University Medical Center; Durham, NC, USA
| | - Andrea Mencarelli
- Program in Emerging Infectious Diseases, Duke-National University of Singapore; Singapore 169857, Singapore
| | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-National University of Singapore; Singapore 169857, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis; 138648, Singapore
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changming Shi
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Joo Hwan Nho
- Division of Life Sciences, Korea University; Seoul, 02841, South Korea
| | - Aram Kim
- Department of Urology, Konkuk University Hospital, Konkuk University School of Medicine; Seoul, 05029, South Korea
| | - Hana Yoon
- Department of Urology, Ewha Womans University, College of Medicine; Seoul, 07804, South Korea
| | - Donghoon Lim
- Department of Urology, Chosun University School of Medicine; Gwangju, Korea
| | - Johanna L Hannan
- Department of Physiology, Brody School of Medicine, East Carolina University; Greenville, NC, USA
| | - J Todd Purves
- Department of Surgery, Division of Urology, Duke University Medical Center; Durham, NC, USA
| | - Francis M Hughes
- Department of Surgery, Division of Urology, Duke University Medical Center; Durham, NC, USA
| | - Ru-Rong Ji
- Department of Cell Biology, Duke University Medical Center; Durham, NC, USA
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center; Durham, NC, US
- Department of Neurobiology, Duke University Medical Center; Durham, North Carolina, USA
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center; Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center; Durham, NC, USA
- Program in Emerging Infectious Diseases, Duke-National University of Singapore; Singapore 169857, Singapore
- Department of Immunology, Duke University Medical Center; Durham, NC, USA
- Department of Molecular Genetics & Microbiology, Duke University Medical Center; Durham, NC, USA
| |
Collapse
|
4
|
Xia Y, Peng S, Lin M, Duan H, Yuan F, Shao M, Tan W, Luo H. Apigenin attenuates visceral hypersensitivity in water avoidance stress rats by modulating the microbiota-gut-brain axis and inhibiting mast cell activation. Biomed Pharmacother 2023; 167:115562. [PMID: 37801900 DOI: 10.1016/j.biopha.2023.115562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023] Open
Abstract
Visceral hypersensitivity (VH) and gut microbiota dysbiosis significantly contribute to the occurrence and development of irritable bowel syndrome (IBS), exacerbated by stress. Apigenin, a natural flavonoid derived from plants, possesses a range of beneficial properties. However, additional research is necessary to investigate its potential in alleviating symptoms of IBS and elucidating its underlying mechanisms of action. Our study confirms that apigenin effectively reverses mast cell and microglial activation, regulates the composition and abundance of the gut microbiota, improves intestinal barrier function in rats induced with water-avoidance stress, and mitigates VH and colonic hypermotility. Furthermore, in vitro studies suggest a potential role of dysbiotic gut microbiota in activating mast cells at the cellular level. Notably, apigenin inhibits mast cell degranulation through the toll-like receptor 4 (TLR4) / myeloid differentiation primary response gene 88 (MyD88) / nuclear factor-kappa B (NF-κB) pathway. In conclusion, this study discusses the potential therapeutic effects of apigenin in alleviating VH and modulating the gut-brain axis in water-avoidance stress rats, providing a novel or alternative treatment approach for IBS.
