1
|
Baev V, Gecheva G, Apostolova E, Gozmanova M, Yahubyan G. Exploring the Metatranscriptome of Bacterial Communities of Two Moss Species Thriving in Different Environments-Terrestrial and Aquatic. PLANTS (BASEL, SWITZERLAND) 2024; 13:1210. [PMID: 38732425 PMCID: PMC11085137 DOI: 10.3390/plants13091210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Mosses host diverse bacterial communities essential for their fitness, nutrient acquisition, stress tolerance, and pathogen defense. Understanding the microbiome's taxonomic composition is the first step, but unraveling their functional capabilities is crucial for grasping their ecological significance. Metagenomics characterizes microbial communities by composition, while metatranscriptomics explores gene expression, providing insights into microbiome functionality beyond the structure. Here, we present for the first time a metatranscriptomic study of two moss species, Hypnum cupressiforme (Hedw.) and Platyhypnidium riparioides (Hedw.) Dixon., renowned as key biomonitors of atmospheric and water pollution. Our investigation extends beyond taxonomic profiling and offers a profound exploration of moss bacterial communities. Pseudomonadota and Actinobacteria are the dominant bacterial phyla in both moss species, but their proportions differ. In H. cupressiforme, Actinobacteria make up 62.45% and Pseudomonadota 32.48%, while in P. riparioides, Actinobacteria account for only 25.67% and Pseudomonadota 69.08%. This phylum-level contrast is reflected in genus-level differences. Our study also shows the expression of most genes related to nitrogen cycling across both microbiomes. Additionally, functional annotation highlights disparities in pathway prevalence, including carbon dioxide fixation, photosynthesis, and fatty acid biosynthesis, among others. These findings hint at potential metabolic distinctions between microbial communities associated with different moss species, influenced by their specific genotypes and habitats. The integration of metatranscriptomic data holds promise for enhancing our understanding of bryophyte-microbe partnerships, opening avenues for novel applications in conservation, bioremediation, and sustainable agriculture.
Collapse
Affiliation(s)
- Vesselin Baev
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (E.A.); (M.G.)
| | - Gana Gecheva
- Department of Ecology and Environmental Conservation, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria;
| | - Elena Apostolova
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (E.A.); (M.G.)
| | - Mariyana Gozmanova
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (E.A.); (M.G.)
| | - Galina Yahubyan
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (E.A.); (M.G.)
| |
Collapse
|
2
|
Zhu YG, Peng J, Chen C, Xiong C, Li S, Ge A, Wang E, Liesack W. Harnessing biological nitrogen fixation in plant leaves. TRENDS IN PLANT SCIENCE 2023; 28:1391-1405. [PMID: 37270352 DOI: 10.1016/j.tplants.2023.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/05/2023]
Abstract
The importance of biological nitrogen fixation (BNF) in securing food production for the growing world population with minimal environmental cost has been increasingly acknowledged. Leaf surfaces are one of the biggest microbial habitats on Earth, harboring diverse free-living N2-fixers. These microbes inhabit the epiphytic and endophytic phyllosphere and contribute significantly to plant N supply and growth. Here, we summarize the contribution of phyllosphere-BNF to global N cycling, evaluate the diversity of leaf-associated N2-fixers across plant hosts and ecosystems, illustrate the ecological adaptation of N2-fixers to the phyllosphere, and identify the environmental factors driving BNF. Finally, we discuss potential BNF engineering strategies to improve the nitrogen uptake in plant leaves and thus sustainable food production.
Collapse
Affiliation(s)
- Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jingjing Peng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Cai Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Chao Xiong
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Shule Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Anhui Ge
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Werner Liesack
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| |
Collapse
|
3
|
Siwach A, Kaushal S, Sarma K, Baishya R. Interplay of moss cover and seasonal variation regulate soil physicochemical properties and net nitrogen mineralization rates in Central Himalayas, India. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118839. [PMID: 37598496 DOI: 10.1016/j.jenvman.2023.118839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Mosses (Class- Bryopsida) are vital to ecosystem dynamics in numerous biomes, although their effects on soil processes are poorly understood. The interplay of moss cover and seasonal variations in soil processes is still unclear in the Indian Central Himalayas. Therefore, we examined the seasonal variations in net nitrogen (N) mineralization rates and several soil properties under two ground covers (with and without moss cover). We used the ex-situ incubation technique to determine N mineralization rates (Rmin) and standard methodology for soil physical and chemical analysis. During the rainy season, the physical properties of the soil and its nutrients, apart from phosphorus, were higher under moss cover. The winter season, however, showed a different pattern, with soil properties exhibiting higher values in soils without moss cover. Ammonium concentrations were higher under moss cover, while nitrate concentrations were higher in soil without moss cover during rainy and winter seasons. The Rmin rates were higher in soil under moss cover, indicating that moss cover promotes N transformation. In contrast, Rmin rates were negative in soil without moss cover, indicating that N immobilization was dominant in N transformation under this ground cover during the rainy season. Our research shows that mosses positively impact the nutrient status and N mineralization rates in various temperate forest types. The seasonal patterns of soil properties are strongly influenced by soil temperature, moisture, and organic carbon. Therefore, we advocate the conservation of mosses and their integration into forest management plans for better ecosystem processes and services in the ecologically fragile Himalayas.
Collapse
Affiliation(s)
- Anshu Siwach
- Ecology and Ecosystem Research Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Siddhartha Kaushal
- Ecology and Ecosystem Research Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Kiranmay Sarma
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Delhi, 110078, India
| | - Ratul Baishya
- Ecology and Ecosystem Research Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
4
|
Li M, Li J, Deng L, Zhao Z, Luo C, Luo F, Wang H, Yang J. Species of associated bryophytes and their effects on the yield and quality of Dendrobium nobile. BMC PLANT BIOLOGY 2023; 23:516. [PMID: 37880597 PMCID: PMC10601116 DOI: 10.1186/s12870-023-04503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Dendrobium nobile has unique growth environment requirements, and unstable yields and high management costs are the key factors restricting the development of its imitation wild cultivation industry. The present study explored the effects of different associated bryophyte species on the yield and quality of D. nobile to clarify the dominant bryophyte species associated with D. nobile and to provide a scientific basis for the rational cultivation and quality evaluation of D. nobile. RESULTS The growth of D. nobile was closely related to the microenvironment of the Danxia stone, and the different associated bryophytes had different effects on D. nobile growth. There was a rich variety of bryophytes associated with D. nobile, with a total of 15 families, 24 genera and 31 species of bryophytes identified in the study area, including 13 families, 22 genera and 29 species of mosses and 2 families, 2 genera and 2 species of liverworts, and mosses predominated in the association with D. nobile. Usually, 3-9 species of bryophytes were growing in association with D. nobile, among which associations of 5-6 bryophytes species were more common, and the bryophytes associated with D. nobile were only related to the species to which they belonged. The dry matter accumulation, quality and mineral content of D. nobile differed significantly among different bryophyte species. The coefficients of variation of dry matter accumulation, dendrobine content and content of 11 mineral elements of D. nobile in the 35 sample quadrats were 25.00%, 21.08%, and 11.33-57.96%, respectively. The biomass, dendrobine content and mineral content of D. nobile were analysed by principal component analysis (PCA) and membership function. The results showed that each evaluation method initially screened Trachycystis microphylla and Leucobryum juniperoideum as the dominant associated bryophytes in the preliminary identification analysis, and the frequency of occurrence and coverage of the two bryophytes were significantly higher than those of the remaining bryophytes. It was determined that T. microphylla and L. juniperoideum were the dominant associated bryophytes. CONCLUSIONS There is a rich variety of bryophytes associated with D. nobile. The yield and quality of D. nobile differed significantly among different bryophyte species. T. microphylla and L. juniperoideum were the dominant associated bryophytes, and were the two bryophytes associated with D. nobile through mixed growth.
Collapse
Affiliation(s)
- Mingsong Li
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Breeding and Cultivation of Medicinal Plants of Guizhou Province, Guiyang, 550025, China
| | - Jinling Li
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Breeding and Cultivation of Medicinal Plants of Guizhou Province, Guiyang, 550025, China.
| | - Lujun Deng
- Institute of Biotechnology, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Zhi Zhao
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Breeding and Cultivation of Medicinal Plants of Guizhou Province, Guiyang, 550025, China
| | - Chunli Luo
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Breeding and Cultivation of Medicinal Plants of Guizhou Province, Guiyang, 550025, China
| | - Fulai Luo
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Breeding and Cultivation of Medicinal Plants of Guizhou Province, Guiyang, 550025, China
| | - Hualei Wang
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Breeding and Cultivation of Medicinal Plants of Guizhou Province, Guiyang, 550025, China
| | - Jiyong Yang
- Chishui Xintian Traditional Chinese Medicine Industry Development Co. Ltd, Chishui, 64700, China
| |
Collapse
|
5
|
Abstract
Plants associate with nitrogen-fixing bacteria to secure nitrogen, which is generally the most limiting nutrient for plant growth. Endosymbiotic nitrogen-fixing associations are widespread among diverse plant lineages, ranging from microalgae to angiosperms, and are primarily one of three types: cyanobacterial, actinorhizal or rhizobial. The large overlap in the signaling pathways and infection components of arbuscular mycorrhizal, actinorhizal and rhizobial symbioses reflects their evolutionary relatedness. These beneficial associations are influenced by environmental factors and other microorganisms in the rhizosphere. In this review, we summarize the diversity of nitrogen-fixing symbioses, key signal transduction pathways and colonization mechanisms relevant to such interactions, and compare and contrast these interactions with arbuscular mycorrhizal associations from an evolutionary standpoint. Additionally, we highlight recent studies on environmental factors regulating nitrogen-fixing symbioses to provide insights into the adaptation of symbiotic plants to complex environments.
