1
|
Cook NM, Gobbato G, Jacott CN, Marchal C, Hsieh CY, Lam AHC, Simmonds J, Del Cerro P, Gomez PN, Rodney C, Cruz-Mireles N, Uauy C, Haerty W, Lawson DM, Charpentier M. Autoactive CNGC15 enhances root endosymbiosis in legume and wheat. Nature 2025; 638:752-759. [PMID: 39814887 PMCID: PMC11839481 DOI: 10.1038/s41586-024-08424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/19/2024] [Indexed: 01/18/2025]
Abstract
Nutrient acquisition is crucial for sustaining life. Plants develop beneficial intracellular partnerships with arbuscular mycorrhiza (AM) and nitrogen-fixing bacteria to surmount the scarcity of soil nutrients and tap into atmospheric dinitrogen, respectively1,2. Initiation of these root endosymbioses requires symbiont-induced oscillations in nuclear calcium (Ca2+) concentrations in root cells3. How the nuclear-localized ion channels, cyclic nucleotide-gated channel (CNGC) 15 and DOESN'T MAKE INFECTIONS1 (DMI1)4 are coordinated to specify symbiotic-induced nuclear Ca2+ oscillations remains unknown. Here we discovered an autoactive CNGC15 mutant that generates spontaneous low-frequency Ca2+ oscillations. While CNGC15 produces nuclear Ca2+ oscillations via a gating mechanism involving its helix 1, DMI1 acts as a pacemaker to specify the frequency of the oscillations. We demonstrate that the specificity of symbiotic-induced nuclear Ca2+ oscillations is encoded in its frequency. A high frequency activates endosymbiosis programmes, whereas a low frequency modulates phenylpropanoid pathways. Consequently, the autoactive cngc15 mutant, which is capable of generating both frequencies, has increased flavonoids that enhance AM, root nodule symbiosis and nutrient acquisition. We transferred this trait to wheat, resulting in field-grown wheat with increased AM colonization and nutrient acquisition. Our findings reveal a new strategy to boost endosymbiosis in the field and reduce inorganic fertilizer use while sustaining plant growth.
Collapse
Affiliation(s)
- Nicola M Cook
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK
| | - Giulia Gobbato
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK
| | - Catherine N Jacott
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK
- Microbiology Department, Faculty of Biology, University of Seville, Seville, Spain
| | - Clemence Marchal
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
| | - Chen Yun Hsieh
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK
| | - Anson Ho Ching Lam
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK
| | - James Simmonds
- Crop Genetics Department, John Innes Centre Norwich Research Park, Norwich, UK
| | - Pablo Del Cerro
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK
- Microbiology Department, Faculty of Biology, University of Seville, Seville, Spain
| | - Pilar Navarro Gomez
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK
- University of Pablo de Olavide, Andalusian Center for Developmental Biology/CSIC/Andalusian Government, Seville, Spain
| | - Clemence Rodney
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK
- Biochemistry and Metabolism Department, John Innes Centre Norwich Research Park, Norwich, UK
| | - Neftaly Cruz-Mireles
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK
- Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Cristobal Uauy
- Crop Genetics Department, John Innes Centre Norwich Research Park, Norwich, UK
| | | | - David M Lawson
- Biochemistry and Metabolism Department, John Innes Centre Norwich Research Park, Norwich, UK
| | - Myriam Charpentier
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK.
| |
Collapse
|
2
|
Lam AHC, Cooke A, Wright H, Lawson DM, Charpentier M. Evolution of endosymbiosis-mediated nuclear calcium signaling in land plants. Curr Biol 2024; 34:2212-2220.e7. [PMID: 38642549 DOI: 10.1016/j.cub.2024.03.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
The ability of fungi to establish mycorrhizal associations with plants and enhance the acquisition of mineral nutrients stands out as a key feature of terrestrial life. Evidence indicates that arbuscular mycorrhizal (AM) association is a trait present in the common ancestor of land plants,1,2,3,4 suggesting that AM symbiosis was an important adaptation for plants in terrestrial environments.5 The activation of nuclear calcium signaling in roots is essential for AM within flowering plants.6 Given that the earliest land plants lacked roots, whether nuclear calcium signals are required for AM in non-flowering plants is unknown. To address this question, we explored the functional conservation of symbiont-induced nuclear calcium signals between the liverwort Marchantia paleacea and the legume Medicago truncatula. In M. paleacea, AM fungi penetrate the rhizoids and form arbuscules in the thalli.7 Here, we demonstrate that AM germinating spore exudate (GSE) activates nuclear calcium signals in the rhizoids of M. paleacea and that this activation is dependent on the nuclear-localized ion channel DOES NOT MAKE INFECTIONS 1 (MpaDMI1). However, unlike flowering plants, MpaDMI1-mediated calcium signaling is only required for the thalli colonization but not for the AM penetration within rhizoids. We further demonstrate that the mechanism of regulation of DMI1 has diverged between M. paleacea and M. truncatula, including a key amino acid residue essential to sustain DMI1 in an inactive state. Our study reveals functional evolution of nuclear calcium signaling between liverworts and flowering plants and opens new avenues of research into the mechanism of endosymbiosis signaling.
Collapse
Affiliation(s)
- Anson H C Lam
- John Innes Centre, Cell and Developmental Biology Department, Norwich Research Park, Norwich NR4 7UH, UK
| | - Aisling Cooke
- John Innes Centre, Cell and Developmental Biology Department, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hannah Wright
- John Innes Centre, Cell and Developmental Biology Department, Norwich Research Park, Norwich NR4 7UH, UK
| | - David M Lawson
- John Innes Centre, Biochemistry and Metabolism Department, Norwich Research Park, Norwich NR4 7UH, UK
| | - Myriam Charpentier
- John Innes Centre, Cell and Developmental Biology Department, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
3
|
Tao K, Jensen IT, Zhang S, Villa-Rodríguez E, Blahovska Z, Salomonsen CL, Martyn A, Björgvinsdóttir ÞN, Kelly S, Janss L, Glasius M, Waagepetersen R, Radutoiu S. Nitrogen and Nod factor signaling determine Lotus japonicus root exudate composition and bacterial assembly. Nat Commun 2024; 15:3436. [PMID: 38653767 DOI: 10.1038/s41467-024-47752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Symbiosis with soil-dwelling bacteria that fix atmospheric nitrogen allows legume plants to grow in nitrogen-depleted soil. Symbiosis impacts the assembly of root microbiota, but it is unknown how the interaction between the legume host and rhizobia impacts the remaining microbiota and whether it depends on nitrogen nutrition. Here, we use plant and bacterial mutants to address the role of Nod factor signaling on Lotus japonicus root microbiota assembly. We find that Nod factors are produced by symbionts to activate Nod factor signaling in the host and that this modulates the root exudate profile and the assembly of a symbiotic root microbiota. Lotus plants with different symbiotic abilities, grown in unfertilized or nitrate-supplemented soils, display three nitrogen-dependent nutritional states: starved, symbiotic, or inorganic. We find that root and rhizosphere microbiomes associated with these states differ in composition and connectivity, demonstrating that symbiosis and inorganic nitrogen impact the legume root microbiota differently. Finally, we demonstrate that selected bacterial genera characterizing state-dependent microbiomes have a high level of accurate prediction.
