1
|
Hasan S, Amin MAI, Mia M, Khatun S, Arafat Y, Gofur MR, Islam MM, Hosen ME, Almaary KS, Fentahun Wondmie G, Islam A, Rahman M, Bourhia M. Yogurt Supplementation Can Ameliorate Fatty Liver Diseases and Metabolic Syndrome in High Fat-Induced Conditions in Mice. Food Sci Nutr 2025; 13:e4650. [PMID: 39803213 PMCID: PMC11716991 DOI: 10.1002/fsn3.4650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/02/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Hepatic steatosis/non-alcoholic fatty liver disease is a major public health delinquent caused by the excess deposition of lipid into lipid droplets (LDs) as well as metabolic dysregulation. Hepatic cells buildup with more fat molecules when a person takes high fat diet that is excessive than the body can handle. At present, millions of people in the world are affected by this problem. So, it is very important to know the effects of factors responsible for the disease. Here, the role of lipid droplet (LD) biogenesis and metabolism was analyzed and intended to investigate if defects in biogenesis/metabolic enzymes are responsible for the accumulation of lipids other than LDs in fatty liver disease in high-fat-induced conditions in mice model. To explore it, high-fat diet (HFD), fast food (FF), and soft drinks (SD) were administered to wild-type Swiss albino mice for 14 weeks following yogurt supplementation. After experimental period, glucose tolerance, enzyme function, lipid profile, plasma biochemistry, and other analytical tests were analyzed by auto-analyzer including different oxidative stress markers. Lipids from hepatic tissues were extracted, and purified by Floatation Assay and subsequently analyzed by different biochemical and chromatographic techniques. Histological architecture of hepatocytes was performed using Zeiss microscope. Finally, increased amount of lipids biogenesis/accumulation was found in liver tissues that causes Fatty liver disease. Significantly, HFD, FF, and SD were identified as factors for the increased LD biogenesis and or lipid metabolic disorder. Nevertheless, yogurt supplementation can homeostasis those LD formation and metabolic syndrome as it increases the down regulation of lipid biogenesis as well as lipid metabolic rate. So, yogurt supplementation was considered as a novel agent for decreasing LD biogenesis as well as excessive accumulation of fat in hepatocytes which can be used as therapeutics for the treatment of NAFLD.
Collapse
Affiliation(s)
- Sohel Hasan
- Molecular and Biomedical Research Lab (MBRL), Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Md Aminul Islam Amin
- Molecular and Biomedical Research Lab (MBRL), Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Masum Mia
- Molecular and Biomedical Research Lab (MBRL), Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Sumaiya Khatun
- Molecular and Biomedical Research Lab (MBRL), Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Yesir Arafat
- Molecular and Biomedical Research Lab (MBRL), Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Md Royhan Gofur
- Department of Veterinary and Animal SciencesUniversity of RajshahiRajshahiBangladesh
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Md Eram Hosen
- Department of Microbiology, Shaheed Shamsuzzoha Institute of BiosciencesAffiliated With University of RajshahiRajshahiBangladesh
| | - Khalid S. Almaary
- Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | | | - Amirul Islam
- Molecular and Biomedical Research Lab (MBRL), Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Matiar Rahman
- Molecular and Biomedical Research Lab (MBRL), Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of SciencesIbn Zohr UniversityAgadirMorocco
| |
Collapse
|
2
|
Sanwlani R, Bramich K, Mathivanan S. Role of probiotic extracellular vesicles in inter-kingdom communication and current technical limitations in advancing their therapeutic utility. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:509-526. [PMID: 39697628 PMCID: PMC11648425 DOI: 10.20517/evcna.2024.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 12/20/2024]
Abstract
Diverse functions of probiotic extracellular vesicles (EVs) have been extensively studied over the past decade, proposing their role in inter-kingdom communication. Studies have explored their therapeutic role in pathophysiological processes ranging from cancer, immunoregulation, and ulcerative colitis to stress-induced depression. These studies have highlighted the significant and novel potential of probiotic EVs for therapeutic applications, offering immense promise in addressing several unmet clinical needs. Additionally, probiotic EVs are being explored as vehicles for targeted delivery approaches. However, the realization of clinical utility of probiotic EVs is hindered by several knowledge gaps, pitfalls, limitations, and challenges, which impede their wider acceptance by the scientific community. Among these, limited knowledge of EV biogenesis, markers and regulators in bacteria, variations in cargo due to culture conditions or EV isolation method, and lack of proper understanding of gut uptake and demonstration of in vivo effect are some important issues. This review aims to summarize the diverse roles of probiotic EVs in health and disease conditions. More importantly, it discusses the significant knowledge gaps and limitations that stand in the way of the therapeutic utility of probiotic EVs. Furthermore, the importance of addressing these gaps and limitations with technical advances such as rigorous omics has been discussed.
Collapse
Affiliation(s)
| | | | - Suresh Mathivanan
- Correspondence to: Prof. Suresh Mathivanan, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, Science Drive, Melbourne 3086, Victoria, Australia. E-mail:
| |
Collapse
|
3
|
He Z, Chen H, Chen Y, Sun X, Qiu F, Qiu Y, Wen C, Mao Y, Ye D. Selenium deficiency induces irritable bowel syndrome: Analysis of UK Biobank data and experimental studies in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116604. [PMID: 38896900 DOI: 10.1016/j.ecoenv.2024.116604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Irritable bowel syndrome (IBS) patients exhibit significantly lower levels of serum selenium (Se) compared to healthy controls. This study integrates a prospective cohort analysis and animal experiments to investigate Se deficiency as a potential risk factor for IBS. Using data from the UK Biobank, a longitudinal analysis was conducted to explore the associations between dietary Se intake and the risk of incident IBS. In animal study, C57BL/6 mice were fed diets with normal (0.2 ppm) or low (0.02 ppm) Se levels to assess the impacts of Se deficiency on IBS symptoms. Furthermore, we performed 16 S rRNA sequencing, untargeted colonic fecal metabolomics analysis, and colon transcriptome profiling to uncover the regulatory mechanisms underlying Se deficiency-induced IBS. The analysis of UK Biobank data revealed a significant correlation between low dietary Se levels and an increased incidence of IBS. In the experimental study, a low Se diet induced IBS symptoms, evidenced by elevated abdominal withdrawal reflex scores, colon inflammation, and severe pathological damage to the colon. Additionally, the low Se diet caused disturbances in gut microbiota, characterized by an increase in Faecalibaculum and Helicobacter, and a decrease in Bifidobacterium and Akkermansia. Combined colonic fecal metabolomics and colon transcriptome analysis indicated that Se deficiency might trigger IBS through disruptions in pathways related to "bile excretion", "steroid hormone biosynthesis", "arachidonic acid metabolism", and "drug metabolism-cytochrome P450". These findings underscore the significant adverse effects of Se deficiency on IBS and suggest that Se supplementation should be considered for IBS patients.
Collapse
Affiliation(s)
- Zhixing He
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huinan Chen
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Chen
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaohui Sun
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fuhai Qiu
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yiwu Qiu
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chengping Wen
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yingying Mao
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Ding Ye
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
4
|
Cai X, Yi P, Chen X, Wu J, Lan G, Li S, Luo S, Huang F, Huang J, Shen P. Intake of compound probiotics accelerates the construction of immune function and gut microbiome in Holstein calves. Microbiol Spectr 2024; 12:e0190923. [PMID: 38651859 PMCID: PMC11237676 DOI: 10.1128/spectrum.01909-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 02/22/2024] [Indexed: 04/25/2024] Open
Abstract
Acquired immunity is an important way to construct the intestinal immune barrier in mammals, which is almost dependent on suckling. To develop a new strategy for accelerating the construction of gut microbiome, newborn Holstein calves were continuously fed with 40 mL of compound probiotics (containing Lactobacillus plantarum T-14, Enterococcus faecium T-11, Saccharomyces cerevisiae T-209, and Bacillus licheniformis T-231) per day for 60 days. Through diarrhea rate monitoring, immune index testing, antioxidant capacity detection, and metagenome sequencing, the changes in diarrhea incidence, average daily gain, immune index, and gut microbiome of newborn calves within 60 days were investigated. Results indicated that feeding the compound probiotics reduced the average diarrhea rate of calves by 42.90%, increased the average daily gain by 43.40%, raised the antioxidant indexes of catalase, superoxide dismutase, total antioxidant capacity, and Glutathione peroxidase by 22.81%, 6.49%, 8.33%, and 13.67%, respectively, and increased the immune indexes of IgA, IgG, and IgM by 10.44%, 4.85%, and 6.12%, respectively. Moreover, metagenome sequencing data showed that feeding the compound probiotics increased the abundance of beneficial strains (e.g., Lactococcus lactis and Bacillus massionigeriensis) and decreased the abundance of some harmful strains (e.g., Escherichia sp. MOD1-EC5189 and Mycobacterium brisbane) in the gut microbiome of calves, thus contributing to accelerating the construction of healthy gut microbiome in newborn Holstein calves. IMPORTANCE The unstable gut microbiome and incomplete intestinal function of newborn calves are important factors for the high incidence of early diarrhea. This study presents an effective strategy to improve the overall immunity and gut microbiome in calves and provides new insights into the application of compound probiotics in mammals.
