1
|
Vohník M, Josefiová J. Novel epiphytic root-fungus symbiosis in the Indo-Pacific seagrass Thalassodendron ciliatum from the Red Sea. MYCORRHIZA 2024; 34:447-461. [PMID: 39073598 PMCID: PMC11604718 DOI: 10.1007/s00572-024-01161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Symbioses with fungi are important and ubiquitous on dry land but underexplored in the sea. As yet only one seagrass has been shown to form a specific root-fungus symbiosis that resembles those occurring in terrestrial plants, namely the dominant long-lived Mediterranean species Posidonia oceanica (Alismatales: Posidoniaceae) forming a dark septate (DS) endophytic association with the ascomycete Posidoniomyces atricolor (Pleosporales: Aigialaceae). Using stereomicroscopy, light and scanning electron microscopy, and DNA cloning, here we describe a novel root-fungus symbiosis in the Indo-Pacific seagrass Thalassodendron ciliatum (Alismatales: Cymodoceaceae) from a site in the Gulf of Aqaba in the Red Sea. Similarly to P. oceanica, the mycobiont of T. ciliatum occurs more frequently in thinner roots that engage in nutrient uptake from the seabed and forms extensive hyphal mantles composed of DS hyphae on the root surface. Contrary to P. oceanica, the mycobiont occurs on the roots with root hairs and does not colonize its host intraradically. While the cloning revealed a relatively rich spectrum of fungi, they were mostly parasites or saprobes of uncertain origin and the identity of the mycobiont thus remains unknown. Symbioses of seagrasses with fungi are probably more frequent than previously thought, but their functioning and significance are unknown. Melanin present in DS hyphae slows down their decomposition and so is true for the colonized roots. DS fungi may in this way conserve organic detritus in the seagrasses' rhizosphere, thus contributing to blue carbon sequestration in seagrass meadows.
Collapse
Affiliation(s)
- Martin Vohník
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia.
- KROKODIVE.CZ, Údolní 219/47, Prague, 14700, Czechia.
| | - Jiřina Josefiová
- Laboratory of Molecular Biology and Bioinformatics, Institute of Botany, Czech Academy of Sciences, Lesní 322, Průhonice, 25243, Czechia
| |
Collapse
|
2
|
Pena R, Tibbett M. Mycorrhizal symbiosis and the nitrogen nutrition of forest trees. Appl Microbiol Biotechnol 2024; 108:461. [PMID: 39249589 PMCID: PMC11384646 DOI: 10.1007/s00253-024-13298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Terrestrial plants form primarily mutualistic symbiosis with mycorrhizal fungi based on a compatible exchange of solutes between plant and fungal partners. A key attribute of this symbiosis is the acquisition of soil nutrients by the fungus for the benefit of the plant in exchange for a carbon supply to the fungus. The interaction can range from mutualistic to parasitic depending on environmental and physiological contexts. This review considers current knowledge of the functionality of ectomycorrhizal (EM) symbiosis in the mobilisation and acquisition of soil nitrogen (N) in northern hemisphere forest ecosystems, highlighting the functional diversity of the fungi and the variation of symbiotic benefits, including the dynamics of N transfer to the plant. It provides an overview of recent advances in understanding 'mycorrhizal decomposition' for N release from organic or mineral-organic forms. Additionally, it emphasises the taxon-specific traits of EM fungi in soil N uptake. While the effects of EM communities on tree N are likely consistent across different communities regardless of species composition, the sink activities of various fungal taxa for tree carbon and N resources drive the dynamic continuum of mutualistic interactions. We posit that ectomycorrhizas contribute in a species-specific but complementary manner to benefit tree N nutrition. Therefore, alterations in diversity may impact fungal-plant resource exchange and, ultimately, the role of ectomycorrhizas in tree N nutrition. Understanding the dynamics of EM functions along the mutualism-parasitism continuum in forest ecosystems is essential for the effective management of ecosystem restoration and resilience amidst climate change. KEY POINTS: • Mycorrhizal symbiosis spans a continuum from invested to appropriated benefits. • Ectomycorrhizal fungal communities exhibit a high functional diversity. • Tree nitrogen nutrition benefits from the diversity of ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Rodica Pena
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK.