Collapse
Affiliation(s)
- Ke Tao
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ib T Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Mathematical Sciences, Aalborg University, Aarhus, Denmark
| | - Sha Zhang
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Eber Villa-Rodríguez
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Zuzana Blahovska
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Anna Martyn
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | | | - Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Biotechnology, Lincoln Agritech, Canterbury, New Zealand
| | - Luc Janss
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | | | | | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
4
|
Dong X, Gifford ML, Su C. Ca2+ signatures in symbiosis: another level of dynamism for this key messenger. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:508-510. [PMID: 38197461 PMCID: PMC10773991 DOI: 10.1093/jxb/erad466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 01/11/2024]
Abstract
This article comments on:
Binci F, Offer E, Crosino A, Sciascia I, Kleine-Vehn J, Genre A, Giovannetti M, Navazio L. 2024. Spatially and temporally distinct Ca2+ changes in Lotus japonicus roots orient fungal-triggered signalling pathways towards symbiosis or immunity. Journal of Experimental Botany 75,605–619.
Collapse
Affiliation(s)
- Xiaoxu Dong
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Miriam L Gifford
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - Chao Su
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Binci F, Offer E, Crosino A, Sciascia I, Kleine-Vehn J, Genre A, Giovannetti M, Navazio L. Spatially and temporally distinct Ca2+ changes in Lotus japonicus roots orient fungal-triggered signalling pathways towards symbiosis or immunity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:605-619. [PMID: 37712520 DOI: 10.1093/jxb/erad360] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
Plants activate an immune or symbiotic response depending on the detection of distinct signals from root-interacting microbes. Both signalling cascades involve Ca2+ as a central mediator of early signal transduction. In this study, we combined aequorin- and cameleon-based methods to dissect the changes in cytosolic and nuclear Ca2+ concentration caused by different chitin-derived fungal elicitors in Lotus japonicus roots. Our quantitative analyses highlighted the dual character of the evoked Ca2+ responses taking advantage of the comparison between different genetic backgrounds: an initial Ca2+ influx, dependent on the LysM receptor CERK6 and independent of the common symbiotic signalling pathway (CSSP), is followed by a second CSSP-dependent and CERK6-independent phase, that corresponds to the well-known perinuclear/nuclear Ca2+ spiking. We show that the expression of immunity marker genes correlates with the amplitude of the first Ca2+ change, depends on elicitor concentration, and is controlled by Ca2+ storage in the vacuole. Our findings provide an insight into the Ca2+-mediated signalling mechanisms discriminating plant immunity- and symbiosis-related pathways in the context of their simultaneous activation by single fungal elicitors.
Collapse
Affiliation(s)
- Filippo Binci
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Elisabetta Offer
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Andrea Crosino
- Department of Life Sciences and Systems Biology, University of Torino, 10125 Torino, Italy
| | - Ivan Sciascia
- Department of Life Sciences and Systems Biology, University of Torino, 10125 Torino, Italy
| | - Jürgen Kleine-Vehn
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
- Institute of Biology II, Department of Molecular Plant Physiology (MoPP), University of Freiburg, 79104 Freiburg, Germany
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, 10125 Torino, Italy
| | - Marco Giovannetti
- Department of Biology, University of Padova, 35131 Padova, Italy
- Department of Life Sciences and Systems Biology, University of Torino, 10125 Torino, Italy
| | - Lorella Navazio
- Department of Biology, University of Padova, 35131 Padova, Italy
| |
Collapse
|
6
|
Jhu MY, Oldroyd GED. Dancing to a different tune, can we switch from chemical to biological nitrogen fixation for sustainable food security? PLoS Biol 2023; 21:e3001982. [PMID: 36917569 PMCID: PMC10013914 DOI: 10.1371/journal.pbio.3001982] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Our current food production systems are unsustainable, driven in part through the application of chemically fixed nitrogen. We need alternatives to empower farmers to maximise their productivity sustainably. Therefore, we explore the potential for transferring the root nodule symbiosis from legumes to other crops. Studies over the last decades have shown that preexisting developmental and signal transduction processes were recruited during the evolution of legume nodulation. This allows us to utilise these preexisting processes to engineer nitrogen fixation in target crops. Here, we highlight our understanding of legume nodulation and future research directions that might help to overcome the barrier of achieving self-fertilising crops.
Collapse
Affiliation(s)
- Min-Yao Jhu
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Giles E. D. Oldroyd
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Legumes Regulate Symbiosis with Rhizobia via Their Innate Immune System. Int J Mol Sci 2023; 24:ijms24032800. [PMID: 36769110 PMCID: PMC9917363 DOI: 10.3390/ijms24032800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Plant roots are constantly exposed to a diverse microbiota of pathogens and mutualistic partners. The host's immune system is an essential component for its survival, enabling it to monitor nearby microbes for potential threats and respond with a defence response when required. Current research suggests that the plant immune system has also been employed in the legume-rhizobia symbiosis as a means of monitoring different rhizobia strains and that successful rhizobia have evolved to overcome this system to infect the roots and initiate nodulation. With clear implications for host-specificity, the immune system has the potential to be an important target for engineering versatile crops for effective nodulation in the field. However, current knowledge of the interacting components governing this pathway is limited, and further research is required to build on what is currently known to improve our understanding. This review provides a general overview of the plant immune system's role in nodulation. With a focus on the cycles of microbe-associated molecular pattern-triggered immunity (MTI) and effector-triggered immunity (ETI), we highlight key molecular players and recent findings while addressing the current knowledge gaps in this area.