Collapse
Affiliation(s)
- Xinghua Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Ping Yi
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xuewen Chen
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi UBIT Biotechnology Co., Ltd., Nanning, China
| | - Junhua Wu
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Ganqiu Lan
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Shijian Li
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Shasha Luo
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Fengdie Huang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Jinrong Huang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Peihong Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Pimenta AI, Bernardino RM, Pereira IAC. Role of sulfidogenic members of the gut microbiota in human disease. Adv Microb Physiol 2024; 85:145-200. [PMID: 39059820 DOI: 10.1016/bs.ampbs.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The human gut flora comprises a dynamic network of bacterial species that coexist in a finely tuned equilibrium. The interaction with intestinal bacteria profoundly influences the host's development, metabolism, immunity, and overall health. Furthermore, dysbiosis, a disruption of the gut microbiota, can induce a variety of diseases, not exclusively associated with the intestinal tract. The increased consumption of animal protein, high-fat and high-sugar diets in Western countries has been implicated in the rise of chronic and inflammatory illnesses associated with dysbiosis. In particular, this diet leads to the overgrowth of sulfide-producing bacteria, known as sulfidogenic bacteria, which has been linked to inflammatory bowel diseases and colorectal cancer, among other disorders. Sulfidogenic bacteria include sulfate-reducing bacteria (Desulfovibrio spp.) and Bilophila wadsworthia among others, which convert organic and inorganic sulfur compounds to sulfide through the dissimilatory sulfite reduction pathway. At high concentrations, sulfide is cytotoxic and disrupts the integrity of the intestinal epithelium and mucus barrier, triggering inflammation. Besides producing sulfide, B. wadsworthia has revealed significant pathogenic potential, demonstrated in the ability to cause infection, adhere to intestinal cells, promote inflammation, and compromise the integrity of the colonic mucus layer. This review delves into the mechanisms by which taurine and sulfide-driven gut dysbiosis contribute to the pathogenesis of sulfidogenic bacteria, and discusses the role of these gut microbes, particularly B. wadsworthia, in human diseases.
Collapse
Affiliation(s)
- Andreia I Pimenta
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Raquel M Bernardino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
6
|
Mohammed C, Fuego JP, Garcia KV, Jamil H, Rajesh RY, Escobar AS, Hassan MJ, Rai M. A Mini Literature Review of Probiotics: Transforming Gastrointestinal Health Through Evidence-Based Insights. Cureus 2024; 16:e57055. [PMID: 38681263 PMCID: PMC11051678 DOI: 10.7759/cureus.57055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
As our understanding of the intricate interaction between gut bacteria and human health continues to expand, so too has interest in the ability of probiotics to manage gut microbiota and confer multiple health benefits to the host. The mini literature review focuses on the expanding potential of the use of probiotics in GI health, with a focus on probiotics' potential therapeutic advantages in a variety of gastrointestinal (GI) illnesses. Probiotics play a significant role in managing diarrhea and symptoms of irritable bowel syndrome with diarrhea (IBS-D) by modulating gut microbial communities. Specific probiotic strains have been found to reduce the abundance of harmful bacteria, regulate inflammatory markers like interleukin 6, and improve GI symptoms such as abdominal discomfort and stool consistency. Additionally, probiotic blends have shown potential for preventing GI infections and alleviating GI pain in IBS-D patients. Studies have demonstrated that certain multi-strain probiotics, including Bifidobacterium and Lactobacillus species, can significantly increase the frequency of bowel movements and reduce the proportion of individuals experiencing constipation. It has also been found that probiotic supplementation may reduce the incidence of postoperative complications and mortality, particularly in patients undergoing colorectal adenocarcinoma surgery. Additionally, probiotics have been associated with decreased levels of pro-inflammatory cytokines and improved clinical outcomes in patients with colorectal cancer. Furthermore, probiotics have been associated with enhanced digestive tolerance, reduced GI inflammation, and prolonged clinical remission in certain UC patients. Studies have also shown that probiotics, administered either directly to infants or pregnant women during the perinatal stage, can alleviate symptoms such as inconsolable crying and irritation associated with infant colic, improve bowel movement frequency in cases of functional constipation, and enhance overall conditions in premature infants, including reducing regurgitation and improving feeding tolerance. The review addresses both encouraging results and challenges with probiotic therapy, while also arguing for more studies to elucidate underlying mechanisms and enhance therapeutic techniques. As we traverse the complex field of probiotic therapy in the treatment of GI illnesses, researchers, physicians, and other healthcare professionals can benefit from the informative information provided by this study.
Collapse
Affiliation(s)
- Cara Mohammed
- Orthopedics, East Regional Health Authority, Port of Spain, TTO
| | - Jhon P Fuego
- Internal Medicine, West Visayas State University College of Medicine, Iloilo City, PHL
| | - Karina V Garcia
- Internal Medicine, National Autonomous University of Mexico, Mexico City, MEX
| | - Hira Jamil
- Medicine, University Medical and Dental College Faisalabad, Faisalabad, PAK
| | - Rahul Y Rajesh
- Internal Medicine, Tbilisi State Medical University, Tbilisi, GEO
| | | | | | - Manju Rai
- Immunology, Shri Venkateshwara University, Gajraula, IND
| |
Collapse
|
7
|
Matsuzaki J, Kurokawa S, Iwamoto C, Miyaho K, Takamiya A, Ishii C, Hirayama A, Sanada K, Fukuda S, Mimura M, Kishimoto T, Saito Y. Intestinal metabolites predict treatment resistance of patients with depression and anxiety. Gut Pathog 2024; 16:8. [PMID: 38336806 PMCID: PMC10854080 DOI: 10.1186/s13099-024-00601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The impact of the gut microbiota on neuropsychiatric disorders has gained much attention in recent years; however, comprehensive data on the relationship between the gut microbiome and its metabolites and resistance to treatment for depression and anxiety is lacking. Here, we investigated intestinal metabolites in patients with depression and anxiety disorders, and their possible roles in treatment resistance. RESULTS We analyzed fecal metabolites and microbiomes in 34 participants with depression and anxiety disorders. Fecal samples were obtained three times for each participant during the treatment. Propensity score matching led us to analyze data from nine treatment responders and nine non-responders, and the results were validated in the residual sample sets. Using elastic net regression analysis, we identified several metabolites, including N-ε-acetyllysine; baseline levels of the former were low in responders (AUC = 0.86; 95% confidence interval, 0.69-1). In addition, fecal levels of N-ε-acetyllysine were negatively associated with the abundance of Odoribacter. N-ε-acetyllysine levels increased as symptoms improved with treatment. CONCLUSION Fecal N-ε-acetyllysine levels before treatment may be a predictive biomarker of treatment-refractory depression and anxiety. Odoribacter may play a role in the homeostasis of intestinal L-lysine levels. More attention should be paid to the importance of L-lysine metabolism in those with depression and anxiety.
Collapse
Affiliation(s)
- Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Shunya Kurokawa
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Azabudai Hills Mori JP Tower 7F, 1-3-1 Azabudai, Minato-ku, Tokyo, 106-0041, Japan
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Chiaki Iwamoto
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Katsuma Miyaho
- Department of Psychiatry, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Akihiro Takamiya
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Azabudai Hills Mori JP Tower 7F, 1-3-1 Azabudai, Minato-ku, Tokyo, 106-0041, Japan
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Kenji Sanada
- Department of Psychiatry, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Taishiro Kishimoto
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Azabudai Hills Mori JP Tower 7F, 1-3-1 Azabudai, Minato-ku, Tokyo, 106-0041, Japan.
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Yoshimasa Saito
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| |
Collapse
|
8
|
Niu B, Pan T, Xiao Y, Wang H, Zhu J, Tian F, Lu W, Chen W. The therapeutic potential of dietary intervention: based on the mechanism of a tryptophan derivative-indole propionic acid on metabolic disorders. Crit Rev Food Sci Nutr 2024; 65:1729-1748. [PMID: 38189263 DOI: 10.1080/10408398.2023.2299744] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tryptophan (TRP) contributes to individual immune homeostasis and good condition via three complex metabolism pathways (5-hydroxytryptamine (5-HT), kynurenine (KP), and gut microbiota pathway). Indole propionic acid (IPA), one of the TRP derivatives of the microbiota pathway, has raised more attention because of its impact on metabolic disorders. Here, we retrospect increasing evidence that TRP metabolites/IPA derived from its proteolysis impact host health and disease. IPA can activate the immune system through aryl hydrocarbon receptor (AHR) and/or Pregnane X receptor (PXR) as a vital mediator among diet-caused host and microbe cross-talk. Different levels of IPA in systemic circulation can predict the risk of NAFLD, T2DM, and CVD. IPA is suggested to alleviate cognitive impairment from oxidative damage, reduce gut inflammation, inhibit lipid accumulation and attenuate the symptoms of NAFLD, putatively enhance the intestinal epithelial barrier, and maintain intestinal homeostasis. Now, we provide a general description of the relationships between IPA and various physiological and pathological processes, which support an opportunity for diet intervention for metabolic diseases.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tong Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Rossoni C, Bragança R, Santos Z, Viveiros O, Ribeiro R. OAGB Bowel Function in Patients With up to 5 Years Follow-Up: Updated Outcomes. Obes Surg 2024; 34:141-149. [PMID: 37946012 PMCID: PMC10781852 DOI: 10.1007/s11695-023-06917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE One-anastomosis gastric bypass (OAGB) is considered an effective technique in weight reduction and remission of comorbidities. However, in common with many bariatric and metabolic/bariatric procedures, gastrointestinal side effects are frequently reported, but clinical experience varies. The objective of this study was to analyze the bowel function of patients who undergo OAGB looking at 5-year postoperative outcomes. METHOD This study is cross-sectional, descriptive and analytical, developed with individuals undergoing OAGB (n = 208) in yhe period between 2015 and 2020. The time periods evaluated were 1 to 6 months (T1), 6 to 12 months (T2), and 1 to 5 years (T3). Data analysis was performed using SPSS v.28.0, considering a significance level p ≤ 0.05. RESULTS 114 participants (54.8%), 79.8% women, mean age 47.0 ± 12.6 years, and BMI 40.1 ± 5.6 kg/m2, 51.9% dyslipidemia, 43.6% arterial hypertension, and 19.1% diabetes mellitus. The T1 group had more severe symptoms/nausea than the T2 group. The T2 group had a significantly lower defecation frequency than the T1 and T3 groups. As for the occurrence of diarrhea, associations were not found in the considered groups. The T3 group had a greater severity of constipation associated with greater difficulty in consuming red meat, white meat, rice, vegetables, and salads. CONCLUSIONS Gastrointestinal symptoms are prevalent in the first postoperative months. However, diarrhea was not common. The patient selection policy and surgical technique were decisive in this result. Constipation was prevalent in patients between 1 and 5 postoperative years. It was also prevalent in those who had food intolerance, which from a nutritional point of view is an adverse factor for optimal bowel function.
