1
|
Vande Perre L, Chávez Cerda J, Gochard S, Verstraeten M, Raffoul R, Leonard C, Delbeke J, El Tahry R, Gorza SP, Nonclercq A. Differences in conduction velocities of nerve fibers excited by infrared and electrical stimulation. J Neurosci Methods 2025; 418:110427. [PMID: 40101860 DOI: 10.1016/j.jneumeth.2025.110427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Infrared neural stimulation (INS) uses short optical pulses to activate nerves. While electrical stimulation (ES) activates large-diameter fibers first, light may preferentially activate small-diameter fibers first, which could be valuable for many clinical applications. NEW METHOD This study used a compact diode laser of 1470 nm to perform INS. Conduction velocity (CV) measurements were performed to assess differences in fiber type activation between INS and ES in the rat sciatic nerve and the goat vagus nerve. The rat sciatic nerve was chosen as a standard model because of its well-characterized physiology and extensive use in studies of INS mechanisms. The goat vagus nerve was chosen because of its expected high proportion of small-diameter fibers and its larger size, which allows sufficient separation between recording units to optimize CNAP measurements. RESULTS The results showed that in the rat sciatic nerve, ES-excited fibers had significantly higher CVs (9.81 ± 3.18 m/s) than INS-excited fibers (8.10 ± 2.82 m/s). In the goat vagus nerve, ES produced a mean CV of 6.47 ± 1.25 m/s, but INS did not produce clearly distinguishable compound nerve action potential, highlighting the challenges of applying INS to larger nerves. COMPARISON TO EXISTING METHODS To the best of our knowledge, CV is, for the first time, measured to identify the type of nerve fiber excited by INS. CONCLUSION These results suggest that INS may preferentially activate smaller diameter fibers, providing insight for potential neuromodulation applications.
Collapse
Affiliation(s)
- Louis Vande Perre
- Bio-, Electro, and Mechanical, Systems (BEAMS), Université libre de Bruxelles, Brussels, Belgium; Service Opera-Photonique, Université libre de Bruxelles, Brussels, Belgium.
| | - Javier Chávez Cerda
- Bio-, Electro, and Mechanical, Systems (BEAMS), Université libre de Bruxelles, Brussels, Belgium
| | | | - Maxime Verstraeten
- Bio-, Electro, and Mechanical, Systems (BEAMS), Université libre de Bruxelles, Brussels, Belgium
| | - Romain Raffoul
- Bio-, Electro, and Mechanical, Systems (BEAMS), Université libre de Bruxelles, Brussels, Belgium
| | | | - Jean Delbeke
- Institute of Neurosciences (IoNS), Université Catholique de Louvain, Brussels, Belgium -Department of Neurology, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Riëm El Tahry
- Institute of Neurosciences (IoNS), Université Catholique de Louvain, Brussels, Belgium -Department of Neurology, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Simon-Pierre Gorza
- Service Opera-Photonique, Université libre de Bruxelles, Brussels, Belgium
| | - Antoine Nonclercq
- Bio-, Electro, and Mechanical, Systems (BEAMS), Université libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
2
|
Musselman ED, Raha I, Pelot NA, Grill WM. Scaling of vagus nerve stimulation parameters does not achieve equivalent nerve responses across species. Bioelectron Med 2025; 11:11. [PMID: 40375300 DOI: 10.1186/s42234-025-00174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/30/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Previous efforts to translate vagus nerve stimulation (VNS) therapies from preclinical studies to human clinical applications (e.g., for stroke, heart failure, and inflammatory diseases) did not account for individual- or species-specific differences in nerve responses when selecting stimulation parameters. Lack of explicit consideration for producing equivalent nerve responses could contribute to clinical outcomes not replicating promising results from preclinical animal studies. METHODS We used models of VNS built with ASCENT (Musselman, PLoS Comput Biol 17:e1009285, 2021) to quantify nerve responses across species and simulate translation of VNS therapies via either recycling or linear scaling of stimulation parameters. For humans (n = 9) and pigs (n = 12), we used previously validated computational models with the standard clinical helical cuff electrode on individual-specific nerve morphologies (Musselman, J Neural Eng 20:acda64, 2023b). We also modeled rat VNS (n = 9) with the Micro-Leads Neuro bipolar cuff. We calculated thresholds for fiber activation (A-, B-, and C-fibers) with biphasic rectangular pulses (0.13, 0.25, 0.5 ms). We defined "K" as the ratio of activation thresholds between a pair of individuals. We used a mixed model ANOVA on the natural logarithm of K to test for differences in inter-species Ks across fiber types and pulse widths. Lastly, using the same nerve morphologies and application-specific device design (cuff and waveform), we developed models to predict nerve responses in chronic human and rat VNS studies for treatment of stroke, inflammation, and heart failure. RESULTS Depending on the individual and species, the activation amplitude required to produce a given nerve response varied widely. Thus, applying the same VNS parameters across individuals within a species produced a large range of nerve responses. Further, applying the same or linearly scaled stimulation amplitudes across species also produced highly variable responses. Ks were greater for B fibers than A fibers (p < 0.0001) and decreased with longer pulse widths (p < 0.0001 between consecutive pairs). CONCLUSIONS The results highlight the need for systematic approaches to select stimulation parameters that account for individual- and species-specific differences in nerve responses to stimulation. Such parameter tuning may lead to higher response rates and greater therapeutic benefits from VNS therapies.
Collapse
Affiliation(s)
- Eric D Musselman
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Ishani Raha
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nicole A Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke University, Durham, NC, USA.
- Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Urriza J, Fernandez-Conejero I, Seidel K, Ulkatan S. Introducing the Trigemino-Vocal Reflex: New insights to assess brainstem connectivity under general anesthesia. Clin Neurophysiol 2025; 175:2110739. [PMID: 40373578 DOI: 10.1016/j.clinph.2025.2110739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/13/2025] [Accepted: 05/02/2025] [Indexed: 05/17/2025]
Abstract
OBJECTIVE This descriptive study aims to provide evidence of a newly described reflex, the Trigemino-Vocal Reflex (TVcR). It confirms the functional connectivity between trigeminal and vagal systems in humans under anesthesia. METHODS We stimulated the mental branch of the trigeminal nerve at the mandibular foramen in 47 patients undergoing different surgeries and recorded vocal cord muscle responses. Stimulation consisted of either a single electrical pulse or a train of 2-4 pulses, based on anesthesia depth. The recording was made by using an adhesive tube electrode. RESULTS A bilateral response was observed in 41 patients, while 2 showed only a unilateral response. All 43 exhibited an early potential (R1) with a latency of about 30 ms, and 24 also displayed a late potential (R2) with a latency ofaround 65 ms. CONCLUSIONS We demonstrate the potential to record the newly described TVcR, recording vagal motor responses in the vocal cords following stimulation of the trigeminal nerve at the mandibular foramen in anesthetized patients. SIGNIFICANCE We introduce a newly described reflex that may be valuable in intraoperative neurophysiological monitoring and could enhance our understanding of brainstem physiology.
Collapse
Affiliation(s)
- Javier Urriza
- Department of Clinical Neurophysiology. Hospital Universitario de Navarra - Nafarroako Ospitale Unibertsitarioa. Irunlarrea, 3. 31008-Pamplona, Spain. Universidad Publica de Navarra - Nafarroako Unibertsitate Publikoa. Campus de Salud, Avda. Barañain, s/n. 31008 Pamplona-Spain.
| | - Isabel Fernandez-Conejero
- Department of Intraoperative Neurophysiology. University Hospital of Bellvitge, University of Barcelona, Av. Feixa Llarga, s/n., Hospitalet de Llobregat 08907 Barcelona, Spain.
| | - Kathleen Seidel
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern. Freiburgstrasse CH-3010 Bern, Switzerland.
| | - Sedat Ulkatan
- Department of Intraoperative Neurophysiology Mount Sinai West Hospital. 1000 Tenth Avenue, New York, NY 10019, USA.
| |
Collapse
|
4
|
Chen CH, Yu KC, Hsu LJ, Chiu WT, Hsu KS. Pro-inflammatory macrophages contribute to developing comorbid anxiety-like behaviors through gastrointestinal vagal afferent signaling in experimental colitis mice. Brain Behav Immun 2025; 128:620-633. [PMID: 40348137 DOI: 10.1016/j.bbi.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 04/09/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025] Open
Abstract
Anxiety symptoms are commonly observed in individuals with inflammatory bowel disease (IBD), but the mechanistic link between IBD and comorbid anxiety remains incompletely understood. Our previous study revealed that vagal gut-brain signaling contributes to driving comorbid anxiety-like behaviors in dextran sulfate sodium (DSS)-induced colitis mice, but how vagus nerve senses and transmits information to the brain in response to changes in the colonic microenvironment following DSS treatment remain elusive. Here, we identify a critical contribution of pro-inflammatory CD86+ macrophages to activate gut-innervating vagal afferents and ultimately drive anxiety-like behaviors in DSS-treated mice. An increased number of F4/80+ macrophages accumulated closely with gut-innervating vagal afferent fibers following DSS treatment. Depletion of macrophages alleviated DSS-induced anxiety-like behaviors, whereas peripheral delivery of lipopolysaccharide-activated M1 macrophages promoted anxiety-like behaviors, which were prevented by bilateral vagal afferent ablation. Moreover, differential expression levels of anxiety-like behaviors were positively correlated with neuronal activity changes in the nucleus tractus solitarius, locus coeruleus, and basolateral amygdala. Finally, treatment with either anti-α4β7 integrin antagonist vedolizumab or neutralizing anti-interleukin-1β monoclonal antibody effectively alleviated DSS-induced anxiety-like behaviors. Collectively, these findings unravel a mechanism of macrophage-to-vagus nerve communication via cytokine signaling responsible for comorbid anxiety associated with experimental colitis and suggest that pro-inflammatory CD86+ macrophages may represent a potential therapeutic target for psychological comorbidities in patients with IBD.
Collapse
Affiliation(s)
- Chin-Hao Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kuan-Chieh Yu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Li-Jin Hsu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kuei-Sen Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
5
|
Patros M, Sivathamboo S, Simpson HD, O'Brien TJ, Macefield VG. The physiology, anatomy and stimulation of the vagus nerve in epilepsy. J Physiol 2025; 603:2201-2217. [PMID: 40059379 PMCID: PMC12013799 DOI: 10.1113/jp287164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/12/2025] [Indexed: 04/23/2025] Open
Abstract
The vagus nerve is the longest cranial nerve, with much of its territory residing outside the head, in the neck, chest and abdomen. Although belonging to the parasympathetic division of the autonomic nervous system, it is dominated by sensory axons originating in the heart, lungs and airways and the gastrointestinal tract. Electrical stimulation of the cervical vagus nerve via surgically implanted cuff electrodes has been used clinically for the treatment of drug-resistant epilepsy for three decades but has also shown efficacy in the treatment of drug-resistant depression and certain gastrointestinal disorders. Through consideration of the anatomical composition of the vagus nerve, its physiology and its distribution throughout the body, we review the effects of vagus nerve stimulation in the context of drug-resistant epilepsy. This narrative review is divided into two sections: part one surveys the anatomy and physiology of the vagus nerve, and part two describes what we know about how vagus nerve stimulation works.