Collapse
|
8
|
Ghantasala S, Roy Choudhury S. Nod factor perception: an integrative view of molecular communication during legume symbiosis. PLANT MOLECULAR BIOLOGY 2022; 110:485-509. [PMID: 36040570 DOI: 10.1007/s11103-022-01307-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Compatible interaction between rhizobial Nod factors and host receptors enables initial recognition and signaling events during legume-rhizobia symbiosis. Molecular communication is a new paradigm of information relay, which uses chemical signals or molecules as dialogues for communication and has been witnessed in prokaryotes, plants as well as in animal kingdom. Understanding this fascinating relay of signals between plants and rhizobia during the establishment of a synergistic relationship for biological nitrogen fixation represents one of the hotspots in plant biology research. Predominantly, their interaction is initiated by flavonoids exuding from plant roots, which provokes changes in the expression profile of rhizobial genes. Compatible interactions promote the secretion of Nod factors (NFs) from rhizobia, which are recognised by cognate host receptors. Perception of NFs by host receptors initiates the symbiosis and ultimately leads to the accommodation of rhizobia within root nodules via a series of mutual exchange of signals. This review elucidates the bacterial and plant perspectives during the early stages of symbiosis, explicitly emphasizing the significance of NFs and their cognate NF receptors.
Collapse
Affiliation(s)
- Swathi Ghantasala
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
9
|
Cell Communications among Microorganisms, Plants, and Animals: Origin, Evolution, and Interplays. Int J Mol Sci 2020; 21:ijms21218052. [PMID: 33126770 PMCID: PMC7663094 DOI: 10.3390/ijms21218052] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/17/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Cellular communications play pivotal roles in multi-cellular species, but they do so also in uni-cellular species. Moreover, cells communicate with each other not only within the same individual, but also with cells in other individuals belonging to the same or other species. These communications occur between two unicellular species, two multicellular species, or between unicellular and multicellular species. The molecular mechanisms involved exhibit diversity and specificity, but they share common basic features, which allow common pathways of communication between different species, often phylogenetically very distant. These interactions are possible by the high degree of conservation of the basic molecular mechanisms of interaction of many ligand-receptor pairs in evolutionary remote species. These inter-species cellular communications played crucial roles during Evolution and must have been positively selected, particularly when collectively beneficial in hostile environments. It is likely that communications between cells did not arise after their emergence, but were part of the very nature of the first cells. Synchronization of populations of non-living protocells through chemical communications may have been a mandatory step towards their emergence as populations of living cells and explain the large commonality of cell communication mechanisms among microorganisms, plants, and animals.
Collapse
|
10
|
Mergaert P, Kereszt A, Kondorosi E. Gene Expression in Nitrogen-Fixing Symbiotic Nodule Cells in Medicago truncatula and Other Nodulating Plants. THE PLANT CELL 2020; 32:42-68. [PMID: 31712407 PMCID: PMC6961632 DOI: 10.1105/tpc.19.00494] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/08/2019] [Indexed: 05/06/2023]
Abstract
Root nodules formed by plants of the nitrogen-fixing clade (NFC) are symbiotic organs that function in the maintenance and metabolic integration of large populations of nitrogen-fixing bacteria. These organs feature unique characteristics and processes, including their tissue organization, the presence of specific infection structures called infection threads, endocytotic uptake of bacteria, symbiotic cells carrying thousands of intracellular bacteria without signs of immune responses, and the integration of symbiont and host metabolism. The early stages of nodulation are governed by a few well-defined functions, which together constitute the common symbiosis-signaling pathway (CSSP). The CSSP activates a set of transcription factors (TFs) that orchestrate nodule organogenesis and infection. The later stages of nodule development require the activation of hundreds to thousands of genes, mostly expressed in symbiotic cells. Many of these genes are only active in symbiotic cells, reflecting the unique nature of nodules as plant structures. Although how the nodule-specific transcriptome is activated and connected to early CSSP-signaling is poorly understood, candidate TFs have been identified using transcriptomic approaches, and the importance of epigenetic and chromatin-based regulation has been demonstrated. We discuss how gene regulation analyses have advanced our understanding of nodule organogenesis, the functioning of symbiotic cells, and the evolution of symbiosis in the NFC.
Collapse
Affiliation(s)
- Peter Mergaert
- Institute for Integrative Biology of the Cell, UMR 9198, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Attila Kereszt
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Eva Kondorosi
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| |
Collapse
|
11
|
Zhao T, Liu W, Zhao Z, Yang H, Bao Y, Zhang D, Wang Z, Jiang J, Xu Y, Zhang H, Li J, Chen Q, Xu X. Transcriptome profiling reveals the response process of tomato carrying Cf-19 and Cladosporium fulvum interaction. BMC PLANT BIOLOGY 2019; 19:572. [PMID: 31856725 PMCID: PMC6923989 DOI: 10.1186/s12870-019-2150-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 11/19/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND During tomato cultivation, tomato leaf mould is a common disease caused by Cladosporium fulvum (C. fulvum). By encoding Cf proteins, which can recognize corresponding AVR proteins produced by C. fulvum, Cf genes provide resistance to C. fulvum, and the resistance response patterns mediated by different Cf genes are not identical. Plants carrying the Cf-19 gene show effective resistance to C. fulvum in the field and can be used as new resistant materials in breeding. In this study, to identify key regulatory genes related to resistance and to understand the resistance response process in tomato plants carrying Cf-19, RNA sequencing (RNA-seq) was used to analyse the differences between the response of resistant plants (CGN18423, carrying the Cf-19 gene) and susceptible plants (Moneymaker (MM), carrying the Cf-0 gene) at 0, 7 and 20 days after inoculation (dai). RESULTS A total of 418 differentially expressed genes (DEGs) were identified specifically in the CGN18423 response process. Gene Ontology (GO) analysis revealed that GO terms including "plasma membrane (GO_Component)", "histidine decarboxylase activity (GO_Function)", and "carboxylic acid metabolic process (GO_Process)", as well as other 10 GO terms, were significantly enriched. The "plant hormone signal transduction" pathway, which was unique to CGN18423 in the 0-7 dai comparison, was identified. Moreover, ten key regulatory points were screened from the "plant hormone signal transduction" pathway and the "plant pathogen interaction" pathway. Hormone content measurements revealed that the salicylic acid (SA) contents increased and peaked at 7 dai, after which the contents deceased and reached minimum values in both CGN18423 and MM plants at 20 dai. The jasmonic acid (JA) content increased to a very high level at 7 dai but then decreased to nearly the initial level at 20 dai in CGN18423, while it continued to increase slightly during the whole process from 0 to 20 dai in MM. CONCLUSIONS The initial responses are very different between the resistant and susceptible plants. The "plant hormone signal transduction" pathway is important for the formation of Cf-19-mediated immunity. In addition, both JA and SA play roles in regulating the Cf-19-dependent resistance response.