Collapse
Affiliation(s)
- Peng Xu
- National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ertao Wang
- National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; New Cornerstone Science Laboratory, Shenzhen 518054, China.
| |
Collapse
|
6
|
Kubota M, Matsushita N, Nakamura T, Fukuda K. Nitrogen fixation and nifH gene diversity in cyanobacteria living on feather mosses in a subalpine forest of Mt. Fuji. Oecologia 2023; 201:749-760. [PMID: 36808304 PMCID: PMC10038973 DOI: 10.1007/s00442-023-05334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
In the boreal forests, feather mosses such as Hylocomium splendens and Pleurozium schreberi are colonized by cyanobacteria, which provide large amounts of nitrogen to forest ecosystems through nitrogen fixation. Although these feather mosses are also ubiquitous in subalpine forests of East Asia, little is known regarding their associated cyanobacteria and their ability to fix nitrogen. In this study, we investigated (1) whether cyanobacteria co-exist and fix nitrogen in the two species of feather mosses that cover the ground surface in a subalpine forest of Mt. Fuji, (2) whether cyanobacteria belonging to a common cluster with boreal forests are found in feather mosses in Mt. Fuji, and (3) whether moss-associated nitrogen fixation rates differed among moss growing substrates, canopy openness, and moss nitrogen concentrations in the same forest area. Our results showed that cyanobacteria colonized feather mosses in the subalpine forests of Mt. Fuji and acetylene reduction rates as an index of nitrogen fixation tended to be higher in H. splendens than in P. schreberi. Based on analysis of the nifH gene, 43 bacterial operational taxonomic units (OTUs) were identified, 28 of which represented cyanobacteria. Among the five clusters of cyanobacteria classified based on their nifH gene and identified in northern Europe, four (Nostoc cluster I, Nostoc cluster II, Stigonema cluster, and nifH2 cluster) were also found at Mt. Fuji. The acetylene reduction rate differed depending on the moss growing substrate and the total nitrogen concentration of moss shoots, and a strong negative correlation was observed with the total nitrogen concentration.
Collapse
Affiliation(s)
- Masayuki Kubota
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan.
| | - Norihisa Matsushita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Toshihiko Nakamura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Kenji Fukuda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| |
Collapse
|
7
|
Zobel M, Moora M, Pärtel M, Semchenko M, Tedersoo L, Öpik M, Davison J. The multiscale feedback theory of biodiversity. Trends Ecol Evol 2023; 38:171-182. [PMID: 36182404 DOI: 10.1016/j.tree.2022.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 01/21/2023]
Abstract
Plants and their environments engage in feedback loops that not only affect individuals, but also scale up to the ecosystem level. Community-level negative feedback facilitates local diversity, while the ability of plants to engineer ecosystem-wide conditions for their own benefit enhances local dominance. Here, we suggest that local and regional processes influencing diversity are inherently correlated: community-level negative feedback predominates among large species pools formed under historically common conditions; ecosystem-level positive feedback is most apparent in historically restricted habitats. Given enough time and space, evolutionary processes should lead to transitions between systems dominated by positive and negative feedbacks: species-poor systems should become richer due to diversification of dominants and adaptation of subordinates; however, new monodominants may emerge due to migration or new adaptations.
Collapse
Affiliation(s)
- Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia; Biology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
8
|
Arróniz-Crespo M, Bougoure J, Murphy DV, Cutler NA, Souza-Egipsy V, Chaput DL, Jones DL, Ostle N, Wade SC, Clode PL, DeLuca TH. Revealing the transfer pathways of cyanobacterial-fixed N into the boreal forest through the feather-moss microbiome. FRONTIERS IN PLANT SCIENCE 2022; 13:1036258. [PMID: 36570951 PMCID: PMC9780503 DOI: 10.3389/fpls.2022.1036258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Biological N2 fixation in feather-mosses is one of the largest inputs of new nitrogen (N) to boreal forest ecosystems; however, revealing the fate of newly fixed N within the bryosphere (i.e. bryophytes and their associated organisms) remains uncertain. METHODS Herein, we combined 15N tracers, high resolution secondary ion mass-spectrometry (NanoSIMS) and a molecular survey of bacterial, fungal and diazotrophic communities, to determine the origin and transfer pathways of newly fixed N2 within feather-moss (Pleurozium schreberi) and its associated microbiome. RESULTS NanoSIMS images reveal that newly fixed N2, derived from cyanobacteria, is incorporated into moss tissues and associated bacteria, fungi and micro-algae. DISCUSSION These images demonstrate that previous assumptions that newly fixed N2 is sequestered into moss tissue and only released by decomposition are not correct. We provide the first empirical evidence of new pathways for N2 fixed in feather-mosses to enter the boreal forest ecosystem (i.e. through its microbiome) and discuss the implications for wider ecosystem function.
Collapse
Affiliation(s)
- María Arróniz-Crespo
- School of Natural Sciences, Bangor University, Bangor, United Kingdom
- School of Agricultural Engineering, CEIGRAM, Universidad Politecnica de Madrid, Madrid, Spain
| | - Jeremy Bougoure
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Daniel V. Murphy
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
- Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Nick A. Cutler
- Department of Geography, Scott Polar Research Institute, Cambridge, United Kingdom
- School of Geography, Politics and Sociology, Newcastle University, Newcastle, United Kingdom
| | - Virginia Souza-Egipsy
- Servicio de Microscopıa Electronica, Instituto Ciencias Agrarias CSIC, Madrid, Spain
| | | | - Davey L. Jones
- School of Natural Sciences, Bangor University, Bangor, United Kingdom
- Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Nicholas Ostle
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Stephen C. Wade
- Advanced Microscopy and Bioimaging, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Peta L. Clode
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Thomas H. DeLuca
- Department of Forest Ecosystems & Society, College of Forestry, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
9
|
Renaudin M, Laforest-Lapointe I, Bellenger JP. Unraveling global and diazotrophic bacteriomes of boreal forest floor feather mosses and their environmental drivers at the ecosystem and at the plant scale in North America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155761. [PMID: 35533858 DOI: 10.1016/j.scitotenv.2022.155761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Feather mosses are abundant cryptogams of the boreal forest floor and shelter a broad diversity of bacteria who have important ecological functions (e.g., decomposition, nutrient cycling). In particular, nitrogen (N2-) fixation performed by feather moss-associated diazotrophs constitutes an important entry of nitrogen in the boreal forest ecosystem. However, the composition of the feather moss bacteriome and its environmental drivers are still unclear. Using cDNA amplicon sequencing of the 16S rRNA and nifH genes and cyanobacterial biomass quantification, we explored the active global and diazotrophic bacterial communities of two dominant feather moss species (i) at the ecosystem scale, along a 500-km climatic and nutrient deposition gradient in the North American boreal forest, and (ii) at the plant scale, along the moss shoot senescence gradient. We found that cyanobacteria were major actors of the feather moss bacteriome, accounting for 33% of global bacterial communities and 65% of diazotrophic communities, and that several cyanobacterial and methanotrophic genera were contributing to N2-fixation. Moreover, we showed that bacteria were occupying ecological niches along the moss shoot, with phototrophs being dominant in the apical part and methanotrophs being dominant in the basal part. Finally, climate (temperature, precipitation), environmental variables (moss species, month, tree density) and nutrients (nitrogen, phosphorus, molybdenum, vanadium, iron) strongly shaped global and diazotrophic bacteriomes. In summary, this work presents evidence that the feather moss bacteriome plays crucial roles in supporting moss growth, health, and decomposition, as well as in the boreal forest carbon and nitrogen cycles. This study also highlights the substantial effects of climate and nutrients on the feather moss bacteriome, suggesting the importance of understanding the impacts of global change on moss-associated bacterial growth and activity.
Collapse
Affiliation(s)
- Marie Renaudin
- Centre Sève, Département de Chimie, Université de Sherbrooke, J1K 2R1 Sherbrooke, QC, Canada.
| | | | - Jean-Philippe Bellenger
- Centre Sève, Département de Chimie, Université de Sherbrooke, J1K 2R1 Sherbrooke, QC, Canada.
| |
Collapse
|
10
|
Mathesius U. Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153765. [PMID: 35952452 DOI: 10.1016/j.jplph.2022.153765] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 05/14/2023]
Abstract
Nitrogen fixing symbioses between plants and bacteria are ancient and, while not numerous, are formed in diverse lineages of plants ranging from microalgae to angiosperms. One symbiosis stands out as the most widespread one is that between legumes and rhizobia, leading to the formation of nitrogen-fixing nodules. The legume family is one of the largest and most diverse group of plants and legumes have been used by humans since the beginning of agriculture, both as high nitrogen food, as well as pastures and rotation crops. One open question is whether their ability to form a nitrogen-fixing symbiosis has contributed to legumes' success, and whether legumes have any unique characteristics that have made them more diverse and widespread than other groups of plants. This review examines the evolutionary journey that has led to the diversification of legumes, in particular its nitrogen-fixing symbiosis, and asks four questions to investigate which legume traits might have contributed to their success: 1. In what ways do legumes differ from other plant groups that have evolved nitrogen-fixing symbioses? In order to answer this question, the characteristics of the symbioses, and efficiencies of nitrogen fixation are compared between different groups of nitrogen fixing plants. 2. Could certain unique features of legumes be a reason for their success? This section examines the manifestations and possible benefits of a nitrogen-rich 'lifestyle' in legumes. 3. If nitrogen fixation was a reason for such a success, why have some species lost the symbiosis? Formation of symbioses has trade-offs, and while these are less well known for non-legumes, there are known energetic and ecological reasons for loss of symbiotic potential in legumes. 4. What can we learn from the unique traits of legumes for future crop improvements? While exploiting some of the physiological properties of legumes could be used to improve legume breeding, our increasing molecular understanding of the essential regulators of root nodule symbioses raise hope of creating new nitrogen fixing symbioses in other crop species.
Collapse
Affiliation(s)
- Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT, 2601, Australia.
| |
Collapse
|
11
|
de Vries S, de Vries J. Evolutionary genomic insights into cyanobacterial symbioses in plants. QUANTITATIVE PLANT BIOLOGY 2022; 3:e16. [PMID: 37077989 PMCID: PMC10095879 DOI: 10.1017/qpb.2022.3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 05/03/2023]
Abstract
Photosynthesis, the ability to fix atmospheric carbon dioxide, was acquired by eukaryotes through symbiosis: the plastids of plants and algae resulted from a cyanobacterial symbiosis that commenced more than 1.5 billion years ago and has chartered a unique evolutionary path. This resulted in the evolutionary origin of plants and algae. Some extant land plants have recruited additional biochemical aid from symbiotic cyanobacteria; these plants associate with filamentous cyanobacteria that fix atmospheric nitrogen. Examples of such interactions can be found in select species from across all major lineages of land plants. The recent rise in genomic and transcriptomic data has provided new insights into the molecular foundation of these interactions. Furthermore, the hornwort Anthoceros has emerged as a model system for the molecular biology of cyanobacteria-plant interactions. Here, we review these developments driven by high-throughput data and pinpoint their power to yield general patterns across these diverse symbioses.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goettingen, Germany
| |
Collapse
|
12
|
Rousk K. Biotic and abiotic controls of nitrogen fixation in cyanobacteria-moss associations. THE NEW PHYTOLOGIST 2022; 235:1330-1335. [PMID: 35687087 DOI: 10.1111/nph.18264] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Most mosses are colonized by nitrogen (N)-fixing cyanobacteria. This discovery is relatively recent, which can explain the large knowledge gaps the field is now tackling. For instance, while we have a good understanding of the abiotic controls (e.g. nutrient availability, increased temperature), we still do not know much about the biotic controls of N2 fixation in mosses. I propose here that we should endeavour to position moss-cyanobacteria associations along the mutualism-parasitism continuum under varying abiotic conditions (e.g. nutrient availability). This would finally unravel the nature of the relationship between the partners and will be a big leap in our understanding of the evolution of plant-bacteria interactions using moss-cyanobacteria associations as a model system.