Collapse
Affiliation(s)
- Carina Rossoni
- Multidisciplinary Center for Obesity Treatment at Hospital Lusíadas, 2724-022, Amadora, Portugal.
- Institute of Environmental Health (ISAMB), Faculdade de Medicina, Universidade de Lisboa, 1649-026, Lisbon, Portugal.
- School of Sciences and Health Technologies, Nutrition Sciences, Universidade Lusófona de Humanidades e Tecnologias, 1749-024, Lisbon, Portugal.
| | - Rossela Bragança
- Multidisciplinary Center for Obesity Treatment at Hospital Lusíadas, 2724-022, Amadora, Portugal
- Nutrition Service of the Centro Hospitalar Univesitário Lisboa Central, 1150-199, Lisbon, Portugal
| | - Zélia Santos
- Multidisciplinary Center for Obesity Treatment at Hospital Lusíadas, 2724-022, Amadora, Portugal
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal
| | - Octávio Viveiros
- Multidisciplinary Center for Obesity Treatment at Hospital Lusíadas, 2724-022, Amadora, Portugal
- General Surgery Department at Hospital Lusíadas Amadora, 2724-022, Amadora, Portugal
- Multidisciplinary Center for Obesity Treatment at Hospital Lusíadas Lisboa, 1500-458, Lisbon, Portugal
| | - Rui Ribeiro
- Multidisciplinary Center for Obesity Treatment at Hospital Lusíadas, 2724-022, Amadora, Portugal
- General Surgery Department at Hospital Lusíadas Amadora, 2724-022, Amadora, Portugal
- Multidisciplinary Center for Obesity Treatment at Hospital Lusíadas Lisboa, 1500-458, Lisbon, Portugal
| |
Collapse
|
10
|
Napolitano M, Fasulo E, Ungaro F, Massimino L, Sinagra E, Danese S, Mandarino FV. Gut Dysbiosis in Irritable Bowel Syndrome: A Narrative Review on Correlation with Disease Subtypes and Novel Therapeutic Implications. Microorganisms 2023; 11:2369. [PMID: 37894027 PMCID: PMC10609453 DOI: 10.3390/microorganisms11102369] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder characterized by chronic abdominal pain and altered bowel habits. It can be subclassified in different subtypes according to the main clinical manifestation: constipation, diarrhea, mixed, and unclassified. Over the past decade, the role of gut microbiota in IBS has garnered significant attention in the scientific community. Emerging research spotlights the intricate involvement of microbiota dysbiosis in IBS pathogenesis. Studies have demonstrated reduced microbial diversity and stability and specific microbial alterations for each disease subgroup. Microbiota-targeted treatments, such as antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and even diet, offer exciting prospects for managing IBS. However, definitive conclusions are hindered by the heterogeneity of these studies. Further research should focus on elucidating the mechanisms, developing microbiome-based diagnostics, and enabling personalized therapies tailored to an individual's microbiome profile. This review takes a deep dive into the microscopic world inhabiting our guts, and its implications for IBS. Our aim is to elucidate the complex interplay between gut microbiota and each IBS subtype, exploring novel microbiota-targeted treatments and providing a comprehensive overview of the current state of knowledge.
Collapse
Affiliation(s)
- Maria Napolitano
- Department of Gastroenterology and Gastrointestinal Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.F.); (F.U.); (L.M.); (S.D.); (F.V.M.)
| | - Ernesto Fasulo
- Department of Gastroenterology and Gastrointestinal Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.F.); (F.U.); (L.M.); (S.D.); (F.V.M.)
| | - Federica Ungaro
- Department of Gastroenterology and Gastrointestinal Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.F.); (F.U.); (L.M.); (S.D.); (F.V.M.)
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Luca Massimino
- Department of Gastroenterology and Gastrointestinal Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.F.); (F.U.); (L.M.); (S.D.); (F.V.M.)
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Emanuele Sinagra
- Gastroenterology & Endoscopy Unit, Fondazione Istituto G. Giglio, Contrada Pietra Pollastra Pisciotto, 90015 Cefalù, Italy;
| | - Silvio Danese
- Department of Gastroenterology and Gastrointestinal Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.F.); (F.U.); (L.M.); (S.D.); (F.V.M.)
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Francesco Vito Mandarino
- Department of Gastroenterology and Gastrointestinal Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (E.F.); (F.U.); (L.M.); (S.D.); (F.V.M.)
| |
Collapse
|
11
|
Bendriss G, MacDonald R, McVeigh C. Microbial Reprogramming in Obsessive-Compulsive Disorders: A Review of Gut-Brain Communication and Emerging Evidence. Int J Mol Sci 2023; 24:11978. [PMID: 37569349 PMCID: PMC10419219 DOI: 10.3390/ijms241511978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental health disorder characterized by intrusive thoughts (obsessions) and repetitive behaviors (compulsions). Dysbiosis, an imbalance in the gut microbial composition, has been associated with various health conditions, including mental health disorders, autism, and inflammatory diseases. While the exact mechanisms underlying OCD remain unclear, this review presents a growing body of evidence suggesting a potential link between dysbiosis and the multifaceted etiology of OCD, interacting with genetic, neurobiological, immunological, and environmental factors. This review highlights the emerging evidence implicating the gut microbiota in the pathophysiology of OCD and its potential as a target for novel therapeutic approaches. We propose a model that positions dysbiosis as the central unifying element in the neurochemical, immunological, genetic, and environmental factors leading to OCD. The potential and challenges of microbial reprogramming strategies, such as probiotics and fecal transplants in OCD therapeutics, are discussed. This review raises awareness of the importance of adopting a holistic approach that considers the interplay between the gut and the brain to develop interventions that account for the multifaceted nature of OCD and contribute to the advancement of more personalized approaches.
Collapse
|
12
|
Zhao Y, Zou DW. Gut microbiota and irritable bowel syndrome. J Dig Dis 2023; 24:312-320. [PMID: 37458142 DOI: 10.1111/1751-2980.13204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that poses a significant health concern. Although its etiology remains unknown, there is growing evidence that gut dysbiosis is involved in the development and exacerbation of IBS. Previous studies have reported altered microbial diversity, abundance, and composition in IBS patients when compared to controls. However, whether dysbiosis or aberrant changes in the intestinal microbiota can be used as a hallmark of IBS remains inconclusive. We reviewed the literatures on changes in and roles of intestinal microbiota in relation to IBS and discussed various gut microbiota manipulation strategies. Gut microbiota may affect IBS development by regulating the mucosal immune system, brain-gut-microbiome interaction, and intestinal barrier function. The advent of high-throughput multi-omics provides important insights into the pathogenesis of IBS and promotes the development of individualized treatment for IBS. Despite advances in currently available microbiota-directed therapies, large-scale, well-organized, and long-term randomized controlled trials are highly warranted to assess their clinical effects. Overall, gut microbiota alterations play a critical role in the pathophysiology of IBS, and modulation of microbiota has a significant therapeutic potential that requires to be further verified.
Collapse
Affiliation(s)
- Ye Zhao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duo Wu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Hong G, Li Y, Yang M, Li G, Jin Y, Xiong H, Qian W, Hou X. Baseline gut microbial profiles are associated with the efficacy of Bacillus subtilis and Enterococcus faecium in IBS-D. Scand J Gastroenterol 2023; 58:339-348. [PMID: 36281578 DOI: 10.1080/00365521.2022.2136013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Little is known about association between the efficacy of probiotics and baseline gut microbiota in irritable bowel syndrome (IBS). We aimed to explore gut microbiota in diarrhea-predominant IBS (IBS-D) and whether baseline gut microbiota was related to the efficacy of Bacillus subtilis and Enterococcus faecium (BE). METHODS This study recruited 19 healthy controls (HC) and 50 IBS-D patients, among whom 19 patients were administrated 500 mg BE orally three times daily for 2 weeks. Clinical data and fecal samples were collected from patients before and after treatment. 16S rRNA sequencing was performed to obtain fecal bacterial data. RESULTS There was no significant difference of alpha diversity, beta diversity, profiles of microbial phyla and genera between HC and IBS. BE improved IBS-SSS (IBS severity scoring system) and stool consistency, and altered Enterococcus, Blautia, Lachnoclostridium and Fusobacterium without significant impact on microbial structure in IBS-D. Notably, baseline fecal bacterial composition differed between non-responders and responders to BE concerning abdominal pain and bloating, with Atopobium, Pyramidobacter, Ruminococcus gnavus and Peptostreptococcus enriched in responders in terms of abdominal pain. There was reduced abundance of Prevotella, Ruminococcaceae UCG, Eubacterium eligens, Faecalibacterium and Eubacterium coprostanoligenes in responders compared with non-responders. Furthermore, BE increased beneficial bacteria including Faecalibacterium, Blautia and Butyricicoccus, decreased Lachnoclostridium and Bilophila, and influenced some microbial metabolic pathways in responders, such as mineral absorption, metabolism of arachidonic acid, d-arginine, D-ornithine, phenylalanine and vitamin B6. CONCLUSION Baseline fecal microbiome is associated with the efficacy of BE in attenuating abdominal pain and bloating in IBS-D.
