1
|
Hoffman-Sommer M, Piłka N, Anielska-Mazur A, Nowakowska J, Kozieradzka-Kiszkurno M, Pączkowski C, Jemioła-Rzemińska M, Steczkiewicz K, Dagdas Y, Swiezewska E. The TRAPPC8/TRS85 subunit of the Arabidopsis TRAPPIII tethering complex regulates endoplasmic reticulum function and autophagy. PLANT PHYSIOLOGY 2025; 197:kiaf042. [PMID: 40084709 PMCID: PMC11907232 DOI: 10.1093/plphys/kiaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/20/2024] [Indexed: 03/16/2025]
Abstract
Transport protein particle (TRAPP) tethering complexes are known for their function as Rab GTPase exchange factors. Two versions of the complex are considered functionally separate: TRAPPII, an activator of the Rab11 family (RabA in plants) GTPases that function in post-Golgi sorting, and TRAPPIII, activating Rab1 family (RabD in plants) members that regulate endoplasmic reticulum (ER)-to-Golgi trafficking and autophagy. In Arabidopsis (Arabidopsis thaliana), the TRAPPIII complex has been identified and its subunit composition established, but little is known about its functions. Here, we found that binary subunit interactions of the plant TRAPPIII complex are analogous to those of metazoan TRAPPIII, with the 2 large subunits TRAPPC8 and TRAPPC11 linking the TRAPP core and the small C12 to C13 dimer. To gain insight into the functions of TRAPPIII in plants, we characterized 2 A. thaliana trappc8 mutants. These mutants display abnormalities in plant morphology, particularly in flower and seed development. They also exhibit autophagic defects, a constitutive ER stress response, and elevated levels of the ER lipid dolichol (Dol), which is an indispensable cofactor in protein glycosylation. These results indicate that plant TRAPPC8 is involved in multiple cellular trafficking events and suggest a link between ER stress responses and Dol levels.
Collapse
Affiliation(s)
- Marta Hoffman-Sommer
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, ul. Pawinskiego 5a, Warsaw 02-106, Poland
| | - Natalia Piłka
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, ul. Pawinskiego 5a, Warsaw 02-106, Poland
| | - Anna Anielska-Mazur
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, ul. Pawinskiego 5a, Warsaw 02-106, Poland
| | - Julita Nowakowska
- Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, Warsaw 02-096, Poland
| | | | - Cezary Pączkowski
- Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, Warsaw 02-096, Poland
| | - Małgorzata Jemioła-Rzemińska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków 30-387, Poland
| | - Kamil Steczkiewicz
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, ul. Pawinskiego 5a, Warsaw 02-106, Poland
| | - Yasin Dagdas
- Austrian Academy of Sciences, Vienna BioCenter, Gregor Mendel Institute, Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Ewa Swiezewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, ul. Pawinskiego 5a, Warsaw 02-106, Poland
| |
Collapse
|
2
|
Lee J, Kang MH, Choi DM, Marmagne A, Park J, Lee H, Gwak E, Lee JC, Kim JI, Masclaux-Daubresse C, Lim PO. Phytochrome-interacting factors PIF4 and PIF5 directly regulate autophagy during leaf senescence in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1068-1084. [PMID: 39549273 DOI: 10.1093/jxb/erae469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/15/2024] [Indexed: 11/18/2024]
Abstract
During leaf senescence, autophagy plays a critical role by removing damaged cellular components and participating in nutrient remobilization to sink organs. However, how AUTOPHAGY (ATG) genes are regulated during natural leaf senescence remains largely unknown. In this study, we attempted to identify upstream transcriptional regulator(s) of ATG genes and their molecular basis during leaf senescence in Arabidopsis through the combined analyses of promoter binding, autophagy flux, and genetic interactions. We found that PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5 directly bind to the promoters of ATG5, ATG12a, ATG12b, ATG8a, ATG8e, ATG8f, and ATG8g, inducing their transcription. These target ATG genes are down-regulated in pif4, pif5, and pif4pif5 mutants, resulting in decreased autophagic activity and slower degradation of chloroplast proteins and chlorophyll. Conversely, overexpression of ATG8 genes accelerated protein degradation with early leaf senescence. Moreover, our data suggested partial suppression of the pif4pif5 phenotype by ATG8a overexpression. PIF4/PIF5 also influence senescence induced by nutrient starvation, another hallmark of the autophagy pathway. Furthermore, we observed that the PIF4/PIF5-ATG regulatory module may contribute to seed maturation. Our study not only unveils transcriptional regulators of autophagy in natural leaf senescence but also underscores the potential role of PIF4/PIF5 as functional regulators in leaf senescence and nutrient remobilization.
Collapse
Affiliation(s)
- Juhyeon Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Myeong Hoon Kang
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Da-Min Choi
- Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju 61186, Republic of Korea
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Jeehye Park
- School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Heeho Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Eunha Gwak
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jong-Chan Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju 61186, Republic of Korea
| | - Céline Masclaux-Daubresse
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Pyung Ok Lim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
3
|
Huang CC, Chang CH, Thi Truong TT, Wang WG, Lin CH, Chiang CY, Obayashi I, Huang HJ. Possible role of autophagy in microbial volatile pollutant-induced starch degradation and expression of hypoxia responsive genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125663. [PMID: 39798790 DOI: 10.1016/j.envpol.2025.125663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/24/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Autophagy is thought to be critically involved in the regulation of nutrient metabolism and gene expression. Nevertheless, little is known about its role in regulating starch metabolism and hypoxia responsive genes in plants exposed to microbial volatile pollutants. In the present study, we found that exposure of Arabidopsis to Enterobacter aerogene (E. aerogene) volatile pollutants induced autophagy, as indicated by autophagosome formation. The exposure also caused upregulation of autophagy-associated genes, such as ATGs, NBR1, ATI1, and ATG8e-regulating transcription factors. Additionally, exposure to E. aerogenes volatile pollutants induced starch degradation in the roots of Arabidopsis seedlings. Finally, we found that ATG7-deficiency negatively affected the expression of hypoxia-responsive genes (i.e HRE1, HRA1, and ADH1) and starch degradation induced by E. aerogenes volatile pollutants. Overall, our study reveals that microbial volatile pollutants can induce starch degradation and autophagy, which participates in the regulation of some hypoxia-responsive genes and starch metabolism. These findings help to define the role of autophagy in plant nutrient metabolism and regulation of gene expression under microbial volatile pollutant exposure. The insights gained may contribute to agricultural management when living organisms face challenges from microbial volatile pollutants.
Collapse
Affiliation(s)
- Chung-Chih Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Ching-Han Chang
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Taiwan.
| | - Tu-Trinh Thi Truong
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan; Faculty of Technology, The University of Danang-Campus in Kontum, Kon Tum City, Vietnam.
| | - Wu-Guei Wang
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan.
| | - Che-Hui Lin
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Chih-Yun Chiang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Iwai Obayashi
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan; Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Taiwan; Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
4
|
Haq SIU, Tariq F, Sama NU, Jamal H, Mohamed HI. Role of autophagy in plant growth and adaptation to salt stress. PLANTA 2025; 261:49. [PMID: 39885016 DOI: 10.1007/s00425-025-04615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
MAIN CONCLUSION Under salt stress, autophagy regulates ionic balance, scavenges ROS, and supports nutrient remobilization, thereby alleviating osmotic and oxidative damage. Salt stress is a major environmental challenge that significantly impacts plant growth and agricultural productivity by disrupting nutrient balance, inducing osmotic stress, and causing the accumulation of toxic ions like Na+. Autophagy, a key cellular degradation and recycling pathway, plays a critical role in enhancing plant salt tolerance by maintaining cellular homeostasis and mitigating stress-induced damage. While autophagy has traditionally been viewed as a response to nutrient starvation, recent research has highlighted its importance under various environmental stresses, particularly salt stress. Under such conditions, plants activate autophagy through distinct signaling pathways involving autophagy-related genes (ATGs), Target of Rapamycin (TOR) proteins, and reactive oxygen species (ROS). Salt stress induces the expression of ATG genes and promotes the formation of autophagosomes, which facilitate the degradation of damaged organelles, denatured proteins, and the sequestration of Na+ into vacuoles, thereby improving stress tolerance. Recent studies have also suggested that autophagy may play a direct role in salt stress signaling, linking it to the regulation of metabolic processes. This review discusses the molecular mechanisms underlying autophagy induction in plants under salt stress, including the roles of ATGs and TOR, as well as the physiological significance of autophagy in mitigating oxidative damage, maintaining ion balance, and enhancing overall salt tolerance. In addition, we discussed the metabolic changes related to autophagy in stressed plants and examined the broader implications for managing plant stress and improving crops.
Collapse
Affiliation(s)
- Syed Inzimam Ul Haq
- Laboratory of Photosynthetic Processes, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Faheem Tariq
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Noor Us Sama
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| | - Hadiqa Jamal
- Department of Microbiology, Women University Swabi, Swabi, 23430, Pakistan
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
5
|
Marmagne A, Chardon F, Masclaux-Daubresse C. A tissue-specific rescue strategy reveals the local roles of autophagy in leaves and seeds for resource allocation. PLANT PHYSIOLOGY 2024; 197:kiae647. [PMID: 39661375 DOI: 10.1093/plphys/kiae647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Autophagy is a vesicular mechanism that plays a fundamental role in nitrogen remobilization from senescing leaves to seeds. The Arabidopsis (Arabidopsis thaliana) autophagy (atg) mutants exhibit early senescence, reduced biomass, and low seed yield. The atg seeds also exhibit major changes in N and C concentrations. During plant development, autophagy genes are expressed in the source leaves and in the sink seeds during maturation. We thus addressed the question of whether the seed composition defects in atg mutants are caused by defective N remobilization from source leaves or whether they are due to the absence of autophagy in seeds during maturation. To answer this question, we restored autophagy activity in the atg5 mutant by expressing the wild-type (WT) ATG5 allele specifically in source leaves using the senescence-associated gene 12 (SAG12) promoter or specifically in seeds using the Glycinin-1 promoter, or in both organs using both constructs. In atg5, N remobilization from the rosettes to seeds was almost completely reestablished when transformed with the pSAG12::ATG5 construct. However, transformation with the pSAG12::ATG5 construct only partially restored seed composition. In contrast, seed N and C composition was largely restored by transformation with the pGly::ATG5 construct, even though the early leaf senescence phenotype was maintained in the atg5 background. Cotransformation with pSAG12::ATG5 and pGly::ATG5 completely restored the WT remobilization and seed composition phenotypes. Our results highlight the essential role of autophagy in leaves for nitrogen supply and in seeds for the establishment of carbon and nitrogen reserves.