Collapse
Affiliation(s)
- Tingting Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Wenhong Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Zhentong Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Huanhuan Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Yufang Bao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Dongye Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Ziyu Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Jingbin Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Ying Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - He Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Jingfu Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Qingshan Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| |
Collapse
|
12
|
Li X, Zheng Z, Kong X, Xu J, Qiu L, Sun J, Reid D, Jin H, Andersen SU, Oldroyd GED, Stougaard J, Downie JA, Xie F. Atypical Receptor Kinase RINRK1 Required for Rhizobial Infection But Not Nodule Development in Lotus japonicus. PLANT PHYSIOLOGY 2019; 181:804-816. [PMID: 31409696 PMCID: PMC6776872 DOI: 10.1104/pp.19.00509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/01/2019] [Indexed: 05/21/2023]
Abstract
During the legume-rhizobium symbiotic interaction, rhizobial invasion of legumes is primarily mediated by a plant-made tubular invagination called an infection thread (IT). Here, we identify a gene in Lotus japonicus encoding a Leu-rich repeat receptor-like kinase (LRR-RLK), RINRK1 (Rhizobial Infection Receptor-like Kinase1), that is induced by Nod factors (NFs) and is involved in IT formation but not nodule organogenesis. A paralog, RINRK2, plays a relatively minor role in infection. RINRK1 is required for full induction of early infection genes, including Nodule Inception (NIN), encoding an essential nodulation transcription factor. RINRK1 displayed an infection-specific expression pattern, and NIN bound to the RINRK1 promoter, inducing its expression. RINRK1 was found to be an atypical kinase localized to the plasma membrane and did not require kinase activity for rhizobial infection. We propose RINRK1 is an infection-specific RLK, which may specifically coordinate output from NF signaling or perceive an unknown signal required for rhizobial infection.
Collapse
Affiliation(s)
- Xiaolin Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiqiong Zheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangxiao Kong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liping Qiu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jongho Sun
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark
| | - Haojie Jin
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark
| | - J Allan Downie
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
13
|
Vaz Martins T, Livina VN. What Drives Symbiotic Calcium Signalling in Legumes? Insights and Challenges of Imaging. Int J Mol Sci 2019; 20:ijms20092245. [PMID: 31067698 PMCID: PMC6539980 DOI: 10.3390/ijms20092245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022] Open
Abstract
We review the contribution of bioimaging in building a coherent understanding of Ca 2 + signalling during legume-bacteria symbiosis. Currently, two different calcium signals are believed to control key steps of the symbiosis: a Ca 2 + gradient at the tip of the legume root hair is involved in the development of an infection thread, while nuclear Ca 2 + oscillations, the hallmark signal of this symbiosis, control the formation of the root nodule, where bacteria fix nitrogen. Additionally, different Ca 2 + spiking signatures have been associated with specific infection stages. Bioimaging is intrinsically a cross-disciplinary area that requires integration of image recording, processing and analysis. We used experimental examples to critically evaluate previously-established conclusions and draw attention to challenges caused by the varying nature of the signal-to-noise ratio in live imaging. We hypothesise that nuclear Ca 2 + spiking is a wide-range signal involving the entire root hair and that the Ca 2 + signature may be related to cytoplasmic streaming.
Collapse
Affiliation(s)
- Teresa Vaz Martins
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Valerie N Livina
- Data Science Group, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, UK.
| |
Collapse
|
14
|
Yin J, Guan X, Zhang H, Wang L, Li H, Zhang Q, Chen T, Xu Z, Hong Z, Cao Y, Zhang Z. An MAP kinase interacts with LHK1 and regulates nodule organogenesis in Lotus japonicus. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1203-1217. [DOI: 10.1007/s11427-018-9444-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
|
15
|
Malolepszy A, Kelly S, Sørensen KK, James EK, Kalisch C, Bozsoki Z, Panting M, Andersen SU, Sato S, Tao K, Jensen DB, Vinther M, Jong ND, Madsen LH, Umehara Y, Gysel K, Berentsen MU, Blaise M, Jensen KJ, Thygesen MB, Sandal N, Andersen KR, Radutoiu S. A plant chitinase controls cortical infection thread progression and nitrogen-fixing symbiosis. eLife 2018; 7:38874. [PMID: 30284535 PMCID: PMC6192697 DOI: 10.7554/elife.38874] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/02/2018] [Indexed: 01/03/2023] Open
Abstract
Morphogens provide positional information and their concentration is key to the organized development of multicellular organisms. Nitrogen-fixing root nodules are unique organs induced by Nod factor-producing bacteria. Localized production of Nod factors establishes a developmental field within the root where plant cells are reprogrammed to form infection threads and primordia. We found that regulation of Nod factor levels by Lotus japonicus is required for the formation of nitrogen-fixing organs, determining the fate of this induced developmental program. Our analysis of plant and bacterial mutants shows that a host chitinase modulates Nod factor levels possibly in a structure-dependent manner. In Lotus, this is required for maintaining Nod factor signalling in parallel with the elongation of infection threads within the nodule cortex, while root hair infection and primordia formation are not influenced. Our study shows that infected nodules require balanced levels of Nod factors for completing their transition to functional, nitrogen-fixing organs.
Collapse
Affiliation(s)
- Anna Malolepszy
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | | - Christina Kalisch
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Zoltan Bozsoki
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Michael Panting
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Japan
| | - Ke Tao
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dorthe Bødker Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Maria Vinther
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Noor de Jong
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lene Heegaard Madsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Yosuke Umehara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Kira Gysel
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mette U Berentsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mickael Blaise
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Knud Jørgen Jensen
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Mikkel B Thygesen
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Hürter AL, Fort S, Cottaz S, Hedrich R, Geiger D, Roelfsema MRG. Mycorrhizal lipochitinoligosaccharides (LCOs) depolarize root hairs of Medicago truncatula. PLoS One 2018; 13:e0198126. [PMID: 29851976 PMCID: PMC5979017 DOI: 10.1371/journal.pone.0198126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/14/2018] [Indexed: 11/24/2022] Open
Abstract
Arbuscular Mycorrhiza and Root Nodule Symbiosis are symbiotic interactions with a high benefit for plant growth and crop production. Thus, it is of great interest to understand the developmental process of these symbioses in detail. We analysed very early symbiotic responses of Medicago truncatula root hair cells, by stimulation with lipochitinoligosaccharides specific for the induction of nodules (Nod-LCOs), or the interaction with mycorrhiza (Myc-LCOs). Intracellular micro electrodes were used, in combination with Ca2+ sensitive reporter dyes, to study the relations between cytosolic Ca2+ signals and membrane potential changes. We found that sulfated Myc- as well as Nod-LCOs initiate a membrane depolarization, which depends on the chemical composition of these signaling molecules, as well as the genotype of the plants that were studied. A successive application of sulfated Myc-LCOs and Nod-LCOs resulted only in a single transient depolarization, indicating that Myc-LCOs can repress plasma membrane responses to Nod-LCOs. In contrast to current models, the Nod-LCO-induced depolarization precedes changes in the cytosolic Ca2+ level of root hair cells. The Nod-LCO induced membrane depolarization thus is most likely independent of cytosolic Ca2+ signals and nuclear Ca2+ spiking.