Collapse
Affiliation(s)
- Kathrin Rousk
- Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| |
Collapse
|
13
|
Jassey VEJ, Hamard S, Lepère C, Céréghino R, Corbara B, Küttim M, Leflaive J, Leroy C, Carrias JF. Photosynthetic microorganisms effectively contribute to bryophyte CO 2 fixation in boreal and tropical regions. ISME COMMUNICATIONS 2022; 2:64. [PMID: 37938283 PMCID: PMC9723567 DOI: 10.1038/s43705-022-00149-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 04/26/2023]
Abstract
Photosynthetic microbes are omnipresent in land and water. While they critically influence primary productivity in aquatic systems, their importance in terrestrial ecosystems remains largely overlooked. In terrestrial systems, photoautotrophs occur in a variety of habitats, such as sub-surface soils, exposed rocks, and bryophytes. Here, we study photosynthetic microbial communities associated with bryophytes from a boreal peatland and a tropical rainforest. We interrogate their contribution to bryophyte C uptake and identify the main drivers of that contribution. We found that photosynthetic microbes take up twice more C in the boreal peatland (~4.4 mg CO2.h-1.m-2) than in the tropical rainforest (~2.4 mg CO2.h-1.m-2), which corresponded to an average contribution of 4% and 2% of the bryophyte C uptake, respectively. Our findings revealed that such patterns were driven by the proportion of photosynthetic protists in the moss microbiomes. Low moss water content and light conditions were not favourable to the development of photosynthetic protists in the tropical rainforest, which indirectly reduced the overall photosynthetic microbial C uptake. Our investigations clearly show that photosynthetic microbes associated with bryophyte effectively contribute to moss C uptake despite species turnover. Terrestrial photosynthetic microbes clearly have the capacity to take up atmospheric C in bryophytes living under various environmental conditions, and therefore potentially support rates of ecosystem-level net C exchanges with the atmosphere.
Collapse
Affiliation(s)
- Vincent E J Jassey
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université Toulouse 3-Paul Sabatier (UT3), CNRS, 31062, Toulouse, France.
| | - Samuel Hamard
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université Toulouse 3-Paul Sabatier (UT3), CNRS, 31062, Toulouse, France
| | - Cécile Lepère
- Laboratoire Microorganismes, Génome Et Environnement (LMGE), Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| | - Régis Céréghino
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université Toulouse 3-Paul Sabatier (UT3), CNRS, 31062, Toulouse, France
| | - Bruno Corbara
- Laboratoire Microorganismes, Génome Et Environnement (LMGE), Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| | - Martin Küttim
- Institute of Ecology, School of Natural Sciences and Health, Tallinn University, Uus-Sadama 5, 10120, Tallinn, Estonia
| | - Joséphine Leflaive
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université Toulouse 3-Paul Sabatier (UT3), CNRS, 31062, Toulouse, France
| | - Céline Leroy
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
- ECOFOG, AgroParisTech, CIRAD, CNRS, INRAE, Université de Guyane, Université des Antilles, Campus Agronomique, Kourou, France
| | - Jean-François Carrias
- Laboratoire Microorganismes, Génome Et Environnement (LMGE), Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| |
Collapse
|
14
|
Alvarenga DO, Elmdam IV, Timm AB, Rousk K. Chemical Stimulation of Heterocyte Differentiation by the Feather Moss Hylocomium splendens: a Potential New Step in Plant-Cyanobacteria Symbioses. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02075-9. [PMID: 35859069 DOI: 10.1007/s00248-022-02075-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria associated with mosses play a key role in the nitrogen (N) cycle in unpolluted ecosystems. Mosses have been found to release molecules that induce morphophysiological changes in epiphytic cyanobionts. Nevertheless, the extent of moss influence on these microorganisms remains unknown. To evaluate how mosses or their metabolites influence N2 fixation rates by cyanobacteria, we assessed the nitrogenase activity, heterocyte frequency and biomass of a cyanobacterial strain isolated from the feather moss Hylocomium splendens and a non-symbiotic strain when they were either growing by themselves, together with H. splendens or exposed to H. splendens water, acetone, ethanol, or isopropanol extracts. The same cyanobacterial strains were added to another moss (Taxiphyllum barbieri) and a liverwort (Monosolenium tenerum) to assess if these bryophytes affect N2 fixation differently. Although no significant increases in nitrogenase activity by the cyanobacteria were observed when in contact with H. splendens shoots, both the symbiotic and non-symbiotic cyanobacteria increased nitrogenase activity as well as heterocyte frequency significantly upon exposure to H. splendens ethanol extracts. Contact with T. barbieri shoots, on the other hand, did lead to increases in nitrogenase activity, indicating low host-specificity to cyanobacterial activity. These findings suggest that H. splendens produces heterocyte-differentiating factors (HDFs) that are capable of stimulating cyanobacterial N2 fixation regardless of symbiotic competency. Based on previous knowledge about the chemical ecology and dynamics of moss-cyanobacteria interactions, we speculate that HDF expression by the host takes place in a hypothetical new step occurring after plant colonization and the repression of hormogonia.
Collapse
Affiliation(s)
- Danillo Oliveira Alvarenga
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
- Centre for Permafrost, University of Copenhagen, Øster Voldgade 10, 1350, Copenhagen, Denmark.
| | - Isabella Vendel Elmdam
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | | | - Kathrin Rousk
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Centre for Permafrost, University of Copenhagen, Øster Voldgade 10, 1350, Copenhagen, Denmark
| |
Collapse
|
15
|
Alvarenga DO, Rousk K. Unraveling host-microbe interactions and ecosystem functions in moss-bacteria symbioses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4473-4486. [PMID: 35728619 DOI: 10.1093/jxb/erac091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Mosses are non-vascular plants usually found in moist and shaded areas, with great ecological importance in several ecosystems. This is especially true in northern latitudes, where mosses are responsible for up to 100% of primary production in some ecosystems. Mosses establish symbiotic associations with unique bacteria that play key roles in the carbon and nitrogen cycles. For instance, in boreal environments, more than 35% of the nitrogen fixed by diazotrophic symbionts in peatlands is transferred to mosses, directly affecting carbon fixation by the hosts, while moss-associated methanotrophic bacteria contribute 10-30% of moss carbon. Further, half of ecosystem N input may derive from moss-cyanobacteria associations in pristine ecosystems. Moss-bacteria interactions have consequences on a global scale since northern environments sequester 20% of all the carbon generated by forests in the world and stock at least 32% of global terrestrial carbon. Different moss hosts influence bacteria in distinct ways, which suggests that threats to mosses also threaten unique microbial communities with important ecological and biogeochemical consequences. Since their origin ~500 Ma, mosses have interacted with bacteria, making these associations ideal models for understanding the evolution of plant-microbe associations and their contribution to biogeochemical cycles.
Collapse
Affiliation(s)
- Danillo O Alvarenga
- Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
- Centre for Permafrost, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| | - Kathrin Rousk
- Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
- Centre for Permafrost, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| |
Collapse
|
16
|
Permin A, Horwath AB, Metcalfe DB, Priemé A, Rousk K. ‘High nitrogen‐fixing rates associated with ground‐covering mosses in a tropical mountain cloud forest will decrease drastically in a future climate’. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Aya Permin
- Terrestrial Ecology Section, Department of Biology University of Copenhagen Copenhagen Denmark
- Center for Permafrost (CENPERM) University of Copenhagen Copenhagen Denmark
| | - Aline B. Horwath
- Biological and Environmental Sciences, Faculty of Natural Sciences University of Stirling Stirling UK
| | - Daniel B. Metcalfe
- Department of Physical Geography and Ecosystem Science Lund University SE Lund Sweden
- Department of Ecology and Environmental Science SE Umeå Sweden
| | - Anders Priemé
- Center for Permafrost (CENPERM) University of Copenhagen Copenhagen Denmark
- Section of Microbiology, Department of Biology University of Copenhagen Copenhagen Denmark
| | - Kathrin Rousk
- Terrestrial Ecology Section, Department of Biology University of Copenhagen Copenhagen Denmark
- Center for Permafrost (CENPERM) University of Copenhagen Copenhagen Denmark
| |
Collapse
|
17
|
Rodríguez-Rodríguez JC, Bergeron Y, Kembel SW, Fenton NJ. Dominance of coniferous and broadleaved trees drives bacterial associations with boreal feather mosses. Environ Microbiol 2022; 24:3517-3528. [PMID: 35416394 DOI: 10.1111/1462-2920.16013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/09/2022] [Accepted: 04/09/2022] [Indexed: 12/01/2022]
Abstract
The composition of ecologically important moss-associated bacterial communities seems to be mainly driven by host species but may also be shaped by environmental conditions related with tree dominance. The moss phyllosphere has been studied in coniferous forests while broadleaf forests remain understudied. To determine if host species or environmental conditions defined by tree dominance drives the bacterial diversity in the moss phyllosphere, we used 16S rRNA gene amplicon sequencing to quantify changes in bacterial communities as a function of host species (Pleurozium schreberi and Ptilium crista-castrensis) and forest type (coniferous black spruce versus deciduous broadleaf trembling aspen) in eastern Canada. The overall composition of moss phyllosphere was defined by the interaction of both factors, though most of bacterial phyla were determined by a strong effect of forest type. Bacterial α-diversity was highest in spruce forests, while there was greater turnover (β-diversity) and higher γ-diversity in aspen forests. Unexpectedly, Cyanobacteria were much more relatively abundant in aspen than in spruce forests, with the cyanobacteria family Nostocaceae differing the most between forest types. Our results advance the understanding of moss-associated microbial communities among coniferous and broadleaf deciduous forests, which are important with the increasing changes in tree dominance in the boreal system. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Juanita C Rodríguez-Rodríguez
- Forest Research Institute (IRF) , Université du Québec en Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, QC J9X 5E4, Canada. 2 Département des sciences biologiques, Université du Québec à Montréal (UQAM), Montréal, QC, H2L 2C4, Canada
| | - Yves Bergeron
- Forest Research Institute (IRF) , Université du Québec en Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, QC J9X 5E4, Canada. 2 Département des sciences biologiques, Université du Québec à Montréal (UQAM), Montréal, QC, H2L 2C4, Canada
| | | | - Nicole J Fenton
- Forest Research Institute (IRF) , Université du Québec en Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, QC J9X 5E4, Canada. 2 Département des sciences biologiques, Université du Québec à Montréal (UQAM), Montréal, QC, H2L 2C4, Canada
| |
Collapse
|
18
|
Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. THE ISME JOURNAL 2022; 16:1074-1085. [PMID: 34845335 PMCID: PMC8941135 DOI: 10.1038/s41396-021-01136-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022]
Abstract
Interactions between Sphagnum (peat moss) and cyanobacteria play critical roles in terrestrial carbon and nitrogen cycling processes. Knowledge of the metabolites exchanged, the physiological processes involved, and the environmental conditions allowing the formation of symbiosis is important for a better understanding of the mechanisms underlying these interactions. In this study, we used a cross-feeding approach with spatially resolved metabolite profiling and metatranscriptomics to characterize the symbiosis between Sphagnum and Nostoc cyanobacteria. A pH gradient study revealed that the Sphagnum–Nostoc symbiosis was driven by pH, with mutualism occurring only at low pH. Metabolic cross-feeding studies along with spatially resolved matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) identified trehalose as the main carbohydrate source released by Sphagnum, which were depleted by Nostoc along with sulfur-containing choline-O-sulfate, taurine and sulfoacetate. In exchange, Nostoc increased exudation of purines and amino acids. Metatranscriptome analysis indicated that Sphagnum host defense was downregulated when in direct contact with the Nostoc symbiont, but not as a result of chemical contact alone. The observations in this study elucidated environmental, metabolic, and physiological underpinnings of the widespread plant–cyanobacterial symbioses with important implications for predicting carbon and nitrogen cycling in peatland ecosystems as well as the basis of general host-microbe interactions.