Collapse
Affiliation(s)
- Mikaela Patros
- Department of Neuroscience, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Shobi Sivathamboo
- Department of Neuroscience, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe Alfred HospitalMelbourneVictoriaAustralia
- Department of Medicine, The Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyThe Royal Melbourne HospitalParkvilleVictoriaAustralia
| | - Hugh D. Simpson
- Department of Neuroscience, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe Alfred HospitalMelbourneVictoriaAustralia
| | - Terence J. O'Brien
- Department of Neuroscience, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe Alfred HospitalMelbourneVictoriaAustralia
- Department of Medicine, The Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyThe Royal Melbourne HospitalParkvilleVictoriaAustralia
| | - Vaughan G. Macefield
- Department of Neuroscience, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
- Department of Cardiometabolic HealthThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
6
|
Yoon YC, Saytashev I, Chen RCH, Settell M, Guastaldi F, Hammer DX, Ludwig KA, Vakoc BJ. Label-free full-thickness imaging of porcine vagus nerve fascicular anatomy by polarization-sensitive optical coherence tomography. J Neural Eng 2025; 22:10.1088/1741-2552/adb5c3. [PMID: 39946850 PMCID: PMC12007689 DOI: 10.1088/1741-2552/adb5c3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
Objective.Improving the efficacy of vagus nerve (VN) stimulation therapy requires a detailed understanding of the anatomical and functional organization of nerve fiber bundles and their fascicles. Variousex-vivoimaging platforms have been optimized for this purpose. However, all existing tools with micrometer resolution require labeling to enhance the fascicle contrast, and this labeling is resource-intensive and time-consuming. Polarization-sensitive optical coherence tomography (PS-OCT) was previously used to perform high-speed, label-free small animal (rat) sciatic nerve imaging but has not been applied for imaging the full-thickness large animal VNs (>1 mm diameter thick) due to tissue-limited imaging depth. We developed a PS-OCT platform that circumvents this problem and demonstrate high-speed label-free imaging of full-depth, multiple centimeters-long mammalian VNs for the first time.Approach.We employed a custom-built PS-OCT system with a dual-surface scanning microscope to capture opposite sides of the sample in a single frame. A tailored post-processing algorithm maximized fascicle contrast and merged the two surfaces together. Multi-centimeter-long porcine VNs were imaged.Main Results.Our approach reconstructed fascicle information throughout the full-thickness of the VN when compressed to a 650μm thickness. Moreover, we cross-validated PS-OCT measurements of fascicular organization and retardance to assess myelination against pair histology from the same specimens, showing Spearman's rank correlation coefficient value of 0.69 (p-value < 0.001).Significance.We demonstrated a label-free optical imaging method for large-volume VN imaging. The time to image a 6.8 cm nerve was 680 s with 0.1 mm s-1longitudinal sample translation speed, which is more than two orders of magnitude faster than existing modalities that require labeling. With this gain in speed and the possibility of label-free quantification of a fascicle's myelination level, important studies on inter-sample variability in fascicle organization become feasible.
Collapse
Affiliation(s)
- Yong-Chul Yoon
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA, United States of America
- Massachusetts Institute of Technology, Division of Health Science and Technology, Cambridge, MA, United States of America
| | - Ilyas Saytashev
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biomedical Physics, Silver Spring, MD, United States of America
| | - Rex Chin-Hao Chen
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Megan Settell
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Fernando Guastaldi
- Massachusetts Institute of Technology, Division of Health Science and Technology, Cambridge, MA, United States of America
| | - Daniel X. Hammer
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biomedical Physics, Silver Spring, MD, United States of America
| | - Kip A. Ludwig
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Benjamin J. Vakoc
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA, United States of America
- Massachusetts Institute of Technology, Division of Health Science and Technology, Cambridge, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
7
|
Charitos IA, Inchingolo AM, Ferrante L, Inchingolo F, Inchingolo AD, Castellaneta F, Cotoia A, Palermo A, Scacco S, Dipalma G. The Gut Microbiota's Role in Neurological, Psychiatric, and Neurodevelopmental Disorders. Nutrients 2024; 16:4404. [PMID: 39771025 PMCID: PMC11677138 DOI: 10.3390/nu16244404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
AIM This article aims to explore the role of the human gut microbiota (GM) in the pathogenesis of neurological, psychiatric, and neurodevelopmental disorders, highlighting its influence on health and disease, and investigating potential therapeutic strategies targeting GM modulation. MATERIALS AND METHODS A comprehensive analysis of the gut microbiota's composition and its interaction with the human body, particularly, its role in neurological and psychiatric conditions, is provided. The review discusses factors influencing GM composition, including birth mode, breastfeeding, diet, medications, and geography. Additionally, it examines the GM's functions, such as nutrient absorption, immune regulation, and pathogen defense, alongside its interactions with the nervous system through the gut-brain axis, neurotransmitters, and short-chain fatty acids (SCFAs). RESULTS Alterations in the GM are linked to various disorders, including Parkinson's disease, multiple sclerosis, depression, schizophrenia, ADHD, and autism. The GM influences cognitive functions, stress responses, and mood regulation. Antibiotic use disrupts GM diversity, increasing the risk of metabolic disorders, obesity, and allergic diseases. Emerging therapies such as probiotics, prebiotics, and microbiota transplantation show promise in modulating the GM and alleviating symptoms of neurological and psychiatric conditions. CONCLUSIONS The modulation of the GM represents a promising approach for personalized treatment strategies. Further research is needed to better understand the underlying mechanisms and to develop targeted therapies aimed at restoring GM balance for improved clinical outcomes.
Collapse
Affiliation(s)
- Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, “Institute” of Bari, 70124 Bari, Italy;
| | - Angelo Michele Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (L.F.); (A.D.I.); (G.D.)
| | - Laura Ferrante
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (L.F.); (A.D.I.); (G.D.)
| | - Francesco Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (L.F.); (A.D.I.); (G.D.)
| | - Alessio Danilo Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (L.F.); (A.D.I.); (G.D.)
| | - Francesca Castellaneta
- U.O.C. Immunohematology and Transfusion Medicine—S.I.M.T. Di Venere Hospital, 70131 Bari, Italy;
| | - Antonella Cotoia
- Department of Intensive Care, University Hospital of Foggia, 71121 Foggia, Italy;
| | - Andrea Palermo
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy;
| | - Salvatore Scacco
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Aldo Moro University, 70121 Bari, Italy;
| | - Gianna Dipalma
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (L.F.); (A.D.I.); (G.D.)
| |
Collapse
|
8
|
Evans AJ, Li YL. Remodeling of the Intracardiac Ganglia During the Development of Cardiovascular Autonomic Dysfunction in Type 2 Diabetes: Molecular Mechanisms and Therapeutics. Int J Mol Sci 2024; 25:12464. [PMID: 39596529 PMCID: PMC11594459 DOI: 10.3390/ijms252212464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most significant health issues worldwide, with associated healthcare costs estimated to surpass USD 1054 billion by 2045. The leading cause of death in T2DM patients is the development of cardiovascular disease (CVD). In the early stages of T2DM, patients develop cardiovascular autonomic dysfunction due to the withdrawal of cardiac parasympathetic activity. Diminished cardiac parasympathetic tone can lead to cardiac arrhythmia-related sudden cardiac death, which accounts for 50% of CVD-related deaths in T2DM patients. Regulation of cardiovascular parasympathetic activity is integrated by neural circuitry at multiple levels including afferent, central, and efferent components. Efferent control of cardiac parasympathetic autonomic tone is mediated through the activity of preganglionic parasympathetic neurons located in the cardiac extensions of the vagus nerve that signals to postganglionic parasympathetic neurons located in the intracardiac ganglia (ICG) on the heart. Postganglionic parasympathetic neurons exert local control on the heart, independent of higher brain centers, through the release of neurotransmitters, such as acetylcholine. Structural and functional alterations in cardiac parasympathetic postganglionic neurons contribute to the withdrawal of cardiac parasympathetic tone, resulting in arrhythmogenesis and sudden cardiac death. This review provides an overview of the remodeling of parasympathetic postganglionic neurons in the ICG, and potential mechanisms contributing to the withdrawal of cardiac parasympathetic tone, ventricular arrhythmogenesis, and sudden cardiac death in T2DM. Improving cardiac parasympathetic tone could be a therapeutic avenue to reduce malignant ventricular arrhythmia and sudden cardiac death, increasing both the lifespan and improving quality of life of T2DM patients.
Collapse
Affiliation(s)
- Anthony J. Evans
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
9
|
Biscola NP, Bartmeyer PM, Beshay Y, Stern E, Mihaylov PV, Powley TL, Ward MP, Havton LA. Laterality, sexual dimorphism, and human vagal projectome heterogeneity shape neuromodulation to vagus nerve stimulation. Commun Biol 2024; 7:1536. [PMID: 39562711 PMCID: PMC11576867 DOI: 10.1038/s42003-024-07222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Neuromodulation by vagus nerve stimulation (VNS) provides therapeutic benefits in multiple medical conditions, including epilepsy and clinical depression, but underlying mechanisms of action are not well understood. Cervical vagus nerve biopsies were procured from transplant organ donors for high resolution light microscopy (LM) and transmission electron microscopy (TEM) to map the human fascicular and sub-fascicular organization. Cervical vagal segments show laterality with right sided dominance in fascicle numbers and cross-sectional areas as well as sexual dimorphism with female dominance in fascicle numbers. The novel and unprecedented detection of numerous small fascicles by high resolution LM and TEM expand the known fascicle size range and morphological diversity of the human vagus nerve. Ground truth TEM quantification of all myelinated and unmyelinated axons within individual nerve fascicles show marked sub-fascicular heterogeneity of nerve fiber numbers, size, and myelination. A heuristic action potential interpreter (HAPI) tool predicts VNS-evoked compound nerve action potentials (CNAPs) generated by myelinated and unmyelinated nerve fibers and validates functional dissimilarity between fascicles. Our findings of laterality, sexual dimorphism, and an expanded range of fascicle size heterogeneity provide mechanistic insights into the varied therapeutic responses and off-target effects to VNS and may guide new refinement strategies for neuromodulation.