Collapse
Affiliation(s)
- Anna-Lena Hürter
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Würzburg, Germany
| | - Sébastien Fort
- University Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Sylvain Cottaz
- University Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Würzburg, Germany
| | - Dietmar Geiger
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Würzburg, Germany
| | - M. Rob G. Roelfsema
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Würzburg, Germany
| |
Collapse
|
17
|
Lace B, Ott T. Commonalities and Differences in Controlling Multipartite Intracellular Infections of Legume Roots by Symbiotic Microbes. PLANT & CELL PHYSIOLOGY 2018; 59:661-672. [PMID: 29474692 DOI: 10.1093/pcp/pcy043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 05/11/2023]
Abstract
Legumes have the almost unique ability to establish symbiotic associations with rhizobia and arbuscular mycorrhizal fungi. Forward and reverse genetics have identified a large number of genes that are required for either or both interactions. However, and in sharp contrast to natural soils, these interactions have been almost exclusively investigated under laboratory conditions by using separate inoculation systems, whereas both symbionts are simultaneously present in the field. Considering our recent understanding of the individual symbioses, the community is now promisingly positioned to co-inoculate plants with two or more microbes in order to understand mechanistically how legumes efficiently balance, regulate and potentially separate these symbioses and other endophytic microbes within the same root. Here, we discuss a number of key control layers that should be considered when assessing tri- or multipartite beneficial interactions and that may contribute to colonization patterns in legume roots.
Collapse
Affiliation(s)
- Beatrice Lace
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Thomas Ott
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, D-79104 Freiburg, Germany
| |
Collapse
|
18
|
Plant signalling in symbiosis and immunity. Nature 2017; 543:328-336. [PMID: 28300100 DOI: 10.1038/nature22009] [Citation(s) in RCA: 435] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/13/2017] [Indexed: 12/12/2022]
Abstract
Plants encounter a myriad of microorganisms, particularly at the root-soil interface, that can invade with detrimental or beneficial outcomes. Prevalent beneficial associations between plants and microorganisms include those that promote plant growth by facilitating the acquisition of limiting nutrients such as nitrogen and phosphorus. But while promoting such symbiotic relationships, plants must restrict the formation of pathogenic associations. Achieving this balance requires the perception of potential invading microorganisms through the signals that they produce, followed by the activation of either symbiotic responses that promote microbial colonization or immune responses that limit it.
Collapse
|
19
|
Yuan P, Jauregui E, Du L, Tanaka K, Poovaiah BW. Calcium signatures and signaling events orchestrate plant-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2017; 38:173-183. [PMID: 28692858 DOI: 10.1016/j.pbi.2017.06.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 05/20/2023]
Abstract
Calcium (Ca2+) acts as an essential second messenger connecting the perception of microbe signals to the establishment of appropriate immune and symbiotic responses in plants. Accumulating evidence suggests that plants distinguish different microorganisms through plasma membrane-localized pattern recognition receptors. The particular recognition events are encoded into Ca2+ signatures, which are sensed by diverse intracellular Ca2+ binding proteins. The Ca2+ signatures are eventually decoded to distinct downstream responses through transcriptional reprogramming of the defense or symbiosis-related genes. Recent observations further reveal that Ca2+-mediated signaling is also involved in negative regulation of plant immunity. This review is intended as an overview of Ca2+ signaling during immunity and symbiosis, including Ca2+ responses in the nucleus and cytosol.
Collapse
Affiliation(s)
- Peiguo Yuan
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Edgard Jauregui
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Liqun Du
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China.
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - B W Poovaiah
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA.
| |
Collapse
|
20
|
Hossain MS, Shrestha A, Zhong S, Miri M, Austin RS, Sato S, Ross L, Huebert T, Tromas A, Torres-Jerez I, Tang Y, Udvardi M, Murray JD, Szczyglowski K. Lotus japonicus NF-YA1 Plays an Essential Role During Nodule Differentiation and Targets Members of the SHI/STY Gene Family. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:950-964. [PMID: 27929718 DOI: 10.1094/mpmi-10-16-0206-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Legume plants engage in intimate relationships with rhizobial bacteria to form nitrogen-fixing nodules, root-derived organs that accommodate the microsymbiont. Members of the Nuclear Factor Y (NF-Y) gene family, which have undergone significant expansion and functional diversification during plant evolution, are essential for this symbiotic liaison. Acting in a partially redundant manner, NF-Y proteins were shown, previously, to regulate bacterial infection, including selection of a superior rhizobial strain, and to mediate nodule structure formation. However, the exact mechanism by which these transcriptional factors exert their symbiotic functions has remained elusive. By carrying out detailed functional analyses of Lotus japonicus mutants, we demonstrate that LjNF-YA1 becomes indispensable downstream from the initial cortical cell divisions but prior to nodule differentiation, including cell enlargement and vascular bundle formation. Three affiliates of the SHORT INTERNODES/STYLISH transcription factor gene family, called STY1, STY2, and STY3, are demonstrated to be among likely direct targets of LjNF-YA1, and our results point to their involvement in nodule formation.