Collapse
|
19
|
Defining the
Sphagnum
Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio 2022. [PMCID: PMC8863050 DOI: 10.1128/mbio.03714-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peat mosses of the genus Sphagnum are ecosystem engineers that frequently predominate over photosynthetic production in boreal peatlands. Sphagnum spp. host diverse microbial communities capable of nitrogen fixation (diazotrophy) and methane oxidation (methanotrophy), thereby potentially supporting plant growth under severely nutrient-limited conditions. Moreover, diazotrophic methanotrophs represent a possible “missing link” between the carbon and nitrogen cycles, but the functional contributions of the Sphagnum-associated microbiome remain in question. A combination of metagenomics, metatranscriptomics, and dual-isotope incorporation assays was applied to investigate Sphagnum microbiome community composition across the North American continent and provide empirical evidence for diazotrophic methanotrophy in Sphagnum-dominated ecosystems. Remarkably consistent prokaryotic communities were detected in over 250 Sphagnum SSU rRNA libraries from peatlands across the United States (5 states, 17 bog/fen sites, 18 Sphagnum species), with 12 genera of the core microbiome comprising 60% of the relative microbial abundance. Additionally, nitrogenase (nifH) and SSU rRNA gene amplicon analysis revealed that nitrogen-fixing populations made up nearly 15% of the prokaryotic communities, predominated by Nostocales cyanobacteria and Rhizobiales methanotrophs. While cyanobacteria comprised the vast majority (>95%) of diazotrophs detected in amplicon and metagenome analyses, obligate methanotrophs of the genus Methyloferula (order Rhizobiales) accounted for one-quarter of transcribed nifH genes. Furthermore, in dual-isotope tracer experiments, members of the Rhizobiales showed substantial incorporation of 13CH4 and 15N2 isotopes into their rRNA. Our study characterizes the core Sphagnum microbiome across large spatial scales and indicates that diazotrophic methanotrophs, here defined as obligate methanotrophs of the rare biosphere (Methyloferula spp. of the Rhizobiales) that also carry out diazotrophy, play a keystone role in coupling of the carbon and nitrogen cycles in nutrient-poor peatlands.
Collapse
|
20
|
Liu X, Rousk K. The moss traits that rule cyanobacterial colonization. ANNALS OF BOTANY 2022; 129:147-160. [PMID: 34628495 PMCID: PMC8796673 DOI: 10.1093/aob/mcab127] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Cyanobacteria associated with mosses represent a main nitrogen (N) source in pristine, high-latitude and -altitude ecosystems due to their ability to fix N2. However, despite progress made regarding moss-cyanobacteria associations, the factors driving the large interspecific variation in N2 fixation activity between moss species remain elusive. The aim of the study was to identify the traits of mosses that determine cyanobacterial colonization and thus N2 fixation activity. METHODS Four moss species varying in N2 fixation activity were used to assess cyanobacterial abundance and activity to correlate it with moss traits (morphological, chemical, water-balance traits) for each species. KEY RESULTS Moss hydration rate was one of the pivotal traits, explaining 56 and 38 % of the variation in N2 fixation and cyanobacterial colonization, respectively, and was linked to morphological traits of the moss species. Higher abundance of cyanobacteria was found on shoots with smaller leaves, and with a high frequency of leaves. High phenol concentration inhibited N2 fixation but not colonization. These traits driving interspecific variation in cyanobacterial colonization, however, are also affected by the environment, and lead to intraspecific variation. Approximately 24 % of paraphyllia, filamentous appendages on Hylocomium splendens stems, were colonized by cyanobacteria. CONCLUSIONS Our findings show that interspecific variations in moss traits drive differences in cyanobacterial colonization and thus, N2 fixation activity among moss species. The key traits identified here that control moss-associated N2 fixation and cyanobacterial colonization could lead to improved predictions of N2 fixation in different moss species as a function of their morphology.
Collapse
Affiliation(s)
- Xin Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen, Denmark
| | - Kathrin Rousk
- Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen, Denmark
| |
Collapse
|
21
|
Hupperts SF, Gerber S, Nilsson MC, Gundale MJ. Empirical and Earth system model estimates of boreal nitrogen fixation often differ: A pathway toward reconciliation. GLOBAL CHANGE BIOLOGY 2021; 27:5711-5725. [PMID: 34382301 DOI: 10.1111/gcb.15836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
The impacts of global environmental change on productivity in northern latitudes will be contingent on nitrogen (N) availability. In circumpolar boreal ecosystems, nonvascular plants (i.e., bryophytes) and associated N2 -fixing diazotrophs provide one of the largest known N inputs but are rarely accounted for in Earth system models. Instead, most models link N2 -fixation with the functioning of vascular plants. Neglecting nonvascular N2 -fixation may be contributing toward high uncertainty that currently hinders model predictions in northern latitudes, where nonvascular N2 -fixing plants are more common. Adequately accounting for nonvascular N2 -fixation and its drivers could subsequently improve predictions of future N availability and ultimately, productivity, in northern latitudes. Here, we review empirical evidence of boreal nonvascular N2 -fixation responses to global change factors (elevated CO2 , N deposition, warming, precipitation, and shading by vascular plants), and compare empirical findings with model predictions of N2 -fixation using nine Earth system models. The majority of empirical studies found positive effects of CO2 , warming, precipitation, or light on nonvascular N2 -fixation, but N deposition strongly downregulated N2 -fixation in most empirical studies. Furthermore, we found that the responses of N2 -fixation to elevated CO2 were generally consistent between models and very limited empirical data. In contrast, empirical-model comparisons suggest that all models we assessed, and particularly those that scale N2 -fixation with net primary productivity or evapotranspiration, may be overestimating N2 -fixation under increasing N deposition. Overestimations could generate erroneous predictions of future N stocks in boreal ecosystems unless models adequately account for the drivers of nonvascular N2 -fixation. Based on our comparisons, we recommend that models explicitly treat nonvascular N2 -fixation and that field studies include more targeted measurements to improve model structures and parameterization.
Collapse
Affiliation(s)
- Stefan F Hupperts
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Stefan Gerber
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, USA
| | - Marie-Charlotte Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
22
|
Sun H, Jiang S, Jiang C, Wu C, Gao M, Wang Q. A review of root exudates and rhizosphere microbiome for crop production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54497-54510. [PMID: 34431053 DOI: 10.1007/s11356-021-15838-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/02/2021] [Indexed: 05/04/2023]
Abstract
Increasing crop yields and ensuring food security is a major global challenge. In order to increase crop production, chemical fertilizers and pesticides are excessively used. However, the significance of root exudates is understudied. Beneficial interactions between plant and rhizosphere microbiome are critical for plant fitness and health. In this review, we discuss the application and progress of current research methods and technologies in terms of root exudates and rhizosphere microbiome. We summarize how root exudates promote plant access to nitrogen, phosphorus, and iron, and how root exudates strengthen plant immunity to cope with biotic stress by regulating the rhizosphere microbiome, and thereby reducing dependence on fertilizers and pesticides. Optimizing these interactions to increase plant nutrient uptake and resistance to biotic stresses offers one of the few untapped opportunities to confront sustainability issues in food security. To overcome the limitations of current research, combination of multi-omics, imaging technology together with synthetic communities has the potential to uncover the interaction mechanisms and to fill the knowledge gap for their applications in agriculture to achieve sustainable development.
Collapse
Affiliation(s)
- Haishu Sun
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chuanfu Wu
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 10083, China
| | - Ming Gao
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 10083, China
| | - Qunhui Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 10083, China.
| |
Collapse
|
23
|
The relationship of C and N stable isotopes to high-latitude moss-associated N 2 fixation. Oecologia 2021; 197:283-295. [PMID: 34319437 DOI: 10.1007/s00442-021-05005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Moss-associated N2 fixation by epiphytic microbes is a key biogeochemical process in nutrient-limited high-latitude ecosystems. Abiotic drivers, such as temperature and moisture, and the identity of host mosses are critical sources of variation in N2 fixation rates. An understanding of the potential interaction between these factors is essential for predicting N inputs as moss communities change with the climate. To further understand the drivers and results of N2 fixation rate variation, we obtained natural abundance values of C and N isotopes and an associated rate of N2 fixation with 15N2 gas incubations in 34 moss species collected in three regions across Alaska, USA. We hypothesized that δ15N values would increase toward 0‰ with higher N2 fixation to reflect the increasing contribution of fixed N2 in moss biomass. Second, we hypothesized that δ13C and N2 fixation would be positively related, as enriched δ13C signatures reflect abiotic conditions favorable to N2 fixation. We expected that the magnitude of these relationships would vary among types of host mosses, reflecting differences in anatomy and habitat. We found little support for our first hypothesis, with only a modest positive relationship between N2 fixation rates and δ15N in a structural equation model. We found a significant positive relationship between δ13C and N2 fixation only in Hypnales, where the probability of N2 fixation activity reached 95% when δ13C values exceeded - 30.4‰. We conclude that moisture and temperature interact strongly with host moss identity in determining the extent to which abiotic conditions impact associated N2 fixation rates.