Collapse
Affiliation(s)
- Natalia P Biscola
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Petra M Bartmeyer
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Youssef Beshay
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Esther Stern
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Plamen V Mihaylov
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Terry L Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Matthew P Ward
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leif A Havton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA.
| |
Collapse
|
10
|
Bu Y, Burks J, Yang K, Prince J, Borna A, Coe CL, Simmons A, Tu XM, Baker D, Kimball D, Rao R, Shah V, Huang M, Schwindt P, Coleman TP, Lerman I. Non-invasive ventral cervical magnetoneurography as a proxy of in vivo lipopolysaccharide-induced inflammation. Commun Biol 2024; 7:893. [PMID: 39075164 PMCID: PMC11286963 DOI: 10.1038/s42003-024-06435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
Maintenance of autonomic homeostasis is continuously calibrated by sensory fibers of the vagus nerve and sympathetic chain that convey compound action potentials (CAPs) to the central nervous system. Lipopolysaccharide (LPS) intravenous challenge reliably elicits a robust inflammatory response that can resemble systemic inflammation and acute endotoxemia. Here, we administered LPS intravenously in nine healthy subjects while recording ventral cervical magnetoneurography (vcMNG)-derived CAPs at the rostral Right Nodose Ganglion (RNG) and the caudal Right Carotid Artery (RCA) with optically pumped magnetometers (OPM). We observed vcMNG RNG and RCA neural firing rates that tracked changes in TNF-α levels in the systemic circulation. Further, endotype subgroups based on high and low IL-6 responders segregate RNG CAP frequency (at 30-120 min) and based on high and low IL-10 response discriminate RCA CAP frequency (at 0-30 min). These vcMNG tools may enhance understanding and management of the neuroimmune axis that can guide personalized treatment based on an individual's distinct endophenotype.
Collapse
Affiliation(s)
- Yifeng Bu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jamison Burks
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kun Yang
- Division of Biostatistics and Bioinformatics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jacob Prince
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amir Borna
- Quantum Information Sciences, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Christopher L Coe
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alan Simmons
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xin M Tu
- Division of Biostatistics and Bioinformatics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dewleen Baker
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Donald Kimball
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ramesh Rao
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Vishal Shah
- Quspin Laboratory Head Quarters, Boulder, CO, 80305, USA
| | - Mingxiong Huang
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Peter Schwindt
- Quantum Information Sciences, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Todd P Coleman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Imanuel Lerman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA.
- InflammaSense Incorporated Head Quarters, La Jolla, CA, 92093, USA.
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
11
|
Ciotti F, John R, Katic Secerovic N, Gozzi N, Cimolato A, Jayaprakash N, Song W, Toth V, Zanos T, Zanos S, Raspopovic S. Towards enhanced functionality of vagus neuroprostheses through in silico optimized stimulation. Nat Commun 2024; 15:6119. [PMID: 39033186 PMCID: PMC11271449 DOI: 10.1038/s41467-024-50523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
Bioelectronic therapies modulating the vagus nerve are promising for cardiovascular, inflammatory, and mental disorders. Clinical applications are however limited by side-effects such as breathing obstruction and headache caused by non-specific stimulation. To design selective and functional stimulation, we engineered VaStim, a realistic and efficient in-silico model. We developed a protocol to personalize VaStim in-vivo using simple muscle responses, successfully reproducing experimental observations, by combining models with trials conducted on five pigs. Through optimized algorithms, VaStim simulated the complete fiber population in minutes, including often omitted unmyelinated fibers which constitute 80% of the nerve. The model suggested that all Aα-fibers across the nerve affect laryngeal muscle, while heart rate changes were caused by B-efferents in specific fascicles. It predicted that tripolar paradigms could reduce laryngeal activity by 70% compared to typically used protocols. VaStim may serve as a model for developing neuromodulation therapies by maximizing efficacy and specificity, reducing animal experimentation.
Collapse
Affiliation(s)
- Federico Ciotti
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Robert John
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Natalija Katic Secerovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
- The Mihajlo Pupin Institute, University of Belgrade, Belgrade, Serbia
| | - Noemi Gozzi
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Andrea Cimolato
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Naveen Jayaprakash
- Northwell Health, New Hyde Park, NY, USA
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Weiguo Song
- Northwell Health, New Hyde Park, NY, USA
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Viktor Toth
- Northwell Health, New Hyde Park, NY, USA
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Theodoros Zanos
- Northwell Health, New Hyde Park, NY, USA
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Stavros Zanos
- Northwell Health, New Hyde Park, NY, USA
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland.
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Waataja JJ, Honda CN, Asp AJ, Nihilani RK, Farajidavar A. The Duration and Intensity of High Frequency Alternating Current Influences the Degree and Recovery of Nerve Conduction Block. IEEE Trans Biomed Eng 2024; 71:2170-2179. [PMID: 38335073 DOI: 10.1109/tbme.2024.3364350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
OBJECTIVE The purpose of this paper is to investigate the persistence of nerve blockade beyond the duration of applying high frequency alternating current (HFAC) to thinly myelinated and non-myelinated fibers, also termed a "carry-over effect". METHODS In this study, we used electrically-evoked compound action potentials from isolated rat vagus nerves to assess the influence of 5 kHz HFAC amplitude and duration on the degree of the carry-over effect. Current amplitudes from 1-10 mA and 5 kHz durations from 10-120 seconds were tested. RESULTS By testing 20 different combinations of 5 kHz amplitude and duration, we found a significant interaction between 5 kHz amplitude and duration on influencing the carry-over effect. CONCLUSION The degree of carry-over effect was dependent on 5 kHz amplitude, as well as duration. SIGNIFICANCE Utilizing the carry-over effect may be useful in designing energy efficient nerve blocking algorithms for the treatment of diseases influenced by nerve activity.
Collapse
|
13
|
Kronsteiner B, Carrero-Rojas G, Reissig LF, Moghaddam AS, Schwendt KM, Gerges S, Maierhofer U, Aszmann OC, Pastor AM, Kiss A, Podesser BK, Birkfellner W, Moscato F, Blumer R, Weninger WJ. Characterization, number, and spatial organization of nerve fibers in the human cervical vagus nerve and its superior cardiac branch. Brain Stimul 2024; 17:510-524. [PMID: 38677543 DOI: 10.1016/j.brs.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Electrical stimulation of the vagus nerve (VN) is a therapy for epilepsy, obesity, depression, and heart diseases. However, whole nerve stimulation leads to side effects. We examined the neuroanatomy of the mid-cervical segment of the human VN and its superior cardiac branch to gain insight into the side effects of VN stimulation and aid in developing targeted stimulation strategies. METHODS Nerve specimens were harvested from eight human body donors, then subjected to immunofluorescence and semiautomated quantification to determine the signature, quantity, and spatial distribution of different axonal categories. RESULTS The right and left cervical VN (cVN) contained a total of 25,489 ± 2781 and 23,286 ± 3164 fibers, respectively. Two-thirds of the fibers were unmyelinated and one-third were myelinated. About three-quarters of the fibers in the right and left cVN were sensory (73.9 ± 7.5 % versus 72.4 ± 5.6 %), while 13.2 ± 1.8 % versus 13.3 ± 3.0 % were special visceromotor and parasympathetic, and 13 ± 5.9 % versus 14.3 ± 4.0 % were sympathetic. Special visceromotor and parasympathetic fibers formed clusters. The superior cardiac branches comprised parasympathetic, vagal sensory, and sympathetic fibers with the left cardiac branch containing more sympathetic fibers than the right (62.7 ± 5.4 % versus 19.8 ± 13.3 %), and 50 % of the left branch contained sensory and sympathetic fibers only. CONCLUSION The study indicates that selective stimulation of vagal sensory and motor fibers is possible. However, it also highlights the potential risk of activating sympathetic fibers in the superior cardiac branch, especially on the left side.
Collapse
Affiliation(s)
- Bettina Kronsteiner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Genova Carrero-Rojas
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Lukas F Reissig
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Atieh Seyedian Moghaddam
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Karoline M Schwendt
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Sylvia Gerges
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Udo Maierhofer
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Oskar C Aszmann
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria; Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Austria
| | - Wolfgang Birkfellner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Roland Blumer
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria.
| | - Wolfgang J Weninger
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Coverdell TC, Abbott SBG, Campbell JN. Molecular cell types as functional units of the efferent vagus nerve. Semin Cell Dev Biol 2024; 156:210-218. [PMID: 37507330 PMCID: PMC10811285 DOI: 10.1016/j.semcdb.2023.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
The vagus nerve vitally connects the brain and body to coordinate digestive, cardiorespiratory, and immune functions. Its efferent neurons, which project their axons from the brainstem to the viscera, are thought to comprise "functional units" - neuron populations dedicated to the control of specific vagal reflexes or organ functions. Previous research indicates that these functional units differ from one another anatomically, neurochemically, and physiologically but have yet to define their identity in an experimentally tractable way. However, recent work with genetic technology and single-cell genomics suggests that genetically distinct subtypes of neurons may be the functional units of the efferent vagus. Here we review how these approaches are revealing the organizational principles of the efferent vagus in unprecedented detail.
Collapse
Affiliation(s)
- Tatiana C Coverdell
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - John N Campbell
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
15
|
Hesampour F, Bernstein CN, Ghia JE. Brain-Gut Axis: Invasive and Noninvasive Vagus Nerve Stimulation, Limitations, and Potential Therapeutic Approaches. Inflamm Bowel Dis 2024; 30:482-495. [PMID: 37738641 DOI: 10.1093/ibd/izad211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 09/24/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing condition with no known etiology and is characterized by disrupted gut homeostasis, chronic inflammation, and ulcerative lesions. Although current treatments can reduce disease activity, IBD frequently recurs once treatments are discontinued, indicating that treatments are ineffective in providing long-term remission. The lack of responsiveness and reluctance of some affected persons to take medications because of potential adverse effects has enhanced the need for novel therapeutic approaches. The vagus nerve (VN) is likely important in the pathogenesis of IBD, considering the decreased activity of the parasympathetic nervous system, especially the VN, and the impaired interaction between the enteric nervous system and central nervous system in patients with IBD. Vagus nerve stimulation (VNS) has demonstrated anti-inflammatory effects in various inflammatory disorders, including IBD, by inhibiting the production of inflammatory cytokines by immune cells. It has been suggested that stimulating the vagus nerve to induce its anti-inflammatory effects may be a potential therapeutic approach for IBD. Noninvasive techniques for VNS have been developed. Considering the importance of VN function in the brain-gut axis, VNS is a promising treatment option for IBD. This review discusses the potential therapeutic advantages and drawbacks of VNS, particularly the use of noninvasive transcutaneous auricular vagus nerve stimulation.