Collapse
Affiliation(s)
- Gaichao Hong
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Yang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gangping Li
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Jin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanhua Xiong
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Qian
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Marchix J, Quénéhervé L, Bordron P, Aubert P, Durand T, Oullier T, Blondeau C, Ait Abdellah S, Bruley des Varannes S, Chaffron S, Coron E, Neunlist M. Could the Microbiota Be a Predictive Factor for the Clinical Response to Probiotic Supplementation in IBS-D? A Cohort Study. Microorganisms 2023; 11:277. [PMID: 36838241 PMCID: PMC9964083 DOI: 10.3390/microorganisms11020277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Increasing evidence suggests the beneficial effects of probiotics in irritable bowel syndrome (IBS), but little is known about how they can impact the gut microbiota. Our objective was to evaluate the effects of a multistrain probiotic on IBS symptoms, gut permeability and gut microbiota in patients with diarrhoea-predominant IBS (IBS-D). METHODS Adults with IBS-D were enrolled in an open-label trial to receive a multistrain probiotic for 4 weeks. Abdominal pain, stool frequency, quality of life, gut permeability, and the luminal and adherent microbiota from colonic biopsies were evaluated before and after supplementation. RESULTS Probiotics significantly improved symptoms and quality of life, despite having no impact on permeability in the global population. In the population stratified by the response, the diarrhoea responders displayed reduced colonic permeability after supplementation. The luminal and adherent microbiota were specifically altered depending on the patients' clinical responses regarding pain and diarrhoea. Interestingly, we identified a microbial signature in IBS-D patients that could predict a response or lack of response to supplementation. CONCLUSIONS The multistrain probiotic improved the symptoms of IBS-D patients and induced distinct effects on the gut microbiota according to the patient's clinical response and initial microbiota composition. Our study further supports the need to develop individualised probiotic-based approaches regarding IBS.
Collapse
Affiliation(s)
- Justine Marchix
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Diseases, IMAD, F-44000 Nantes, France
| | - Lucille Quénéhervé
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Diseases, IMAD, F-44000 Nantes, France
- Gastroenterology Department, University Hospital of Brest, 29200 Brest, France
| | - Philippe Bordron
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Diseases, IMAD, F-44000 Nantes, France
| | - Philippe Aubert
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Diseases, IMAD, F-44000 Nantes, France
| | - Tony Durand
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Diseases, IMAD, F-44000 Nantes, France
| | - Thibauld Oullier
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Diseases, IMAD, F-44000 Nantes, France
| | - Claude Blondeau
- PiLeJe Laboratoire, 31-35 rue de la Fédération, 75015 Paris, France
| | | | - Stanislas Bruley des Varannes
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Diseases, IMAD, F-44000 Nantes, France
- Nantes Université, CHU Nantes, INSERM, Département de Gastroentérologie, CIC 1413, IMAD, F-44000 Nantes, France
| | - Samuel Chaffron
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France
| | - Emmanuel Coron
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Diseases, IMAD, F-44000 Nantes, France
- Nantes Université, CHU Nantes, INSERM, Département de Gastroentérologie, CIC 1413, IMAD, F-44000 Nantes, France
- Gastroenterology and Hepatology Department, University Hospital of Geneva (HUG), 1211 Geneva, Switzerland
| | - Michel Neunlist
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Diseases, IMAD, F-44000 Nantes, France
| |
Collapse
|
15
|
Nakamura Y, Suzuki S, Murakami S, Nishimoto Y, Higashi K, Watarai N, Umetsu J, Ishii C, Ito Y, Mori Y, Kohno M, Yamada T, Fukuda S. Integrated gut microbiome and metabolome analyses identified fecal biomarkers for bowel movement regulation by Bifidobacterium longum BB536 supplementation: A RCT. Comput Struct Biotechnol J 2022; 20:5847-5858. [PMID: 36382178 PMCID: PMC9636538 DOI: 10.1016/j.csbj.2022.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/03/2022] Open
Abstract
Background Bifidobacterium longum BB536 supplementation can be used to regulate bowel movements in various people, including healthy subjects and patients with irritable bowel syndrome (IBS); however, individuals vary in their responses to B. longum BB536 treatment. One putative factor is the gut microbiota; recent studies have reported that the gut microbiota mediates the effects of diet or drugs on the host. Here, we investigated intestinal features, such as the microbiome and metabolome, related to B. longum BB536 effectiveness in increasing bowel movement frequency. Results A randomized, double-blind controlled crossover trial was conducted with 24 adults who mainly tended to be constipated. The subjects received a two-week dietary intervention consisting of B. longum BB536 in acid-resistant seamless capsules or similarly encapsulated starch powder as the placebo control. Bowel movement frequency was recorded daily, and fecal samples were collected at several time points, and analyzed by metabologenomic approach that consists of an integrated analysis of metabolome data obtained using mass spectrometry and microbiome data obtained using high-throughput sequencing. There were differences among subjects in B. longum intake-induced bowel movement frequency. The responders were predicted by machine learning based on the microbiome and metabolome features of the fecal samples collected before B. longum intake. The abundances of eight bacterial genera were significantly different between responders and nonresponders. Conclusions Intestinal microbiome and metabolome profiles might be utilized as potential markers of improved bowel movement after B. longum BB536 supplementation. These findings have implications for the development of personalized probiotic treatments.
Collapse
Key Words
- 16S rRNA gene sequence
- AUROC, area under the receiver operating characteristic curve
- Bifidobacteria
- CE-TOFMS, capillary electrophoresis time-of-flight mass spectrometry
- CSA, D-camphor-10-sulfonic acid
- ESVs, exact sequence variants
- FDR, false discovery rate
- Gut microbiota
- IBD, inflammatory bowel disease
- IBS, irritable bowel syndrome
- ITT, intention-to-treat
- MCMC, Markov Chain Monte Carlo
- MDS, multidimensional scaling
- Machine learning
- Metabologenomics
- NRs, nonresponders
- PP, per-protocol population
- PSRF, potential scale reduction factor
- Probiotics
- SCFAs, short-chain fatty acids
- SRs, strong responders
- WAIC, Widely Applicable Information Criterion
- WRs, weak responders
Collapse
Affiliation(s)
- Yuya Nakamura
- Metagen Inc., 246-2 Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shinya Suzuki
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Education Academy of Computational Life Science (ACLS), 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shinnosuke Murakami
- Metagen Inc., 246-2 Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Institute for Advanced Biosciences, Keio University, 246-2 Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | | | - Koichi Higashi
- National Institute of Genetics, Genome Evolution Laboratory, Yata 1111, Mishima 411-8540, Japan
| | - Naoki Watarai
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Junpei Umetsu
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, 246-2 Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Yutaro Ito
- Institute for Advanced Biosciences, Keio University, 246-2 Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Yuka Mori
- Metagen Inc., 246-2 Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Mamiko Kohno
- MORISHITA JINTAN CO., LTD, Health Care Product Department, Research & Development Division, 1-2-40 Tamatsukuri, Chuo-ku, Osaka 540-8566, Japan
| | - Takuji Yamada
- Metagen Inc., 246-2 Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shinji Fukuda
- Metagen Inc., 246-2 Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Institute for Advanced Biosciences, Keio University, 246-2 Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Hongo, Tokyo 113-8421, Japan
| |
Collapse
|
16
|
Abstract
BACKGROUND To collect the published trials of probiotics in the treatment of diarrhea and to strictly evaluate and systematically analyze the efficacy of probiotics use for the prevention and treatment of patients with diarrhea. METHODS We searched domestic and foreign literature published between January 2016 and July 2022 to find randomized control trials that used probiotics to treat diarrhea. Only studies published in English were considered. The quality of the included literatures was assessed by using the methods provided in the Cochrane Handbook. Valid data were extracted and analyzed by meta- analysis using the Software RevMan5.2. RESULTS Total 16 trials and 1585 patients were included. The results of the meta- analysis showed that in comparison with the simple Western medicine treatment group or placebo, the added use of probiotics could improve stool frequency, stool morphology, and related irritable bowel syndrome symptoms. CONCLUSION The added use of probiotics can further improve clinical outcomes in the patients with diarrhea; however, the implementation of larger and higher quality clinical trials is necessary to verify this conclusion.
Collapse
Affiliation(s)
- Fujie Wang
- Nutritional Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Zhao
- Nutritional Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqian Dai
- Nutritional Department, Xuzhou Cancer Hospital, Xuzhou China
| | - Xianghua Ma
- Nutritional Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xianghua Ma, Nutritional Department, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, Jiangsu, China (e-mail: )
| |
Collapse
|
17
|
Effect of Probiotics on Host-Microbiota in Bacterial Infections. Pathogens 2022; 11:pathogens11090986. [PMID: 36145418 PMCID: PMC9500725 DOI: 10.3390/pathogens11090986] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Diseases caused by bacteria cause millions of deaths every year. In addition, the problem of resistance to antibiotics is so serious that it threatens the achievements of modern medicine. This is a very important global problem as some bacteria can also develop persistence. Indeed, the persistence of pathogenic bacteria has evolved as a potent survival strategy to overcome host organisms’ defense mechanisms. Additionally, chronic or persistent infections may be caused by persisters which could facilitate antibiotic resistance. Probiotics are considered good bacteria. It has been described that the modulation of gut microbiota by probiotics could have a great potential to counteract the deleterious impact and/or regulate gut microbiota after bacterial infection. Probiotics might provide health benefits through the inhibition of pathogen growth or the replacement of pathogenic bacteria. Bearing in mind that current strategies to avoid bacterial persistence and prevent antibiotic resistance are not effective, other strategies need to be assessed. We have carried out a comprehensive review, which included the reported literature between 2016 and 2021, highlighting the clinical trials that reported the probiotics’ potential to regulate gut microbiota after bacterial infection and focusing in particular on the context of antibiotic resistance and persister cells.