Collapse
Affiliation(s)
- Yuan Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Shuai Peng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mengjuan Lin
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Houyu Duan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Fangting Yuan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Ming Shao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wei Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
5
|
Lu X, Zhang S. How Tongxie-Yaofang Regulates Intestinal Synaptic Plasticity by Activating Enteric Glial Cells and NGF/TrkA Pathway in Diarrhea-Predominant Irritable Bowel Syndrome Rats. Drug Des Devel Ther 2023; 17:2969-2983. [PMID: 37789966 PMCID: PMC10544122 DOI: 10.2147/dddt.s423333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Purpose Diarrhea-predominant irritable bowel syndrome (D-IBS) is a frequent functional gastrointestinal disease that affects health and quality of life owing to its high incidence and recurrence rate. Tongxie-Yaofang (TXYF) is a traditional Chinese medicine prescribed for D-IBS. However, the therapeutic mechanism of TXYF has not been fully elucidated. This study aimed to investigate the effects of TXYF on visceral hypersensitivity in stress-induced D-IBS rats and the underlying mechanisms. Methods Electromyographic (EMG) activity of the external oblique muscles and the abdominal withdrawal reflex (AWR) score captured by Barostat were used to quantify the effect of TXYF on visceral sensitivity. Transmission electron microscopy (TEM) was used to observe the ultrastructure of the enteric nervous system (ENS). For molecular detection, the colonic expression of enteric glial cell's (EGC's) activation markers, glial fibrillary acidic protein (GFAP) and calcium-binding protein S100β, NGF, TrkA, synaptic plasticity-related factors, synaptophysin (SYN) and postsynaptic density-95 (PSD-95), glutamate, glutamate receptors α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR), and N-methyl-D-aspartate receptor (NMDAR) were detected by immunohistochemistry, enzyme-linked immunosorbent assay, and real-time PCR. An ex vivo experiment was conducted to measure the EGC-induced NGF release. Results TXYF decreased the EMG activity and AWR scores in rats with D-IBS. Under TEM, TXYF improved the dense and irregular nerve arrangement, narrowed the synaptic cleft, and decreased the number of synaptic vesicles in D-IBS rats. In addition, TXYF decreased the expression of GFAP, S100β, SYN, and PSD-95; down-regulated the levels of NGF, TrkA, and glutamate; and reduced the mRNA expression of AMPAR1, NMDAR1, and NMDAR2B. In an ex vivo experiment, TXYF decreased NGF release in D-IBS rats, and this trend disappeared under EGC inhibition. Conclusion TXYF alleviated visceral hypersensitivity in D-IBS rats possibly by improving synaptic plasticity through inhibiting the activity of EGCs and the NGF/TrkA signaling pathway in the colon.
Collapse
Affiliation(s)
- Xiaofang Lu
- Center of Digestive, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Shengsheng Zhang
- Center of Digestive, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Lobo B, Tramullas M, Finger BC, Lomasney KW, Beltran C, Clarke G, Santos J, Hyland NP, Dinan TG, Cryan JF. The Stressed Gut: Region-specific Immune and Neuroplasticity Changes in Response to Chronic Psychosocial Stress. J Neurogastroenterol Motil 2023; 29:72-84. [PMID: 36606438 PMCID: PMC9837549 DOI: 10.5056/jnm22009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 01/07/2023] Open
Abstract
Background/Aims Chronic psychological stress affects gastrointestinal physiology which may underpin alterations in the immune response and epithelial transport, both functions are partly regulated by enteric nervous system. However, its effects on enteric neuroplasticity are still unclear. This study aims to investigate the effects of chronic unpredictable psychological stress on intestinal motility and prominent markers of enteric function. Methods Adult male C57BL/6J mice were exposed to 19 day of unpredictable stress protocol schedule of social defeat and overcrowding. We investigated the effects on plasma corticosterone, food intake, and body weight. In vivo gastrointestinal motility was assessed by fecal pellet output and by whole-gastrointestinal transit (using the carmine red method). Tissue monoamine level, neural and glial markers, neurotrophic factors, monoamine signaling, and Toll-like receptor expression in the proximal and distal colon, and terminal ileum were also assessed. Results Following chronic unpredictable psychological stress, stressed mice showed increased food intake and body weight gain (P < 0.001), and reduced corticosterone levels (P < 0.05) compared to control mice. Stressed mice had reduced stool output without differences in water content, and showed a delayed gastrointestinal transit compared to control mice (P < 0.05). Stressed mice exhibited decreased mRNA expression of tyrosine hydroxylase (Th), brain-derived neurotrophic factor (Bdnf) and glial cell-derived neurotrophic factor (Gdnf), as well as Toll-like receptor 2 (Tlr2) compared to control (P < 0.05), only proximal colon. These molecular changes in proximal colon were associated with higher levels of monoamines in tissue. Conclusion Unpredictable psychological chronic stress induces region-specific impairment in monoamine levels and neuroplasticity markers that may relate to delayed intestinal transit.