Collapse
Affiliation(s)
| | - Charles N Bernstein
- Internal Medicine, University of Manitoba, Winnipeg, Canada
- Inflammatory Bowel Disease Clinical and Research Centre, University of Manitoba, Winnipeg, Canada
| | - Jean-Eric Ghia
- Immunology, University of Manitoba, Winnipeg, Canada
- Internal Medicine, University of Manitoba, Winnipeg, Canada
- Inflammatory Bowel Disease Clinical and Research Centre, University of Manitoba, Winnipeg, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| |
Collapse
|
16
|
Manzotti A, Panisi C, Pivotto M, Vinciguerra F, Benedet M, Brazzoli F, Zanni S, Comassi A, Caputo S, Cerritelli F, Chiera M. An in-depth analysis of the polyvagal theory in light of current findings in neuroscience and clinical research. Dev Psychobiol 2024; 66:e22450. [PMID: 38388187 DOI: 10.1002/dev.22450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 09/04/2023] [Accepted: 12/01/2023] [Indexed: 02/24/2024]
Abstract
The polyvagal theory has led to the understanding of the functions of the autonomic nervous system in biological development in humans, since the vagal system, a key structure within the polyvagal theory, plays a significant role in addressing challenges of the mother-child dyad. This article aims to summarize the neurobiological aspects of the polyvagal theory, highlighting some of its strengths and limitations through the lens of new evidence emerging in several research fields-including comparative anatomy, embryology, epigenetics, psychology, and neuroscience-in the 25 years since the theory's inception. Rereading and incorporating the polyvagal idea in light of modern scientific findings helps to interpret the role of the vagus nerve through the temporal dimension (beginning with intrauterine life) and spatial dimension (due to the numerous connections of the vagus with various structures and systems) in the achievement and maintenance of biopsychosocial well-being, from the uterus to adulthood.
Collapse
Affiliation(s)
- Andrea Manzotti
- Division of Neonatology, "V. Buzzi" Children's Hospital, ASST-FBF-Sacco, Milan, Italy
- RAISE Lab, Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Cristina Panisi
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Micol Pivotto
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | | | - Matteo Benedet
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | | | - Silvia Zanni
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Alberto Comassi
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Sara Caputo
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Francesco Cerritelli
- RAISE Lab, Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
| | - Marco Chiera
- RAISE Lab, Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
| |
Collapse
|
17
|
Andreis FR, Metcalfe B, Janjua TAM, Fazan VPS, Jensen W, Meijs S, Nielsen TGNDS. Morphology and morphometry of the ulnar nerve in the forelimb of pigs. Anat Histol Embryol 2024; 53:e12972. [PMID: 37715494 DOI: 10.1111/ahe.12972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/24/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
The knowledge of the morphology and morphometry of peripheral nerves is essential for developing neural interfaces and understanding nerve regeneration in basic and applied research. Currently, the most adopted animal model is the rat, even though recent studies have suggested that the neuroanatomy of large animal models is more comparable to humans. The present knowledge of the morphological structure of large animal models is limited; therefore, the present study aims to describe the morphological characteristics of the Ulnar Nerve (UN) in pigs. UN cross-sections were taken from seven Danish landrace pigs at three distinct locations: distal UN, proximal UN and at the dorsal cutaneous branch of the UN (DCBUN). The nerve diameter, fascicle diameter and number, number of fibres and fibre size were quantified. The UN diameter was larger in the proximal section compared to the distal segment and the DCBUN. The proximal branch also had a more significant number of fascicles (median: 15) than the distal (median: 10) and the DCBUN (median: 11) segments. Additionally, the mean fascicle diameter was smaller at the DCBUN (mean: 165 μm) than at the distal (mean: 197 μm) and proximal (mean: 199 μm) segments of the UN. Detailed knowledge of the microscopical structure of the UN in pigs is critical for further studies investigating neural interface designs and computational models of the peripheral nervous system.
Collapse
Affiliation(s)
- Felipe Rettore Andreis
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - Benjamin Metcalfe
- Bath Institute for the Augmented Human, University of Bath, Bath, UK
| | - Taha Al Muhammadee Janjua
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - Valéria Paula Sassoli Fazan
- Department of Surgery and Anatomy, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Winnie Jensen
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - Suzan Meijs
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
18
|
Leon‐Mercado L, Tinajero A, Gautron L. Evidence of extraganglionic vagal mechanoreceptors in the mouse vagus nerve. J Anat 2023; 243:936-950. [PMID: 37403978 PMCID: PMC10641042 DOI: 10.1111/joa.13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
Vagal afferent neuronal somas are in the nodose and jugular ganglia. In this study, we identified extraganglionic neurons in whole-mount preparations of the vagus nerves from Phox2b-Cre-ZsGreen transgenic mice. These neurons are typically arranged in small clusters and monolayers along the cervical vagus nerve. Although infrequent, these neurons were sometimes observed along the thoracic and esophageal vagus. We performed RNAscope in situ hybridization and confirmed that the extraganglionic neurons detected in this transgenic mouse strain expressed vagal afferent markers (i.e., Phox2b and Slc17a6) as well as markers that identify them as potential gastrointestinal mechanoreceptors (i.e., Tmc3 and Glp1r). We also identified extraganglionic neurons in the vagus nerves of wild-type mice that were injected intraperitoneally with Fluoro-Gold, thereby ruling out possible anatomical discrepancies specific for transgenic mice. In wild-type mice, extraganglionic cells were positive for peripherin, confirming their neuronal nature. Taken together, our findings revealed a previously undiscovered population of extraganglionic neurons associated with the vagus nerve. Going forward, it is important to consider the possible existence of extraganglionic mechanoreceptors that transmit signals from the abdominal viscera in future studies related to vagal structure and function.
Collapse
Affiliation(s)
- Luis Leon‐Mercado
- Department of Internal MedicineCenter for Hypothalamic Research, UT Southwestern Medical CenterDallasTexasUSA
| | - Arely Tinajero
- Department of Internal MedicineCenter for Hypothalamic Research, UT Southwestern Medical CenterDallasTexasUSA
| | - Laurent Gautron
- Department of Internal MedicineCenter for Hypothalamic Research, UT Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
19
|
Tomalty D, Giovannetti O, Velikonja L, Munday J, Kaufmann M, Iaboni N, Jamzad A, Rubino R, Fichtinger G, Mousavi P, Nicol CJB, Rudan JF, Adams MA. Molecular characterization of human peripheral nerves using desorption electrospray ionization mass spectrometry imaging. J Anat 2023; 243:758-769. [PMID: 37264225 PMCID: PMC10557387 DOI: 10.1111/joa.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023] Open
Abstract
Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) is a molecular imaging method that can be used to elucidate the small-molecule composition of tissues and map their spatial information using two-dimensional ion images. This technique has been used to investigate the molecular profiles of variety of tissues, including within the central nervous system, specifically the brain and spinal cord. To our knowledge, this technique has yet to be applied to tissues of the peripheral nervous system (PNS). Data generated from such analyses are expected to advance the characterization of these structures. The study aimed to: (i) establish whether DESI-MSI can discriminate the molecular characteristics of peripheral nerves and distinguish them from surrounding tissues and (ii) assess whether different peripheral nerve subtypes are characterized by unique molecular profiles. Four different nerves for which are known to carry various nerve fiber types were harvested from a fresh cadaveric donor: mixed, motor and sensory (sciatic and femoral); cutaneous, sensory (sural); and autonomic (vagus). Tissue samples were harvested to include the nerve bundles in addition to surrounding connective tissue. Samples were flash-frozen, embedded in optimal cutting temperature compound in cross-section, and sectioned at 14 μm. Following DESI-MSI analysis, identical tissue sections were stained with hematoxylin and eosin. In this proof-of-concept study, a combination of multivariate and univariate statistical methods was used to evaluate molecular differences between the nerve and adjacent tissue and between nerve subtypes. The acquired mass spectral profiles of the peripheral nerve samples presented trends in ion abundances that seemed to be characteristic of nerve tissue and spatially corresponded to the associated histology of the tissue sections. Principal component analysis (PCA) supported the separation of the samples into distinct nerve and adjacent tissue classes. This classification was further supported by the K-means clustering analysis, which showed separation of the nerve and background ions. Differences in ion expression were confirmed using ANOVA which identified statistically significant differences in ion expression between the nerve subtypes. The PCA plot suggested some separation of the nerve subtypes into four classes which corresponded with the nerve types. This was supported by the K-means clustering. Some overlap in classes was noted in these two clustering analyses. This study provides emerging evidence that DESI-MSI is an effective tool for metabolomic profiling of peripheral nerves. Our results suggest that peripheral nerves have molecular profiles that are distinct from the surrounding connective tissues and that DESI-MSI may be able to discriminate between nerve subtypes. DESI-MSI of peripheral nerves may be a valuable technique that could be used to improve our understanding of peripheral nerve anatomy and physiology. The ability to utilize ambient mass spectrometry techniques in real time could also provide an unprecedented advantage for surgical decision making, including in nerve-sparing procedures in the future.
Collapse
Affiliation(s)
- Diane Tomalty
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Olivia Giovannetti
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Leah Velikonja
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Jasica Munday
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Martin Kaufmann
- Department of SurgeryQueen's UniversityKingstonOntarioCanada
- Gastrointestinal Diseases Research UnitKingston Health Sciences CenterKingstonOntarioCanada
| | - Natasha Iaboni
- Department of Pathology and Molecular MedicineQueen's UniversityKingstonOntarioCanada
| | - Amoon Jamzad
- School of ComputingQueen's UniversityKingstonOntarioCanada
| | - Rachel Rubino
- Division of Cancer Biology and GeneticsQueen's Cancer Research InstituteKingstonOntarioCanada
| | | | - Parvin Mousavi
- School of ComputingQueen's UniversityKingstonOntarioCanada
| | - Christopher J. B. Nicol
- Department of Pathology and Molecular MedicineQueen's UniversityKingstonOntarioCanada
- Division of Cancer Biology and GeneticsQueen's Cancer Research InstituteKingstonOntarioCanada
| | - John F. Rudan
- Department of SurgeryQueen's UniversityKingstonOntarioCanada
| | - Michael A. Adams
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
20
|
Oleson S, Cao J, Wang X, Liu Z. In vivo tracing of the ascending vagal projections to the brain with manganese enhanced magnetic resonance imaging. Front Neurosci 2023; 17:1254097. [PMID: 37781260 PMCID: PMC10540305 DOI: 10.3389/fnins.2023.1254097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction The vagus nerve, the primary neural pathway mediating brain-body interactions, plays an essential role in transmitting bodily signals to the brain. Despite its significance, our understanding of the detailed organization and functionality of vagal afferent projections remains incomplete. Methods In this study, we utilized manganese-enhanced magnetic resonance imaging (MEMRI) as a non-invasive and in vivo method for tracing vagal nerve projections to the brainstem and assessing their functional dependence on cervical vagus nerve stimulation (VNS). Manganese chloride solution was injected into the nodose ganglion of rats, and T1-weighted MRI scans were performed at both 12 and 24 h after the injection. Results Our findings reveal that vagal afferent neurons can uptake and transport manganese ions, serving as a surrogate for calcium ions, to the nucleus tractus solitarius (NTS) in the brainstem. In the absence of VNS, we observed significant contrast enhancements of around 19-24% in the NTS ipsilateral to the injection side. Application of VNS for 4 h further promoted nerve activity, leading to greater contrast enhancements of 40-43% in the NTS. Discussion These results demonstrate the potential of MEMRI for high-resolution, activity-dependent tracing of vagal afferents, providing a valuable tool for the structural and functional assessment of the vagus nerve and its influence on brain activity.