Collapse
|
18
|
Iribarren C, Maasfeh L, Öhman L, Simrén M. Modulating the gut microenvironment as a treatment strategy for irritable bowel syndrome: a narrative review. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 3:e7. [PMID: 39295774 PMCID: PMC11406401 DOI: 10.1017/gmb.2022.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 09/21/2024]
Abstract
Irritable bowel syndrome (IBS) is a disorder of gut-brain interaction with a complex pathophysiology. Growing evidence suggests that alterations of the gut microenvironment, including microbiota composition and function, may be involved in symptom generation. Therefore, attempts to modulate the gut microenvironment have provided promising results as an indirect approach for IBS management. Antibiotics, probiotics, prebiotics, food and faecal microbiota transplantation are the main strategies for alleviating IBS symptom severity by modulating gut microbiota composition and function (eg. metabolism), gut barrier integrity and immune activity, although with varying efficacy. In this narrative review, we aim to provide an overview of the current approaches targeting the gut microenvironment in order to indirectly manage IBS symptoms.
Collapse
Affiliation(s)
- Cristina Iribarren
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lujain Maasfeh
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Simrén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Functional GI and Motility Disorders, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Wu Y, Nie C, Xu C, Luo R, Chen H, Niu J, Bai X, Zhang W. Effects of dietary supplementation with multispecies probiotics on intestinal epithelial development and growth performance of neonatal calves challenged with Escherichia coli K99. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4373-4383. [PMID: 35066866 PMCID: PMC9303730 DOI: 10.1002/jsfa.11791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/14/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Probiotics exhibit antibiotic properties and are capable of treating certain bacterial infections, including diarrhea. Therefore, the aim of this study is to investigate the effects of dietary supplementation with multispecies probiotic (MSP) on diarrhea, average daily gain (ADG) and intestinal development of neonatal calves challenged with Escherichia coli K99. RESULTS Thirty-six neonatal Holstein calves were randomly assigned to three treatment groups. After E. coli K99 challenge, calves in the control (C) and MSP treatment groups had significantly higher ADG and feed efficiency, and significantly lower fecal scores than those of calves in the diarrhea (D) group. The mean time of diarrhea resolution was 4.5 and 3.1 days for calves in the D and MSP treatment groups, respectively. Furthermore, the structures of the various segments (duodenum, jejunum and ileum) of the small intestine of the calves, activities of several small intestinal enzymes, and expression of several energy metabolism-related genes in the small intestine segments were significantly affected by MSP treatments. CONCLUSION Dietary supplementation of MSP had a positive effect in treating calf diarrhea; it improved ADG and feed efficiency and promoted development of the small intestine. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan‐yan Wu
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Cun‐xi Nie
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Chunsheng Xu
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Rui‐qing Luo
- Xinjiang Tianshan Junken Animal Husbandry Co. LtdShiheziChina
| | - Hong‐li Chen
- Xinjiang Tianshan Junken Animal Husbandry Co. LtdShiheziChina
| | - Jun‐li Niu
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Xue Bai
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Wenju Zhang
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| |
Collapse
|
20
|
Ceccherini C, Daniotti S, Bearzi C, Re I. Evaluating the Efficacy of Probiotics in IBS Treatment Using a Systematic Review of Clinical Trials and Multi-Criteria Decision Analysis. Nutrients 2022; 14:2689. [PMID: 35807868 PMCID: PMC9268703 DOI: 10.3390/nu14132689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2023] Open
Abstract
The evaluation of probiotics' efficacy in treating irritable bowel syndrome is supported by an increasing number of clinical studies based on a heterogeneous approach of products tested and the patient cohort involved. Although the role of gut microbiota dysbiosis in IBS pathogenesis and the beneficial contribution of probiotics were demonstrated, a tool to discriminate symptom-specific strains and a personalised medicine protocol are still lacking. Thus, this study employs, for the first time, a method that combines the preferred reporting items for systematic reviews and meta-analysis and multi-criteria decision analysis methods in a structured decision-making tool to analyze the efficacy of probiotic mix, in order to identify the most effective formulation and to discriminate which probiotics are more efficient in treating different symptoms. The PRISMA methodology resulted in a qualitative and quantitative analysis of 104 clinical studies from 2011 to 2021, revealing a prevalence of Lactobacillus rhamnosus, Lactobacillus acidophilus, and Bifidobacterium animalis subsp. lactis. MCDA analysis showed that formulations based on Lactobacillus rhamnosus and Lactobacillus acidophilus have the highest efficacy, especially on quality of life, bloating, and abdominal pain. This methodological approach could become more specific by modelling clinical studies according to the age and gender of patients and probiotic strain.
Collapse
Affiliation(s)
- Cecilia Ceccherini
- Consorzio Italbiotec, Piazza Della Trivulziana 4/A, 20126 Milano, Italy; (S.D.); (I.R.)
| | - Sara Daniotti
- Consorzio Italbiotec, Piazza Della Trivulziana 4/A, 20126 Milano, Italy; (S.D.); (I.R.)
| | - Claudia Bearzi
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20054 Segrate, Italy;
| | - Ilaria Re
- Consorzio Italbiotec, Piazza Della Trivulziana 4/A, 20126 Milano, Italy; (S.D.); (I.R.)
| |
Collapse
|
21
|
Zhang B, Jiang M, Zhao J, Song Y, Du W, Shi J. The Mechanism Underlying the Influence of Indole-3-Propionic Acid: A Relevance to Metabolic Disorders. Front Endocrinol (Lausanne) 2022; 13:841703. [PMID: 35370963 PMCID: PMC8972051 DOI: 10.3389/fendo.2022.841703] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
The increasing prevalence of metabolic syndrome has become a serious public health problem. Certain bacteria-derived metabolites play a key role in maintaining human health by regulating the host metabolism. Recent evidence shows that indole-3-propionic acid content can be used to predict the occurrence and development of metabolic diseases. Supplementing indole-3-propionic acid can effectively improve metabolic disorders and is considered a promising metabolite. Therefore, this article systematically reviews the latest research on indole-3-propionic acid and elaborates its source of metabolism and its association with metabolic diseases. Indole-3-propionic acid can improve blood glucose and increase insulin sensitivity, inhibit liver lipid synthesis and inflammatory factors, correct intestinal microbial disorders, maintain the intestinal barrier, and suppress the intestinal immune response. The study of the mechanism of the metabolic benefits of indole-3-propionic acid is expected to be a potential compound for treating metabolic syndrome.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- College of Life Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Minjie Jiang
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Song
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Weidong Du
- Zhejiang Traditional Chinese Medicine Hospital, Hangzhou, China
| | - Junping Shi
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Department of Infectious & Hepatology Diseases, Metabolic Disease Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
22
|
Probiotics, Prebiotics, and Synbiotics in the Irritable Bowel Syndrome Treatment: A Review. Biomolecules 2021; 11:biom11081154. [PMID: 34439821 PMCID: PMC8412098 DOI: 10.3390/biom11081154] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome is not a life-threatening disease, yet it significantly affects the quality of life and contributes to economic loss. It is estimated that even up to 45% of the world's population can suffer from the disease. The first attempts to diagnose irritable bowel syndrome were made at the end of the 19th century; however, establishing appropriate diagnostic criteria and treatment methods is still ongoing. To date, little is known about the etiology of irritable bowel syndrome; however, growing attention is drawn to the intestinal microbiota as a factor in the disease development. For this reason, researchers have conducted many studies on therapies that modulate the microbiota, among which probiotics, prebiotics, and synbiotics are widely studied. To date, most studies have examined probiotics; however, there are also several studies demonstrating the efficacy of prebiotics and synbiotics. The aim of this review was to summarize findings on the usefulness of probiotics, prebiotics, and synbiotics in the treatment of irritable bowel syndrome.
Collapse
|
23
|
Wu Y, Wang L, Luo R, Chen H, Nie C, Niu J, Chen C, Xu Y, Li X, Zhang W. Effect of a Multispecies Probiotic Mixture on the Growth and Incidence of Diarrhea, Immune Function, and Fecal Microbiota of Pre-weaning Dairy Calves. Front Microbiol 2021; 12:681014. [PMID: 34335503 PMCID: PMC8318002 DOI: 10.3389/fmicb.2021.681014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] Open
Abstract
The effects of different doses of a multispecies probiotic (MSP) mixture on growth performance, the incidence of diarrhea rate and immune function, and fecal microbial diversity and structure were evaluated in pre-weaning Holstein dairy calves at WK2, WK4, WK6, and WK8. Forty Chinese Holstein female newborn calves were randomly assigned to four treatments with 10 calves in each group, C (control group), T1 (0.5 g MSP/calf/day, T2 (1 g MSP/calf/day), and T3 (2 g MSP/calf/day) groups. The experimental period was 56 days. Feed intake and health scoring were recorded every day until the end of the experiment. Fecal contents and blood samples were sampled at WK2, WK4, WK6, and WK8. Growth performance, incidence of diarrhea, and total serum concentrations (IgA, IgG, and IgM) were analyzed. Bacterial 16S rRNA and fungal ITS genes were high-throughput sequenced for fecal microbiota. The relationships among the populations of the principal fecal microbiota at WK2 and the growth performance or serum immunoglobulin concentrations were analyzed using Pearson's rank correlation coefficients. The MSP supplementation reduced the incidence of diarrhea in the first 4 weeks of life, and serum IgA, IgG, and IgM concentrations increased between WK2 and WK8 in the T3 group. There was an increase in growth performance and reduction in the incidence of diarrhea until WK4 after birth in T3 group, compared with the control, T1, and T2 groups. The results of fecal microbiota analysis showed that Firmicutes and Bacteroides were the predominant phyla, with Blautia, Ruminococcaceae_UCG-005, norank_f__Muribaculaceae, Bacteroides, Subdoligranulum, and Bifidobacterium being the dominant genera in calf feces. Aspergillus, Thermomyces, and Saccharomyces were the predominant fungal phyla. Compared with the control, in T1 and T2 groups, the MSP supplementation reduced the relative abundance of Bacteroidetes and increased the relative abundance of Bifidobacterium, Lactobacillus, Collinsella, and Saccharomyces at WK2 in group T3. Thus, the fecal microbial composition and diversity was significantly affected by the MSP mixture during the first 2 weeks of the calves' life. MSP mixtures reduced the incidence of diarrhea in pre-weaning calves (during the first 4 weeks of life). There was a significant improvement in growth performance, reduction in calf diarrhea, balance in the fecal microbiota, and an overall improvement in serum immunity, compared with the control group. We, therefore, recommend adding 2 g/day of multispecies probiotic mixture supplementation in diets of dairy calves during their first 4 weeks of life before weaning.