Collapse
Affiliation(s)
- Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Céline Masclaux-Daubresse
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| |
Collapse
|
6
|
Sharma I, Talakayala A, Tiwari M, Asinti S, Kirti PB. A synchronized symphony: Intersecting roles of ubiquitin proteasome system and autophagy in cellular degradation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108700. [PMID: 38781635 DOI: 10.1016/j.plaphy.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Eukaryotic cells have evolved dynamic quality control pathways and recycling mechanisms for cellular homeostasis. We discuss here, the two major systems for quality control, the ubiquitin-proteasome system (UPS) and autophagy that regulate cellular protein and organelle turnover and ensure efficient nutrient management, cellular integrity and long-term wellbeing of the plant. Both the pathways rely on ubiquitination signal to identify the targets for proteasomal and autophagic degradation, yet they use distinct degradation machinery to process these cargoes. Nonetheless, both UPS and autophagy operate together as an interrelated quality control mechanism where they communicate with each other at multiple nodes to coordinate and/or compensate the recycling mechanism particularly under development and environmental cues. Here, we provide an update on the cellular machinery of autophagy and UPS, unravel the nodes of their crosstalk and particularly highlight the factors responsible for their differential deployment towards protein, macromolecular complexes and organelles.
Collapse
Affiliation(s)
- Isha Sharma
- International Crop Research Institute for Semi-Arid Tropics, Patancheru, Hyderabad, India, 502324.
| | - Ashwini Talakayala
- International Crop Research Institute for Semi-Arid Tropics, Patancheru, Hyderabad, India, 502324
| | - Manish Tiwari
- CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Sarath Asinti
- Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, 211007, India
| | - P B Kirti
- Agri Biotech Foundation, Rajendranagar, 500030, Hyderabad, India
| |
Collapse
|
7
|
Asad MAU, Guan X, Zhou L, Qian Z, Yan Z, Cheng F. Involvement of plant signaling network and cell metabolic homeostasis in nitrogen deficiency-induced early leaf senescence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111855. [PMID: 37678563 DOI: 10.1016/j.plantsci.2023.111855] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Nitrogen (N) is a basic building block that plays an essential role in the maintenance of normal plant growth and its metabolic functions through complex regulatory networks. Such the N metabolic network comprises a series of transcription factors (TFs), with the coordinated actions of phytohormone and sugar signaling to sustain cell homeostasis. The fluctuating N concentration in plant tissues alters the sensitivity of several signaling pathways to stressful environments and regulates the senescent-associated changes in cellular structure and metabolic process. Here, we review recent advances in the interaction between N assimilation and carbon metabolism in response to N deficiency and its regulation to the nutrient remobilization from source to sink during leaf senescence. The regulatory networks of N and sugar signaling for N deficiency-induced leaf senescence is further discussed to explain the effects of N deficiency on chloroplast disassembly, reactive oxygen species (ROS) burst, asparagine metabolism, sugar transport, autophagy process, Ca2+ signaling, circadian clock response, brassinazole-resistant 1 (BZRI), and other stress cell signaling. A comprehensive understanding for the metabolic mechanism and regulatory network underlying N deficiency-induced leaf senescence may provide a theoretical guide to optimize the source-sink relationship during grain filling for the achievement of high yield by a selection of crop cultivars with the properly prolonged lifespan of functional leaves and/or by appropriate agronomic managements.
Collapse
Affiliation(s)
- Muhammad Asad Ullah Asad
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xianyue Guan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lujian Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhao Qian
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Zhang Yan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fangmin Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing, China.
| |
Collapse
|
8
|
Agbemafle W, Wong MM, Bassham DC. Transcriptional and post-translational regulation of plant autophagy. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6006-6022. [PMID: 37358252 PMCID: PMC10575704 DOI: 10.1093/jxb/erad211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
In response to changing environmental conditions, plants activate cellular responses to enable them to adapt. One such response is autophagy, in which cellular components, for example proteins and organelles, are delivered to the vacuole for degradation. Autophagy is activated by a wide range of conditions, and the regulatory pathways controlling this activation are now being elucidated. However, key aspects of how these factors may function together to properly modulate autophagy in response to specific internal or external signals are yet to be discovered. In this review we discuss mechanisms for regulation of autophagy in response to environmental stress and disruptions in cell homeostasis. These pathways include post-translational modification of proteins required for autophagy activation and progression, control of protein stability of the autophagy machinery, and transcriptional regulation, resulting in changes in transcription of genes involved in autophagy. In particular, we highlight potential connections between the roles of key regulators and explore gaps in research, the filling of which can further our understanding of the autophagy regulatory network in plants.
Collapse
Affiliation(s)
- William Agbemafle
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Min May Wong
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
9
|
Ninkuu V, Liu Z, Sun X. Genetic regulation of nitrogen use efficiency in Gossypium spp. PLANT, CELL & ENVIRONMENT 2023; 46:1749-1773. [PMID: 36942358 DOI: 10.1111/pce.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/04/2023]
Abstract
Cotton (Gossypium spp.) is the most important fibre crop, with desirable characteristics preferred for textile production. Cotton fibre output relies heavily on nitrate as the most important source of inorganic nitrogen (N). However, nitrogen dynamics in extreme environments limit plant growth and lead to yield loss and pollution. Therefore, nitrogen use efficiency (NUE), which involves the utilisation of the 'right rate', 'right source', 'right time', and 'right place' (4Rs), is key for efficient N management. Recent omics techniques have genetically improved NUE in crops. We herein highlight the mechanisms of N uptake and assimilation in the vegetative and reproductive branches of the cotton plant while considering the known and unknown regulatory factors. The phylogenetic relationships among N transporters in four Gossypium spp. have been reviewed. Further, the N regulatory genes that participate in xylem transport and phloem loading are also discussed. In addition, the functions of microRNAs and transcription factors in modulating the expression of target N regulatory genes are highlighted. Overall, this review provides a detailed perspective on the complex N regulatory mechanism in cotton, which would accelerate the research toward improving NUE in crops.
Collapse
Affiliation(s)
- Vincent Ninkuu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
10
|
Chang M, Ma J, Sun Y, Fu M, Liu L, Chen Q, Zhang Z, Song C, Sun J, Wan X. Role of Endophytic Bacteria in the Remobilization of Leaf Nitrogen Mediated by CsEGGT in Tea Plants ( Camellia sinensis L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5208-5218. [PMID: 36970979 DOI: 10.1021/acs.jafc.2c08909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As an important economic plant, tea (Camellia sinensis) has a good economic value and significant health effects. Theanine is an important nitrogen reservoir, and its synthesis and degradation are considered important for nitrogen storage and remobilization in tea plants. Our previous research indicated that the endophyte CsE7 participates in the synthesis of theanine in tea plants. Here, the tracking test confirmed that CsE7 tended to be exposed to mild light and preferentially colonized mature tea leaves. CsE7 also participated in glutamine, theanine, and glutamic acid circulatory metabolism (Gln-Thea-Glu) and contributed to nitrogen remobilization, mediated by the γ-glutamyl-transpeptidase (CsEGGT) with hydrolase preference. The reisolation and inoculation of endophytes further verified their role in accelerating the remobilization of nitrogen, especially in the reuse of theanine and glutamine. This is the first report about the photoregulated endophytic colonization and the positive effect of endophytes on tea plants mediated and characterized by promoting leaf nitrogen remobilization.
Collapse
Affiliation(s)
- Manman Chang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Jingyu Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Ying Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Maoyin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Jun Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| |
Collapse
|
11
|
Iglesias-Fernández R, Vicente-Carbajosa J. A View into Seed Autophagy: From Development to Environmental Responses. PLANTS (BASEL, SWITZERLAND) 2022; 11:3247. [PMID: 36501287 PMCID: PMC9739688 DOI: 10.3390/plants11233247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Autophagy is a conserved cellular mechanism involved in the degradation and subsequent recycling of cytoplasmic components. It is also described as a catabolic process implicated in the specific degradation of proteins in response to several stimuli. In eukaryotes, the endoplasmic reticulum accumulates an excess of proteins in response to environmental changes, and is the major cellular organelle at the crossroads of stress responses. Return to proteostasis involves the activation of the Unfolded Protein Response (UPR) and eventually autophagy as a feedback mechanism to relieve protein overaccumulation. Recent publications have focused on the relevance of autophagy in two central processes of seed biology: (i) seed storage protein accumulation upon seed maturation and (ii) reserve mobilization during seed imbibition. Although ER-protein accumulation and the subsequent activation of autophagy resemble the Seed Storage Protein (SSP) deposition during seed maturation, the molecular connection between seed development, autophagy, and seed response to abiotic stresses is still an underexplored field. This mini-review presents current advances in autophagy in seeds, highlighting its participation in the normal course of seed development from embryogenesis to germination. Finally, the function of autophagy in response to the seed environment is also considered, as is its involvement in controlling seed dormancy and germination.
Collapse
Affiliation(s)
- Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA), 28223 Pozuelo de Alarcon, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA), 28223 Pozuelo de Alarcon, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| |
Collapse
|
12
|
Sharma I, Kirti PB, Pati PK. Autophagy: a game changer for plant development and crop improvement. PLANTA 2022; 256:103. [PMID: 36307739 DOI: 10.1007/s00425-022-04004-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Manipulation of autophagic pathway represents a tremendous opportunity for designing climate-smart crops with improved yield and better adaptability to changing environment. For exploiting autophagy to its full potential, identification and comprehensive characterization of adapters/receptor complex and elucidation of its regulatory network in crop plants is highly warranted. Autophagy is a major intracellular trafficking pathway in eukaryotes involved in vacuolar degradation of cytoplasmic constituents, mis-folded proteins, and defective organelles. Under optimum conditions, autophagy operates at a basal level to maintain cellular homeostasis, but under stressed conditions, it is induced further to provide temporal stress relief. Our understanding of this highly dynamic process has evolved exponentially in the past few years with special reference to several plant-specific roles of autophagy. Here, we review the most recent advances in the field of autophagy in plants and discuss its potential implications in designing crops with improved stress and disease-tolerance, enhanced yield potential, and improved capabilities for producing metabolites of high economic value. We also assess the current knowledge gaps and the possible strategies to develop a robust module for biotechnological application of autophagy to enhance bioeconomy and sustainability of agriculture.
Collapse
Affiliation(s)
- Isha Sharma
- AgriBiotech Foundation, PJTS Agriculture University, Rajendranagar, Hyderabad, Telangana, 500032, India.