Collapse
Affiliation(s)
- Steven Oleson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Jiayue Cao
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Xiaokai Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Zhongming Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Electrical Engineering Computer Science, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
21
|
Elamin ABA, Forsat K, Senok SS, Goswami N. Vagus Nerve Stimulation and Its Cardioprotective Abilities: A Systematic Review. J Clin Med 2023; 12:jcm12051717. [PMID: 36902505 PMCID: PMC10003006 DOI: 10.3390/jcm12051717] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Despite the vagus nerve stimulator (VNS) being used in neuroscience, it has recently been highlighted that it has cardioprotective functions. However, many studies related to VNS are not mechanistic in nature. This systematic review aims to focus on the role of VNS in cardioprotective therapy, selective vagus nerve stimulators (sVNS), and their functional capabilities. A systemic review of the current literature was conducted on VNS, sVNS, and their ability to induce positive effects on arrhythmias, cardiac arrest, myocardial ischemia/reperfusion injury, and heart failure. Both experimental and clinical studies were reviewed and assessed separately. Of 522 research articles retrieved from literature archives, 35 met the inclusion criteria and were included in the review. Literature analysis proves that combining fiber-type selectivity with spatially-targeted vagus nerve stimulation is feasible. The role of VNS as a tool for modulating heart dynamics, inflammatory response, and structural cellular components was prominently seen across the literature. The application of transcutaneous VNS, as opposed to implanted electrodes, provides the best clinical outcome with minimal side effects. VNS presents a method for future cardiovascular treatment that can modulate human cardiac physiology. However, continued research is needed for further insight.
Collapse
Affiliation(s)
| | - Kowthar Forsat
- College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Solomon Silas Senok
- College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Nandu Goswami
- Institute of Physiology (Gravitational Physiology and Medicine), Medical University of Graz, 8036 Graz, Austria
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
- Correspondence:
| |
Collapse
|
22
|
Huffman WJ, Musselman ED, Pelot NA, Grill WM. Measuring and modeling the effects of vagus nerve stimulation on heart rate and laryngeal muscles. Bioelectron Med 2023; 9:3. [PMID: 36797733 PMCID: PMC9936668 DOI: 10.1186/s42234-023-00107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Reduced heart rate (HR) during vagus nerve stimulation (VNS) is associated with therapy for heart failure, but stimulation frequency and amplitude are limited by patient tolerance. An understanding of physiological responses to parameter adjustments would allow differential control of therapeutic and side effects. To investigate selective modulation of the physiological responses to VNS, we quantified the effects and interactions of parameter selection on two physiological outcomes: one related to therapy (reduced HR) and one related to side effects (laryngeal muscle EMG). METHODS We applied a broad range of stimulation parameters (mean pulse rates (MPR), intra-burst frequencies, and amplitudes) to the vagus nerve of anesthetized mice. We leveraged the in vivo recordings to parameterize and validate computational models of HR and laryngeal muscle activity across amplitudes and temporal patterns of VNS. We constructed a finite element model of excitation of fibers within the mouse cervical vagus nerve. RESULTS HR decreased with increased amplitude, increased MPR, and decreased intra-burst frequency. EMG increased with increased MPR. Preferential HR effects over laryngeal EMG effects required combined adjustments of amplitude and MPR. The model of HR responses highlighted contributions of ganglionic filtering to VNS-evoked changes in HR at high stimulation frequencies. Overlap in activation thresholds between small and large modeled fibers was consistent with the overlap in dynamic ranges of related physiological measures (HR and EMG). CONCLUSION The present study provides insights into physiological responses to VNS required for informed parameter adjustment to modulate selectively therapeutic effects and side effects.
Collapse
Affiliation(s)
- William J. Huffman
- Department of Biomedical Engineering, Duke University, Fitzpatrick CIEMAS, Box 90281, Room 1427, 101 Science Drive, Durham, NC 27708-0281 USA
| | - Eric D. Musselman
- Department of Biomedical Engineering, Duke University, Fitzpatrick CIEMAS, Box 90281, Room 1427, 101 Science Drive, Durham, NC 27708-0281 USA
| | - Nicole A. Pelot
- Department of Biomedical Engineering, Duke University, Fitzpatrick CIEMAS, Box 90281, Room 1427, 101 Science Drive, Durham, NC 27708-0281 USA
| | - Warren M. Grill
- Department of Biomedical Engineering, Duke University, Fitzpatrick CIEMAS, Box 90281, Room 1427, 101 Science Drive, Durham, NC 27708-0281 USA
- Department of Electrical and Computer Engineering, Duke University, Durham, USA
- Department of Neurobiology Engineering, Duke University, Durham, USA
- Department of Neurosurgery Engineering, Duke University, Durham, USA
| |
Collapse
|
23
|
Damasio A, Damasio H. Feelings Are the Source of Consciousness. Neural Comput 2023; 35:277-286. [PMID: 35896152 DOI: 10.1162/neco_a_01521] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/13/2022] [Indexed: 11/04/2022]
Abstract
In this view, we address the problem of consciousness, and although we focus on its human presentation, we note that the phenomenon is present in numerous nonhuman species and use findings from a variety of animal studies to explain our hypothesis for how consciousness is made. Consciousness occurs when mind contents, such as perceptions and thoughts, are spontaneously identified as belonging to a specific organism/owner. Conscious minds are said to have a self that experiences mental events. We hypothesize that the automatic identification that associates minds and organisms is provided by a continuous flow of homeostatic feelings. Those feelings arise from the uninterrupted process of life regulation and correspond to both salient physiological fluctuations such as hunger, pain, well-being, or malaise, as well as to states closer to metabolic equilibrium and best described as feelings of life/existence, such as breathing or body temperature. We also hypothesize that homeostatic feelings were the inaugural phenomena of consciousness in biological evolution and venture that they were selected because the information they provided regarding the current state of life regulation conferred extraordinary advantages to the organisms so endowed. The "knowledge" carried by conscious homeostatic feelings provided "overt" guidance for life regulation, an advance over the covert regulation present in nonconscious organisms. Finally, we outline a mechanism for the generation of feelings based on a two-way interaction between interoceptive components of the nervous system and a particular set of nonneural components of the organism's interior, namely, viscera and circulating chemical molecules involved in their operations. Feelings emerge from this interaction as continuous and hybrid phenomena, related simultaneously to two series of events. The first is best described by the terms neural/representational/and mental and the second by the terms nonneural/visceral/and chemical. We note that this account offers a solution for the mind-body problem: homeostatic feelings constitute the "mental" version of bodily processes.
Collapse
Affiliation(s)
- Antonio Damasio
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089-2921, U.S.A.
| | - Hanna Damasio
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089-2921, U.S.A.
| |
Collapse
|
24
|
Reissig LF, Carrero-Rojas G, Maierhofer U, Moghaddam AS, Hainfellner A, Gesslbauer B, Haider T, Streicher J, Aszmann OC, Pastor AM, Weninger WJ, Blumer R. Spinal cord from body donors is suitable for multicolor immunofluorescence. Histochem Cell Biol 2023; 159:23-45. [PMID: 36201037 PMCID: PMC9899749 DOI: 10.1007/s00418-022-02154-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2022] [Indexed: 02/07/2023]
Abstract
Immunohistochemistry is a powerful tool for studying neuronal tissue from humans at the molecular level. Obtaining fresh neuronal tissue from human organ donors is difficult and sometimes impossible. In anatomical body donations, neuronal tissue is dedicated to research purposes and because of its easier availability, it may be an alternative source for research. In this study, we harvested spinal cord from a single organ donor 2 h (h) postmortem and spinal cord from body donors 24, 48, and 72 h postmortem and tested how long after death, valid multi-color immunofluorescence or horseradish peroxidase (HRP) immunohistochemistry is possible. We used general and specific neuronal markers and glial markers for immunolabeling experiments. Here we showed that it is possible to visualize molecularly different neuronal elements with high precision in the body donor spinal cord 24 h postmortem and the quality of the image data was comparable to those from the fresh organ donor spinal cord. High-contrast multicolor images of the 24-h spinal cords allowed accurate automated quantification of different neuronal elements in the same sample. Although there was antibody-specific signal reduction over postmortem intervals, the signal quality for most antibodies was acceptable at 48 h but no longer at 72 h postmortem. In conclusion, our study has defined a postmortem time window of more than 24 h during which valid immunohistochemical information can be obtained from the body donor spinal cord. Due to the easier availability, neuronal tissue from body donors is an alternative source for basic and clinical research.