Collapse
Affiliation(s)
- Yanyan Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Ruiqing Luo
- Xinjiang Tianshan Junken Animal Husbandry Co., Ltd., Shihezi, China
| | - Hongli Chen
- Xinjiang Tianshan Junken Animal Husbandry Co., Ltd., Shihezi, China
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Junli Niu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wenjun Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
24
|
Wang T, Li L, Li S, Zhao H, Qu J, Xia Y, Li Y. Clostridium butyricum relieve the visceral hypersensitivity in mice induced by Citrobacter rodentium infection with chronic stress. PeerJ 2021; 9:e11585. [PMID: 34221718 PMCID: PMC8223894 DOI: 10.7717/peerj.11585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Visceral hypersensitivity is a common symptom in patients with post-infectious irritable bowel syndrome (PI-IBS), and change of the microbiota is a vital etiological factor of it. Clostridium butyricum (C. butyricum) is one of the probiotics which is reported as the active components in the treatment of IBS, especially IBS with diarrhea. Citrobacter rodentium (C. rodentium) is an enteropathogenic bacteria which can produce self-limiting colitis in mice, which have been used to produce a PI-IBS-like mice model. Whether C. butyricum could influence the visceral hypersensitivity and gut microbiota of PI-IBS is still unknown. Our study aimed to examine whether the intervention of C. butyricum or antibiotics could affect the etiology of visceral hypersensitivity. Methods C57BL/6 male mice were gavaged with the C. rodentium to induce a infective colitis. The C. butyricum and antibiotic compound were used to intervene the infected mice 3 days later. A 9-day chronic water avoidance stress (WAS) process was implemented to help induce the visceral hypersensitivity. The abdominal withdrawal reflex (AWR) score was assayed to indicate the visceral hypersensitivity of different groups. On the 7th, 14th, and 30th days after infection, mice feces were collected and high-throughput sequencing was carried out to analyze their gut microbiota. Results Combined, the C. rodentium infection plus chronic stress (WAS) could induce the visceral hypersensitivity in mice. Treatment of the C. butyricum after C. rodentium infection could relieve visceral hypersensitivity of mice, while no difference was observed in the antibiotic treatment group. The gut microbiota diversity of C. rodentium infected mice was similar to the uninfected mice, while there were different microbial communities structure between them. The Shannon and Chao indexes significantly decreased in the antibiotic treatment group compared to other groups at 7th, 14th, and 30th days post-infection, while treatment of C. butyricum could maintain the indexes within normal range. At day 14 after infection, the structure of microbiota headed towards normality after the C. butyricum treatment. After the WAS, the Shannon and Chao indexes of the control group decreased and the structure of microbiota changed. The C. butyricum treatment could prevent these changes of the gut microbiota induced by WAS. Conclusion C. butyricum could relieve the visceral hypersensitivity in mice induced by C. rodentium infection plus chronic stress. It could also remodel the microbiota change caused by the infection and chronic stress. It may be a more effective treatment strategy for PI-IBS than antibiotics.
Collapse
Affiliation(s)
- Tengfei Wang
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Lixiang Li
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Shiyang Li
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Hongyu Zhao
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Junyan Qu
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yanan Xia
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
25
|
Liu Y, Xiao W, Yu L, Tian F, Wang G, Lu W, Narbad A, Chen W, Zhai Q. Evidence from comparative genomic analyses indicating that Lactobacillus-mediated irritable bowel syndrome alleviation is mediated by conjugated linoleic acid synthesis. Food Funct 2021; 12:1121-1134. [PMID: 33427835 DOI: 10.1039/d0fo02616f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Irritable bowel syndrome (IBS) is a chronic intestinal disorder accompanied by low-grade inflammation, visceral hypersensitivity, and gut microbiota dysbiosis. Several studies have indicated that Lactobacillus supplementation can help to alleviate IBS symptoms and that these effects are strain-specific. Therefore, this study aimed to investigate the key physiological characteristics and functional genes contributing to the IBS-alleviating effects of Lactobacillus. An IBS model was established by subjecting C57BL/6 mice to Citrobacter rodentium ingestion and water avoidance stress. Lactobacillus strains with different physiological characteristics were administered to mice intragastrically for 4 weeks (5 × 109 CFU/0.2 mL per mouse per day). Indicators of colonic inflammation, visceral hypersensitivity, and gut microbiota were also evaluated. Finally, differences in functional genes between Lactobacillus strains were analyzed by a comparative genomic analysis, and the relationships between the physiological characteristics, functional genes, and IBS-alleviating effects of the strains were quantified using correlation analysis. Among the eight tested Lactobacillus strains, only Lactobacillus plantarum CCFM8610 significantly inhibited the expression of IL-1β, IL-6, PAR-2, and mast cell tryptase. L. plantarum CCFM8610 also significantly increased the intestinal barrier function, inhibited visceral hypersensitivity symptoms, and modulated the gut microbiota diversity and composition. The correlation analysis of factors associated with the IBS-alleviating effects of Lactobacillus revealed the ability to synthesize conjugated linoleic acid as the most strongly associated physiological characteristic and COG1028-related genes as the most strongly associated functional genes. In conclusion, these findings can facilitate the rapid screening of Lactobacillus strains with IBS-alleviating effects and lay a foundation for studies of the related mechanisms.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wei Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Arjan Narbad
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China and Gut Health and Food Safety Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
26
|
Probiotics as a treatment for prenatal maternal anxiety and depression: a double-blind randomized pilot trial. Sci Rep 2021; 11:3051. [PMID: 33542275 PMCID: PMC7862351 DOI: 10.1038/s41598-021-81204-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Probiotic use may be an efficacious treatment option to effectively manage symptoms of prenatal maternal anxiety and depression. Our primary aim was to test feasibility and acceptability for a probiotic randomized controlled trial (RCT) in pregnant women with pre-existing symptoms. This double-blind pilot RCT included 40 pregnant women with low-risk pregnancies and elevated depressive symptoms and/or anxiety. Once daily, participants orally consumed a probiotic (Ecologic Barrier) or a placebo, from 26 to 30 weeks gestation until delivery. A priori key progression criteria for primary outcomes were determined to decide whether or not a full RCT was feasible and acceptable. Secondary outcomes included depressive symptoms, anxiety, stress, and maternal bonding to offspring. In 19 months, 1573 women were screened; following screening, 155 women (10%) were invited for participation, of whom 135 (87%) received study information, and 40 women (30%) were included. Four out of six a priori determined criteria for success on feasibility and acceptability were met. After 8 weeks of intervention, there was no significant difference between the probiotic and placebo groups for secondary outcomes. The pilot trial was feasible and acceptable, but hampered by recruitment method and study design. Secondary endpoints did not reveal differences between the groups for improving maternal mood.
Collapse
|
27
|
Abildgaard A, Kern T, Pedersen O, Hansen T, Lund S, Wegener G. A diet-induced gut microbiota component and related plasma metabolites are associated with depressive-like behaviour in rats. Eur Neuropsychopharmacol 2021; 43:10-21. [PMID: 32933808 DOI: 10.1016/j.euroneuro.2020.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
It is well-established in preclinical studies that various probiotics may improve behaviours related to psychiatric disease. We have previously shown that probiotics protected against high-fat diet (HFD)-induced depressive-like behaviour in Flinders Sensitive Line (FSL) rats, whereas FSL rats on control (CON) diet were unaffected. Therefore, we hypothesised that a dysmetabolic component of depression may exist that involves the gut microbiota and that such component may be reflected in the plasma metabolome. The aims of the present study post hoc analyses were 1) to study the effect of probiotics on gut microbiota composition and its association with depressive-like behaviour in FSL rats, and 2) to identify plasma metabolites associated with gut microbiota and depressive-like behaviour. Forty-six FSL rats were fed CON or HFD and treated with multi-species probiotics (nine Bifidobacterium, Lactococcus and Lactobacillus species) for 12 weeks. Faecal samples were collected for 16S rRNA (VR4) gene amplicon sequencing (Illumina MiSeq), and an untargeted plasma metabolomics was performed. We found that probiotics increased the relative faecal abundance of the Bifidobacterium, Lactococcus and Lactobacillus genera in HFD-fed rats only. Also, a HFD-induced microbiota component associated with depressive-like behaviour was identified, and probiotics improved the component score. Finally, the plasma levels of 44 metabolites correlated with the depression-related microbiota component, and three such metabolites had good predictive ability for depressive-like behaviour. Potentially, our findings imply that a subtype of depression characterised by a diet-induced, pro-depressant gut microbiota may exist and that analysis of related plasma metabolites may reveal aberrant microbiota functioning related to depression.