Collapse
Affiliation(s)
- Beatriz Lobo
- APC Microbiome Ireland, University College Cork, Ireland,Digestive System Research Unit, Laboratory of Neuro-Immuno-Gastroenterology, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain,Department of Gastroenterology, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron Barcelona, Spain,Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Correspondence: Beatriz Lobo, PhD, MD, Laboratory of Neuro-Immuno-Gastroenterology, Digestive Diseases Research Unit. Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain, Tel: +34-93-489-4035, E-mail:
| | - Mónica Tramullas
- APC Microbiome Ireland, University College Cork, Ireland,Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain (Current address)
| | - Beate-C Finger
- APC Microbiome Ireland, University College Cork, Ireland
| | - Kevin W Lomasney
- APC Microbiome Ireland, University College Cork, Ireland,Departments of Anatomy and Neuroscience, University College Cork, Ireland
| | - Caroll Beltran
- APC Microbiome Ireland, University College Cork, Ireland,Laboratory of Immunogastroenterology, Gastroenterology Unit, Hospital Clinico Universidad de Chile, Faculty of Medicine Universidad de Chile, Santiago, Chile
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Ireland
| | - Javier Santos
- Digestive System Research Unit, Laboratory of Neuro-Immuno-Gastroenterology, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain,Department of Gastroenterology, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron Barcelona, Spain,Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Niall P Hyland
- APC Microbiome Ireland, University College Cork, Ireland,Departments of Physiology, University College Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Ireland,Departments of Psychiatry and Neurobehavioural Science, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland,Departments of Anatomy and Neuroscience, University College Cork, Ireland,John F Cryan, PhD, Department of Anatomy and Neuroscience, University College Cork, room 3.86 Western Gateway Building, Ireland, Fax: +353-0214205497, E-mail:
| |
Collapse
|
7
|
Jiang T, Niu R, Liu Q, Fu Y, Luo X, Zhang T, Wu B, Han J, Yang Y, Su X, Chen JDZ, Song G, Wei W. Wenshen-Jianpi prescription, a Chinese herbal medicine, improves visceral hypersensitivity in a rat model of IBS-D by regulating the MEK/ERK signal pathway. Front Pharmacol 2022; 13:955421. [PMID: 36210803 PMCID: PMC9540386 DOI: 10.3389/fphar.2022.955421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The goal of the study was to analyze whether WJP can alleviate visceral hypersensitivity in IBS-D model rats. In this study, 36 Sprague–Dawley (SD) rats aged 4 weeks old were randomly divided into two groups: the model group (n = 27) and the control group (n = 9). The rat model of IBS-D was established by modified compound methods for 4 weeks. After the modification, IBS-D rats were randomly divided into three groups, namely, the IBS-D model group (n = 9), the positive drug group (n = 9), and the WJP group (n = 9), with different interventions, respectively. The control group was fed and allowed to drink water routinely. The Bristol stool scale scores were used to assess the severity of diarrhea. Abdominal withdrawal reflex (AWR) scores were used to assess visceral sensitivity. Expression of TNF-α was measured, and histopathological examinations were performed to assess colon inflammation in IBS-D model rats. Key factors of the MEK/ERK signal pathway in the tissue of the colon and hippocampus were measured to analyze the mechanism of WJP. Compared with the control group, the Bristol stool scale scores in the model group were significantly increased (p < 0.0001). The scores of the WJP group were significantly decreased compared with the model group (p = 0.0001). Compared with the control group, AWR scores in the model group at each pressure level were significantly increased (p = 0.0003, p < 0.0001, p = 0.0007, and p = 0.0009). AWR scores of the WJP group were significantly decreased compared with the model group (p = 0.0003, p = 0.0007, p = 0.0007, and p = 0.0009). Compared with the control group, the model group had significantly higher expression of TNF-α in the colon tissue (p < 0.0001). However, the WJP group had significantly lower level of TNF-α compared with the model group (p < 0.0001). Meanwhile, compared with the control group, the relative expression of the proteins of p-MEK1/2, p-ERK1, and p-ERK2 in the colon tissue was significantly increased in the model group (p < 0.0001). Compared with the model group, the relative expression of the proteins in the colon tissue were significantly decreased in the WJP group (p < 0.0001, p = 0.0019, and p = 0.0013). Compared with the control group, the relative expression of the proteins of p-MEK1/2, p-ERK1, and p-ERK2 in the hippocampus tissue were significantly increased in the model group (p < 0.0001). Compared with the model group, the relative expression of the proteins in the hippocampus tissue were significantly decreased in the WJP group (p = 0.0126, p = 0.0291, and p = 0.0145). The results indicated that WJP can alleviate visceral hypersensitivity in IBS-D model rats, possibly mediated by downregulating the expression of TNF-α, p-MEK1/2, p-ERK1, and p-ERK2 in the colon tissue. At the same time, WJP also affects downregulating the expression of p-MEK1/2, p-ERK1, and p-ERK2 in the hippocampus tissue.