Collapse
Affiliation(s)
- Lukas F. Reissig
- Division of Anatomy, MIC, Medical University Vienna, Vienna, Austria
| | | | - Udo Maierhofer
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | - Bernhard Gesslbauer
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Haider
- Department of Orthopedic and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Johannes Streicher
- Department of Anatomy and Biomechanics, Division of Anatomy and Developmental Biology, Karl Landsteiner University of Health Science, Krems an der Donau, Austria
| | - Oskar C. Aszmann
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Angel M. Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - Roland Blumer
- Division of Anatomy, MIC, Medical University Vienna, Vienna, Austria
| |
Collapse
|
25
|
Donahue MJ, Ejneby MS, Jakešová M, Caravaca AS, Andersson G, Sahalianov I, Đerek V, Hult H, Olofsson PS, Głowacki ED. Wireless optoelectronic devices for vagus nerve stimulation in mice. J Neural Eng 2022; 19. [PMID: 36356313 DOI: 10.1088/1741-2552/aca1e3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/10/2022] [Indexed: 11/12/2022]
Abstract
Objective.Vagus nerve stimulation (VNS) is a promising approach for the treatment of a wide variety of debilitating conditions, including autoimmune diseases and intractable epilepsy. Much remains to be learned about the molecular mechanisms involved in vagus nerve regulation of organ function. Despite an abundance of well-characterized rodent models of common chronic diseases, currently available technologies are rarely suitable for the required long-term experiments in freely moving animals, particularly experimental mice. Due to challenging anatomical limitations, many relevant experiments require miniaturized, less invasive, and wireless devices for precise stimulation of the vagus nerve and other peripheral nerves of interest. Our objective is to outline possible solutions to this problem by using nongenetic light-based stimulation.Approach.We describe how to design and benchmark new microstimulation devices that are based on transcutaneous photovoltaic stimulation. The approach is to use wired multielectrode cuffs to test different stimulation patterns, and then build photovoltaic stimulators to generate the most optimal patterns. We validate stimulation through heart rate analysis.Main results.A range of different stimulation geometries are explored with large differences in performance. Two types of photovoltaic devices are fabricated to deliver stimulation: photocapacitors and photovoltaic flags. The former is simple and more compact, but has limited efficiency. The photovoltaic flag approach is more elaborate, but highly efficient. Both can be used for wireless actuation of the vagus nerve using light impulses.Significance.These approaches can enable studies in small animals that were previously challenging, such as long-termin vivostudies for mapping functional vagus nerve innervation. This new knowledge may have potential to support clinical translation of VNS for treatment of select inflammatory and neurologic diseases.
Collapse
Affiliation(s)
- Mary J Donahue
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Malin Silverå Ejneby
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden.,Wallenberg Centre for Molecular Medicine, Linköping University, SE-58185 Linköping, Sweden
| | - Marie Jakešová
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - April S Caravaca
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, Sweden
| | | | - Ihor Sahalianov
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Vedran Đerek
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, 10000 Zagreb, Croatia
| | - Henrik Hult
- Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, Sweden.,Department of Mathematics, KTH, 11428 Stockholm, Sweden
| | - Peder S Olofsson
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, Sweden.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
| | - Eric Daniel Głowacki
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden.,Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
26
|
Kronsteiner B, Zopf LM, Heimel P, Oberoi G, Kramer AM, Slezak P, Weninger WJ, Podesser BK, Kiss A, Moscato F. Mapping the functional anatomy and topography of the cardiac autonomic innervation for selective cardiac neuromodulation using MicroCT. Front Cell Dev Biol 2022; 10:968870. [PMID: 36172280 PMCID: PMC9511100 DOI: 10.3389/fcell.2022.968870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/24/2022] [Indexed: 01/21/2023] Open
Abstract
Background: Vagus nerve stimulation (VNS) has gained great importance as a promising therapy for a myriad of diseases. Of particular interest is the therapy of cardiovascular diseases, such as heart failure or atrial fibrillation using selective cardiac VNS. However, there is still a lack of organ-specific anatomical knowledge about the fascicular anatomy and topography of the cardiac branch (CB), which diminishes the therapeutic possibilities for selective cardiac neuromodulation. Here, we established a topographical and anatomical map of the superior cardiac VN in two animal species to dissect cervical and cardiac VN morphology. Methods: Autonomic nerves including superior CBs were harvested from domestic pigs and New Zeeland rabbits followed by imaging with microcomputed tomography (µCT) and 3D rendering. The data were analyzed in terms of relevant topographical and anatomical parameters. Results: Our data showed that cardiac vagal fascicles remained separated from other VN fascicles up to 22.19 mm (IQR 14.02-41.30 mm) in pigs and 7.68 mm (IQR 4.06-12.77 mm) in rabbits from the CB point and then started merging with other fascicles. Exchanges of nerve fascicles between sympathetic trunk (ST) and VN were observed in 3 out of 11 nerves, which might cause additional unwanted effects in unselective VNS. Our 3D rendered digital model of the cardiac fascicles was generated showing that CB first remained on the medial side where it branched off the VN, as also shown in the µCT data of 11 pig nerves, and then migrated towards the ventromedial site the further it was traced cranially. Conclusion: Our data provided an anatomical map of the cardiac vagal branches including cervical VN and ST for future approaches of selective cardiac neurostimulation, indicating the best position of selective cardiac VNS just above the CB point.
Collapse
Affiliation(s)
- Bettina Kronsteiner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Lydia M. Zopf
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Patrick Heimel
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Dental Clinic Vienna, Vienna, Austria
| | - Gunpreet Oberoi
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Anne M. Kramer
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Paul Slezak
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Wolfgang J. Weninger
- Department of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Bruno K. Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
27
|
Carron R, Roncon P, Lagarde S, Dibué M, Zanello M, Bartolomei F. Latest Views on the Mechanisms of Action of Surgically Implanted Cervical Vagal Nerve Stimulation in Epilepsy. Neuromodulation 2022; 26:498-506. [PMID: 36064522 DOI: 10.1016/j.neurom.2022.08.447] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/05/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Vagus nerve stimulation (VNS) is approved as an adjunctive treatment for drug-resistant epilepsy. Although there is a substantial amount of literature aiming at unraveling the mechanisms of action of VNS in epilepsy, it is still unclear how the cascade of events triggered by VNS leads to its antiepileptic effect. OBJECTIVE In this review, we integrated available peer-reviewed data on the effects of VNS in clinical and experimental research to identify those that are putatively responsible for its therapeutic effect. The topic of transcutaneous VNS will not be covered owing to the current lack of data supporting the differences and commonalities of its mechanisms of action in relation to invasive VNS. SUMMARY OF THE MAIN FINDINGS There is compelling evidence that the effect is obtained through the stimulation of large-diameter afferent myelinated fibers that project to the solitary tract nucleus, then to the parabrachial nucleus, which in turn alters the activity of the limbic system, thalamus, and cortex. VNS-induced catecholamine release from the locus coeruleus in the brainstem plays a pivotal role. Functional imaging studies tend to point toward a common vagal network that comes into play, made up of the amygdalo-hippocampal regions, left thalamus, and insular cortex. CONCLUSIONS Even though some crucial pieces are missing, neurochemical, molecular, cellular, and electrophysiological changes occur within the vagal afferent network at three main levels (the brainstem, the limbic system [amygdala and hippocampus], and the cortex). At this final level, VNS notably alters functional connectivity, which is known to be abnormally high within the epileptic zone and was shown to be significantly decreased by VNS in responders. The effect of crucial VNS parameters such as frequency or current amplitude on functional connectivity metrics is of utmost importance and requires further investigation.
Collapse
|
28
|
Ottaviani MM, Macefield VG. Structure and Functions of the Vagus Nerve in Mammals. Compr Physiol 2022; 12:3989-4037. [PMID: 35950655 DOI: 10.1002/cphy.c210042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We review the structure and function of the vagus nerve, drawing on information obtained in humans and experimental animals. The vagus nerve is the largest and longest cranial nerve, supplying structures in the neck, thorax, and abdomen. It is also the only cranial nerve in which the vast majority of its innervation territory resides outside the head. While belonging to the parasympathetic division of the autonomic nervous system, the nerve is primarily sensory-it is dominated by sensory axons. We discuss the macroscopic and microscopic features of the nerve, including a detailed description of its extensive territory. Histochemical and genetic profiles of afferent and efferent axons are also detailed, as are the central nuclei involved in the processing of sensory information conveyed by the vagus nerve and the generation of motor (including parasympathetic) outflow via the vagus nerve. We provide a comprehensive review of the physiological roles of vagal sensory and motor neurons in control of the cardiovascular, respiratory, and gastrointestinal systems, and finish with a discussion on the interactions between the vagus nerve and the immune system. © 2022 American Physiological Society. Compr Physiol 12: 1-49, 2022.
Collapse
Affiliation(s)
- Matteo M Ottaviani
- Department of Neurosurgery, Università Politecnica delle Marche, Ancona, Italy
| | - Vaughan G Macefield
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia.,Department of Anatomy & Physiology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
29
|
Ahmed U, Chang YC, Zafeiropoulos S, Nassrallah Z, Miller L, Zanos S. Strategies for precision vagus neuromodulation. Bioelectron Med 2022; 8:9. [PMID: 35637543 PMCID: PMC9150383 DOI: 10.1186/s42234-022-00091-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
The vagus nerve is involved in the autonomic regulation of physiological homeostasis, through vast innervation of cervical, thoracic and abdominal visceral organs. Stimulation of the vagus with bioelectronic devices represents a therapeutic opportunity for several disorders implicating the autonomic nervous system and affecting different organs. During clinical translation, vagus stimulation therapies may benefit from a precision medicine approach, in which stimulation accommodates individual variability due to nerve anatomy, nerve-electrode interface or disease state and aims at eliciting therapeutic effects in targeted organs, while minimally affecting non-targeted organs. In this review, we discuss the anatomical and physiological basis for precision neuromodulation of the vagus at the level of nerve fibers, fascicles, branches and innervated organs. We then discuss different strategies for precision vagus neuromodulation, including fascicle- or fiber-selective cervical vagus nerve stimulation, stimulation of vagal branches near the end-organs, and ultrasound stimulation of vagus terminals at the end-organs themselves. Finally, we summarize targets for vagus neuromodulation in neurological, cardiovascular and gastrointestinal disorders and suggest potential precision neuromodulation strategies that could form the basis for effective and safe therapies.
Collapse
Affiliation(s)
- Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Stefanos Zafeiropoulos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Zeinab Nassrallah
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Larry Miller
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA.
| |
Collapse
|
30
|
Tarotin I, Mastitskaya S, Ravagli E, Perkins JD, Holder D, Aristovich K. Overcoming temporal dispersion for measurement of activity-related impedance changes in unmyelinated nerves. J Neural Eng 2022; 19. [PMID: 35413701 DOI: 10.1088/1741-2552/ac669a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 11/11/2022]
Abstract
Objective.Fast neural electrical impedance tomography is an imaging technique that has been successful in visualising electrically evoked activity of myelinated fibres in peripheral nerves by measurement of the impedance changes (dZ) accompanying excitation. However, imaging of unmyelinated fibres is challenging due to temporal dispersion (TP) which occurs due to variability in conduction velocities of the fibres and leads to a decrease of the signal below the noise with distance from the stimulus. To overcome TP and allow electrical impedance tomography imaging in unmyelinated nerves, a new experimental and signal processing paradigm is required allowing dZ measurement further from the site of stimulation than compound neural activity is visible. The development of such a paradigm was the main objective of this study.Approach.A finite element-based statistical model of TP in porcine subdiaphragmatic nerve was developed and experimentally validatedex-vivo. Two paradigms for nerve stimulation and processing of the resulting data-continuous stimulation and trains of stimuli, were implemented; the optimal paradigm for recording dispersed dZ in unmyelinated nerves was determined.Main results.While continuous stimulation and coherent spikes averaging led to higher signal-to-noise ratios (SNRs) at close distances from the stimulus, stimulation by trains was more consistent across distances and allowed dZ measurement at up to 15 cm from the stimulus (SNR = 1.8 ± 0.8) if averaged for 30 min.Significance.The study develops a method that for the first time allows measurement of dZ in unmyelinated nerves in simulation and experiment, at the distances where compound action potentials are fully dispersed.