Collapse
Affiliation(s)
- Md Shakhawat Hossain
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
| | - Arina Shrestha
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
- 2 Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Sihui Zhong
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
| | - Mandana Miri
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
- 2 Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Ryan S Austin
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
- 2 Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Shusei Sato
- 3 Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan; and
| | - Loretta Ross
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
| | - Terry Huebert
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
| | - Alexandre Tromas
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
| | - Ivone Torres-Jerez
- 4 Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, U.S.A
| | - Yuhong Tang
- 4 Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, U.S.A
| | - Michael Udvardi
- 4 Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, U.S.A
| | - Jeremy D Murray
- 4 Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, U.S.A
| | - Krzysztof Szczyglowski
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
- 2 Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 Canada
| |
Collapse
|
21
|
Akamatsu A, Shimamoto K, Kawano Y. Crosstalk of Signaling Mechanisms Involved in Host Defense and Symbiosis Against Microorganisms in Rice. Curr Genomics 2016; 17:297-307. [PMID: 27499679 PMCID: PMC4955034 DOI: 10.2174/1389202917666160331201602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 01/01/2023] Open
Abstract
Rice is one of the most important food crops, feeding about half population in the world. Rice pathogens cause enormous damage to rice production worldwide. In plant immunity research, considerable progress has recently been made in our understanding of the molecular mechanisms underlying microbe-associated molecular pattern (MAMP)-triggered immunity. Using genome sequencing and molecular techniques, a number of new MAMPs and their receptors have been identified in the past two decades. Notably, the mechanisms for chitin perception via the lysine motif (LysM) domain-containing receptor OsCERK1, as well as the mechanisms for bacterial MAMP (e.g. flg22, elf18) perception via the leucine-rich repeat (LRR) domain-containing receptors FLS2 and EFR, have been clarified in rice and Arabidopsis, respectively. In chitin signaling in rice, two direct substrates of OsCERK1, Rac/ROP GTPase guanine nucleotide exchange factor OsRacGEF1 and receptor-like cytoplasmic kinase OsRLCK185, have been identified as components of the OsCERK1 complex and are rapidly phosphorylated by OsCERK1 in response to chitin. Interestingly, OsCERK1 also participates in symbiosis with arbuscular mycorrhizal fungi (AMF) in rice and plays a role in the recognition of short-chitin molecules (CO4/5), which are symbiotic signatures included in AMF germinated spore exudates and induced by synthetic strigolactone. Thus, OsCERK1 contributes to both immunity and symbiotic responses. In this review, we describe recent studies on pathways involved in rice immunity and symbiotic signaling triggered by interactions with microorganisms. In addition, we describe recent advances in genetic engineering by using plant immune receptors and symbiotic microorganisms to enhance disease resistance of rice.
Collapse
Affiliation(s)
- Akira Akamatsu
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara,Japan;; Present address: Cell and Developmental Biology, John Innes Centre, Norwich,United Kingdom
| | - Ko Shimamoto
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara,Japan
| | - Yoji Kawano
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara,Japan;; Present address: Shanghai Center for Plant Stress Biology, Shanghai,P.R. China;; Kihara Institute for Biological Research, Yokohama,Japan
| |
Collapse
|
22
|
Montiel J, Arthikala MK, Cárdenas L, Quinto C. Legume NADPH Oxidases Have Crucial Roles at Different Stages of Nodulation. Int J Mol Sci 2016; 17:E680. [PMID: 27213330 PMCID: PMC4881506 DOI: 10.3390/ijms17050680] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/20/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022] Open
Abstract
Plant NADPH oxidases, formerly known as respiratory burst oxidase homologues (RBOHs), are plasma membrane enzymes dedicated to reactive oxygen species (ROS) production. These oxidases are implicated in a wide variety of processes, ranging from tissue and organ growth and development to signaling pathways in response to abiotic and biotic stimuli. Research on the roles of RBOHs in the plant's response to biotic stresses has mainly focused on plant-pathogen interactions; nonetheless, recent findings have shown that these oxidases are also involved in the legume-rhizobia symbiosis. The legume-rhizobia symbiosis leads to the formation of the root nodule, where rhizobia reduce atmospheric nitrogen to ammonia. A complex signaling and developmental pathway in the legume root hair and root facilitate rhizobial entrance and nodule organogenesis, respectively. Interestingly, several reports demonstrate that RBOH-mediated ROS production displays versatile roles at different stages of nodulation. The evidence collected to date indicates that ROS act as signaling molecules that regulate rhizobial invasion and also function in nodule senescence. This review summarizes discoveries that support the key and versatile roles of various RBOH members in the legume-rhizobia symbiosis.
Collapse
Affiliation(s)
- Jesús Montiel
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Manoj-Kumar Arthikala
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México (UNAM), León, Blvd. UNAM 2011, León 37684, Guanajuato, Mexico.
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca 62271, Morelos, Mexico.
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca 62271, Morelos, Mexico.
| |
Collapse
|
23
|
|
24
|
Sinharoy S, Liu C, Breakspear A, Guan D, Shailes S, Nakashima J, Zhang S, Wen J, Torres-Jerez I, Oldroyd G, Murray JD, Udvardi MK. A Medicago truncatula Cystathionine-β-Synthase-like Domain-Containing Protein Is Required for Rhizobial Infection and Symbiotic Nitrogen Fixation. PLANT PHYSIOLOGY 2016; 170:2204-17. [PMID: 26884486 PMCID: PMC4825145 DOI: 10.1104/pp.15.01853] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/03/2016] [Indexed: 05/19/2023]
Abstract
The symbiosis between leguminous plants and soil rhizobia culminates in the formation of nitrogen-fixing organs called nodules that support plant growth. Two Medicago truncatula Tnt1-insertion mutants were identified that produced small nodules, which were unable to fix nitrogen effectively due to ineffective rhizobial colonization. The gene underlying this phenotype was found to encode a protein containing a putative membrane-localized domain of unknown function (DUF21) and a cystathionine-β-synthase domain. The cbs1 mutants had defective infection threads that were sometimes devoid of rhizobia and formed small nodules with greatly reduced numbers of symbiosomes. We studied the expression of the gene, designated M truncatula Cystathionine-β-Synthase-like1 (MtCBS1), using a promoter-β-glucuronidase gene fusion, which revealed expression in infected root hair cells, developing nodules, and in the invasion zone of mature nodules. An MtCBS1-GFP fusion protein localized itself to the infection thread and symbiosomes. Nodulation factor-induced Ca(2+) responses were observed in the cbs1 mutant, indicating that MtCBS1 acts downstream of nodulation factor signaling. MtCBS1 expression occurred exclusively during Medicago-rhizobium symbiosis. Induction of MtCBS1 expression during symbiosis was found to be dependent on Nodule Inception (NIN), a key transcription factor that controls both rhizobial infection and nodule organogenesis. Interestingly, the closest homolog of MtCBS1, MtCBS2, was specifically induced in mycorrhizal roots, suggesting common infection mechanisms in nodulation and mycorrhization. Related proteins in Arabidopsis have been implicated in cell wall maturation, suggesting a potential role for CBS1 in the formation of the infection thread wall.