Collapse
Affiliation(s)
- Tianyuan Jiang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Ran Niu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Qian Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Yuhan Fu
- Department of Internal Medicine, MetroHealth Medical Center/Case Western Reserve University, Cleveland, OH, United States
| | - Xiaoying Luo
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Tao Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Baoqi Wu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Juan Han
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Yang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Xiaolan Su
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Jiande D. Z. Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Gengqing Song
- Department of Gastroenterology and Hepatology, MetroHealth Medical Center/Case Western Reserve University, Cleveland, OH, United States
- *Correspondence: Gengqing Song, ; Wei Wei,
| | - Wei Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
- *Correspondence: Gengqing Song, ; Wei Wei,
| |
Collapse
|
8
|
Accarie A, Toth J, Wauters L, Farré R, Tack J, Vanuytsel T. Estrogens Play a Critical Role in Stress-Related Gastrointestinal Dysfunction in a Spontaneous Model of Disorders of Gut-Brain Interaction. Cells 2022; 11:cells11071214. [PMID: 35406778 PMCID: PMC8997409 DOI: 10.3390/cells11071214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Disorders of the gut-brain interaction (DGBI), such as irritable bowel syndrome and functional dyspepsia, are more prevalent in women than in men, with a ratio of 2:1. Furthermore, stressful life events have been reported as one of the triggers for symptoms in DGBI patients. METHODS Here, we studied the effect of an early-life stressor (maternal separation (MS)) on jejunal and colonic alterations, including colonic sensitivity and immune cells infiltration and activation in a validated spontaneous model of DGBI (BBDP-N), and investigated the involvement of β-estradiol on stress-worsened intestinal alterations. RESULTS We found that maternal separation exacerbated colonic sensitivity and mast cell and eosinophil infiltration and activation in females only. Ovariectomy partially rescued the stress phenotype by decreasing colonic sensitivity, which was restored by β-estradiol injections and did not impact immune cells infiltration and activation. Stressed males exposed to β-estradiol demonstrated similar intestinal alterations as MS females. CONCLUSION Estrogen plays a direct critical role in colonic hypersensitivity in a spontaneous animal model of DGBI, while for immune activation, estrogen seems to be involved in the first step of their recruitment and activation. Our data point towards a complex interaction between stress and β-estradiol in DGBI.
Collapse
Affiliation(s)
- Alison Accarie
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
| | - Joran Toth
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
| | - Lucas Wauters
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, 3000 Leuven, Belgium; (A.A.); (J.T.); (L.W.); (R.F.); (J.T.)
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
9
|
Zhang L, Wang R, Chen Y, Yang P, Bai T, Song J, Hou X. EphrinB2/ephB2 activation facilitates colonic synaptic potentiation and plasticity contributing to long-term visceral hypersensitivity in irritable bowel syndrome. Life Sci 2022; 295:120419. [PMID: 35183555 DOI: 10.1016/j.lfs.2022.120419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
|
10
|
Issa A, Edwards J, Singh M, Friesen C, Edwards S. Presence of Increased Mast Cells in Infants and Children with Volume and Variety Limited Intake. Nutrients 2022; 14:nu14020365. [PMID: 35057546 PMCID: PMC8780193 DOI: 10.3390/nu14020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Reports indicate patients with feeding difficulties demonstrate signs of inflammation on biopsies, notably eosinophilia, but it is unknown whether mast cell density contributes to variety or volume limitation symptoms. The aim of our study was to evaluate eosinophil and mast cell density of EGD biopsies in pediatric patients with symptoms of decreased volume or variety of ingested foods. Methods: We conducted a single-center, retrospective chart review of EMRs for all new feeding clinic patients between 0 and 17 years of age. Patients were categorized by symptoms at the initial visit as well as eosinophil and mast cell densities in those with EGD biopsies. Ten patients were identified as controls. Results: We identified 30 patients each with volume and variety limitation. Antral mast cell density was increased in 32.1% of variety-limited patients, 37.5% of volume limited patients, and in no controls; Duodenal mast cell density was increased in 32.1% of variety-limited patients, 40.6% of volume-limited patients, and in no controls. Conclusions: In both variety- and volume-limited patients, antral and duodenal mast cell densities were increased. These associations warrant further investigation of the mechanism between mast cells and development of feeding difficulties, allowing more targeted pediatric therapies.