- International Crops Research Institute for the Semi-Arid Tropics, 502324, Patancheru, Telangana, India.
| | | | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 140301, India
| |
Collapse
|
13
|
Sakuraba Y. Molecular basis of nitrogen starvation-induced leaf senescence. FRONTIERS IN PLANT SCIENCE 2022; 13:1013304. [PMID: 36212285 PMCID: PMC9538721 DOI: 10.3389/fpls.2022.1013304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/08/2022] [Indexed: 06/01/2023]
Abstract
Nitrogen (N), a macronutrient, is often a limiting factor in plant growth, development, and productivity. To adapt to N-deficient environments, plants have developed elaborate N starvation responses. Under N-deficient conditions, older leaves exhibit yellowing, owing to the degradation of proteins and chlorophyll pigments in chloroplasts and subsequent N remobilization from older leaves to younger leaves and developing organs to sustain plant growth and productivity. In recent years, numerous studies have been conducted on N starvation-induced leaf senescence as one of the representative plant responses to N deficiency, revealing that leaf senescence induced by N deficiency is highly complex and intricately regulated at different levels, including transcriptional, post-transcriptional, post-translational and metabolic levels, by multiple genes and proteins. This review summarizes the current knowledge of the molecular mechanisms associated with N starvation-induced leaf senescence.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Selective autophagy: adding precision in plant immunity. Essays Biochem 2022; 66:189-206. [PMID: 35635102 PMCID: PMC9400066 DOI: 10.1042/ebc20210063] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022]
Abstract
Plant immunity is antagonized by pathogenic effectors during interactions with bacteria, viruses or oomycetes. These effectors target core plant processes to promote infection. One such core plant process is autophagy, a conserved proteolytic pathway involved in ensuring cellular homeostasis. It involves the formation of autophagosomes around proteins destined for autophagic degradation. Many cellular components from organelles, aggregates, inactive or misfolded proteins have been found to be degraded via autophagy. Increasing evidence points to a high degree of specificity during the targeting of these components, strengthening the idea of selective autophagy. Selective autophagy receptors bridge the gap between target proteins and the forming autophagosome. To achieve this, the receptors are able to recognize specifically their target proteins in a ubiquitin-dependent or -independent manner, and to bind to ATG8 via canonical or non-canonical ATG8-interacting motifs. Some receptors have also been shown to require oligomerization to achieve their function in autophagic degradation. We summarize the recent advances in the role of selective autophagy in plant immunity and highlight NBR1 as a key player. However, not many selective autophagy receptors, especially those functioning in immunity, have been characterized in plants. We propose an in silico approach to identify novel receptors, by screening the Arabidopsis proteome for proteins containing features theoretically needed for a selective autophagy receptor. To corroborate these data, the transcript levels of these proteins during immune response are also investigated using public databases. We further highlight the novel perspectives and applications introduced by immunity-related selective autophagy studies, demonstrating its importance in research.
Collapse
|
15
|
Huang W, Ma D, Hao X, Li J, Xia L, Zhang E, Wang P, Wang M, Guo F, Wang Y, Ni D, Zhao H. CsATG101 Delays Growth and Accelerates Senescence Response to Low Nitrogen Stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:880095. [PMID: 35620698 PMCID: PMC9127664 DOI: 10.3389/fpls.2022.880095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
For tea plants, nitrogen (N) is a foundational element and large quantities of N are required during periods of roundly vigorous growth. However, the fluctuation of N in the tea garden could not always meet the dynamic demand of the tea plants. Autophagy, an intracellular degradation process for materials recycling in eukaryotes, plays an important role in nutrient remobilization upon stressful conditions and leaf senescence. Studies have proven that numerous autophagy-related genes (ATGs) are involved in N utilization efficiency in Arabidopsis thaliana and other species. Here, we identified an ATG gene, CsATG101, and characterized the potential functions in response to N in A. thaliana. The expression patterns of CsATG101 in four categories of aging gradient leaves among 24 tea cultivars indicated that autophagy mainly occurred in mature leaves at a relatively high level. Further, the in planta heterologous expression of CsATG101 in A. thaliana was employed to investigate the response of CsATG101 to low N stress. The results illustrated a delayed transition from vegetative to reproductive growth under normal N conditions, while premature senescence under N deficient conditions in transgenic plants vs. the wild type. The expression profiles of 12 AtATGs confirmed the autophagy process, especially in mature leaves of transgenic plants. Also, the relatively high expression levels for AtAAP1, AtLHT1, AtGLN1;1, and AtNIA1 in mature leaves illustrated that the mature leaves act as the source leaves in transgenic plants. Altogether, the findings demonstrated that CsATG101 is a candidate gene for improving annual fresh tea leaves yield under both deficient and sufficient N conditions via the autophagy process.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Danni Ma
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Xulei Hao
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jia Li
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Li Xia
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - E. Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Pu Wang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Mingle Wang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Fei Guo
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yu Wang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Hua Zhao
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Wang J, Miao S, Liu Y, Wang Y. Linking Autophagy to Potential Agronomic Trait Improvement in Crops. Int J Mol Sci 2022; 23:ijms23094793. [PMID: 35563184 PMCID: PMC9103229 DOI: 10.3390/ijms23094793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process in eukaryotic cells, by which the superfluous or damaged cytoplasmic components can be delivered into vacuoles or lysosomes for degradation and recycling. Two decades of autophagy research in plants uncovers the important roles of autophagy during diverse biological processes, including development, metabolism, and various stress responses. Additionally, molecular machineries contributing to plant autophagy onset and regulation have also gradually come into people’s sights. With the advancement of our knowledge of autophagy from model plants, autophagy research has expanded to include crops in recent years, for a better understanding of autophagy engagement in crop biology and its potentials in improving agricultural performance. In this review, we summarize the current research progress of autophagy in crops and discuss the autophagy-related approaches for potential agronomic trait improvement in crop plants.
Collapse
|
17
|
Magen S, Seybold H, Laloum D, Avin-Wittenberg T. Metabolism and autophagy in plants - A perfect match. FEBS Lett 2022; 596:2133-2151. [PMID: 35470431 DOI: 10.1002/1873-3468.14359] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 01/18/2023]
Abstract
Autophagy is a eukaryotic cellular transport mechanism that delivers intracellular macromolecules, proteins, and even organelles to a lytic organelle (vacuole in yeast and plants/lysosome in animals) for degradation and nutrient recycling. The process is mediated by highly conserved Autophagy-Related (ATG) proteins. In plants, autophagy maintains cellular homeostasis under favorable conditions, guaranteeing normal plant growth and fitness. Severe stress such as nutrient starvation and plant senescence further induce it, thus ensuring plant survival under unfavorable conditions by providing nutrients through the removal of damaged or aged proteins, or organelles. In this article, we examine the interplay between metabolism and autophagy, focusing on the different aspects of this reciprocal relationship. We show that autophagy has a strong influence on a range of metabolic processes, whereas, at the same time, even single metabolites can activate autophagy. We highlight the involvement of ATG genes in metabolism, examine the role of the macronutrients carbon and nitrogen, as well as various micronutrients, and take a closer look at how the interaction between autophagy and metabolism impacts on plant phenotypes and yield.
Collapse
Affiliation(s)
- Sahar Magen
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Israel
| | - Heike Seybold
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Israel
| | - Daniel Laloum
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Israel
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Israel
| |
Collapse
|
18
|
Cao J, Zheng X, Xie D, Zhou H, Shao S, Zhou J. Autophagic pathway contributes to low-nitrogen tolerance by optimizing nitrogen uptake and utilization in tomato. HORTICULTURE RESEARCH 2022; 9:uhac068. [PMID: 35669705 PMCID: PMC9164271 DOI: 10.1093/hr/uhac068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/09/2022] [Indexed: 06/15/2023]
Abstract
Autophagy is a primary process involved in the degradation and reuse of redundant or damaged cytoplasmic components in eukaryotes. Autophagy has been demonstrated to facilitate nutrient recycling and remobilization by delivering intracellular materials to the vacuole for degradation in plants under nutrient starvation. However, the role of autophagy in nitrogen (N) uptake and utilization remains unknown. Here, we report that the ATG6-dependent autophagic pathway regulates N utilization in tomato (Solanum lycopersicum) under low-nitrogen (LN) conditions. Autophagy-disrupted mutants exhibited weakened biomass production and N accumulation compared with wild-type (WT), while ATG6 overexpression promoted autophagy and biomass production under LN stress. The N content in atg6 mutants decreased while that in ATG6-overexpressing lines increased due to the control of N transporter gene expression in roots under LN conditions. Furthermore, ATG6-dependent autophagy enhanced N assimilation efficiency and protein production in leaves. Nitrate reductase and nitrite reductase activities and expression were compromised in atg6 mutants but were enhanced in ATG6-overexpressing plants under LN stress. Moreover, ATG6-dependent autophagy increased plant carbon fixation and photosynthetic capacity. The quantum yield of photosystem II, photosynthetic N use efficiency and photosynthetic protein accumulation were compromised in atg6 mutants but were restored in ATG6-overexpressing plants. A WT scion grafted onto atg6 mutant rootstock and an atg6 scion grafted onto WT rootstock both exhibited inhibited LN-induced autophagy and N uptake and utilization. Thus, ATG6-dependent autophagy regulates not only N uptake and utilization as well as carbon assimilation but also nutrient recycling and remobilization in tomato plants experiencing LN stress.
Collapse
Affiliation(s)
- Jiajian Cao
- College of Horticulture, Hunan Agricultural University, Nonda Road 1, Changsha, 410128, China
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Xuelian Zheng
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Dongling Xie
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Hui Zhou
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Shujun Shao
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
| | | |
Collapse
|
19
|
Ren J, Yang X, Zhang N, Feng L, Ma C, Wang Y, Yang Z, Zhao J. Melatonin alleviates aluminum-induced growth inhibition by modulating carbon and nitrogen metabolism, and reestablishing redox homeostasis in Zea mays L. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127159. [PMID: 34537633 DOI: 10.1016/j.jhazmat.2021.127159] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 05/11/2023]
Abstract
Melatonin, a regulatory molecule, performs pleiotropic functions in plants, including aluminum (Al) stress mitigation. Here, we conducted transcriptomic and physiological analyses to identify metabolic processes associated with the alleviated Al-induced growth inhibition of the melatonin-treated (MT) maize (Zea mays L.) seedlings. Melatonin decreased Al concentration in maize roots and leaves under Al stress. Al stress reduced the total dry weight (DW) by 41.2% after 7 days of treatment. By contrast, the total DW was decreased by only 19.4% in MT plants. According to RNA-Seq, enzyme activity, and metabolite content data, MT plants exhibited a higher level of relatively stable carbon and nitrogen metabolism than non-treated (NT) plants. Under Al stress, MT plants showed higher photosynthetic rate and sucrose content by 29.9% and 20.5% than NT plants, respectively. Similarly, the nitrate reductase activity and protein content of MT plants were 34.0% and 15.0% higher than those of NT plants, respectively. Furthermore, exogenous supply of melatonin mitigated Al-induced oxidative stress. Overall, our results suggest that melatonin alleviates aluminum-induced growth inhibition through modulating carbon and nitrogen metabolism, and reestablishing redox homeostasis in maize. Graphical Abstarct.