Collapse
Affiliation(s)
- Ilya Tarotin
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Svetlana Mastitskaya
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Enrico Ravagli
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Justin D Perkins
- Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, Hatfield, United Kingdom
| | - David Holder
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Kirill Aristovich
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
31
|
Ottaviani MM, Vallone F, Micera S, Recchia FA. Closed-Loop Vagus Nerve Stimulation for the Treatment of Cardiovascular Diseases: State of the Art and Future Directions. Front Cardiovasc Med 2022; 9:866957. [PMID: 35463766 PMCID: PMC9021417 DOI: 10.3389/fcvm.2022.866957] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
The autonomic nervous system exerts a fine beat-to-beat regulation of cardiovascular functions and is consequently involved in the onset and progression of many cardiovascular diseases (CVDs). Selective neuromodulation of the brain-heart axis with advanced neurotechnologies is an emerging approach to corroborate CVDs treatment when classical pharmacological agents show limited effectiveness. The vagus nerve is a major component of the cardiac neuroaxis, and vagus nerve stimulation (VNS) is a promising application to restore autonomic function under various pathological conditions. VNS has led to encouraging results in animal models of CVDs, but its translation to clinical practice has not been equally successful, calling for more investigation to optimize this technique. Herein we reviewed the state of the art of VNS for CVDs and discuss avenues for therapeutic optimization. Firstly, we provided a succinct description of cardiac vagal innervation anatomy and physiology and principles of VNS. Then, we examined the main clinical applications of VNS in CVDs and the related open challenges. Finally, we presented preclinical studies that aim at overcoming VNS limitations through optimization of anatomical targets, development of novel neural interface technologies, and design of efficient VNS closed-loop protocols.
Collapse
Affiliation(s)
- Matteo Maria Ottaviani
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Fabio Vallone
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Silvestro Micera
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Fabio A. Recchia
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
32
|
The Isolated Mouse Jejunal Afferent Nerve Assay as a Tool to Assess the Effect of Botulinum Neurotoxins in Visceral Nociception. Toxins (Basel) 2022; 14:toxins14030205. [PMID: 35324702 PMCID: PMC8953691 DOI: 10.3390/toxins14030205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/10/2022] Open
Abstract
For the past two decades, botulinum neurotoxin A (BoNT/A) has been described as a strong candidate in the treatment of pain. With the production of modified toxins and the potential new applications at the visceral level, there is a real need for tools allowing the assessment of these compounds. In this study, we evaluated the jejunal mesenteric afferent nerve assay to investigate BoNT/A effects on visceral nociception. This ex vivo model allowed the continuous recording of neuronal activity in response to various stimuli. BoNT/A was applied intraluminally during three successive distensions, and the jejunum was distended every 15 min for 3 h. Finally, samples were exposed to external capsaicin. BoNT/A intoxication was validated at the molecular level with the presence of cleaved synaptosomal-associated protein of 25 (SNAP25) in nerve terminals in the mucosa and musculosa layers 3 h after treatment. BoNT/A had a progressive inhibitory effect on multiunit discharge frequency induced by jejunal distension, with a significant decrease from 1 h after application without change in jejunal compliance. The capsaicin-induced discharge was also affected by the toxin. This assay allowed the description of an inhibitory effect of BoNT/A on afferent nerve activity in response to distension and capsaicin, suggesting BoNT/A could alleviate visceral nociception.
Collapse
|
33
|
Falvey A, Metz CN, Tracey KJ, Pavlov VA. Peripheral nerve stimulation and immunity: the expanding opportunities for providing mechanistic insight and therapeutic intervention. Int Immunol 2022; 34:107-118. [PMID: 34498051 PMCID: PMC8783605 DOI: 10.1093/intimm/dxab068] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/07/2021] [Indexed: 12/29/2022] Open
Abstract
Pre-clinical research advances our understanding of the vagus nerve-mediated regulation of immunity and clinical trials successfully utilize electrical vagus nerve stimulation in the treatment of patients with inflammatory disorders. This symbiotic relationship between pre-clinical and clinical research exploring the vagus nerve-based 'inflammatory reflex' has substantially contributed to establishing the field of bioelectronic medicine. Recent studies identify a crosstalk between the vagus nerve and other neural circuitries in controlling inflammation and delineate new neural immunoregulatory pathways. Here we outline current mechanistic insights into the role of vagal and non-vagal neural pathways in neuro-immune communication and inflammatory regulation. We also provide a timely overview of expanding opportunities for bioelectronic neuromodulation in the treatment of various inflammatory disorders.
Collapse
Affiliation(s)
- Aidan Falvey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Christine N Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kevin J Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Valentin A Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
34
|
Berger A, Vespa S, Dricot L, Dumoulin M, Iachim E, Doguet P, Vandewalle G, El Tahry R. How Is the Norepinephrine System Involved in the Antiepileptic Effects of Vagus Nerve Stimulation? Front Neurosci 2021; 15:790943. [PMID: 34924947 PMCID: PMC8675889 DOI: 10.3389/fnins.2021.790943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023] Open
Abstract
Vagus Nerve Stimulation (VNS) is an adjunctive treatment for patients suffering from inoperable drug-resistant epilepsy. Although a complete understanding of the mediators involved in the antiepileptic effects of VNS and their complex interactions is lacking, VNS is known to trigger the release of neurotransmitters that have seizure-suppressing effects. In particular, norepinephrine (NE) is a neurotransmitter that has been associated with the clinical effects of VNS by preventing seizure development and by inducing long-term plastic changes that could restore a normal function of the brain circuitry. However, the biological requisites to become responder to VNS are still unknown. In this review, we report evidence of the critical involvement of NE in the antiepileptic effects of VNS in rodents and humans. Moreover, we emphasize the hypothesis that the functional integrity of the noradrenergic system could be a determining factor to obtain clinical benefits from the therapy. Finally, encouraging avenues of research involving NE in VNS treatment are discussed. These could lead to the personalization of the stimulation parameters to maximize the antiepileptic effects and potentially improve the response rate to the therapy.
Collapse
Affiliation(s)
- Alexandre Berger
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Synergia Medical SA, Mont-Saint-Guibert, Belgium.,GIGA-Cyclotron Research Center-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Simone Vespa
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Laurence Dricot
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Manon Dumoulin
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Evelina Iachim
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Department of Pediatric Neurology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Gilles Vandewalle
- GIGA-Cyclotron Research Center-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Riëm El Tahry
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Center for Refractory Epilepsy, Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
35
|
Verma N, Graham RD, Mudge J, Trevathan JK, Franke M, Shoffstall AJ, Williams J, Dalrymple AN, Fisher LE, Weber DJ, Lempka SF, Ludwig KA. Augmented Transcutaneous Stimulation Using an Injectable Electrode: A Computational Study. Front Bioeng Biotechnol 2021; 9:796042. [PMID: 34988068 PMCID: PMC8722711 DOI: 10.3389/fbioe.2021.796042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Minimally invasive neuromodulation technologies seek to marry the neural selectivity of implantable devices with the low-cost and non-invasive nature of transcutaneous electrical stimulation (TES). The Injectrode® is a needle-delivered electrode that is injected onto neural structures under image guidance. Power is then transcutaneously delivered to the Injectrode using surface electrodes. The Injectrode serves as a low-impedance conduit to guide current to the deep on-target nerve, reducing activation thresholds by an order of magnitude compared to using only surface stimulation electrodes. To minimize off-target recruitment of cutaneous fibers, the energy transfer efficiency from the surface electrodes to the Injectrode must be optimized. TES energy is transferred to the Injectrode through both capacitive and resistive mechanisms. Electrostatic finite element models generally used in TES research consider only the resistive means of energy transfer by defining tissue conductivities. Here, we present an electroquasistatic model, taking into consideration both the conductivity and permittivity of tissue, to understand transcutaneous power delivery to the Injectrode. The model was validated with measurements taken from (n = 4) swine cadavers. We used the validated model to investigate system and anatomic parameters that influence the coupling efficiency of the Injectrode energy delivery system. Our work suggests the relevance of electroquasistatic models to account for capacitive charge transfer mechanisms when studying TES, particularly when high-frequency voltage components are present, such as those used for voltage-controlled pulses and sinusoidal nerve blocks.
Collapse
Affiliation(s)
- Nishant Verma
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States
| | - Robert D. Graham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Jonah Mudge
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States
| | - James K. Trevathan
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States
| | | | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Justin Williams
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States
| | - Ashley N. Dalrymple
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
- Rehab Neural Engineering Labs (RNEL), Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lee E. Fisher
- Rehab Neural Engineering Labs (RNEL), Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Douglas J. Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
- Rehab Neural Engineering Labs (RNEL), Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Scott F. Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States
- Department of Neurosurgery, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
36
|
Havton LA, Biscola NP, Stern E, Mihaylov PV, Kubal CA, Wo JM, Gupta A, Baronowsky E, Ward MP, Jaffey DM, Powley TL. Human organ donor-derived vagus nerve biopsies allow for well-preserved ultrastructure and high-resolution mapping of myelinated and unmyelinated fibers. Sci Rep 2021; 11:23831. [PMID: 34903749 PMCID: PMC8668909 DOI: 10.1038/s41598-021-03248-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
The vagus nerve provides motor, sensory, and autonomic innervation of multiple organs, and electrical vagus nerve stimulation (VNS) provides an adjunctive treatment option for e.g. medication-refractory epilepsy and treatment-resistant depression. The mechanisms of action for VNS are not known, and high-resolution anatomical mapping of the human vagus nerve is needed to better understand its functional organization. Electron microscopy (EM) is required for the detection of both myelinated and unmyelinated axons, but access to well-preserved human vagus nerves for ultrastructural studies is sparse. Intact human vagus nerve samples were procured intra-operatively from deceased organ donors, and tissues were immediately immersion fixed and processed for EM. Ultrastructural studies of cervical and sub-diaphragmatic vagus nerve segments showed excellent preservation of the lamellated wall of myelin sheaths, and the axolemma of myelinated and unmyelinated fibers were intact. Microtubules, neurofilaments, and mitochondria were readily identified in the axoplasm, and the ultrastructural integrity of Schwann cell nuclei, Remak bundles, and basal lamina was also well preserved. Digital segmentation of myelinated and unmyelinated axons allowed for determination of fiber size and myelination. We propose a novel source of human vagus nerve tissues for detailed ultrastructural studies and mapping to support efforts to refine neuromodulation strategies, including VNS.