Collapse
Affiliation(s)
- Anders Abildgaard
- Translational Neuropsychiatry Unit, Aarhus University, Skovagervej 2, Risskov, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, Denmark.
| | - Timo Kern
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sten Lund
- Steno Diabetes Centre, Aarhus University Hospital, Hedeager 3, Aarhus N, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University, Skovagervej 2, Risskov, Denmark
| |
Collapse
|
28
|
Hiippala K, Barreto G, Burrello C, Diaz-Basabe A, Suutarinen M, Kainulainen V, Bowers JR, Lemmer D, Engelthaler DM, Eklund KK, Facciotti F, Satokari R. Novel Odoribacter splanchnicus Strain and Its Outer Membrane Vesicles Exert Immunoregulatory Effects in vitro. Front Microbiol 2020; 11:575455. [PMID: 33281770 PMCID: PMC7689251 DOI: 10.3389/fmicb.2020.575455] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Odoribacter splanchnicus, belonging to the order Bacteroidales, is a common, short-chain fatty acid producing member of the human intestinal microbiota. A decreased abundance of Odoribacter has been linked to different microbiota-associated diseases, such as non-alcoholic fatty liver disease, cystic fibrosis and inflammatory bowel disease (IBD). The type strain of O. splanchnicus has been genome-sequenced, but otherwise very little is known about this anaerobic bacterium. The species surfaces in many microbiota studies and, consequently, comprehension on its interactions with the host is needed. In this study, we isolated a novel strain of O. splanchnicus from a healthy fecal donor, identified it by genome sequencing and addressed its adhesive, epithelium reinforcing and immunoregulatory properties. Our results show that O. splanchnicus strain 57 is non-adherent to enterocytes or mucus, does not reinforce nor compromise Caco-2 monolayer integrity and most likely harbors penta-acylated, less endotoxic lipid A as part of its lipopolysaccharide (LPS) structure based on the lack of gene lpxM and in vitro results on low-level NF-κB activity. The studies by transmission electron microscopy revealed that O. splanchnicus produces outer membrane vesicles (OMV). O. splanchnicus cells, culture supernatant i.e., spent medium or OMVs did not induce interleukin-8 (IL-8) response in HT-29 enterocyte cells suggesting a very low proinflammatory capacity. On the contrary, the treatment of HT-29 cells with O. splanchnicus cells, spent medium or OMVs prior to exposure to Escherichia coli LPS elicited a significant decrease in IL-8 production as compared to E. coli LPS treatment alone. Moreover, O. splanchnicus spent supernatant induced IL-10 production by immune cells, suggesting anti-inflammatory activity. Our in vitro findings indicate that O. splanchnicus and its effector molecules transported in OMVs could potentially exert anti-inflammatory action in the gut epithelium. Taken together, O. splanchnicus seems to be a commensal with a primarily beneficial interaction with the host.
Collapse
Affiliation(s)
- Kaisa Hiippala
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Gonçalo Barreto
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Claudia Burrello
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Angelica Diaz-Basabe
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Maiju Suutarinen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Veera Kainulainen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jolene R Bowers
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, Arizona, AZ, United States
| | - Darrin Lemmer
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, Arizona, AZ, United States
| | - David M Engelthaler
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, Arizona, AZ, United States
| | - Kari K Eklund
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Helsinki University and Helsinki University Hospital, Department of Rheumatology, Helsinki, Finland and ORTON Orthopedic Hospital of the Orton Foundation, Helsinki, Finland
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Adjunctive treatment with probiotics partially alleviates symptoms and reduces inflammation in patients with irritable bowel syndrome. Eur J Nutr 2020; 60:2553-2565. [PMID: 33225399 DOI: 10.1007/s00394-020-02437-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/04/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE Irritable bowel syndrome (IBS) is a functional bowel disorder. This study aimed to assess the effect of a probiotic product (containing Lactobacillus casei Zhang, Lactobacillus plantarum P-8, and Bifdobacterium animalis subsp. lactis V9) as an adjunct to a routine regimen in IBS management. METHODS Forty-five patients with IBS were randomized into the probiotic (n = 24) and control (n = 21) groups, receiving the routine regimen with or without probiotics for 28 days, respectively. Serum and fecal samples were collected and analyzed. RESULTS The IBS-symptom severity score (P < 0.01), serum levels of IL-6 (P < 0.01) and TNF-α (P < 0.001) were significantly lower in the probiotic group than the control group at day 28. The probiotic adjunctive treatment resulted in significant decreases in some bacterial genera that worsen IBS, such as Bacteroides (P < 0.01), Escherichia (P < 0.05), and Citrobacter (P < 0.05), significant decreases were also observed in some beneficial genera in the control group, including Bifidobacterium (P < 0.05), Eubacterium (P < 0.05), Dorea (P < 0.01), and Butyricicoccus (P < 0.05). Furthermore, significant correlations were found between some monitored parameters and compositional changes in the fecal microbiota, suggesting that the clinical improvement of IBS was likely associated with gut microbiota modulation. The enterotype analysis revealed that the initial fecal microbiota composition could influence clinical outcomes. CONCLUSIONS The adjunctive use of probiotics with a routine regimen showed additional clinical effectiveness compared to the routine regimen alone in managing IBS. A pretreatment gut microbiome analysis might help tailor a personalized probiotic regimen to optimize treatment effects.
Collapse
|
30
|
Aponte M, Murru N, Shoukat M. Therapeutic, Prophylactic, and Functional Use of Probiotics: A Current Perspective. Front Microbiol 2020; 11:562048. [PMID: 33042069 PMCID: PMC7516994 DOI: 10.3389/fmicb.2020.562048] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Probiotics are considered as the twenty-first century panpharmacon due to their competent remedial power to cure from gastrointestinal dysbiosis, systematic metabolic diseases, and genetic impairments up to complicated neurodegenerative disorders. They paved the way for an innovative managing of various severe diseases through palatable food products. The probiotics' role as a "bio-therapy" increased their significance in food and medicine due to many competitive advantages over traditional treatment therapies. Their prophylactic and therapeutic potential has been assessed through hundreds of preclinical and clinical studies. In addition, the food industry employs probiotics as functional and nutraceutical ingredients to enhance the added value of food product in terms of increased health benefits. However, regardless of promising health-boosting effects, the probiotics' efficacy still needs an in-depth understanding of systematic mechanisms and factors supporting the healthy actions.
Collapse
Affiliation(s)
- Maria Aponte
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nicoletta Murru
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Mahtab Shoukat
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW With the growing popularity and commercialization of probiotics, it is important to understand the implications of existing randomized controlled trials and their applicability in the clinical setting to treat luminal gastrointestinal diseases. RECENT FINDINGS Probiotics may be useful in the prevention of antibiotic-associated diarrhea, prevention of Clostridioides difficile infection and eradication of Helicobacter pylori. Some evidence supports the use of probiotics in the treatment of ulcerative colitis, prevention and treatment of pouchitis and irritable bowel syndrome. Caution has to be exercised in immunocompromised and critically ill individuals. New society guidelines do not encourage probiotic use in gastrointestinal disorders with the exception of premature infants to prevent necrotizing enterocolitis. SUMMARY Despite burgeoning body of literature and wide acceptance by the public, a thorough understanding of efficacy and safety of probiotics is lacking. Uniform dosage, standardized clinical end points, personalization based on host microbial profile and longer duration of follow-up on the research front may help in the future in appropriate positioning of probiotics in health and disease.
Collapse
Affiliation(s)
- Abbinaya Elangovan
- Department of Internal Medicine-Pediatrics, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Monika Fischer
- Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
32
|
High-fat diet-induced metabolic syndrome and oxidative stress in obese rats are ameliorated by yogurt supplementation. Sci Rep 2019; 9:20026. [PMID: 31882854 PMCID: PMC6934669 DOI: 10.1038/s41598-019-56538-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/13/2019] [Indexed: 12/19/2022] Open
Abstract
The main objective of this experiment was to determine the effects of yogurt supplementation on fat deposition, oxidative stress, inflammation and fibrosis in the liver of rats with high-fat (HF) diet-induced obesity. Male Wistar rats were used in this study and were separated into the following four different groups: the control, control + yogurt, high fat and high fat+ yogurt groups. The high fat groups received a HF diet for eight weeks. A 5% yogurt (w/w) supplement was also provided to rats fed the HF diet. Yogurt supplementation prevented glucose intolerance and normalized liver-specific enzyme activities in the HF diet-fed rats. Yogurt supplementation also significantly reduced the levels of oxidative stress markers in the plasma and liver of HF diet-fed rats. Moreover, inflammatory cell infiltration, collagen deposition and fibrosis in the liver of HF diet-fed rats were also prevented by yogurt supplementation. Furthermore, yogurt supplementation normalized the intestinal lining and brush border in HF diet-fed rats. This study suggests that yogurt supplementation potentially represents an alternative therapy for the prevention of metabolic syndrome in HF diet-fed rats.
Collapse
|
33
|
Cangemi DJ, Lacy BE. Management of irritable bowel syndrome with diarrhea: a review of nonpharmacological and pharmacological interventions. Therap Adv Gastroenterol 2019; 12:1756284819878950. [PMID: 31632456 PMCID: PMC6778998 DOI: 10.1177/1756284819878950] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/26/2019] [Indexed: 02/04/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal (GI) condition involving numerous potential causative factors (e.g. alterations in gut microbiota, motility, brain-gut axis). Several interventions are available for the management of patients with IBS, but no universal management algorithm currently exists. The aim of this article is to review interventions that may be considered in the management of patients with IBS with diarrhea (IBS-D). Nonpharmacological interventions include dietary and lifestyle modification, which are generally used as first-line therapy. Probiotics have demonstrated efficacy and safety in patients with IBS, but studies are inconsistent in strains examined, dosing, and treatment duration. Psychological therapies (e.g. cognitive behavioral therapy, hypnotherapy) also may improve IBS symptoms. Pharmacological interventions for the management of IBS-D include the US Food and Drug Administration-approved agents eluxadoline, rifaximin, and alosetron, as well as loperamide, smooth muscle antispasmodics, bile acid sequestrants, and antidepressants (i.e. tricyclic antidepressants, selective serotonin reuptake inhibitors). Eluxadoline and rifaximin have been shown to improve abdominal pain and stool consistency in patients with IBS-D. In addition, data indicate that alosetron improves IBS symptoms; however, it is approved only for women with severe IBS-D. Of the three approved agents, rifaximin has the most favorable safety profile. The risk-benefit ratio is an important consideration with every medication, but is especially important in the treatment of functional GI disorders such as IBS-D. Thus, the most troublesome symptoms, quality of life, symptom intensity, and individual patient preferences should be considered when formulating a management plan for patients with IBS-D.