Collapse
Affiliation(s)
- Jianhong Ren
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoxiao Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ning Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Feng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chunying Ma
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Yuling Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China.
| | - Juan Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China.
| |
Collapse
|
20
|
Yang Y, Xiang Y, Niu Y. An Overview of the Molecular Mechanisms and Functions of Autophagic Pathways in Plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1977527. [PMID: 34617497 PMCID: PMC9208794 DOI: 10.1080/15592324.2021.1977527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Autophagy is an evolutionarily conserved pathway for the degradation of damaged or toxic components. Under normal conditions, autophagy maintains cellular homeostasis. It can be triggered by senescence and various stresses. In the process of autophagy, autophagy-related (ATG) proteins not only function as central signal regulators but also participate in the development of complex survival mechanisms when plants suffer from adverse environments. Therefore, ATGs play significant roles in metabolism, development and stress tolerance. In the past decade, both the molecular mechanisms of autophagy and a large number of components involved in the assembly of autophagic vesicles have been identified. In recent studies, an increasing number of components, mechanisms, and receptors have appeared in the autophagy pathway. In this paper, we mainly review the recent progress of research on the molecular mechanisms of plant autophagy, as well as its function under biotic stress and abiotic stress.
Collapse
Affiliation(s)
- Yang Yang
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| | - Yun Xiang
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| | - Yue Niu
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| |
Collapse
|
21
|
Ren J, Yang X, Ma C, Wang Y, Zhao J. Melatonin enhances drought stress tolerance in maize through coordinated regulation of carbon and nitrogen assimilation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:958-969. [PMID: 34571389 DOI: 10.1016/j.plaphy.2021.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/15/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Melatonin is a pleiotropic regulatory molecule in plants and is involved in regulating plant tolerance to drought stress. Here, we conducted transcriptomic and physiological analyses to identify metabolic processes associated with the enhanced tolerance of the melatonin-treated maize (Zea mays L.) seedlings to water deficit. Maize seedlings were foliar sprayed with either 50 μM melatonin or water and exposed to drought stress for 12 d in growth chambers. Drought stress significantly suppressed seedling growth, and melatonin application partially alleviated this growth inhibition. RNA-Seq analysis revealed that genes whose expression was significantly altered by melatonin were mainly related to carbon (C) and nitrogen (N) metabolism. Analysis of transcriptomics, enzyme activity, and metabolite content data, melatonin-treated plants exhibited a higher level of relatively stable C and N metabolism than untreated plants; this phenotype of melatonin-treated plants was associated with their higher photosynthesis, sucrose biosynthesis, N assimilation, and protein biosynthesis capacities under drought stress. Overall, our results suggest that melatonin enhances drought stress tolerance in maize through coordinated regulation of C and N metabolism.
Collapse
Affiliation(s)
- Jianhong Ren
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxiao Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunying Ma
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Yuling Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Juan Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China.
| |
Collapse
|
22
|
Gems D, Kern CC, Nour J, Ezcurra M. Reproductive Suicide: Similar Mechanisms of Aging in C. elegans and Pacific Salmon. Front Cell Dev Biol 2021; 9:688788. [PMID: 34513830 PMCID: PMC8430333 DOI: 10.3389/fcell.2021.688788] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
In some species of salmon, reproductive maturity triggers the development of massive pathology resulting from reproductive effort, leading to rapid post-reproductive death. Such reproductive death, which occurs in many semelparous organisms (with a single bout of reproduction), can be prevented by blocking reproductive maturation, and this can increase lifespan dramatically. Reproductive death is often viewed as distinct from senescence in iteroparous organisms (with multiple bouts of reproduction) such as humans. Here we review the evidence that reproductive death occurs in C. elegans and discuss what this means for its use as a model organism to study aging. Inhibiting insulin/IGF-1 signaling and germline removal suppresses reproductive death and greatly extends lifespan in C. elegans, but can also extend lifespan to a small extent in iteroparous organisms. We argue that mechanisms of senescence operative in reproductive death exist in a less catastrophic form in iteroparous organisms, particularly those that involve costly resource reallocation, and exhibit endocrine-regulated plasticity. Thus, mechanisms of senescence in semelparous organisms (including plants) and iteroparous ones form an etiological continuum. Therefore understanding mechanisms of reproductive death in C. elegans can teach us about some mechanisms of senescence that are operative in iteroparous organisms.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Carina C. Kern
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Joseph Nour
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marina Ezcurra
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
23
|
Significance of brassinosteroids and their derivatives in the development and protection of plants under abiotic stress. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00853-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Huo L, Guo Z, Wang Q, Cheng L, Jia X, Wang P, Gong X, Li C, Ma F. Enhanced Autophagic Activity Improved the Root Growth and Nitrogen Utilization Ability of Apple Plants under Nitrogen Starvation. Int J Mol Sci 2021; 22:ijms22158085. [PMID: 34360850 PMCID: PMC8348665 DOI: 10.3390/ijms22158085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/26/2022] Open
Abstract
Autophagy is a conserved degradation pathway for recycling damaged organelles and aberrant proteins, and its important roles in plant adaptation to nutrient starvation have been generally reported. Previous studies found that overexpression of autophagy-related (ATG) gene MdATG10 enhanced the autophagic activity in apple roots and promoted their salt tolerance. The MdATG10 expression was induced by nitrogen depletion condition in both leaves and roots of apple plants. This study aimed to investigate the differences in the growth and physiological status between wild type and MdATG10-overexpressing apple plants in response to nitrogen starvation. A hydroponic system containing different nitrogen levels was used. The study found that the reduction in growth and nitrogen concentrations in different tissues caused by nitrogen starvation was relieved by MdATG10 overexpression. Further studies demonstrated the increased root growth and the higher nitrogen absorption and assimilation ability of transgenic plants. These characteristics contributed to the increased uptake of limited nitrogen nutrients by transgenic plants, which also reduced the starvation damage to the chloroplasts. Therefore, the MdATG10-overexpressing apple plants could maintain higher photosynthetic ability and possess better growth under nitrogen starvation stress.
Collapse
Affiliation(s)
- Liuqing Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (L.H.); (Z.G.); (Q.W.); (L.C.); (X.J.); (P.W.); (X.G.)
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Zijian Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (L.H.); (Z.G.); (Q.W.); (L.C.); (X.J.); (P.W.); (X.G.)
| | - Qi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (L.H.); (Z.G.); (Q.W.); (L.C.); (X.J.); (P.W.); (X.G.)
| | - Li Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (L.H.); (Z.G.); (Q.W.); (L.C.); (X.J.); (P.W.); (X.G.)
| | - Xin Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (L.H.); (Z.G.); (Q.W.); (L.C.); (X.J.); (P.W.); (X.G.)
| | - Ping Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (L.H.); (Z.G.); (Q.W.); (L.C.); (X.J.); (P.W.); (X.G.)
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (L.H.); (Z.G.); (Q.W.); (L.C.); (X.J.); (P.W.); (X.G.)
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (L.H.); (Z.G.); (Q.W.); (L.C.); (X.J.); (P.W.); (X.G.)
- Correspondence: (C.L.); (F.M.)
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (L.H.); (Z.G.); (Q.W.); (L.C.); (X.J.); (P.W.); (X.G.)
- Correspondence: (C.L.); (F.M.)
| |
Collapse
|
25
|
Wojciechowska N, Michalak KM, Bagniewska-Zadworna A. Autophagy-an underestimated coordinator of construction and destruction during plant root ontogeny. PLANTA 2021; 254:15. [PMID: 34184131 PMCID: PMC8238727 DOI: 10.1007/s00425-021-03668-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/20/2021] [Indexed: 05/13/2023]
Abstract
MAIN CONCLUSION Autophagy is a key but undervalued process in root ontogeny, ensuring both the proper development of root tissues as well as the senescence of the entire organ. Autophagy is a process which occurs during plant adaptation to changing environmental conditions as well as during plant ontogeny. Autophagy is also engaged in plant root development, however, the limitations of belowground studies make it challenging to understand the entirety of the developmental processes. We summarize and discuss the current data pertaining to autophagy in the roots of higher plants during their formation and degradation, from the beginning of root tissue differentiation and maturation; all the way to the aging of the entire organ. During root growth, autophagy participates in the processes of central vacuole formation in cortical tissue development, as well as vascular tissue differentiation and root senescence. At present, several key issues are still not entirely understood and remain to be addressed in future studies. The major challenge lies in the portrayal of the mechanisms of autophagy on subcellular events in belowground plant organs during the programmed control of cellular degradation pathways in roots. Given the wide range of technical areas of inquiry where root-related research can be applied, including cutting-edge cell biological methods to track, sort and screen cells from different root tissues and zones of growth, the identification of several lines of evidence pertaining to autophagy during root developmental processes is the most urgent challenge. Consequently, a substantial effort must be made to ensure whether the analyzed process is autophagy-dependent or not.
Collapse
Affiliation(s)
- Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Kornel M Michalak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
26
|
Gomez RE, Lupette J, Chambaud C, Castets J, Ducloy A, Cacas JL, Masclaux-Daubresse C, Bernard A. How Lipids Contribute to Autophagosome Biogenesis, a Critical Process in Plant Responses to Stresses. Cells 2021; 10:1272. [PMID: 34063958 PMCID: PMC8224036 DOI: 10.3390/cells10061272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 01/18/2023] Open
Abstract
Throughout their life cycle, plants face a tremendous number of environmental and developmental stresses. To respond to these different constraints, they have developed a set of refined intracellular systems including autophagy. This pathway, highly conserved among eukaryotes, is induced by a wide range of biotic and abiotic stresses upon which it mediates the degradation and recycling of cytoplasmic material. Central to autophagy is the formation of highly specialized double membrane vesicles called autophagosomes which select, engulf, and traffic cargo to the lytic vacuole for degradation. The biogenesis of these structures requires a series of membrane remodeling events during which both the quantity and quality of lipids are critical to sustain autophagy activity. This review highlights our knowledge, and raises current questions, regarding the mechanism of autophagy, and its induction and regulation upon environmental stresses with a particular focus on the fundamental contribution of lipids. How autophagy regulates metabolism and the recycling of resources, including lipids, to promote plant acclimation and resistance to stresses is further discussed.