Collapse
|
24
|
Meng W, Dai Q, Ren Q, Tu N, Leng T. Ecological stoichiometric characteristics of soil-moss C, N, and P in restoration stages of karst rocky desertification. PLoS One 2021; 16:e0252838. [PMID: 34191821 PMCID: PMC8244914 DOI: 10.1371/journal.pone.0252838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Rocky desertification is the most serious ecological disaster in karst areas. Comprehensive control of rocky desertification plays an important role in promoting the economic development of karst areas. Studying the stoichiometric characteristics of mosses and soil can provide a powerful reference for the ecological restoration and evaluation of ecosystems experiencing rocky desertification. Soil and mosses were collected from sites representing different stages of ecological restoration (bare rock, grassland, shrubland, and secondary forest), and the contents of carbon (C), nitrogen (N), and phosphorus (P) were detected for ecological stoichiometric analysis. The results indicate that in different restoration stages following karst rocky desertification, the contents of soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) and the stoichiometric ratios in the shrub habitat are higher than those in the bare rock, grassland, and secondary forest habitats. However, the TP and available P contents were low at all stages (0.06 g/kg and 0.62 mg/kg, respectively). The N and P contents and stoichiometric ratios in the mosses showed no significant differences among the succession stages. The C contents in the mosses had a significant positive correlation with SOC and TN and TP content, and the P content had a significant positive correlation with the soil available P. However, there was a significant negative correlation between the C: N and C:P ratios of the bryophytes and soil C: N. In summary, during the process of natural restoration of karst rocky desertification areas, SOC and soil TN contents accumulate with each succession stage. Soil nutrients are higher in shrub habitats than in other succession stages. Mosses have a strong effect on improving soil nutrients in rocky desertification areas.
Collapse
Affiliation(s)
- Wenping Meng
- College of Forestry, Guizhou Universtry, Guiyang, China
- Guizhou Botanical Garden, Guiyang, China
- Puding Karst Ecosystem Research Station, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Quanhou Dai
- College of Forestry, Guizhou Universtry, Guiyang, China
- Institute for Forest Resources & Environment of Guizhou, Guiyang, China
| | - Qingqing Ren
- Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Na Tu
- College of Forestry, Guizhou Universtry, Guiyang, China
- Institute for Forest Resources & Environment of Guizhou, Guiyang, China
| | - Tingjiao Leng
- College of Forestry, Guizhou Universtry, Guiyang, China
- Institute for Forest Resources & Environment of Guizhou, Guiyang, China
| |
Collapse
|
25
|
Grau‐Andrés R, Wardle DA, Nilsson M, Kardol P. Precipitation regime controls bryosphere carbon cycling similarly across contrasting ecosystems. OIKOS 2021. [DOI: 10.1111/oik.07749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Roger Grau‐Andrés
- Dept of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences (SLU) Umeå Sweden
| | - David A. Wardle
- Dept of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences (SLU) Umeå Sweden
- Asian School of the Environment, Nanyang Technological Univ. Singapore Singapore
| | - Marie‐Charlotte Nilsson
- Dept of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences (SLU) Umeå Sweden
| | - Paul Kardol
- Dept of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences (SLU) Umeå Sweden
| |
Collapse
|
26
|
Holland-Moritz H, Stuart JEM, Lewis LR, Miller SN, Mack MC, Ponciano JM, McDaniel SF, Fierer N. The bacterial communities of Alaskan mosses and their contributions to N 2-fixation. MICROBIOME 2021; 9:53. [PMID: 33622403 PMCID: PMC7903681 DOI: 10.1186/s40168-021-01001-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/08/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Mosses in high-latitude ecosystems harbor diverse bacterial taxa, including N2-fixers which are key contributors to nitrogen dynamics in these systems. Yet the relative importance of moss host species, and environmental factors, in structuring these microbial communities and their N2-fixing potential remains unclear. We studied 26 boreal and tundra moss species across 24 sites in Alaska, USA, from 61 to 69° N. We used cultivation-independent approaches to characterize the variation in moss-associated bacterial communities as a function of host species identity and site characteristics. We also measured N2-fixation rates via 15N2 isotopic enrichment and identified potential N2-fixing bacteria using available literature and genomic information. RESULTS Host species identity and host evolutionary history were both highly predictive of moss microbiome composition, highlighting strong phylogenetic coherence in these microbial communities. Although less important, light availability and temperature also influenced composition of the moss microbiome. Finally, we identified putative N2-fixing bacteria specific to some moss hosts, including potential N2-fixing bacteria outside well-studied cyanobacterial clades. CONCLUSIONS The strong effect of host identity on moss-associated bacterial communities demonstrates mosses' utility for understanding plant-microbe interactions in non-leguminous systems. Our work also highlights the likely importance of novel bacterial taxa to N2-fixation in high-latitude ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Hannah Holland-Moritz
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO USA
| | - Julia E. M. Stuart
- Center for Ecosystem Science and Society and the Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ USA
| | - Lily R. Lewis
- Provost’s Office, University of Florida, Gainesville, FL USA
| | - Samantha N. Miller
- Center for Ecosystem Science and Society and the Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ USA
| | - Michelle C. Mack
- Center for Ecosystem Science and Society and the Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ USA
| | | | | | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO USA
| |
Collapse
|
27
|
Tveit AT, Kiss A, Winkel M, Horn F, Hájek T, Svenning MM, Wagner D, Liebner S. Environmental patterns of brown moss- and Sphagnum-associated microbial communities. Sci Rep 2020; 10:22412. [PMID: 33376244 PMCID: PMC7772339 DOI: 10.1038/s41598-020-79773-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/02/2020] [Indexed: 11/08/2022] Open
Abstract
Northern peatlands typically develop through succession from fens dominated by the moss family Amblystegiaceae to bogs dominated by the moss genus Sphagnum. How the different plants and abiotic environmental conditions provided in Amblystegiaceae and Sphagnum peat shape the respective moss associated microbial communities is unknown. Through a large-scale molecular and biogeochemical study spanning Arctic, sub-Arctic and temperate regions we assessed how the endo- and epiphytic microbial communities of natural northern peatland mosses relate to peatland type (Sphagnum and Amblystegiaceae), location, moss taxa and abiotic environmental variables. Microbial diversity and community structure were distinctly different between Amblystegiaceae and Sphagnum peatlands, and within each of these two peatland types moss taxon explained the largest part of microbial community variation. Sphagnum and Amblystegiaceae shared few (< 1% of all operational taxonomic units (OTUs)) but strikingly abundant (up to 65% of relative abundance) OTUs. This core community overlapped by one third with the Sphagnum-specific core-community. Thus, the most abundant microorganisms in Sphagnum that are also found in all the Sphagnum plants studied, are the same OTUs as those few shared with Amblystegiaceae. Finally, we could confirm that these highly abundant OTUs were endophytes in Sphagnum, but epiphytes on Amblystegiaceae. We conclude that moss taxa and abiotic environmental variables associate with particular microbial communities. While moss taxon was the most influential parameter, hydrology, pH and temperature also had significant effects on the microbial communities. A small though highly abundant core community is shared between Sphagnum and Amblystegiaceae.
Collapse
Affiliation(s)
- Alexander Tøsdal Tveit
- UiT The Arctic University of Norway, Department of Arctic and Marine Biology, Tromsø, Norway
| | - Andrea Kiss
- GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Matthias Winkel
- GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Fabian Horn
- GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Tomáš Hájek
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Mette Marianne Svenning
- UiT The Arctic University of Norway, Department of Arctic and Marine Biology, Tromsø, Norway
| | - Dirk Wagner
- GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany
- University of Potsdam, Institute of Geosciences, Potsdam, Germany
| | - Susanne Liebner
- GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany.
- University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Germany.
| |
Collapse
|
28
|
Stuart RK, Pederson ERA, Weyman PD, Weber PK, Rassmussen U, Dupont CL. Bidirectional C and N transfer and a potential role for sulfur in an epiphytic diazotrophic mutualism. THE ISME JOURNAL 2020; 14:3068-3078. [PMID: 32814866 PMCID: PMC7784912 DOI: 10.1038/s41396-020-00738-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/09/2020] [Accepted: 08/05/2020] [Indexed: 01/23/2023]
Abstract
In nitrogen-limited boreal forests, associations between feathermoss and diazotrophic cyanobacteria control nitrogen inputs and thus carbon cycling, but little is known about the molecular regulators required for initiation and maintenance of these associations. Specifically, a benefit to the cyanobacteria is not known, challenging whether the association is a nutritional mutualism. Targeted mutagenesis of the cyanobacterial alkane sulfonate monooxygenase results in an inability to colonize feathermosses by the cyanobacterium Nostoc punctiforme, suggesting a role for organic sulfur in communication or nutrition. Isotope probing paired with high-resolution imaging mass spectrometry (NanoSIMS) demonstrated bidirectional elemental transfer between partners, with carbon and sulfur both being transferred to the cyanobacteria, and nitrogen transferred to the moss. These results support the hypothesis that moss and cyanobacteria enter a mutualistic exosymbiosis with substantial bidirectional material exchange of carbon and nitrogen and potential signaling through sulfur compounds.