Collapse
Affiliation(s)
- David J. Cangemi
- Division of Gastroenterology and Hepatology, Section of Gastroenterology, Mayo Clinic, Jacksonville, FL, USA
| | - Brian E. Lacy
- Division of Gastroenterology and Hepatology, Section of Gastroenterology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
34
|
Zhao ZH, Xin FZ, Xue Y, Hu Z, Han Y, Ma F, Zhou D, Liu XL, Cui A, Liu Z, Liu Y, Gao J, Pan Q, Li Y, Fan JG. Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats. Exp Mol Med 2019; 51:1-14. [PMID: 31506421 PMCID: PMC6802644 DOI: 10.1038/s12276-019-0304-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/30/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Microbial metabolites have emerged as critical components that mediate the metabolic effects of the gut microbiota. Here, we show that indole-3-propionic acid (IPA), a tryptophan metabolite produced by gut bacteria, is a potent anti-non-alcoholic steatohepatitis (NASH) microbial metabolite. Here, we demonstrate that administration of IPA modulates the microbiota composition in the gut and inhibits microbial dysbiosis in rats fed a high-fat diet. IPA induces the expression of tight junction proteins, such as ZO-1 and Occludin, and maintains intestinal epithelium homeostasis, leading to a reduction in plasma endotoxin levels. Interestingly, IPA inhibits NF-κB signaling and reduces the levels of proinflammatory cytokines, such as TNFα, IL-1β, and IL-6, in response to endotoxin in macrophages to repress hepatic inflammation and liver injury. Moreover, IPA is sufficient to inhibit the expression of fibrogenic and collagen genes and attenuate diet-induced NASH phenotypes. The beneficial effects of IPA on the liver are likely mediated through inhibiting the production of endotoxin in the gut. These findings suggest a protective role of IPA in the control of metabolism and uncover the gut microbiome and liver cross-talk in regulating the intestinal microenvironment and liver pathology via a novel dietary nutrient metabolite. IPA may provide a new therapeutic strategy for treating NASH.
Collapse
Affiliation(s)
- Ze-Hua Zhao
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Feng-Zhi Xin
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zhimin Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yamei Han
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Da Zhou
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 200032, Shanghai, China
| | - Xiao-Lin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 215006, Suzhou, Jiangsu, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yuxiao Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jing Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qin Pan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China.
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, 200092, Shanghai, China.
| |
Collapse
|
35
|
Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019; 11:nu11071613. [PMID: 31315227 PMCID: PMC6682904 DOI: 10.3390/nu11071613] [Citation(s) in RCA: 642] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome plays an important role in human health and influences the development of chronic diseases ranging from metabolic disease to gastrointestinal disorders and colorectal cancer. Of increasing prevalence in Western societies, these conditions carry a high burden of care. Dietary patterns and environmental factors have a profound effect on shaping gut microbiota in real time. Diverse populations of intestinal bacteria mediate their beneficial effects through the fermentation of dietary fiber to produce short-chain fatty acids, endogenous signals with important roles in lipid homeostasis and reducing inflammation. Recent progress shows that an individual’s starting microbial profile is a key determinant in predicting their response to intervention with live probiotics. The gut microbiota is complex and challenging to characterize. Enterotypes have been proposed using metrics such as alpha species diversity, the ratio of Firmicutes to Bacteroidetes phyla, and the relative abundance of beneficial genera (e.g., Bifidobacterium, Akkermansia) versus facultative anaerobes (E. coli), pro-inflammatory Ruminococcus, or nonbacterial microbes. Microbiota composition and relative populations of bacterial species are linked to physiologic health along different axes. We review the role of diet quality, carbohydrate intake, fermentable FODMAPs, and prebiotic fiber in maintaining healthy gut flora. The implications are discussed for various conditions including obesity, diabetes, irritable bowel syndrome, inflammatory bowel disease, depression, and cardiovascular disease.
Collapse
|
36
|
Liang D, Longgui N, Guoqiang X. Efficacy of different probiotic protocols in irritable bowel syndrome: A network meta-analysis. Medicine (Baltimore) 2019; 98:e16068. [PMID: 31277101 PMCID: PMC6635271 DOI: 10.1097/md.0000000000016068] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/27/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Probiotics is a prevalence therapeutic method for irritable bowel syndrome (IBS), but there is lack of comparison in different protocols. We aim to differentiate the reasonable protocols by assessing the efficacy and safety through the combined way of traditional and network meta-analysis. METHOD PubMed, Medline, EMBASE, Web of Science, and Cochrane Central Register of Controlled Trials databases were searched from January 2006 to April 2019. The relative risk (RR) with a 95% confidence interval (CI) was used to combine dichotomous data of responders. RESULT Among 14 studies included 1695 patients were identified as suitable for inclusion. The proportion of responders was associated with the administration of multispecies probiotics (RR: 1.39; 95% CI: 1.19-1.61) and the dose of 10∼10 (RR: 2.08; 95% CI: 1.59-2.71). In network meta-analysis, the protocol of DUO had a significant effect for diarrhea type of IBS compared with placebo (RR: 7.46; 95% CI: 2.00-32.23). In the rest of 4 protocols, no significant difference was found in each other except F19 which appears inferior when compared with Pro (RR: 0.16; 95% CI: 0.03-0.88). Meanwhile, Pro showed a superior effect for undifferentiated-type IBS compared with placebo (RR: 7.16; 95% CI: 1.72-29.89). No probiotics-associated severe adverse event was reported in included studies. CONCLUSION Probiotics is a safety choice to improve the overall symptoms for IBS patient. The protocols with suitable dose combined of Lactobacillus and Bifidobacterium can have prepotent effects compared with single species or over-dosage protocols. Network meta-analysis shows that DUO may be the first recommendation for diarrhea-type IBS. In the remaining 4 regimes of this study, Pro has a high rank for undifferentiated-type IBS.
Collapse
|
37
|
Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med 2019; 25:716-729. [DOI: 10.1038/s41591-019-0439-x] [Citation(s) in RCA: 790] [Impact Index Per Article: 131.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
|
38
|
Abstract
Technological developments, including massively parallel DNA sequencing, gnotobiotics, metabolomics, RNA sequencing and culturomics, have markedly propelled the field of microbiome research in recent years. These methodologies can be harnessed to improve our in-depth mechanistic understanding of basic concepts related to consumption of probiotics, including their rules of engagement with the indigenous microbiome and impacts on the human host. We have recently demonstrated that even during probiotic supplementation, resident gut bacteria in a subset of individuals resist the mucosal presence of probiotic strains, limiting their modulatory effect on the microbiome and on the host gut transcriptional landscape. Resistance is partly alleviated by antibiotics treatment, which enables probiotics to interact with the host at the gut mucosal interface, although rather than promoting reconstitution of the indigenous microbiome and of the host transcriptional profile, they inhibit these components from returning to their naïve pre-antibiotic configurations. In this commentary, we discuss our findings in the context of previous and recent works, and suggest that incorporating the state-of-the-art methods currently utilized in microbiome research into the field of probiotics may lead to improved understanding of their mechanisms of activity, as well as their efficacy and long-term safety.
Collapse
Affiliation(s)
- Jotham Suez
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Niv Zmora
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel,Digestive Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel,Internal Medicine Department, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel,Cancer-Microbiome Research Division, DKFZ, Heidelberg, Germany,CONTACT Eran Elinav Immunology Department, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
39
|
Barbara G, Cremon C, Azpiroz F. Probiotics in irritable bowel syndrome: Where are we? Neurogastroenterol Motil 2018; 30:e13513. [PMID: 30460770 DOI: 10.1111/nmo.13513] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 02/08/2023]
Abstract
We have only recently begun to understand how alterations of the intestinal microbial ecosystem lead to the disruption of host-microbial interactions and are associated with diseases, including functional gastrointestinal disorders such as irritable bowel syndrome (IBS). Although we are still far from understanding the human microbiome, gut microbiota is already a therapeutic target. Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit to the host and may represent a therapeutic option for diseases characterized by dysbiosis such as IBS. Meta-analyses suggest that probiotics provide a therapeutic gain over placebo on global symptoms with a high safety profile in IBS patients. However, the mechanisms by which they provide benefit in IBS remain virtually unknown. In this issue of Neurogastroenterology and Motility, BIO-25, a multispecies probiotic, did not significantly modify the composition of the fecal microbiota, but interestingly, patients with specific basal features of the intestinal microbial ecosystem improved with treatment. Based on these data, it is tantalizing to speculate that microbiota composition serves as a predictor of the response to probiotic intervention. This mini-review addresses unresolved issues related to mechanisms through which probiotics may exert their beneficial effects, the biological, as well as clinical predictors of favorable outcomes in IBS and finally considers possible new directions for future studies.
Collapse
Affiliation(s)
- Giovanni Barbara
- Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - Cesare Cremon
- Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - Fernando Azpiroz
- Digestive System Research Unit, Departments of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Departamento de Medicina) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|