Collapse
Affiliation(s)
- Rodrigo Enrique Gomez
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Josselin Lupette
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Clément Chambaud
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Julie Castets
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Amélie Ducloy
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Jean-Luc Cacas
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Amélie Bernard
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| |
Collapse
|
27
|
Pérez-Pérez ME, Lemaire SD, Crespo JL. The ATG4 protease integrates redox and stress signals to regulate autophagy. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3340-3351. [PMID: 33587749 DOI: 10.1093/jxb/erab063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Autophagy is a highly conserved degradative pathway that ensures cellular homeostasis through the removal of damaged or useless intracellular components including proteins, membranes, or even entire organelles. A main hallmark of autophagy is the biogenesis of autophagosomes, double-membrane vesicles that engulf and transport to the vacuole the material to be degraded and recycled. The formation of autophagosomes responds to integrated signals produced as a consequence of metabolic reactions or different types of stress and is mediated by the coordinated action of core autophagy-related (ATG) proteins. ATG4 is a key Cys-protease with a dual function in both ATG8 lipidation and free ATG8 recycling whose balance is crucial for proper biogenesis of the autophagosome. ATG4 is conserved in the green lineage, and its regulation by different post-translational modifications has been reported in the model systems Chlamydomonas reinhardtii and Arabidopsis. In this review, we discuss the major role of ATG4 in the integration of stress and redox signals that regulate autophagy in algae and plants.
Collapse
Affiliation(s)
- María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Avda. Américo Vespucio, Sevilla, Spain
| | - Stéphane D Lemaire
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Avda. Américo Vespucio, Sevilla, Spain
| |
Collapse
|
28
|
Jia X, Mao K, Wang P, Wang Y, Jia X, Huo L, Sun X, Che R, Gong X, Ma F. Overexpression of MdATG8i improves water use efficiency in transgenic apple by modulating photosynthesis, osmotic balance, and autophagic activity under moderate water deficit. HORTICULTURE RESEARCH 2021; 8:81. [PMID: 33790273 PMCID: PMC8012348 DOI: 10.1038/s41438-021-00521-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/29/2021] [Accepted: 02/06/2021] [Indexed: 05/06/2023]
Abstract
Water deficit is one of the major limiting factors for apple (Malus domestica) production on the Loess Plateau, a major apple cultivation area in China. The identification of genes related to the regulation of water use efficiency (WUE) is a crucial aspect of crop breeding programs. As a conserved degradation and recycling mechanism in eukaryotes, autophagy has been reported to participate in various stress responses. However, the relationship between autophagy and WUE regulation has not been explored. We have shown that a crucial autophagy protein in apple, MdATG8i, plays a role in improving salt tolerance. Here, we explored its biological function in response to long-term moderate drought stress. The results showed that MdATG8i-overexpressing (MdATG8i-OE) apple plants exhibited higher WUE than wild-type (WT) plants under long-term moderate drought conditions. Plant WUE can be increased by improving photosynthetic efficiency. Osmoregulation plays a critical role in plant stress resistance and adaptation. Under long-term drought conditions, the photosynthetic capacity and accumulation of sugar and amino acids were higher in MdATG8i-OE plants than in WT plants. The increased photosynthetic capacity in the OE plants could be attributed to their ability to maintain optimal stomatal aperture, organized chloroplasts, and strong antioxidant activity. MdATG8i overexpression also promoted autophagic activity, which was likely related to the changes described above. In summary, our results demonstrate that MdATG8i-OE apple lines exhibited higher WUE than WT under long-term moderate drought conditions because they maintained robust photosynthesis, effective osmotic adjustment processes, and strong autophagic activity.
Collapse
Affiliation(s)
- Xin Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Ping Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Xumei Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Liuqing Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Xun Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Runmin Che
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
29
|
O’Conner S, Zheng W, Qi M, Kandel Y, Fuller R, Whitham SA, Li L. GmNF-YC4-2 Increases Protein, Exhibits Broad Disease Resistance and Expedites Maturity in Soybean. Int J Mol Sci 2021; 22:3586. [PMID: 33808355 PMCID: PMC8036377 DOI: 10.3390/ijms22073586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/30/2022] Open
Abstract
The NF-Y gene family is a highly conserved set of transcription factors. The functional transcription factor complex is made up of a trimer between NF-YA, NF-YB, and NF-YC proteins. While mammals typically have one gene for each subunit, plants often have multigene families for each subunit which contributes to a wide variety of combinations and functions. Soybean plants with an overexpression of a particular NF-YC isoform GmNF-YC4-2 (Glyma.04g196200) in soybean cultivar Williams 82, had a lower amount of starch in its leaves, a higher amount of protein in its seeds, and increased broad disease resistance for bacterial, viral, and fungal infections in the field, similar to the effects of overexpression of its isoform GmNF-YC4-1 (Glyma.06g169600). Interestingly, GmNF-YC4-2-OE (overexpression) plants also filled pods and senesced earlier, a novel trait not found in GmNF-YC4-1-OE plants. No yield difference was observed in GmNF-YC4-2-OE compared with the wild-type control. Sequence alignment of GmNF-YC4-2, GmNF-YC4-1 and AtNF-YC1 indicated that faster maturation may be a result of minor sequence differences in the terminal ends of the protein compared to the closely related isoforms.
Collapse
Affiliation(s)
- Seth O’Conner
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; (S.O.); (R.F.)
| | - Wenguang Zheng
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| | - Mingsheng Qi
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA; (M.Q.); (Y.K.); (S.A.W.)
| | - Yuba Kandel
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA; (M.Q.); (Y.K.); (S.A.W.)
| | - Robert Fuller
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; (S.O.); (R.F.)
| | - Steven A. Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA; (M.Q.); (Y.K.); (S.A.W.)
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; (S.O.); (R.F.)
| |
Collapse
|
30
|
Robert G, Yagyu M, Koizumi T, Naya L, Masclaux-Daubresse C, Yoshimoto K. Ammonium stress increases microautophagic activity while impairing macroautophagic flux in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1083-1097. [PMID: 33222335 DOI: 10.1111/tpj.15091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Plant responses to NH4+ stress are complex, and multiple mechanisms underlying NH4+ sensitivity and tolerance in plants may be involved. Here, we demonstrate that macro- and microautophagic activities are oppositely affected in plants grown under NH4+ toxicity conditions. When grown under NH4+ stress conditions, macroautophagic activity was impaired in roots. Root cells accumulated autophagosomes in the cytoplasm, but showed less autophagic flux, indicating that late steps of the macroautophagy process are affected under NH4+ stress conditions. Under this scenario, we also found that the CCZ1-MON1 complex, a critical factor for vacuole delivery pathways, functions in the late step of the macroautophagic pathway in Arabidopsis. In contrast, an accumulation of tonoplast-derived vesicles was observed in vacuolar lumens of root cells of NH4+ -stressed plants, suggesting the induction of a microautophagy-like process. In this sense, some SYP22-, but mainly VAMP711-positive vesicles were observed inside vacuole in roots of NH4+ -stressed plants. Consistent with the increased tonoplast degradation and the reduced membrane flow to the vacuole due to the impaired macroautophagic flux, the vacuoles of root cells of NH4+ -stressed plants showed a simplified structure and lower tonoplast content. Taken together, this study presents evidence that postulates late steps of the macroautophagic process as a relevant physiological mechanism underlying the NH4+ sensitivity response in Arabidopsis, and additionally provides insights into the molecular tools for studying microautophagy in plants.
Collapse
Affiliation(s)
- Germán Robert
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
- Instituto Nacional de Tecnología Agropecuaria (INTA) - Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Av. 11 de Septiembre, Córdoba, 4755-X5020ICA, Argentina
- Unidad de doble dependencia INTA-CONICET (UDEA), Av. 11 de Septiembre, Córdoba, 4755-X5020ICA, Argentina
| | - Mako Yagyu
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
| | - Takaya Koizumi
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
| | - Loreto Naya
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Kohki Yoshimoto
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
| |
Collapse
|
31
|
Zhen X, Zheng N, Yu J, Bi C, Xu F. Autophagy mediates grain yield and nitrogen stress resistance by modulating nitrogen remobilization in rice. PLoS One 2021; 16:e0244996. [PMID: 33444362 PMCID: PMC7808584 DOI: 10.1371/journal.pone.0244996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/21/2020] [Indexed: 01/18/2023] Open
Abstract
Autophagy, a conserved cellular process in eukaryotes, has evolved to a sophisticated process to dispose of intracellular constituents and plays important roles in plant development, metabolism, and efficient nutrients remobilization under suboptimal nutrients conditions. Here, we show that OsATG8b, an AUTOPHAGY-RELATED8 (ATG8) gene in rice, was highly induced by nitrogen (N) starvation. Elevated expression of OsATG8b significantly increased ATG8 lipidation, autophagic flux, and grain yield in rice under both sufficient and deficient N conditions. Overexpressing of OsATG8b could greatly increase the activities of enzymes related to N metabolism. Intriguingly, the 15N-labeling assay further revealed that more N was remobilized to seeds in OsATG8b-overexpressing rice, which significantly increased the N remobilization efficiency (NRE), N harvest index, N utilization efficiency (NUE), and N uptake efficiency (NUpE). Conversely, the osatg8b knock-out mutants had the opposite results on these characters. The substantial transcriptional changes of the overexpressed transgenic lines indicated the presence of complex signaling to developmental, metabolic process, and hormone, etc. Excitingly, the transgenic rice under different backgrounds all similarly be boosted in yield and NUE with OsATG8b overexpression. This work provides an excellent candidate gene for improving N remobilization, utilization, and yield in crops simultaneously.
Collapse
Affiliation(s)
- Xiaoxi Zhen
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, China
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Naimeng Zheng
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, China
| | - Jinlei Yu
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, China
| | - Congyuan Bi
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, China
| | - Fan Xu
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, China
- * E-mail: ,
| |
Collapse
|
32
|
Qi H, Xia FN, Xiao S. Autophagy in plants: Physiological roles and post-translational regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:161-179. [PMID: 32324339 DOI: 10.1111/jipb.12941] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/22/2020] [Indexed: 05/20/2023]
Abstract
In eukaryotes, autophagy helps maintain cellular homeostasis by degrading and recycling cytoplasmic materials via a tightly regulated pathway. Over the past few decades, significant progress has been made towards understanding the physiological functions and molecular regulation of autophagy in plant cells. Increasing evidence indicates that autophagy is essential for plant responses to several developmental and environmental cues, functioning in diverse processes such as senescence, male fertility, root meristem maintenance, responses to nutrient starvation, and biotic and abiotic stress. Recent studies have demonstrated that, similar to nonplant systems, the modulation of core proteins in the plant autophagy machinery by posttranslational modifications such as phosphorylation, ubiquitination, lipidation, S-sulfhydration, S-nitrosylation, and acetylation is widely involved in the initiation and progression of autophagy. Here, we provide an overview of the physiological roles and posttranslational regulation of autophagy in plants.