Collapse
Affiliation(s)
- Amy Issa
- Division of Gastroenterology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Jensen Edwards
- School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
| | - Meenal Singh
- Division of Gastroenterology, Children’s Mercy Kansas City, Kansas City, MO 64108, USA; (M.S.); (C.F.)
| | - Craig Friesen
- Division of Gastroenterology, Children’s Mercy Kansas City, Kansas City, MO 64108, USA; (M.S.); (C.F.)
- School of Medicine, University of Missouri at Kansas City, Kansas City, MO 64108, USA
| | - Sarah Edwards
- Division of Gastroenterology, Children’s Mercy Kansas City, Kansas City, MO 64108, USA; (M.S.); (C.F.)
- School of Medicine, University of Missouri at Kansas City, Kansas City, MO 64108, USA
- Correspondence:
| |
Collapse
|
11
|
Friesen HJ, Rosen J, Low Kapalu C, Singh M, Spaeth T, Cocjin JT, Friesen CA, Schurman JV. Mucosal eosinophils, mast cells, and intraepithelial lymphocytes in youth with rumination syndrome. Neurogastroenterol Motil 2021; 33:e14155. [PMID: 33837997 DOI: 10.1111/nmo.14155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Rumination syndrome has been associated with increased duodenal eosinophils and intraepithelial lymphocytes in adults. The aims of the current study were to assess densities of antroduodenal eosinophils and mast cells and duodenal intraepithelial lymphocytes in youth with rumination syndrome and to compare cell densities in those with and without abdominal pain or early satiety. METHODS Twenty-eight youth fulfilling Rome IV criteria for rumination syndrome who had undergone endoscopy were identified and compared to 10 controls. Antral and duodenal biopsies were assessed to determine densities of eosinophils, mast cells, and intraepithelial lymphocytes. Cell densities were also compared between rumination patients with and without abdominal pain and those with and without early satiety. KEY RESULTS Antral mast cell (peak 18.5±6.5 vs. 12.5±2.7) and eosinophil (peak 9.6±5.2 vs. 4.9±2.1) densities were significantly greater in patients with rumination syndrome as compared to controls. Duodenal intraepithelial lymphocyte densities were also increased in rumination syndrome (18.9 ± 5.1 vs. 11.7 ± 1.5; p<.001). Associations were independent of the presence of abdominal pain or early satiety. CONCLUSIONS AND INFERENCES In conclusion, we found an increase in eosinophil and mast cell densities in the gastric antrum and an increase in intraepithelial lymphocytes in the duodenum in youth with rumination syndrome which was independent of the presence of abdominal pain or early satiety. These findings suggest a potential role for inflammation in the pathophysiology of rumination syndrome. Future studies should address whether treatment directed at these cells are beneficial in treating rumination syndrome.
Collapse
Affiliation(s)
| | - John Rosen
- Division of Gastroenterology, Hepatology, & Nutrition, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Christina Low Kapalu
- Division of Gastroenterology, Hepatology, & Nutrition, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Meenal Singh
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Tracy Spaeth
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Jose T Cocjin
- Division of Gastroenterology, Hepatology, & Nutrition, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Craig A Friesen
- Division of Gastroenterology, Hepatology, & Nutrition, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Jennifer V Schurman
- Division of Gastroenterology, Hepatology, & Nutrition, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| |
Collapse
|
12
|
Mai L, Liu Q, Huang F, He H, Fan W. Involvement of Mast Cells in the Pathophysiology of Pain. Front Cell Neurosci 2021; 15:665066. [PMID: 34177465 PMCID: PMC8222580 DOI: 10.3389/fncel.2021.665066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Mast cells (MCs) are immune cells and are widely distributed throughout the body. MCs are not only classically viewed as effector cells of some allergic diseases but also participate in host defense, innate and acquired immunity, homeostatic responses, and immunoregulation. Mounting evidence indicates that activation of MCs releasing numerous vasoactive and inflammatory mediators has effects on the nervous system and has been involved in different pain conditions. Here, we review the latest advances made about the implication of MCs in pain. Possible cellular and molecular mechanisms regarding the crosstalk between MC and the nervous system in the initiation and maintenance of pain are also discussed.