Collapse
Affiliation(s)
- Senjuti Sinharoy
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Chengwu Liu
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Andrew Breakspear
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Dian Guan
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Sarah Shailes
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Jin Nakashima
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Shulan Zhang
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Jiangqi Wen
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Ivone Torres-Jerez
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Giles Oldroyd
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Jeremy D Murray
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Michael K Udvardi
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| |
Collapse
|
25
|
Miri M, Janakirama P, Held M, Ross L, Szczyglowski K. Into the Root: How Cytokinin Controls Rhizobial Infection. TRENDS IN PLANT SCIENCE 2016; 21:178-186. [PMID: 26459665 DOI: 10.1016/j.tplants.2015.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/26/2015] [Accepted: 09/08/2015] [Indexed: 05/13/2023]
Abstract
Leguminous plants selectively initiate primary responses to rhizobial nodulation factors (NF) that ultimately lead to symbiotic root nodule formation. Functioning downstream, cytokinin has emerged as the key endogenous plant signal for nodule differentiation, but its role in mediating rhizobial entry into the root remains obscure. Nonetheless, such a role is suggested by aberrant infection phenotypes of plant mutants with defects in cytokinin signaling. We postulate that cytokinin participates in orchestrating signaling events that promote rhizobial colonization of the root cortex and limit the extent of subsequent infection at the root epidermis, thus maintaining homeostasis of the symbiotic interaction. We further argue that cytokinin signaling must have been crucial during the evolution of plant cell predisposition for rhizobial colonization.
Collapse
Affiliation(s)
- Mandana Miri
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ONT, NV5 4T3, Canada; Department of Biology, University of Western Ontario, London, ONT, N6A 5BF, Canada
| | - Preetam Janakirama
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ONT, NV5 4T3, Canada
| | - Mark Held
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ONT, NV5 4T3, Canada; Current address: Intrexon Corporation, 329 Oyster Pt. Blvd., South San Francisco, CA 94080, USA
| | - Loretta Ross
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ONT, NV5 4T3, Canada
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ONT, NV5 4T3, Canada; Department of Biology, University of Western Ontario, London, ONT, N6A 5BF, Canada.
| |
Collapse
|
26
|
Geddes BA, Oresnik IJ. The Mechanism of Symbiotic Nitrogen Fixation. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Qiu L, Lin JS, Xu J, Sato S, Parniske M, Wang TL, Downie JA, Xie F. SCARN a Novel Class of SCAR Protein That Is Required for Root-Hair Infection during Legume Nodulation. PLoS Genet 2015; 11:e1005623. [PMID: 26517270 PMCID: PMC4627827 DOI: 10.1371/journal.pgen.1005623] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/30/2015] [Indexed: 12/22/2022] Open
Abstract
Rhizobial infection of legume root hairs requires a rearrangement of the actin cytoskeleton to enable the establishment of plant-made infection structures called infection threads. In the SCAR/WAVE (Suppressor of cAMP receptor defect/WASP family verpolin homologous protein) actin regulatory complex, the conserved N-terminal domains of SCAR proteins interact with other components of the SCAR/WAVE complex. The conserved C-terminal domains of SCAR proteins bind to and activate the actin-related protein 2/3 (ARP2/3) complex, which can bind to actin filaments catalyzing new actin filament formation by nucleating actin branching. We have identified, SCARN (SCAR-Nodulation), a gene required for root hair infection of Lotus japonicus by Mesorhizobium loti. Although the SCARN protein is related to Arabidopsis thaliana SCAR2 and SCAR4, it belongs to a distinct legume-sub clade. We identified other SCARN-like proteins in legumes and phylogeny analyses suggested that SCARN may have arisen from a gene duplication and acquired specialized functions in root nodule symbiosis. Mutation of SCARN reduced formation of infection-threads and their extension into the root cortex and slightly reduced root-hair length. Surprisingly two of the scarn mutants showed constitutive branching of root hairs in uninoculated plants. However we observed no effect of scarn mutations on trichome development or on the early actin cytoskeletal accumulation that is normally seen in root hair tips shortly after M. loti inoculation, distinguishing them from other symbiosis mutations affecting actin nucleation. The C-terminal domain of SCARN binds to ARPC3 and ectopic expression of the N-terminal SCAR-homology domain (but not the full length protein) inhibited nodulation. In addition, we found that SCARN expression is enhanced by M. loti in epidermal cells and that this is directly regulated by the NODULE INCEPTION (NIN) transcription factor. Characterization of Lotus japonicus mutants defective for nodule infection by rhizobia led to the identification of a gene we named SCARN. Two of the five alleles caused formation of branched root-hairs in uninoculated seedlings, suggesting SCARN plays a role in the microtubule and actin-regulated polar growth of root hairs. SCARN is one of three L. japonicus proteins containing the conserved N and C terminal domains predicted to be required for rearrangement of the actin cytoskeleton. SCARN expression is induced in response to rhizobial nodulation factors by the NIN (NODULE INCEPTION) transcription factor and appears to be adapted to promoting rhizobial infection, possibly arising from a gene duplication event. SCARN binds to ARPC3, one of the predicted components in the actin-related protein complex involved in the activation of actin nucleation.
Collapse
Affiliation(s)
- Liping Qiu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie-shun Lin
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ji Xu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Martin Parniske
- University of Munich LMU, Faculty of Biology, Martinsried, Germany
| | | | | | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
28
|
Panstruga R, Kuhn H. Introduction to a Virtual Special Issue on cell biology at the plant-microbe interface. THE NEW PHYTOLOGIST 2015; 207:931-8. [PMID: 26235485 DOI: 10.1111/nph.13551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Hannah Kuhn
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| |
Collapse
|
29
|
Fliegmann J, Bono JJ. Lipo-chitooligosaccharidic nodulation factors and their perception by plant receptors. Glycoconj J 2015; 32:455-64. [PMID: 26233756 DOI: 10.1007/s10719-015-9609-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/15/2015] [Accepted: 07/01/2015] [Indexed: 02/03/2023]
Abstract
Lipo-chitooligosaccharides produced by nitrogen-fixing rhizobia are signaling molecules involved in the establishment of an important agronomical and ecological symbiosis with plants. These compounds, known as Nod factors, are biologically active on plant roots at very low concentrations indicating that they are perceived by specific receptors. This article summarizes the main strategies developed for the syntheses of bioactive Nod factors and their derivatives in order to better understand their mode of perception. Different Nod factor receptors and LCO-binding proteins identified by genetic or biochemical approaches are also presented, indicating perception mechanisms that seem to be more complicated than expected, probably involving multi-component receptor complexes.