Collapse
Affiliation(s)
- Hua Qi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
33
|
Wang J, Chen W, Wang H, Li Y, Wang B, Zhang L, Wan X, Li M. Transcription factor CsDOF regulates glutamine metabolism in tea plants (Camellia sinensis). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110720. [PMID: 33288026 DOI: 10.1016/j.plantsci.2020.110720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/09/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Glutamine plays a critical role in ammonium assimilation, and contributes substantially to the taste and nutritional quality of tea. To date, little research has been done on glutamine synthesis in tea plants. Here, a zinc finger protein CsDOF and a glutamine synthetase (GS)-encoding gene CsGS2 from tea plant (Camellia sinensis cv 'Shuchazao') were characterized, and their role in glutamine biosynthesis was determined using transient suppression assays in tea leaves and overexpression in Arabidopsis thaliana. The expression patterns of CsDOF and CsGS2, the GS activity and the glutamine content of photosynthetic tissues (leaf and bud) were significantly induced by shade. Suppressing the expression of CsDOF resulted in downregulated expression of CsGS2 and reduction of the leaf glutamine content. Moreover, in CsDOF-silenced plants, the expression of CsDOF and the glutamine content under shade treatment were higher than in natural light. The glutamine content and CsGS2 transcript level were also decreased in tea leaves when CsGS2 was suppressed, while they were higher under shade treatment than in natural light in CsGS2-silenced plants. In addition, the glutamine content and GS2 transcript level were increased when CsDOF and CsGS2 was overexpressed in Arabidopsis thaliana, respectively. In binding analyses, CsDOF directly bound to an AAAG motif in the promoter of CsGS2, and promotes its activity. The study shed new light on the molecular mechanism by which CsDOF activates CsGS2 gene expression and contributes to glutamine biosynthesis in tea plants.
Collapse
Affiliation(s)
- Jinhe Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Wenzhen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Hanyue Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yuanda Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Biao Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Lixia Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| | - Min Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China.
| |
Collapse
|
34
|
Wang P, Wang T, Han J, Li M, Zhao Y, Su T, Ma C. Plant Autophagy: An Intricate Process Controlled by Various Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2021; 12:754982. [PMID: 34630498 PMCID: PMC8495024 DOI: 10.3389/fpls.2021.754982] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/31/2021] [Indexed: 05/17/2023]
Abstract
Autophagy is a ubiquitous process used widely across plant cells to degrade cellular material and is an important regulator of plant growth and various environmental stress responses in plants. The initiation and dynamics of autophagy in plant cells are precisely controlled according to the developmental stage of the plant and changes in the environment, which are transduced into intracellular signaling pathways. These signaling pathways often regulate autophagy by mediating TOR (Target of Rapamycin) kinase activity, an important regulator of autophagy initiation; however, some also act via TOR-independent pathways. Under nutrient starvation, TOR activity is suppressed through glucose or ROS (reactive oxygen species) signaling, thereby promoting the initiation of autophagy. Under stresses, autophagy can be regulated by the regulatory networks connecting stresses, ROS and plant hormones, and in turn, autophagy regulates ROS levels and hormone signaling. This review focuses on the latest research progress in the mechanism of different external signals regulating autophagy.
Collapse
|
35
|
Spangenberg JE, Schweizer M, Zufferey V. Shifts in carbon and nitrogen stable isotope composition and epicuticular lipids in leaves reflect early water-stress in vineyards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140343. [PMID: 32758968 DOI: 10.1016/j.scitotenv.2020.140343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Changes in leaf carbon and nitrogen isotope composition (δ13C and δ15N values) and the accumulation of epicuticular lipids have been associated with plant responses to water stress. We investigated their potential use as indicators of early plant water deficit in two grapevine (Vitis vinifera L.) cultivars, Chasselas and Pinot noir, that were field-grown under well-watered and water-deficient conditions. We tested the hypothesis that the bulk δ13C and δ15N values and the concentrations of epicuticular fatty acids may change in leaves of similar age with the soil water availability. For this purpose, leaves were sampled at the same position in the canopy at different times (phenological stages) during the 2014 growing season. Bulk dry matter of young leaves from flowering to veraison had higher δ13C values, higher total nitrogen content, and lower δ15N values than old leaves. In both cultivars, δ15N values were strongly correlated with plant water deficiency, demonstrating their integration of the plant water stress response. δ13C values recorded the water deficiency only in those plants that had not received foliar organic fertilization. The soil water deficiency triggered the accumulation of C>26 fatty acids in the cuticular waxes. The compound-specific isotope analysis (CSIA) of fatty acids from old leaves showed an increase in δ13C among the C16-C22 chains, including stress signaling linoleic and linolenic acids. Our results provide evidence for leaf 13C-enrichment, 15N-depletion, and enhanced FA-chain elongation and epicuticular accumulation in the grapevine response to water stress. The leaf δ13C and δ15N values, and the concentration of epicuticular fatty acids can be used as reliable and sensitive indicators of plant water deficit even when the level of water stress is low to moderate. They could also be used, particularly the more cost-efficient δ13C and δ15N measurements, for periodic biogeochemical mapping of the plant water availability at the vineyard and regional scale.
Collapse
Affiliation(s)
- Jorge E Spangenberg
- Institute of Earth Surface Dynamics (IDYST), University of Lausanne, CH-1015 Lausanne, Switzerland.
| | - Marc Schweizer
- Institute of Earth Surface Dynamics (IDYST), University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Vivian Zufferey
- Institute of Plant Production Sciences (IPV), Agroscope, CH-1009 Pully, Switzerland
| |
Collapse
|
36
|
Genome-Wide Identification of CsATGs in Tea Plant and the Involvement of CsATG8e in Nitrogen Utilization. Int J Mol Sci 2020; 21:ijms21197043. [PMID: 32987963 PMCID: PMC7583067 DOI: 10.3390/ijms21197043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022] Open
Abstract
Nitrogen (N) is a macroelement with an indispensable role in the growth and development of plants, and tea plant (Camellia sinensis) is an evergreen perennial woody species with young shoots for harvest. During senescence or upon N stress, autophagy has been shown to be induced in leaves, involving a variety of autophagy-related genes (ATGs), which have not been characterized in tea plant yet. In this study, a genome-wide survey in tea plant genome identified a total of 80 Camellia Sinensis autophagy-related genes, CsATGs. The expression of CsATG8s in the tea plant showed an obvious increase from S1 (stage 1) to S4 (stage 4), especially for CsATG8e. The expression levels of AtATGs (Arabidopsis thaliana) and genes involved in N transport and assimilation were greatly improved in CsATG8e-overexpressed Arabidopsis. Compared with wild type, the overexpression plants showed earlier bolting, an increase in amino N content, as well as a decrease in biomass and the levels of N, phosphorus and potassium. However, the N level was found significantly higher in APER (aerial part excluding rosette) in the overexpression plants relative to wild type. All these results demonstrated a convincing function of CsATG8e in N remobilization and plant development, indicating CsATG8e as a potential gene for modifying plant nutrient utilization.
Collapse
|
37
|
Chen Z, Wang W, Pu X, Dong X, Gao B, Li P, Jia Y, Liu A, Liu L. Comprehensive analysis of the Ppatg3 mutant reveals that autophagy plays important roles in gametophore senescence in Physcomitrella patens. BMC PLANT BIOLOGY 2020; 20:440. [PMID: 32967624 PMCID: PMC7513309 DOI: 10.1186/s12870-020-02651-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/15/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Autophagy is an evolutionarily conserved system for the degradation of intracellular components in eukaryotic organisms. Autophagy plays essential roles in preventing premature senescence and extending the longevity of vascular plants. However, the mechanisms and physiological roles of autophagy in preventing senescence in basal land plants are still obscure. RESULTS Here, we investigated the functional roles of the autophagy-related gene PpATG3 from Physcomitrella patens and demonstrated that its deletion prevents autophagy. In addition, Ppatg3 mutant showed premature gametophore senescence and reduced protonema formation compared to wild-type (WT) plants under normal growth conditions. The abundance of nitrogen (N) but not carbon (C) differed significantly between Ppatg3 mutant and WT plants, as did relative fatty acid levels. In vivo protein localization indicated that PpATG3 localizes to the cytoplasm, and in vitro Y2H assays confirmed that PpATG3 interacts with PpATG7 and PpATG12. Plastoglobuli (PGs) accumulated in Ppatg3, indicating that the process that degrades damaged chloroplasts in senescent gametophore cells was impaired in this mutant. RNA-Seq uncovered a detailed, comprehensive set of regulatory pathways that were affected by the autophagy mutation. CONCLUSIONS The autophagy-related gene PpATG3 is essential for autophagosome formation in P. patens. Our findings provide evidence that autophagy functions in N utilization, fatty acid metabolism and damaged chloroplast degradation under non-stress conditions. We identified differentially expressed genes in Ppatg3 involved in numerous biosynthetic and metabolic pathways, such as chlorophyll biosynthesis, lipid metabolism, reactive oxygen species removal and the recycling of unnecessary proteins that might have led to the premature senescence of this mutant due to defective autophagy. Our study provides new insights into the role of autophagy in preventing senescence to increase longevity in basal land plants.
Collapse
Affiliation(s)
- Zexi Chen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenbo Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojun Pu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Xiumei Dong
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Bei Gao
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Ping Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Yanxia Jia
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Aizhong Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, 650204, China
| | - Li Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
38
|
Gong X, Liu X, Pan Q, Mi G, Chen F, Yuan L. Combined physiological, transcriptome, and genetic analysis reveals a molecular network of nitrogen remobilization in maize. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5061-5073. [PMID: 32392584 DOI: 10.1093/jxb/eraa229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/06/2020] [Indexed: 05/28/2023]
Abstract
In plants, nitrogen remobilization from source to sink organs is an important process regulated by complex transcriptional regulatory networks. However, the relationship between nitrogen remobilization and leaf senescence and the molecular regulatory network that controls them are unknown in maize. Here, using 15N labeling and a transcriptome approach, a dynamic analysis of the nitrogen remobilization process was conducted in two elite maize inbred lines (PH4CV and PH6WC) with contrasting leaf senescence. PH4CV showed higher nitrogen remobilization efficiency (NRE) than PH6WC, mainly in the middle and lower leaves from 15 d to 35 d after silking. The co-expression network analysis revealed that ethylene and cytokinin metabolism-related genes triggered the onset of nitrogen remobilization, while abscisic acid and jasmonic acid biosynthesis-related genes controlled the progression of nitrogen remobilization. By integrating genetic analysis, functional annotation, and gene expression, two candidate genes underlying a major quantitative trait locus of NRE were identified, namely an early senescence acting gene (ZmASR6) and an ATP-dependent Clp protease gene (GRMZM2G172230). Hormone-coupled transcription factors and downstream target genes reveal a gene regulatory network for the nitrogen remobilization process after silking in maize. These results uncovered a sophisticated regulatory mechanism for nitrogen remobilization, and further provided characterization of valuable genes for genetic improvement of nitrogen use efficiency in maize.