Collapse
Affiliation(s)
- Rhona K Stuart
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| | - Eric R A Pederson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Philip D Weyman
- J. Craig Venter Institute, La Jolla, CA, 92037, USA
- Zymergen Inc., Emeryville, CA, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Ulla Rassmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | | |
Collapse
|
29
|
Jean M, Holland-Moritz H, Melvin AM, Johnstone JF, Mack MC. Experimental assessment of tree canopy and leaf litter controls on the microbiome and nitrogen fixation rates of two boreal mosses. THE NEW PHYTOLOGIST 2020; 227:1335-1349. [PMID: 32299141 DOI: 10.1111/nph.16611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen (N2 )-fixing moss microbial communities play key roles in nitrogen cycling of boreal forests. Forest type and leaf litter inputs regulate moss abundance, but how they control moss microbiomes and N2 -fixation remains understudied. We examined the impacts of forest type and broadleaf litter on microbial community composition and N2 -fixation rates of Hylocomium splendens and Pleurozium schreberi. We conducted a moss transplant and leaf litter manipulation experiment at three sites with paired paper birch (Betula neoalaskana) and black spruce (Picea mariana) stands in Alaska. We characterized bacterial communities using marker gene sequencing, determined N2 -fixation rates using stable isotopes (15 N2 ) and measured environmental covariates. Mosses native to and transplanted into spruce stands supported generally higher N2 -fixation and distinct microbial communities compared to similar treatments in birch stands. High leaf litter inputs shifted microbial community composition for both moss species and reduced N2 -fixation rates for H. splendens, which had the highest rates. N2 -fixation was positively associated with several bacterial taxa, including cyanobacteria. The moss microbiome and environmental conditions controlled N2 -fixation at the stand and transplant scales. Predicted shifts from spruce- to deciduous-dominated stands will interact with the relative abundances of mosses supporting different microbiomes and N2 -fixation rates, which could affect stand-level N inputs.
Collapse
Affiliation(s)
- Mélanie Jean
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Hannah Holland-Moritz
- Cooperative Institute for Research in Environmental Sciences and Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - April M Melvin
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Independent researcher, Washington, DC, 20001, USA
| | - Jill F Johnstone
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Michelle C Mack
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
30
|
Stuart JEM, Holland-Moritz H, Lewis LR, Jean M, Miller SN, McDaniel SF, Fierer N, Ponciano JM, Mack MC. Host Identity as a Driver of Moss-Associated N2 Fixation Rates in Alaska. Ecosystems 2020. [DOI: 10.1007/s10021-020-00534-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Genome Sequencing of Pleurozium schreberi: The Assembled and Annotated Draft Genome of a Pleurocarpous Feather Moss. G3-GENES GENOMES GENETICS 2019; 9:2791-2797. [PMID: 31285273 PMCID: PMC6723128 DOI: 10.1534/g3.119.400279] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The pleurocarpous feather moss Pleurozium schreberi is a ubiquitous moss species which plays a fundamental role in many terrestrial ecosystems, for instance within the boreal forest, the Earth's largest terrestrial biome, this species plays a significant role in driving ecosystem nitrogen and carbon inputs and fluxes. By hosting dinitrogen (N2)-fixing cyanobacteria, the moss-cyanobacteria symbiosis constitutes the main nitrogen input into the ecosystem and by the high productivity and the low decomposability of the moss litter, P schreberi contributes significantly to build-up soil organic matter, and therefore long-term C sequestration. Knowledge on P. schreberi genome will facilitate the development of 'omics' and system's biology approaches to gain a more complete understanding of the physiology and ecological adaptation of the moss and the mechanisms underpinning the establishment of the symbiosis. Here we present the de novo assembly and annotation of P. schreberi genome that will help investigating these questions. The sequencing was performed using the HiSeq X platform with Illumina paired-end and mate-pair libraries prepared with CTAB extracted DNA. In total, the assembled genome was approximately 318 Mb, while repetitive elements account for 28.42% of the genome and 15,992 protein-coding genes were predicted from the genome, of which 84.23% have been functionally annotated. We anticipate that the genomic data generated will constitute a significant resource to study ecological and evolutionary genomics of P. schreberi, and will be valuable for evo-devo investigations as well as our understanding of the evolution of land plants by providing the genome of a pleurocarpous moss.
Collapse
|
32
|
Zhang Z, Li Z, Yin Y, Li Y, Jia Y, Chen M, Qiu B. Widespread occurrence and unexpected diversity of red‐shifted chlorophyll producing cyanobacteria in humid subtropical forest ecosystems. Environ Microbiol 2019; 21:1497-1510. [DOI: 10.1111/1462-2920.14582] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/24/2019] [Accepted: 03/03/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Zhong‐Chun Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal UniversitySchool of Life Sciences Wuhan Hubei 430079 People's Republic of China
| | - Zheng‐Ke Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal UniversitySchool of Life Sciences Wuhan Hubei 430079 People's Republic of China
| | - Yan‐Chao Yin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal UniversitySchool of Life Sciences Wuhan Hubei 430079 People's Republic of China
| | - Yaqiong Li
- ARC Centre of Excellence for Translational Photosynthesis and School of Life and Environmental SciencesUniversity of Sydney Sydney New South Wales 2006 Australia
| | - Yu Jia
- State Key Laboratory of Systematic and Evolutionary BotanyInstitute of Botany, The Chinese Academy of Sciences Beijing 100093 People's Republic of China
| | - Min Chen
- ARC Centre of Excellence for Translational Photosynthesis and School of Life and Environmental SciencesUniversity of Sydney Sydney New South Wales 2006 Australia
| | - Bao‐Sheng Qiu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal UniversitySchool of Life Sciences Wuhan Hubei 430079 People's Republic of China
| |
Collapse
|
33
|
Moreau D, Bardgett RD, Finlay RD, Jones DL, Philippot L. A plant perspective on nitrogen cycling in the rhizosphere. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13303] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Delphine Moreau
- Agroécologie, AgroSup Dijon INRA, Université Bourgogne Franche‐Comté Dijon France
| | - Richard D. Bardgett
- School of Earth and Environmental Sciences The University of Manchester Manchester UK
| | - Roger D. Finlay
- Department of Forest Mycology and Plant Pathology Uppsala Biocenter, Swedish University of Agricultural Sciences Uppsala Sweden
| | - David L. Jones
- Environment Centre Wales Bangor University Gwynedd UK
- UWA School of Agriculture and Environment University of Western Australia Crawley Western Australia Australia
| | - Laurent Philippot
- Agroécologie, AgroSup Dijon INRA, Université Bourgogne Franche‐Comté Dijon France
| |
Collapse
|
34
|
Salemaa M, Lindroos AJ, Merilä P, Mäkipää R, Smolander A. N 2 fixation associated with the bryophyte layer is suppressed by low levels of nitrogen deposition in boreal forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:995-1004. [PMID: 30759623 DOI: 10.1016/j.scitotenv.2018.10.364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/25/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
Biological fixation of atmospheric nitrogen (N2) by bryophyte-associated cyanobacteria is an important source of plant-available N in the boreal biome. Information on the factors that drive biological N2 fixation (BNF) rates is needed in order to understand the N dynamics of forests under a changing climate. We assessed the potential of several cryptogam species (the feather mosses Hylocomium splendens and Pleurozium schreberi, a group of Dicranum bryophytes, two liverworts, and Cladina lichens) to serve as associates of cyanobacteria or other N2-fixing bacteria (diazotrophs) using acetylene reduction assay (ARA). We tested the hypotheses that the legacy of chronic atmospheric N deposition reduces BNF in the three bryophyte species, sampled from 12 coniferous forests located at latitudes 60-68° N in Finland. In addition, we tested the effect of moisture and temperature on BNF. All species studied showed a BNF signal in the north, with the highest rates in feather mosses. In moss samples taken along the north-south gradient with an increasing N bulk deposition from 0.8 to 4.4 kg ha-1 year-1, we found a clear decrease in BNF in both feather mosses and Dicranum group. BNF turned off at N deposition of 3-4 kg ha-1 year-1. Inorganic N (NH4-N + NO3-N) best predicted the BNF rate among regression models with different forms of N deposition as explanatory variables. However, in southern spruce stands, tree canopies modified the N in throughfall so that dissolved organic N (DON) leached from canopies compensated for inorganic N retained therein. Here, both DON and inorganic N negatively affected BNF in H. splendens. In laboratory experiments, BNF increased with increasing temperature and moisture. Our results suggest that even relatively low N deposition suppresses BNF in bryophyte-associated diazotrophs. Further, BNF could increase in northern low-deposition areas, especially if climate warming leads to moister conditions, as predicted.
Collapse
Affiliation(s)
- Maija Salemaa
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland.
| | - Antti-Jussi Lindroos
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Päivi Merilä
- Natural Resources Institute Finland (Luke), P.O. Box 413, FI-90570 Oulu, Finland
| | - Raisa Mäkipää
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Aino Smolander
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| |
Collapse
|
35
|
Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, McDaniel SF, Fierer N. Novel bacterial lineages associated with boreal moss species. Environ Microbiol 2018; 20:2625-2638. [PMID: 29901277 DOI: 10.1111/1462-2920.14288] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/23/2018] [Accepted: 05/16/2018] [Indexed: 01/01/2023]
Abstract
Mosses are critical components of boreal ecosystems where they typically account for a large proportion of net primary productivity and harbour diverse bacterial communities that can be the major source of biologically-fixed nitrogen in these ecosystems. Despite their ecological importance, we have limited understanding of how microbial communities vary across boreal moss species and the extent to which local site conditions may influence the composition of these bacterial communities. We used marker gene sequencing to analyze bacterial communities associated with seven boreal moss species collected near Fairbanks, AK, USA. We found that host identity was more important than site in determining bacterial community composition and that mosses harbour diverse lineages of potential N2 -fixers as well as an abundance of novel taxa assigned to understudied bacterial phyla (including candidate phylum WPS-2). We performed shotgun metagenomic sequencing to assemble genomes from the WPS-2 candidate phylum and found that these moss-associated bacteria are likely anoxygenic phototrophs capable of carbon fixation via RuBisCo with an ability to utilize byproducts of photorespiration from hosts via a glyoxylate shunt. These results give new insights into the metabolic capabilities of understudied bacterial lineages that associate with mosses and the importance of plant hosts in shaping their microbiomes.
Collapse
Affiliation(s)
- Hannah Holland-Moritz
- Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA.,Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, USA
| | - Julia Stuart
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Lily R Lewis
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Samantha Miller
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Michelle C Mack
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA.,Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, USA
| |
Collapse
|
36
|
D'Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep 2018; 35:455-488. [PMID: 29799048 DOI: 10.1039/c8np00009c] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Literature covered: early 2000s to late 2017Bacteria frequently exchange metabolites with other micro- and macro-organisms. In these often obligate cross-feeding interactions, primary metabolites such as vitamins, amino acids, nucleotides, or growth factors are exchanged. The widespread distribution of this type of metabolic interactions, however, is at odds with evolutionary theory: why should an organism invest costly resources to benefit other individuals rather than using these metabolites to maximize its own fitness? Recent empirical work has shown that bacterial genotypes can significantly benefit from trading metabolites with other bacteria relative to cells not engaging in such interactions. Here, we will provide a comprehensive overview over the ecological factors and evolutionary mechanisms that have been identified to explain the evolution and maintenance of metabolic mutualisms among microorganisms. Furthermore, we will highlight general principles that underlie the adaptive evolution of interconnected microbial metabolic networks as well as the evolutionary consequences that result for cells living in such communities.