Collapse
Affiliation(s)
- Lijia Mai
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Qing Liu
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
do Carmo Neto JR, Braga YLL, da Costa AWF, Lucio FH, do Nascimento TC, dos Reis MA, Celes MRN, de Oliveira FA, Machado JR, da Silva MV. Biomarkers and Their Possible Functions in the Intestinal Microenvironment of Chagasic Megacolon: An Overview of the (Neuro)inflammatory Process. J Immunol Res 2021; 2021:6668739. [PMID: 33928170 PMCID: PMC8049798 DOI: 10.1155/2021/6668739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
The association between inflammatory processes and intestinal neuronal destruction during the progression of Chagasic megacolon is well established. However, many other components play essential roles, both in the long-term progression and control of the clinical status of patients infected with Trypanosoma cruzi. Components such as neuronal subpopulations, enteric glial cells, mast cells and their proteases, and homeostasis-related proteins from several organic systems (serotonin and galectins) are differentially involved in the progression of Chagasic megacolon. This review is aimed at revealing the characteristics of the intestinal microenvironment found in Chagasic megacolon by using different types of already used biomarkers. Information regarding these components may provide new therapeutic alternatives and improve the understanding of the association between T. cruzi infection and immune, endocrine, and neurological system changes.
Collapse
Affiliation(s)
- José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Yarlla Loyane Lira Braga
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Arthur Wilson Florêncio da Costa
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Fernanda Hélia Lucio
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thais Cardoso do Nascimento
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marlene Antônia dos Reis
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Mara Rubia Nunes Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Flávia Aparecida de Oliveira
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Juliana Reis Machado
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcos Vinícius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
14
|
della Rocca G, Gamba D. Chronic Pain in Dogs and Cats: Is There Place for Dietary Intervention with Micro-Palmitoylethanolamide? Animals (Basel) 2021; 11:952. [PMID: 33805489 PMCID: PMC8065429 DOI: 10.3390/ani11040952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
The management of chronic pain is an integral challenge of small animal veterinary practitioners. Multiple pharmacological agents are usually employed to treat maladaptive pain including opiates, non-steroidal anti-inflammatory drugs, anticonvulsants, antidepressants, and others. In order to limit adverse effects and tolerance development, they are often combined with non-pharmacologic measures such as acupuncture and dietary interventions. Accumulating evidence suggests that non-neuronal cells such as mast cells and microglia play active roles in the pathogenesis of maladaptive pain. Accordingly, these cells are currently viewed as potential new targets for managing chronic pain. Palmitoylethanolamide is an endocannabinoid-like compound found in several food sources and considered a body's own analgesic. The receptor-dependent control of non-neuronal cells mediates the pain-relieving effect of palmitoylethanolamide. Accumulating evidence shows the anti-hyperalgesic effect of supplemented palmitoylethanolamide, especially in the micronized and co-micronized formulations (i.e., micro-palmitoylethanolamide), which allow for higher bioavailability. In the present paper, the role of non-neuronal cells in pain signaling is discussed and a large number of studies on the effect of palmitoylethanolamide in inflammatory and neuropathic chronic pain are reviewed. Overall, available evidence suggests that there is place for micro-palmitoylethanolamide in the dietary management of chronic pain in dogs and cats.
Collapse
Affiliation(s)
- Giorgia della Rocca
- Department of Veterinary Medicine, Centro di Ricerca sul Dolore Animale (CeRiDA), Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Davide Gamba
- Operational Unit of Anesthesia, Centro Veterinario Gregorio VII, 00165 Roma, Italy;
- Freelance, DG Vet Pain Therapy, 24124 Bergamo, Italy
| |
Collapse
|
15
|
Chen Z, Zhou T, Zhang Y, Dong H, Jin W. Mast cells in the paraventricular nucleus participate in visceral hypersensitivity induced by neonatal maternal separation. Behav Brain Res 2021; 402:113113. [PMID: 33412227 DOI: 10.1016/j.bbr.2020.113113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/11/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023]
Abstract
Early-life stress (ELS) is a high-risk factor for the development of chronic visceral pain in adulthood. Emerging evidence suggests that mast cells play a key role in the development of visceral hypersensitivity through interaction with neurons. The sensitization of corticotropin-releasing factor (CRF) neurons in the hypothalamic paraventricular nucleus (PVN) plays a pivotal role in the pathogenesis of visceral pain. However, the precise mechanism by which mast cells and CRF neurons interact in the PVN in the pathogenesis of visceral hypersensitivity remains elusive. In the present study, we used neonatal maternal separation (MS), an ELS model, and observed that neonatal MS induced visceral hypersensitivity and triggered PVN mast cell activation in adult rats, which was repressed by intra-PVN infusion of the mast cell stabilizer disodium cromoglycate (cromolyn). Wild-type (WT) mice but not mast cell-deficient KitW-sh/W-sh mice that had experienced neonatal MS exhibited chronic visceral hypersensitivity. MS was associated with an increase in the expression of proinflammatory mediators, the number of CRF+ cells and CRF protein in the PVN, which was prevented by intra-PVN infusion of cromolyn. Furthermore, we demonstrated that intra-PVN infusion of the mast degranulator compound 48/80 significantly induced mast cell activation, resulting in proinflammatory mediator release, CRF neuronal sensitization, and visceral hypersensitivity, which was suppressed by cromolyn. Overall, our findings demonstrated that neonatal MS induces the activation of PVN mast cells, which secrete numerous proinflammatory mediators that may participate in neighboring CRF neuronal activity, ultimately directly inducing visceral hypersensitivity in adulthood.