Collapse
Affiliation(s)
- Xiaoping Gong
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
| | - Xiaoyang Liu
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
| | - Qingchun Pan
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
| | - Guohua Mi
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
| | - Lixing Yuan
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
39
|
Borghi M, Fernie AR. Outstanding questions in flower metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1275-1288. [PMID: 32410253 DOI: 10.1111/tpj.14814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
The great diversity of flowers, their color, odor, taste, and shape, is mostly a result of the metabolic processes that occur in this reproductive organ when the flower and its tissues develop, grow, and finally die. Some of these metabolites serve to advertise flowers to animal pollinators, other confer protection towards abiotic stresses, and a large proportion of the molecules of the central metabolic pathways have bioenergetic and signaling functions that support growth and the transition to fruits and seeds. Although recent studies have advanced our general understanding of flower metabolism, several questions still await an answer. Here, we have compiled a list of open questions on flower metabolism encompassing molecular aspects, as well as topics of relevance for agriculture and the ecosystem. These questions include the study of flower metabolism through development, the biochemistry of nectar and its relevance to promoting plant-pollinator interaction, recycling of metabolic resources after flowers whiter and die, as well as the manipulation of flower metabolism by pathogens. We hope with this review to stimulate discussion on the topic of flower metabolism and set a reference point to return to in the future when assessing progress in the field.
Collapse
Affiliation(s)
- Monica Borghi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| |
Collapse
|
40
|
Masclaux-Daubresse C, d’Andrea S, Bouchez I, Cacas JL. Reserve lipids and plant autophagy. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2854-2861. [PMID: 32080724 PMCID: PMC7260719 DOI: 10.1093/jxb/eraa082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/20/2020] [Indexed: 05/21/2023]
Abstract
Autophagy is a universal mechanism that facilitates the degradation of unwanted cytoplasmic components in eukaryotic cells. In this review, we highlight recent developments in the investigation of the role of autophagy in lipid homeostasis in plants by comparison with algae, yeast, and animals. We consider the storage compartments that form the sources of lipids in plants, and the roles that autophagy plays in the synthesis of triacylglycerols and in the formation and maintenance of lipid droplets. We also consider the relationship between lipids and the biogenesis of autophagosomes, and the role of autophagy in the degradation of lipids in plants.
Collapse
Affiliation(s)
| | - Sabine d’Andrea
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Isabelle Bouchez
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Jean-Luc Cacas
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
41
|
Wawrzyńska A, Sirko A. The Role of Selective Protein Degradation in the Regulation of Iron and Sulfur Homeostasis in Plants. Int J Mol Sci 2020; 21:E2771. [PMID: 32316330 PMCID: PMC7215296 DOI: 10.3390/ijms21082771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Plants are able to synthesize all essential metabolites from minerals, water, and light to complete their life cycle. This plasticity comes at a high energy cost, and therefore, plants need to tightly allocate resources in order to control their economy. Being sessile, plants can only adapt to fluctuating environmental conditions, relying on quality control mechanisms. The remodeling of cellular components plays a crucial role, not only in response to stress, but also in normal plant development. Dynamic protein turnover is ensured through regulated protein synthesis and degradation processes. To effectively target a wide range of proteins for degradation, plants utilize two mechanistically-distinct, but largely complementary systems: the 26S proteasome and the autophagy. As both proteasomal- and autophagy-mediated protein degradation use ubiquitin as an essential signal of substrate recognition, they share ubiquitin conjugation machinery and downstream ubiquitin recognition modules. Recent progress has been made in understanding the cellular homeostasis of iron and sulfur metabolisms individually, and growing evidence indicates that complex crosstalk exists between iron and sulfur networks. In this review, we highlight the latest publications elucidating the role of selective protein degradation in the control of iron and sulfur metabolism during plant development, as well as environmental stresses.
Collapse
Affiliation(s)
- Anna Wawrzyńska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | | |
Collapse
|
42
|
Wojciechowska N, Wilmowicz E, Marzec-Schmidt K, Ludwików A, Bagniewska-Zadworna A. Abscisic Acid and Jasmonate Metabolisms Are Jointly Regulated During Senescence in Roots and Leaves of Populus trichocarpa. Int J Mol Sci 2020; 21:ijms21062042. [PMID: 32192046 PMCID: PMC7139941 DOI: 10.3390/ijms21062042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 12/22/2022] Open
Abstract
Plant senescence is a highly regulated process that allows nutrients to be mobilized from dying tissues to other organs. Despite that senescence has been extensively studied in leaves, the senescence of ephemeral organs located underground is still poorly understood, especially in the context of phytohormone engagement. The present study focused on filling this knowledge gap by examining the roles of abscisic acid (ABA) and jasmonate in the regulation of senescence of fine, absorptive roots and leaves of Populus trichocarpa. Immunohistochemical (IHC), chromatographic, and molecular methods were utilized to achieve this objective. A transcriptomic analysis identified significant changes in gene expression that were associated with the metabolism and signal transduction of phytohormones, especially ABA and jasmonate. The increased level of these phytohormones during senescence was detected in both organs and was confirmed by IHC. Based on the obtained data, we suggest that phytohormonal regulation of senescence in roots and leaves is organ-specific. We have shown that the regulation of ABA and JA metabolism is tightly regulated during senescence processes in both leaves and roots. The results were discussed with respect to the role of ABA in cold tolerance and the role of JA in resistance to pathogens.
Collapse
Affiliation(s)
- Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
- Correspondence: (N.W.); (A.B.-Z.)
| | - Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland;
| | - Katarzyna Marzec-Schmidt
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Agnieszka Ludwików
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
- Correspondence: (N.W.); (A.B.-Z.)
| |
Collapse
|
43
|
Tarnowski L, Collados Rodriguez M, Brzywczy J, Cysewski D, Wawrzynska A, Sirko A. Overexpression of the Selective Autophagy Cargo Receptor NBR1 Modifies Plant Response to Sulfur Deficit. Cells 2020; 9:E669. [PMID: 32164165 PMCID: PMC7140714 DOI: 10.3390/cells9030669] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Plants exposed to sulfur deficit elevate the transcription of NBR1 what might reflect an increased demand for NBR1 in such conditions. Therefore, we investigated the role of this selective autophagy cargo receptor in plant response to sulfur deficit (-S). Transcriptome analysis of the wild type and NBR1 overexpressing plants pointed out differences in gene expression in response to -S. Our attention focused particularly on the genes upregulated by -S in roots of both lines because of significant overrepresentation of cytoplasmic ribosomal gene family. Moreover, we noticed overrepresentation of the same family in the set of proteins co-purifying with NBR1 in -S. One of these ribosomal proteins, RPS6 was chosen for verification of its direct interaction with NBR1 and proven to bind outside the NBR1 ubiquitin binding domains. The biological significance of this novel interaction and the postulated role of NBR1 in ribosomes remodeling in response to starvation remain to be further investigated. Interestingly, NBR1 overexpressing seedlings have significantly shorter roots than wild type when grown in nutrient deficient conditions in the presence of TOR kinase inhibitors. This phenotype probably results from excessive autophagy induction by the additive effect of NBR1 overexpression, starvation, and TOR inhibition.
Collapse
Affiliation(s)
- Leszek Tarnowski
- Department of Plant Biochemistry, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A St, 02-106 Warsaw, Poland
| | - Milagros Collados Rodriguez
- Department of Plant Biochemistry, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A St, 02-106 Warsaw, Poland
| | - Jerzy Brzywczy
- Department of Plant Biochemistry, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A St, 02-106 Warsaw, Poland
| | - Dominik Cysewski
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A St, 02-106 Warsaw, Poland
| | - Anna Wawrzynska
- Department of Plant Biochemistry, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A St, 02-106 Warsaw, Poland
| | - Agnieszka Sirko
- Department of Plant Biochemistry, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A St, 02-106 Warsaw, Poland
| |
Collapse
|
44
|
Lornac A, Havé M, Chardon F, Soulay F, Clément G, Avice JC, Masclaux-Daubresse C. Autophagy Controls Sulphur Metabolism in the Rosette Leaves of Arabidopsis and Facilitates S Remobilization to the Seeds. Cells 2020; 9:E332. [PMID: 32023971 PMCID: PMC7073174 DOI: 10.3390/cells9020332] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/15/2023] Open
Abstract
Sulphur deficiency in crops became an agricultural concern several decades ago, due to the decrease of S deposition and the atmospheric sulphur dioxide emissions released by industrial plants. Autophagy, which is a conserved mechanism for nutrient recycling in eukaryotes, is involved in nitrogen, iron, zinc and manganese remobilizations from the rosette to the seeds in Arabidopsis thaliana. Here, we have compared the role of autophagy in sulphur and nitrogen management at the whole plant level, performing concurrent labelling with 34S and 15N isotopes on atg5 mutants and control lines. We show that both 34S and 15N remobilizations from the rosette to the seeds are impaired in the atg5 mutants irrespective of salicylic acid accumulation and of sulphur nutrition. The comparison in each genotype of the partitions of 15N and 34S in the seeds (as % of the whole plant) indicates that the remobilization of 34S to the seeds was twice more efficient than that of 15N in both autophagy mutants and control lines under high S conditions, and also in control lines under low S conditions. This was different in the autophagy mutants grown under low S conditions. Under low S, the partition of 34S to their seeds was indeed not twice as high but similar to that of 15N. Such discrepancy shows that when sulphate availability is scarce, autophagy mutants display stronger defects for 34S remobilization relative to 15N remobilization than under high S conditions. It suggests, moreover, that autophagy mainly affects the transport of N-poor S-containing molecules and possibly sulphate.