Collapse
Affiliation(s)
- Glen D'Souza
- Department of Environmental Systems Sciences, ETH-Zürich, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
37
|
Warshan D, Liaimer A, Pederson E, Kim SY, Shapiro N, Woyke T, Altermark B, Pawlowski K, Weyman PD, Dupont CL, Rasmussen U. Genomic Changes Associated with the Evolutionary Transitions of Nostoc to a Plant Symbiont. Mol Biol Evol 2018; 35:1160-1175. [PMID: 29554291 PMCID: PMC5913679 DOI: 10.1093/molbev/msy029] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cyanobacteria belonging to the genus Nostoc comprise free-living strains and also facultative plant symbionts. Symbiotic strains can enter into symbiosis with taxonomically diverse range of host plants. Little is known about genomic changes associated with evolutionary transition of Nostoc from free-living to plant symbiont. Here, we compared the genomes derived from 11 symbiotic Nostoc strains isolated from different host plants and infer phylogenetic relationships between strains. Phylogenetic reconstructions of 89 Nostocales showed that symbiotic Nostoc strains with a broad host range, entering epiphytic and intracellular or extracellular endophytic interactions, form a monophyletic clade indicating a common evolutionary history. A polyphyletic origin was found for Nostoc strains which enter only extracellular symbioses, and inference of transfer events implied that this trait was likely acquired several times in the evolution of the Nostocales. Symbiotic Nostoc strains showed enriched functions in transport and metabolism of organic sulfur, chemotaxis and motility, as well as the uptake of phosphate, branched-chain amino acids, and ammonium. The genomes of the intracellular clade differ from that of other Nostoc strains, with a gain/enrichment of genes encoding proteins to generate l-methionine from sulfite and pathways for the degradation of the plant metabolites vanillin and vanillate, and of the macromolecule xylan present in plant cell walls. These compounds could function as C-sources for members of the intracellular clade. Molecular clock analysis indicated that the intracellular clade emerged ca. 600 Ma, suggesting that intracellular Nostoc symbioses predate the origin of land plants and the emergence of their extant hosts.
Collapse
Affiliation(s)
- Denis Warshan
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Anton Liaimer
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Eric Pederson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Sea-Yong Kim
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Nicole Shapiro
- US Department of Energy Joint Genome Institute, Walnut Creek, CA
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Walnut Creek, CA
| | - Bjørn Altermark
- Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Philip D Weyman
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, La Jolla, CA
| | - Christopher L Dupont
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
38
|
Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant-cyanobacteria symbiosis. ISME JOURNAL 2017; 11:2821-2833. [PMID: 28800136 PMCID: PMC5702739 DOI: 10.1038/ismej.2017.134] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/20/2017] [Accepted: 07/07/2017] [Indexed: 11/09/2022]
Abstract
Dinitrogen (N2)-fixation by cyanobacteria in symbiosis with feathermosses is the primary pathway of biological nitrogen (N) input into boreal forests. Despite its significance, little is known about the cyanobacterial gene repertoire and regulatory rewiring needed for the establishment and maintenance of the symbiosis. To determine gene acquisitions and regulatory changes allowing cyanobacteria to form and maintain this symbiosis, we compared genomically closely related symbiotic-competent and -incompetent Nostoc strains using a proteogenomics approach and an experimental set up allowing for controlled chemical and physical contact between partners. Thirty-two gene families were found only in the genomes of symbiotic strains, including some never before associated with cyanobacterial symbiosis. We identified conserved orthologs that were differentially expressed in symbiotic strains, including protein families involved in chemotaxis and motility, NO regulation, sulfate/phosphate transport, and glycosyl-modifying and oxidative stress-mediating exoenzymes. The physical moss–cyanobacteria epiphytic symbiosis is distinct from other cyanobacteria–plant symbioses, with Nostoc retaining motility, and lacking modulation of N2-fixation, photosynthesis, GS-GOGAT cycle and heterocyst formation. The results expand our knowledge base of plant–cyanobacterial symbioses, provide a model of information and material exchange in this ecologically significant symbiosis, and suggest new currencies, namely nitric oxide and aliphatic sulfonates, may be involved in establishing and maintaining the cyanobacteria–feathermoss symbiosis.
Collapse
|
39
|
Elevated Atmospheric CO2 and Warming Stimulates Growth and Nitrogen Fixation in a Common Forest Floor Cyanobacterium under Axenic Conditions. FORESTS 2017. [DOI: 10.3390/f8030073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
40
|
Ponce de León I, Montesano M. Adaptation Mechanisms in the Evolution of Moss Defenses to Microbes. FRONTIERS IN PLANT SCIENCE 2017; 8:366. [PMID: 28360923 PMCID: PMC5350094 DOI: 10.3389/fpls.2017.00366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/01/2017] [Indexed: 05/06/2023]
Abstract
Bryophytes, including mosses, liverworts and hornworts are early land plants that have evolved key adaptation mechanisms to cope with abiotic stresses and microorganisms. Microbial symbioses facilitated plant colonization of land by enhancing nutrient uptake leading to improved plant growth and fitness. In addition, early land plants acquired novel defense mechanisms to protect plant tissues from pre-existing microbial pathogens. Due to its evolutionary stage linking unicellular green algae to vascular plants, the non-vascular moss Physcomitrella patens is an interesting organism to explore the adaptation mechanisms developed in the evolution of plant defenses to microbes. Cellular and biochemical approaches, gene expression profiles, and functional analysis of genes by targeted gene disruption have revealed that several defense mechanisms against microbial pathogens are conserved between mosses and flowering plants. P. patens perceives pathogen associated molecular patterns by plasma membrane receptor(s) and transduces the signal through a MAP kinase (MAPK) cascade leading to the activation of cell wall associated defenses and expression of genes that encode proteins with different roles in plant resistance. After pathogen assault, P. patens also activates the production of ROS, induces a HR-like reaction and increases levels of some hormones. Furthermore, alternative metabolic pathways are present in P. patens leading to the production of a distinct metabolic scenario than flowering plants that could contribute to defense. P. patens has acquired genes by horizontal transfer from prokaryotes and fungi, and some of them could represent adaptive benefits for resistance to biotic stress. In this review, the current knowledge related to the evolution of plant defense responses against pathogens will be discussed, focusing on the latest advances made in the model plant P. patens.
Collapse
Affiliation(s)
- Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente EstableMontevideo, Uruguay
- *Correspondence: Inés Ponce de León,
| | - Marcos Montesano
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente EstableMontevideo, Uruguay
- Laboratorio de Fisiología Vegetal, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la RepúblicaMontevideo, Uruguay
| |
Collapse
|
41
|
Barbé M, Chavel ÉE, Fenton NJ, Imbeau L, Mazerolle MJ, Drapeau P, Bergeron Y. Dispersal of bryophytes and ferns is facilitated by small mammals in the boreal forest. ECOSCIENCE 2016. [DOI: 10.1080/11956860.2016.1235917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Marion Barbé
- Université du Québec en Abitibi-Témiscamingue, Institut de recherche sur les forêts, 445 Boulevard de l’Université, Rouyn-Noranda, Québec J9X 5E4, Canada
| | - Émilie E. Chavel
- Université du Québec en Abitibi-Témiscamingue, Institut de recherche sur les forêts, 445 Boulevard de l’Université, Rouyn-Noranda, Québec J9X 5E4, Canada
| | - Nicole J. Fenton
- Université du Québec en Abitibi-Témiscamingue, Institut de recherche sur les forêts, 445 Boulevard de l’Université, Rouyn-Noranda, Québec J9X 5E4, Canada
| | - Louis Imbeau
- Université du Québec en Abitibi-Témiscamingue, Institut de recherche sur les forêts, 445 Boulevard de l’Université, Rouyn-Noranda, Québec J9X 5E4, Canada
| | - Marc J. Mazerolle
- Université Laval, Département des sciences du bois et de la forêt, 2405 rue de la Terrasse, Québec, Québec G1V 0A6, Canada
| | - Pierre Drapeau
- Université du Québec à Montréal, Département des sciences biologiques, 405 rue Sainte-Catherine Est, Montréal, Québec H2L 2C4, Canada
| | - Yves Bergeron
- Université du Québec en Abitibi-Témiscamingue, Institut de recherche sur les forêts, 445 Boulevard de l’Université, Rouyn-Noranda, Québec J9X 5E4, Canada
- Université du Québec à Montréal, Département des sciences biologiques, 405 rue Sainte-Catherine Est, Montréal, Québec H2L 2C4, Canada
| |
Collapse
|
42
|
Liaimer A, Jensen JB, Dittmann E. A Genetic and Chemical Perspective on Symbiotic Recruitment of Cyanobacteria of the Genus Nostoc into the Host Plant Blasia pusilla L. Front Microbiol 2016; 7:1693. [PMID: 27847500 PMCID: PMC5088731 DOI: 10.3389/fmicb.2016.01693] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/10/2016] [Indexed: 12/04/2022] Open
Abstract
Liverwort Blasia pusilla L. recruits soil nitrogen-fixing cyanobacteria of genus Nostoc as symbiotic partners. In this work we compared Nostoc community composition inside the plants and in the soil around them from two distant locations in Northern Norway. STRR fingerprinting and 16S rDNA phylogeny reconstruction showed a remarkable local diversity among isolates assigned to several Nostoc clades. An extensive web of negative allelopathic interactions was recorded at an agricultural site, but not at the undisturbed natural site. The cell extracts of the cyanobacteria did not show antimicrobial activities, but four isolates were shown to be cytotoxic to human cells. The secondary metabolite profiles of the isolates were mapped by MALDI-TOF MS, and the most prominent ions were further analyzed by Q-TOF for MS/MS aided identification. Symbiotic isolates produced a great variety of small peptide-like substances, most of which lack any record in the databases. Among identified compounds we found microcystin and nodularin variants toxic to eukaryotic cells. Microcystin producing chemotypes were dominating as symbiotic recruits but not in the free-living community. In addition, we were able to identify several novel aeruginosins and banyaside-like compounds, as well as nostocyclopeptides and nosperin.