Collapse
Affiliation(s)
- Judith Fliegmann
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, 31326, Castanet-Tolosan, France.,CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, 31326, Castanet-Tolosan, France
| | - Jean-Jacques Bono
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, 31326, Castanet-Tolosan, France. .,CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, 31326, Castanet-Tolosan, France.
| |
Collapse
|
30
|
Affiliation(s)
- J Allan Downie
- John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK
| |
Collapse
|
31
|
Breakspear A, Liu C, Roy S, Stacey N, Rogers C, Trick M, Morieri G, Mysore KS, Wen J, Oldroyd GED, Downie JA, Murray JD. The root hair "infectome" of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for Auxin signaling in rhizobial infection. THE PLANT CELL 2014; 26:4680-701. [PMID: 25527707 PMCID: PMC4311213 DOI: 10.1105/tpc.114.133496] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 10/23/2014] [Accepted: 12/03/2014] [Indexed: 05/18/2023]
Abstract
Nitrogen-fixing rhizobia colonize legume roots via plant-made intracellular infection threads. Genetics has identified some genes involved but has not provided sufficient detail to understand requirements for infection thread development. Therefore, we transcriptionally profiled Medicago truncatula root hairs prior to and during the initial stages of infection. This revealed changes in the responses to plant hormones, most notably auxin, strigolactone, gibberellic acid, and brassinosteroids. Several auxin responsive genes, including the ortholog of Arabidopsis thaliana Auxin Response Factor 16, were induced at infection sites and in nodule primordia, and mutation of ARF16a reduced rhizobial infection. Associated with the induction of auxin signaling genes, there was increased expression of cell cycle genes including an A-type cyclin and a subunit of the anaphase promoting complex. There was also induction of several chalcone O-methyltransferases involved in the synthesis of an inducer of Sinorhizobium meliloti nod genes, as well as a gene associated with Nod factor degradation, suggesting both positive and negative feedback loops that control Nod factor levels during rhizobial infection. We conclude that the onset of infection is associated with reactivation of the cell cycle as well as increased expression of genes required for hormone and flavonoid biosynthesis and that the regulation of auxin signaling is necessary for initiation of rhizobial infection threads.
Collapse
Affiliation(s)
- Andrew Breakspear
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Chengwu Liu
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Sonali Roy
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Nicola Stacey
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Christian Rogers
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Martin Trick
- Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Giulia Morieri
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Kirankumar S Mysore
- Division of Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Jiangqi Wen
- Division of Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Giles E D Oldroyd
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - J Allan Downie
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Jeremy D Murray
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
32
|
Liang Y, Tóth K, Cao Y, Tanaka K, Espinoza C, Stacey G. Lipochitooligosaccharide recognition: an ancient story. THE NEW PHYTOLOGIST 2014; 204:289-96. [PMID: 25453133 DOI: 10.1111/nph.12898] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chitin is the second most abundant polysaccharide in nature, found in crustacean shells, insect exoskeletons and fungal cell walls. The action of chitin and chitin derivatives on plants has become a very interesting story of late. Chitin is a b1-4-linked polymer of N-acetyl-Dglucosamine(GlcNAc). In this unmodified form, chitooligosaccharides (degree of polymerization(dp) = 6–8)) are strong inducers of plant innate immunity. By contrast, when these chitooligosaccharides are acylated (so-called lipochitooligosaccharides, LCOs) and further modified, they can act as Nod factors, the key signaling molecules that play an important role in the initiation of the legume–rhizobium symbiosis. In a similar form, these molecules can also act as Myc factors, the key signaling molecules involved in the arbuscular mycorrhizal (AM)symbiosis. It has been proposed that Nod factor perception might have evolved from the more ancient AM symbiosis. Increasing evidence now suggests that LCO perception might have evolved from plant innate immunity signaling. In this review, we will discuss the evolutionary origin of symbiotic LCO recognition.
Collapse
Affiliation(s)
- Yan Liang
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
33
|
Yoon HJ, Hossain MS, Held M, Hou H, Kehl M, Tromas A, Sato S, Tabata S, Andersen SU, Stougaard J, Ross L, Szczyglowski K. Lotus japonicus SUNERGOS1 encodes a predicted subunit A of a DNA topoisomerase VI that is required for nodule differentiation and accommodation of rhizobial infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:811-21. [PMID: 24661810 PMCID: PMC4282747 DOI: 10.1111/tpj.12520] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/13/2014] [Accepted: 03/05/2014] [Indexed: 05/05/2023]
Abstract
A symbiotic mutant of Lotus japonicus, called sunergos1-1 (suner1-1), originated from a har1-1 suppressor screen. suner1-1 supports epidermal infection by Mesorhizobium loti and initiates cell divisions for organogenesis of nodule primordia. However, these processes appear to be temporarily stalled early during symbiotic interaction, leading to a low nodule number phenotype. This defect is ephemeral and near wild-type nodule numbers are reached by suner1-1 at a later point after infection. Using an approach that combined map-based cloning and next-generation sequencing we have identified the causative mutation and show that the suner1-1 phenotype is determined by a weak recessive allele, with the corresponding wild-type SUNER1 locus encoding a predicted subunit A of a DNA topoisomerase VI. Our data suggest that at least one function of SUNER1 during symbiosis is to participate in endoreduplication, which is an essential step during normal differentiation of functional, nitrogen-fixing nodules.
Collapse
Affiliation(s)
- Hwi Joong Yoon
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
- Department of Biology, University of Western OntarioLondon, ON, N6A 5B7, Canada
| | - Md Shakhawat Hossain
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
| | - Mark Held
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
- Department of Biology, University of Western OntarioLondon, ON, N6A 5B7, Canada
| | - Hongwei Hou
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
| | - Marilyn Kehl
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
- Department of Biology, University of Western OntarioLondon, ON, N6A 5B7, Canada
| | - Alexandre Tromas
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
| | - Shusei Sato
- Kazusa DNA Research InstituteKisarazu, Chiba, 292-0812, Japan
| | - Satoshi Tabata
- Kazusa DNA Research InstituteKisarazu, Chiba, 292-0812, Japan
| | - Stig Uggerhøj Andersen
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus UniversityGustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus UniversityGustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Loretta Ross
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
- Department of Biology, University of Western OntarioLondon, ON, N6A 5B7, Canada
- *For correspondence (e-mail )
| |
Collapse
|