Collapse
Affiliation(s)
- Aurélia Lornac
- UCBN, UMR INRA–UCBN 950 Ecophysiologie Végétale &, Agronomie & Nutritions N.C.S., SFR Normandie Végétal (FED 4277), Normandie Université, F-14032 Caen, France
| | - Marien Havé
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Fabien Chardon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Fabienne Soulay
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Jean-Christophe Avice
- UCBN, UMR INRA–UCBN 950 Ecophysiologie Végétale &, Agronomie & Nutritions N.C.S., SFR Normandie Végétal (FED 4277), Normandie Université, F-14032 Caen, France
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
45
|
Chi C, Li X, Fang P, Xia X, Shi K, Zhou Y, Zhou J, Yu J. Brassinosteroids act as a positive regulator of NBR1-dependent selective autophagy in response to chilling stress in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1092-1106. [PMID: 31639824 DOI: 10.1093/jxb/erz466] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/08/2019] [Indexed: 05/20/2023]
Abstract
Autophagy is a highly conserved and regulated catabolic process involved in the degradation of protein aggregates, which plays critical roles in eukaryotes. In plants, multiple molecular processes can induce or suppress autophagy but the mechanism of its regulation by phytohormones is poorly understood. Brassinosteroids (BRs) are steroid phytohormones that play crucial roles in plant response to stresses. Here, we investigate the role of BRs in NBR1-dependent selective autophagy in response to chilling stress in tomato. BRs and their signaling element BZR1 can induce autophagy and accumulation of the selective autophagy receptor NBR1 in tomato under chilling stress. Cold increased the stability of BZR1, which was promoted by BRs. Cold- and BR-induced increased BZR1 stability activated the transcription of several autophagy-related genes (ATGs) and NBR1 genes by directly binding to their promoters, which resulted in selective autophagy. Furthermore, silencing of these ATGs or NBR1 genes resulted in a decreased accumulation of several functional proteins and an increased accumulation of ubiquitinated proteins, subsequently compromising BR-induced cold tolerance. These results strongly suggest that BRs regulate NBR1-dependent selective autophagy in a BZR1-dependent manner in response to chilling stress in tomato.
Collapse
Affiliation(s)
- Cheng Chi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Xiaomeng Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Pingping Fang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
46
|
Su T, Li X, Yang M, Shao Q, Zhao Y, Ma C, Wang P. Autophagy: An Intracellular Degradation Pathway Regulating Plant Survival and Stress Response. FRONTIERS IN PLANT SCIENCE 2020; 11:164. [PMID: 32184795 PMCID: PMC7058704 DOI: 10.3389/fpls.2020.00164] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/03/2020] [Indexed: 05/18/2023]
Abstract
Autophagy is an intracellular process that facilitates the bulk degradation of cytoplasmic materials by the vacuole or lysosome in eukaryotes. This conserved process is achieved through the coordination of different autophagy-related genes (ATGs). Autophagy is essential for recycling cytoplasmic material and eliminating damaged or dysfunctional cell constituents, such as proteins, aggregates or even entire organelles. Plant autophagy is necessary for maintaining cellular homeostasis under normal conditions and is upregulated during abiotic and biotic stress to prolong cell life. In this review, we present recent advances on our understanding of the molecular mechanisms of autophagy in plants and how autophagy contributes to plant development and plants' adaptation to the environment.
Collapse
Affiliation(s)
| | | | | | | | | | - Changle Ma
- *Correspondence: Changle Ma, ; Pingping Wang,
| | | |
Collapse
|
47
|
Huo L, Guo Z, Zhang Z, Jia X, Sun Y, Sun X, Wang P, Gong X, Ma F. The Apple Autophagy-Related Gene MdATG9 Confers Tolerance to Low Nitrogen in Transgenic Apple Callus. FRONTIERS IN PLANT SCIENCE 2020; 11:423. [PMID: 32351530 PMCID: PMC7174617 DOI: 10.3389/fpls.2020.00423] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/24/2020] [Indexed: 05/21/2023]
Abstract
Autophagy is an efficient degradation system for maintaining cellular homeostasis when plants are under environmental stress. ATG9 is the only integral membrane protein within the core ATG machinery that provides a membrane source for autophagosome formation. In this study, we isolated an ATG9 homologs gene in apple, MdATG9, from Malus domestica. The analysis of its sequence, subcellular localization, promoter cis-elements, and expression patterns revealed the potential function of MdATG9 in response to abiotic stressors. Overexpression of MdATG9 in apple callus conferred enhanced tolerance to nitrogen depletion stress. During the treatment, other important MdATGs were expressed at higher levels in transgenic callus than in the wild type. Furthermore, more free amino acids and increased sucrose levels were found in MdATG9-overexpression apple callus compared with the wild type in response to nitrogen starvation, and the expression levels of MdNRT1.1, MdNRT2.5, MdNIA1, and MdNIA2 were all increased higher in transgenic lines. These data suggest that, as an important autophagy gene, MdATG9 plays an important role in the maintenance of amino acids and sugars in response to nutrient starvation in apple.
Collapse
|
48
|
Fan T, Yang W, Zeng X, Xu X, Xu Y, Fan X, Luo M, Tian C, Xia K, Zhang M. A Rice Autophagy Gene OsATG8b Is Involved in Nitrogen Remobilization and Control of Grain Quality. FRONTIERS IN PLANT SCIENCE 2020; 11:588. [PMID: 32582228 PMCID: PMC7287119 DOI: 10.3389/fpls.2020.00588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/20/2020] [Indexed: 05/03/2023]
Abstract
Enhancing nitrogen (N) use efficiency is a potential way to reduce excessive nitrogen application and increase yield. Autophagy is a conserved degradation system in the evolution of eukaryotic cells and plays an important role in plant development and stress response. Autophagic cores have two conjugation pathways that attach the product of autophagy-related gene 8 (ATG8) to phosphatidylethanolamine (PE) and ATG5 to ATG12, respectively, which then help with vesicle elongation and enclosure. Rice has six ATG8 genes, which have not been functionally confirmed so far. We identified the rice gene OsATG8b and characterized its role in N remobilization to affect grain quality by generating transgenic plants with its over-expression and knockdown. Our study confirmed the autophagy activity of OsATG8b through the complementation of the yeast autophagy-defective mutant scatg8 and by observation of autophagosome formation in rice. The autophagy activity is higher in OsATG8b-OE lines and lower in OsATG8b-RNAi than that in wild type (ZH11). 15N pulse-chase analysis revealed that OsATG8b-OE plants conferred higher N recycling efficiency to grains, while OsATG8b-RNAi transgenic plants exhibited lower N recycling efficiency and poorer grain quality. The autophagic role of OsATG8b was experimentally confirmed, and it was concluded that OsATG8b-mediated autophagy is involved in N recycling to grains and contributes to the grain quality, indicating that OsATG8b may be a potential gene for molecular breeding and cultivation of rice.
Collapse
Affiliation(s)
- Tian Fan
- School of Life Sciences, Guangzhou University, Guangzhou, China
- Innovation Academy for Seed Design, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Wu Yang
- Innovation Academy for Seed Design, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuan Zeng
- Innovation Academy for Seed Design, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xinlan Xu
- Innovation Academy for Seed Design, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yanling Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Ming Luo
- Innovation Academy for Seed Design, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Changen Tian
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Kuaifei Xia
- Innovation Academy for Seed Design, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Mingyong Zhang
- Innovation Academy for Seed Design, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Mingyong Zhang,
| |
Collapse
|
49
|
The Ins and Outs of Autophagic Ribosome Turnover. Cells 2019; 8:cells8121603. [PMID: 31835634 PMCID: PMC6952998 DOI: 10.3390/cells8121603] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023] Open
Abstract
Ribosomes are essential for protein synthesis in all organisms and their biogenesis and number are tightly controlled to maintain homeostasis in changing environmental conditions. While ribosome assembly and quality control mechanisms have been extensively studied, our understanding of ribosome degradation is limited. In yeast or animal cells, ribosomes are degraded after transfer into the vacuole or lysosome by ribophagy or nonselective autophagy, and ribosomal RNA can also be transferred directly across the lysosomal membrane by RNautophagy. In plants, ribosomal RNA is degraded by the vacuolar T2 ribonuclease RNS2 after transport by autophagy-related mechanisms, although it is unknown if a selective ribophagy pathway exists in plants. In this review, we describe mechanisms of turnover of ribosomal components in animals and yeast, and, then, discuss potential pathways for degradation of ribosomal RNA and protein within the vacuole in plants.
Collapse
|
50
|
Chen Q, Shinozaki D, Luo J, Pottier M, Havé M, Marmagne A, Reisdorf-Cren M, Chardon F, Thomine S, Yoshimoto K, Masclaux-Daubresse C. Autophagy and Nutrients Management in Plants. Cells 2019; 8:cells8111426. [PMID: 31726766 PMCID: PMC6912637 DOI: 10.3390/cells8111426] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 02/07/2023] Open
Abstract
Nutrient recycling and mobilization from organ to organ all along the plant lifespan is essential for plant survival under changing environments. Nutrient remobilization to the seeds is also essential for good seed production. In this review, we summarize the recent advances made to understand how plants manage nutrient remobilization from senescing organs to sink tissues and what is the contribution of autophagy in this process. Plant engineering manipulating autophagy for better yield and plant tolerance to stresses will be presented.
Collapse
Affiliation(s)
- Qinwu Chen
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France; (Q.C.); (J.L.); (M.H.); (A.M.); (M.R.-C.); (F.C.)
| | - Daiki Shinozaki
- Department of Life Science, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan; (D.S.); (K.Y.)
- Life Science Program, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Jie Luo
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France; (Q.C.); (J.L.); (M.H.); (A.M.); (M.R.-C.); (F.C.)
| | - Mathieu Pottier
- Institut de Biologie Intégrative de la Cellule, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France; (M.P.); (S.T.)
| | - Marien Havé
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France; (Q.C.); (J.L.); (M.H.); (A.M.); (M.R.-C.); (F.C.)
| | - Anne Marmagne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France; (Q.C.); (J.L.); (M.H.); (A.M.); (M.R.-C.); (F.C.)
| | - Michèle Reisdorf-Cren
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France; (Q.C.); (J.L.); (M.H.); (A.M.); (M.R.-C.); (F.C.)
| | - Fabien Chardon
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France; (Q.C.); (J.L.); (M.H.); (A.M.); (M.R.-C.); (F.C.)
| | - Sébastien Thomine
- Institut de Biologie Intégrative de la Cellule, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France; (M.P.); (S.T.)
| | - Kohki Yoshimoto
- Department of Life Science, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan; (D.S.); (K.Y.)
- Life Science Program, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France; (Q.C.); (J.L.); (M.H.); (A.M.); (M.R.-C.); (F.C.)
- Correspondence: ; Tel.: +33-13083-3088
| |
Collapse
|