Collapse
Affiliation(s)
- Anton Liaimer
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of NorwayTromsø, Norway
| | - John B. Jensen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of NorwayTromsø, Norway
| | - Elke Dittmann
- Department of Microbiology, Institute for Biochemistry and Biology, University of PotsdamPotsdam, Germany
| |
Collapse
|
43
|
Warshan D, Bay G, Nahar N, Wardle DA, Nilsson MC, Rasmussen U. Seasonal variation in nifH abundance and expression of cyanobacterial communities associated with boreal feather mosses. THE ISME JOURNAL 2016; 10:2198-208. [PMID: 26918665 PMCID: PMC4989308 DOI: 10.1038/ismej.2016.17] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 12/16/2015] [Accepted: 01/08/2016] [Indexed: 11/13/2022]
Abstract
Dinitrogen (N2)-fixation by cyanobacteria living in symbiosis with pleurocarpous feather mosses (for example, Pleurozium schreberi and Hylocomium splendens) represents the main pathway of biological N input into N-depleted boreal forests. Little is known about the role of the cyanobacterial community in contributing to the observed temporal variability of N2-fixation. Using specific nifH primers targeting four major cyanobacterial clusters and quantitative PCR, we investigated how community composition, abundance and nifH expression varied by moss species and over the growing seasons. We evaluated N2-fixation rates across nine forest sites in June and September and explored the abundance and nifH expression of individual cyanobacterial clusters when N2-fixation is highest. Our results showed temporal and host-dependent variations of cyanobacterial community composition, nifH gene abundance and expression. N2-fixation was higher in September than June for both moss species, explained by higher nifH gene expression of individual clusters rather than higher nifH gene abundance or differences in cyanobacterial community composition. In most cases, 'Stigonema cluster' made up less than 29% of the total cyanobacterial community, but accounted for the majority of nifH gene expression (82-94% of total nifH expression), irrespective of sampling date or moss species. Stepwise multiple regressions showed temporal variations in N2-fixation being greatly explained by variations in nifH expression of the 'Stigonema cluster'. These results suggest that Stigonema is potentially the most influential N2-fixer in symbiosis with boreal forest feather mosses.
Collapse
Affiliation(s)
- Denis Warshan
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Guillaume Bay
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Nurun Nahar
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - David A Wardle
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Marie-Charlotte Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
44
|
Kardol P, Spitzer CM, Gundale MJ, Nilsson MC, Wardle DA. Trophic cascades in the bryosphere: the impact of global change factors on top-down control of cyanobacterial N2-fixation. Ecol Lett 2016; 19:967-76. [DOI: 10.1111/ele.12635] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/17/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Paul Kardol
- Department of Forest Ecology and Management; Swedish University of Agricultural Sciences; 901 83 Umeå Sweden
| | - Clydecia M. Spitzer
- Department of Forest Ecology and Management; Swedish University of Agricultural Sciences; 901 83 Umeå Sweden
| | - Michael J. Gundale
- Department of Forest Ecology and Management; Swedish University of Agricultural Sciences; 901 83 Umeå Sweden
| | - Marie-Charlotte Nilsson
- Department of Forest Ecology and Management; Swedish University of Agricultural Sciences; 901 83 Umeå Sweden
| | - David A. Wardle
- Department of Forest Ecology and Management; Swedish University of Agricultural Sciences; 901 83 Umeå Sweden
| |
Collapse
|
45
|
The Sensitivity of Moss-Associated Nitrogen Fixation towards Repeated Nitrogen Input. PLoS One 2016; 11:e0146655. [PMID: 26731691 PMCID: PMC4712137 DOI: 10.1371/journal.pone.0146655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/21/2015] [Indexed: 11/23/2022] Open
Abstract
Nitrogen (N2) fixation is a major source of available N in ecosystems that receive low amounts of atmospheric N deposition. In boreal forest and subarctic tundra, the feather moss Hylocomium splendens is colonized by N2 fixing cyanobacteria that could contribute fundamentally to increase the N pool in these ecosystems. However, N2 fixation in mosses is inhibited by N input. Although this has been shown previously, the ability of N2 fixation to grow less sensitive towards repeated, increased N inputs remains unknown. Here, we tested if N2 fixation in H. splendens can recover from increased N input depending on the N load (0, 5, 20, 80, 320 kg N ha-1 yr-1) after a period of N deprivation, and if sensitivity towards increased N input can decrease after repeated N additions. Nitrogen fixation in the moss was inhibited by the highest N addition, but was promoted by adding 5 kg N ha-1 yr-1, and increased in all treatments during a short period of N deprivation. The sensitivity of N2 fixation towards repeated N additions seem to decrease in the 20 and 80 kg N additions, but increased in the highest N addition (320 kg N ha-1 yr-1). Recovery of N in leachate samples increased with increasing N loads, suggesting low retention capabilities of mosses if N input is above 5 kg N ha-1 yr-1. Our results demonstrate that the sensitivity towards repeated N additions is likely to decrease if N input does not exceed a certain threshold.
Collapse
|
46
|
The non-metabolizable sucrose analog sucralose is a potent inhibitor of hormogonium differentiation in the filamentous cyanobacterium Nostoc punctiforme. Arch Microbiol 2015; 198:137-47. [DOI: 10.1007/s00203-015-1171-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
|
47
|
Rousk K, Sorensen PL, Lett S, Michelsen A. Across-habitat comparison of diazotroph activity in the subarctic. MICROBIAL ECOLOGY 2015; 69:778-87. [PMID: 25403111 DOI: 10.1007/s00248-014-0534-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 11/03/2014] [Indexed: 05/03/2023]
Abstract
Nitrogen (N) fixation by N2-fixing bacteria (diazotrophs) is the primary N input to pristine ecosystems like boreal forests and subarctic and arctic tundra. However, the contribution by the various diazotrophs to habitat N2 fixation remains unclear. We present results from in situ assessments of N2 fixation of five diazotroph associations (with a legume, lichen, feather moss, Sphagnum moss and free-living) incorporating the ground cover of the associations in five typical habitats in the subarctic (wet and dry heath, polygon-heath, birch forest, mire). Further, we assessed the importance of soil and air temperature, as well as moisture conditions for N2 fixation. Across the growing season, the legume had the highest total as well as the highest fraction of N2 fixation rates at habitat level in the heaths (>85 % of habitat N2 fixation), whereas the free-living diazotrophs had the highest N2 fixation rates in the polygon heath (56 %), the lichen in the birch forest (87 %) and Sphagnum in the mire (100 %). The feather moss did not contribute more than 15 % to habitat N2 fixation in any of the habitats despite its high ground cover. Moisture content seemed to be a major driver of N2 fixation in the lichen, feather moss and free-living diazotrophs. Our results show that the range of N2 fixers found in pristine habitats contribute differently to habitat N2 fixation and that ground cover of the associates does not necessarily mirror contribution.
Collapse
Affiliation(s)
- Kathrin Rousk
- Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark,
| | | | | | | |
Collapse
|
48
|
Street LE, Burns NR, Woodin SJ. Slow recovery of High Arctic heath communities from nitrogen enrichment. THE NEW PHYTOLOGIST 2015; 206:682-695. [PMID: 25599914 DOI: 10.1111/nph.13265] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/28/2014] [Indexed: 06/04/2023]
Abstract
Arctic ecosystems are strongly nutrient limited and exhibit dramatic responses to nitrogen (N) enrichment, the reversibility of which is unknown. This study uniquely assesses the potential for tundra heath to recover from N deposition and the influence of phosphorus (P) availability on recovery. We revisited an experiment in Svalbard, established in 1991, in which N was applied at rates representing atmospheric N deposition in Europe (10 and 50 kg N ha(-1) yr(-1) ; 'low' and 'high', respectively) for 3-8 yr. We investigated whether significant effects on vegetation composition and ecosystem nutrient status persisted up to 18 yr post-treatment. Although the tundra heath is no longer N saturated, N treatment effects persist and are strongly P-dependent. Vegetation was more resilient to N where no P was added, although shrub cover is still reduced in low-N plots. Where P was also added (5 kg P ha(-1) yr(-1) ), there are still effects of low N on community composition and nutrient dynamics. High N, with and without P, has many lasting impacts. Importantly, N + P has caused dramatically increased moss abundance, which influences nutrient dynamics. Our key finding is that Arctic ecosystems are slow to recover from even small N inputs, particularly where P is not limiting.
Collapse
Affiliation(s)
- Lorna E Street
- IBES, University of Aberdeen, St Machar Drive, Aberdeen, AB24 3UU, UK
| | | | | |
Collapse
|
49
|
The Impact of Moss Species and Biomass on the Growth of Pinus sylvestris Tree Seedlings at Different Precipitation Frequencies. FORESTS 2014. [DOI: 10.3390/f5081931] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Werner GDA, Strassmann JE, Ivens ABF, Engelmoer DJP, Verbruggen E, Queller DC, Noë R, Johnson NC, Hammerstein P, Kiers ET. Evolution of microbial markets. Proc Natl Acad Sci U S A 2014; 111:1237-44. [PMID: 24474743 PMCID: PMC3910570 DOI: 10.1073/pnas.1315980111] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Biological market theory has been used successfully to explain cooperative behavior in many animal species. Microbes also engage in cooperative behaviors, both with hosts and other microbes, that can be described in economic terms. However, a market approach is not traditionally used to analyze these interactions. Here, we extend the biological market framework to ask whether this theory is of use to evolutionary biologists studying microbes. We consider six economic strategies used by microbes to optimize their success in markets. We argue that an economic market framework is a useful tool to generate specific and interesting predictions about microbial interactions, including the evolution of partner discrimination, hoarding strategies, specialized versus diversified mutualistic services, and the role of spatial structures, such as flocks and consortia. There is untapped potential for studying the evolutionary dynamics of microbial systems. Market theory can help structure this potential by characterizing strategic investment of microbes across a diversity of conditions.
Collapse
Affiliation(s)
- Gijsbert D. A. Werner
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Aniek B. F. Ivens
- Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, 9700 CC, Groningen, The Netherlands
- Laboratory of Insect Social Evolution, The Rockefeller University, New York, NY 10065
| | - Daniel J. P. Engelmoer
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Erik Verbruggen
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, 14195 Berlin, Germany
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Ronald Noë
- Faculté de Psychologie, Université de Strasbourg et Ethologie Evolutive, Département Ecologie, Physiologie et Ethologie, Centre National de la Recherche Scientifique, 67087 Strasbourg Cedex, France
- Netherlands Institute of Advanced Studies, 2242 PR, Wassenaar, The Netherlands
| | - Nancy Collins Johnson
- School of Earth Sciences and Environmental Sustainability and Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5694; and
| | - Peter Hammerstein
- Institute for Theoretical Biology, Humboldt University, 10115 Berlin, Germany
| | - E. Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|