Collapse
Affiliation(s)
- Ziyang Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tiantian Zhou
- Department of Anesthesiology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliate with Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongmei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wenjie Jin
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Cheng L, Luo QQ, Chen SL. The role of intestinal mast cell infiltration in irritable bowel syndrome. J Dig Dis 2021; 22:143-151. [PMID: 33511763 DOI: 10.1111/1751-2980.12971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/17/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
As an essential part of the immune system, mast cells (MCs) play an important role in the pathogenesis of irritable bowel syndrome (IBS). Accumulating evidence has identified altered MC count and density in intestinal mucosa of patients with IBS; however, conflicting findings yield inconsistent conclusions. Currently, most studies have suggested intestinal MC infiltration in IBS patients. Considering the pivotal role of MCs in IBS, it is necessary to achieve a better understanding about the pathological changes in the intestine. The risk factors for IBS, including dietary habits, psychological factors, infection, and dysbiosis, are implicated to induce intestinal MC infiltration. Mechanistically, food may trigger immune-related allergic reactions and affect the intestinal microbiota activity. Some exogenous pathogens and altered profile of commensal bacteria promote intestinal MC recruitment through promoted release of chemokines from epithelial cells or direct activation of the immune system. In addition, psychological factors may affect the microenvironment where MCs live. MCs have been proven to interact with the enteric neurons and other immunocytes, evidenced by the close proximity of MCs to neurons and regional altered immune system components. A variety of mediators released by the enteric neurons, immunocytes, and MCs per se, such as neurotrophins, neuropeptides, cytokines, and chemokines, may have stimulant effects on MCs by modulating the survival, proliferation, and recruitment process of MCs in the intestine. In this review, the associations between IBS and intestinal MC density and the underlying mechanisms are discussed.
Collapse
Affiliation(s)
- Li Cheng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qing Qing Luo
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Sheng Liang Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
17
|
Kulkarni S, Kurapati S, Bogunovic M. Neuro-innate immune interactions in gut mucosal immunity. Curr Opin Immunol 2021; 68:64-71. [PMID: 33130386 PMCID: PMC11095515 DOI: 10.1016/j.coi.2020.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
The gastrointestinal (GI) tract performs a set of vital physiological functions related to food and water consumption. To help regulate these complex physiological processes, the GI tract is innervated by extensive neural networks. The GI tract also serves as the largest immune organ aimed to protect hosts from harmful microbes and toxins ingested with food. It emerges that the enteric nervous and immune systems are highly integrated to optimize digestion while reinforcing immune protection. In this review, we will discuss key cellular players involved in the neuro-immune interactions within the GI mucosa with the focus on the recently uncovered neural pathways that regulate mucosal immunity in a context relevant to GI health and disease.