Collapse
Affiliation(s)
- Leif A Havton
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA.
| | - Natalia P Biscola
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther Stern
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Plamen V Mihaylov
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - John M Wo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anita Gupta
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elizabeth Baronowsky
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Matthew P Ward
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Deborah M Jaffey
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Terry L Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
37
|
Neuhuber WL, Berthoud HR. Functional anatomy of the vagus system - Emphasis on the somato-visceral interface. Auton Neurosci 2021; 236:102887. [PMID: 34634680 PMCID: PMC8627476 DOI: 10.1016/j.autneu.2021.102887] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
Due to its pivotal role in autonomic networks, the vagus attracts continuous interest from both basic scientists and clinicians. In particular, recent advances in vagus nerve stimulation strategies and their application to pathological conditions beyond epilepsy provide a good opportunity to recall basic features of vagal peripheral and central anatomy. In addition to the "classical" vagal brainstem nuclei, i.e., dorsal motor nucleus, nucleus ambiguus and nucleus tractus solitarii, the spinal trigeminal and paratrigeminal nuclei come into play as targets of vagal afferents. On the other hand, the nucleus of the solitary tract receives and integrates not only visceral but also somatic afferents. Thus, the vagus system participates significantly in what may be defined as "somato-visceral interface".
Collapse
Affiliation(s)
- Winfried L Neuhuber
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University, Krankenhausstrasse 9, Erlangen, Germany.
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| |
Collapse
|
38
|
Stakenborg N, Boeckxstaens GE. Bioelectronics in the brain-gut axis: focus on inflammatory bowel disease (IBD). Int Immunol 2021; 33:337-348. [PMID: 33788920 PMCID: PMC8183669 DOI: 10.1093/intimm/dxab014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence shows that intestinal homeostasis is mediated by cross-talk between the nervous system, enteric neurons and immune cells, together forming specialized neuroimmune units at distinct anatomical locations within the gut. In this review, we will particularly discuss how the intrinsic and extrinsic neuronal circuitry regulates macrophage function and phenotype in the gut during homeostasis and aberrant inflammation, such as observed in inflammatory bowel disease (IBD). Furthermore, we will provide an overview of basic and translational IBD research using these neuronal circuits as a novel therapeutic tool. Finally, we will highlight the different challenges ahead to make bioelectronic neuromodulation a standard treatment for intestinal immune-mediated diseases.
Collapse
Affiliation(s)
- Nathalie Stakenborg
- Center of Intestinal Neuro-immune Interaction, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Herestraat 49, O&N1 bus 701, Leuven 3000, Belgium
| | - Guy E Boeckxstaens
- Center of Intestinal Neuro-immune Interaction, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Herestraat 49, O&N1 bus 701, Leuven 3000, Belgium
| |
Collapse
|
39
|
Donegà M, Fjordbakk CT, Kirk J, Sokal DM, Gupta I, Hunsberger GE, Crawford A, Cook S, Viscasillas J, Stathopoulou TR, Miranda JA, Dopson WJ, Goodwin D, Rowles A, McGill P, McSloy A, Werling D, Witherington J, Chew DJ, Perkins JD. Human-relevant near-organ neuromodulation of the immune system via the splenic nerve. Proc Natl Acad Sci U S A 2021; 118:e2025428118. [PMID: 33972441 PMCID: PMC8157920 DOI: 10.1073/pnas.2025428118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuromodulation of immune function by stimulating the autonomic connections to the spleen has been demonstrated in rodent models. Consequently, neuroimmune modulation has been proposed as a new therapeutic strategy for the treatment of inflammatory conditions. However, demonstration of the translation of these immunomodulatory mechanisms in anatomically and physiologically relevant models is still lacking. Additionally, translational models are required to identify stimulation parameters that can be transferred to clinical applications of bioelectronic medicines. Here, we performed neuroanatomical and functional comparison of the mouse, rat, pig, and human splenic nerve using in vivo and ex vivo preparations. The pig was identified as a more suitable model of the human splenic innervation. Using functional electrophysiology, we developed a clinically relevant marker of splenic nerve engagement through stimulation-dependent reversible reduction in local blood flow. Translation of immunomodulatory mechanisms were then assessed using pig splenocytes and two models of acute inflammation in anesthetized pigs. The pig splenic nerve was shown to locally release noradrenaline upon stimulation, which was able to modulate cytokine production by pig splenocytes. Splenic nerve stimulation was found to promote cardiovascular protection as well as cytokine modulation in a high- and a low-dose lipopolysaccharide model, respectively. Importantly, splenic nerve-induced cytokine modulation was reproduced by stimulating the efferent trunk of the cervical vagus nerve. This work demonstrates that immune responses can be modulated by stimulation of spleen-targeted autonomic nerves in translational species and identifies splenic nerve stimulation parameters and biomarkers that are directly applicable to humans due to anatomical and electrophysiological similarities.
Collapse
Affiliation(s)
- Matteo Donegà
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom;
| | - Cathrine T Fjordbakk
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Joseph Kirk
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - David M Sokal
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Isha Gupta
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Gerald E Hunsberger
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Abbe Crawford
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Simon Cook
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Jaime Viscasillas
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | | | - Jason A Miranda
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Wesley J Dopson
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - David Goodwin
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Alison Rowles
- Non-Clinical Safety, GlaxoSmithKline, Ware SG12 0DP, United Kingdom
| | - Paul McGill
- Bioimaging, GlaxoSmithKline, Ware SG12 0DP, United Kingdom
| | - Alex McSloy
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Jason Witherington
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Daniel J Chew
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Justin D Perkins
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom;
| |
Collapse
|
40
|
Pelot NA, Goldhagen GB, Cariello JE, Musselman ED, Clissold KA, Ezzell JA, Grill WM. Quantified Morphology of the Cervical and Subdiaphragmatic Vagus Nerves of Human, Pig, and Rat. Front Neurosci 2020; 14:601479. [PMID: 33250710 PMCID: PMC7672126 DOI: 10.3389/fnins.2020.601479] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/13/2020] [Indexed: 12/27/2022] Open
Abstract
It is necessary to understand the morphology of the vagus nerve (VN) to design and deliver effective and selective vagus nerve stimulation (VNS) because nerve morphology influences fiber responses to electrical stimulation. Specifically, nerve diameter (and thus, electrode-fiber distance), fascicle diameter, fascicular organization, and perineurium thickness all significantly affect the responses of nerve fibers to electrical signals delivered through a cuff electrode. We quantified the morphology of cervical and subdiaphragmatic VNs in humans, pigs, and rats: effective nerve diameter, number of fascicles, effective fascicle diameters, proportions of endoneurial, perineurial, and epineurial tissues, and perineurium thickness. The human and pig VNs were comparable sizes (∼2 mm cervically; ∼1.6 mm subdiaphragmatically), while the rat nerves were ten times smaller. The pig nerves had ten times more fascicles-and the fascicles were smaller-than in human nerves (47 vs. 7 fascicles cervically; 38 vs. 5 fascicles subdiaphragmatically). Comparing the cervical to the subdiaphragmatic VNs, the nerves and fascicles were larger at the cervical level for all species and there were more fascicles for pigs. Human morphology generally exhibited greater variability across samples than pigs and rats. A prior study of human somatic nerves indicated that the ratio of perineurium thickness to fascicle diameter was approximately constant across fascicle diameters. However, our data found thicker human and pig VN perineurium than those prior data: the VNs had thicker perineurium for larger fascicles and thicker perineurium normalized by fascicle diameter for smaller fascicles. Understanding these differences in VN morphology between preclinical models and the clinical target, as well as the variability across individuals of a species, is essential for designing suitable cuff electrodes and stimulation parameters and for informing translation of preclinical results to clinical application to advance the therapeutic efficacy of VNS.
Collapse
Affiliation(s)
- Nicole A. Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Gabriel B. Goldhagen
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Jake E. Cariello
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Eric D. Musselman
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Kara A. Clissold
- Histology Research Core, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - J. Ashley Ezzell
- Histology Research Core, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Warren M. Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States
- Department of Neurobiology, Duke University, Durham, NC, United States
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
41
|
Chang YC, Cracchiolo M, Ahmed U, Mughrabi I, Gabalski A, Daytz A, Rieth L, Becker L, Datta-Chaudhuri T, Al-Abed Y, Zanos TP, Zanos S. Quantitative estimation of nerve fiber engagement by vagus nerve stimulation using physiological markers. Brain Stimul 2020; 13:1617-1630. [PMID: 32956868 DOI: 10.1016/j.brs.2020.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/31/2020] [Accepted: 09/04/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Cervical vagus nerve stimulation (VNS) is an emerging bioelectronic treatment for brain, metabolic, cardiovascular and immune disorders. Its desired and off-target effects are mediated by different nerve fiber populations and knowledge of their engagement could guide calibration and monitoring of VNS therapies. OBJECTIVE Stimulus-evoked compound action potentials (eCAPs) directly provide fiber engagement information but are currently not feasible in humans. A method to estimate fiber engagement through common, noninvasive physiological readouts could be used in place of eCAP measurements. METHODS In anesthetized rats, we recorded eCAPs while registering acute physiological response markers to VNS: cervical electromyography (EMG), changes in heart rate (ΔHR) and breathing interval (ΔBI). Quantitative models were established to capture the relationship between A-, B- and C-fiber type activation and those markers, and to quantitatively estimate fiber activation from physiological markers and stimulation parameters. RESULTS In bivariate analyses, we found that EMG correlates with A-fiber, ΔHR with B-fiber and ΔBI with C-fiber activation, in agreement with known physiological functions of the vagus. We compiled multivariate models for quantitative estimation of fiber engagement from these markers and stimulation parameters. Finally, we compiled frequency gain models that allow estimation of fiber engagement at a wide range of VNS frequencies. Our models, after calibration in humans, could provide noninvasive estimation of fiber engagement in current and future therapeutic applications of VNS.
Collapse
Affiliation(s)
- Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Marina Cracchiolo
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA; The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
| | - Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Ibrahim Mughrabi
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Arielle Gabalski
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Anna Daytz
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Loren Rieth
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Lance Becker
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Theodoros P Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
| |
Collapse
|