Collapse
Affiliation(s)
- Subhash Kulkarni
- Department of Medicine, Center for Neurogastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Sravya Kurapati
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States; Penn State Biomedical Sciences Ph.D. Program, Penn State University College of Medicine, Hershey, PA, United States
| | - Milena Bogunovic
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States.
| |
Collapse
|
18
|
|
19
|
Zhang L, Wang R, Bai T, Xiang X, Qian W, Song J, Hou X. EphrinB2/ephB2-mediated myenteric synaptic plasticity: mechanisms underlying the persistent muscle hypercontractility and pain in postinfectious IBS. FASEB J 2019; 33:13644-13659. [PMID: 31601124 DOI: 10.1096/fj.201901192r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Patients with irritable bowel syndrome (IBS) show pain hypersensitivity and smooth muscle hypercontractility in response to colorectal distension (CRD). Synaptic plasticity, a key process of memory formation, in the enteric nervous system may be a novel explanation. This study aimed to explore the regulatory role of ephrinB2/ephB2 in enteric synaptic plasticity and colonic hyperreactive motility in IBS. Postinfectious (PI)-IBS was induced by Trichinella spiralis infection in rats. Isometric contractions of colonic circular muscle strips, particularly neural-mediated contractions, were recorded ex vivo. Meanwhile, ephrinB2/ephB2-mediated enteric structural and functional synaptic plasticity were assessed in the colonic muscularis, indicating that ephrinB2 and ephB2 were located on enteric nerves and up-regulated in the colonic muscularis of PI-IBS rats. Colonic hypersensitivity to CRD and neural-mediated colonic hypercontractility were present in PI-IBS rats, which were correlated with increased levels of cellular homologous fos protein (c-fos) and activity-regulated cystoskeleton-associated protein (arc), the synaptic plasticity-related immediate early genes, and were ameliorated by ephB2Fc (an ephB2 receptor blocker) or MK801 (an NMDA receptor inhibitor) exposure. EphrinB2/ephB2 facilitated synaptic sprouting and NMDA receptor-mediated synaptic potentiation in the colonic muscularis of PI-IBS rats and in the longitudinal muscle-myenteric plexus cultures, involving the Erk-MAPK and PI3K-protein kinase B pathways. In conclusion, ephrinB2/ephB2 promoted the synaptic sprouting and potentiation of myenteric nerves involved in persistent muscle hypercontractility and pain in PI-IBS. Hence, ephrinB2/ephB2 may be an emerging target for the treatment of IBS.-Zhang, L., Wang, R., Bai, T., Xiang, X., Qian, W., Song, J., Hou, X. EphrinB2/ephB2-mediated myenteric synaptic plasticity: mechanisms underlying the persistent muscle hypercontractility and pain in postinfectious IBS.
Collapse
Affiliation(s)
- Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruiyun Wang
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuelian Xiang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Inhibition of Mast Cell Degranulation Relieves Visceral Hypersensitivity Induced by Pancreatic Carcinoma in Mice. J Mol Neurosci 2019; 69:235-245. [PMID: 31201657 PMCID: PMC6732154 DOI: 10.1007/s12031-019-01352-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
Cancer pain induced by pancreatic carcinoma is one of the most common symptoms and is difficult to endure, especially in the advanced stage. Evidence suggests that mast cells are recruited and degranulate in enteric disease-related visceral hypersensitivity. However, whether mast cells promote the visceral pain induced by pancreatic carcinoma remains unclear. Here, using toluidine blue staining and western blotting, we observed that mast cells were dramatically recruited to tissues surrounding pancreatic carcinoma, but not inside the carcinoma in patients with severe visceral pain. The levels of mast cell degranulation products, including tryptase, histamine, and nerve growth factor, were significantly increased in pericarcinoma tissues relative to their levels in normal controls, as evidenced by enzyme-linked immunosorbent assay. We determined that systemic administration of mast cell secretagogue compound 48/80 exacerbated pancreatic carcinoma-induced visceral hypersensitivity in a male BALB/c nude mouse model as assessed by measuring the hunching behavior scores and mechanical withdrawal response frequency evoked by von Frey stimulation. In contrast, the mast cell stabilizer ketotifen dose-dependently alleviated pancreatic cancer pain. In addition, we observed incomplete development of abdominal mechanical hyperalgesia and hunching behavior in mast cell–deficient mice with pancreatic carcinoma. However, ketotifen did not further attenuate visceral hypersensitivity in mast cell–deficient mice with carcinoma. Finally, we confirmed that intraplantar injection of pericarcinoma supernatants from BALB/c nude mice but not mast cell–deficient mice caused acute somatic nociception. In conclusion, our findings suggest that mast cells contribute to pancreatic carcinoma-induced visceral hypersensitivity through enrichment and degranulation in pericarcinoma tissues. The inhibition of mast cell degranulation may be a potential strategy for the therapeutic treatment of pancreatic carcinoma-induced chronic visceral pain.
Collapse
|