- Department of Silviculture, Transilvania University of Brasov, Brasov, Romania.
| | - Mark Tibbett
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| |
Collapse
|
3
|
Soltangheisi A, Hales-Henao A, Pena R, Tibbett M. Species-specific effects of mycorrhizal symbiosis on Populus trichocarpa after a lethal dose of copper. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116112. [PMID: 38354434 DOI: 10.1016/j.ecoenv.2024.116112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/24/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Poplars have been identified as heavy metals hyperaccumulators and can be used for phytoremediation. We have previously established that their symbiosis with arbuscular mycorrhizal fungi (AMF) may alter their uptake, tolerance and distribution to excess concentrations of heavy metals in soils. In this study we hypothesised that mycorrhizal symbiosis improves the tolerance of poplars to lethal copper (Cu) concentrations, but this influence may vary among different AMF species. We conducted an experiment in a growth chamber with three Cu application levels of control (0 mg kg-1), threshold-lethal (729 mg kg-1) and supra-lethal (6561 mg kg-1), and three mycorrhizal treatments (non-mycorrhizal, Rhizophagus irregularis, and Paraglomus laccatum) in a completely randomized design with six replications. The poplars did not grow after application of 729 mg Cu kg-1 substrate, and mycorrhizal symbiosis did not help plants to tolerate this level of Cu. This can be explained by the toxicity suffered by mycorrhizal fungi. Translocation of Cu from roots to shoots increased when plants were colonised with R. irregularis and P. laccatum under threshold-lethal and supra-lethal applications of Cu, respectively. This result shows that mycorrhizal mediation of Cu partitioning in poplars depends on the fungal species and substrate Cu concentration. Multi-model inference analysis within each mycorrhizal treatment showed that in plants colonised with R. irregularis, a higher level of mycorrhizal colonisation may prevent Cu transfer to the shoots. We did not observe this effect in P. laccatum plants probably due to the relatively low colonisation rate (14%). Nutrient concentrations in roots and shoots were impacted by applied substrate Cu levels, but not by mycorrhizas. Magnesium (Mg), potassium (K), and manganese (Mn) concentrations in roots reduced with enhancing applied substrate Cu due to their similar ionic radii with Cu and having common transport mechanism. Synergistic effect on shoot concentration between applied substrate Cu levels and Mg, K, calcium, iron (Fe), and zinc was observed. Root Cu concentration was inversely related with root K and Mn concentrations, and shoot Cu concentration had a positive correlation with shoot Fe and K concentrations. Overall, mycorrhizal symbiosis has the potential to enhance plant health and their resilience to Cu toxicity in contamination events. However, it is important to note that the effectiveness of this symbiotic relationship varies among different mycorrhizal species and is influenced by the level of contamination.
Collapse
Affiliation(s)
- Amin Soltangheisi
- Department of Sustainable Land Management & Soil Research Centre, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom; Environment Centre Wales, School of Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom
| | - Aysha Hales-Henao
- Department of Sustainable Land Management & Soil Research Centre, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Rodica Pena
- Department of Sustainable Land Management & Soil Research Centre, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Mark Tibbett
- Department of Sustainable Land Management & Soil Research Centre, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom; School of Biological Sciences, The University of Western Australia, Perth, Australia.
| |
Collapse
|
4
|
Zhang Y, Feng H, Druzhinina IS, Xie X, Wang E, Martin F, Yuan Z. Phosphorus/nitrogen sensing and signaling in diverse root-fungus symbioses. Trends Microbiol 2024; 32:200-215. [PMID: 37689488 DOI: 10.1016/j.tim.2023.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023]
Abstract
Establishing mutualistic relationships between plants and fungi is crucial for overcoming nutrient deficiencies in plants. This review highlights the intricate nutrient sensing and uptake mechanisms used by plants in response to phosphate and nitrogen starvation, as well as their interactions with plant immunity. The coordination of transport systems in both host plants and fungal partners ensures efficient nutrient uptake and assimilation, contributing to the long-term maintenance of these mutualistic associations. It is also essential to understand the distinct responses of fungal partners to external nutrient levels and forms, as they significantly impact the outcomes of symbiotic interactions. Our review also highlights the importance of evolutionarily younger and newly discovered root-fungus associations, such as endophytic associations, which offer potential benefits for improving plant nutrition. Mechanistic insights into the complex dynamics of phosphorus and nitrogen sensing within diverse root-fungus associations can facilitate the identification of molecular targets for engineering symbiotic systems and developing plant phenotypes with enhanced nutrient use efficiency. Ultimately, this knowledge can inform tailored fertilizer management practices to optimize plant nutrition.
Collapse
Affiliation(s)
- Yuwei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 10091, China; Nanjing Forestry University, Nanjing 210037, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Huan Feng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | | | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est - Nancy, 54 280 Champenoux, France.
| | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| |
Collapse
|
5
|
Tibbett M, Daws MI, Ryan MH. Phosphorus uptake and toxicity are delimited by mycorrhizal symbiosis in P-sensitive Eucalyptus marginata but not in P-tolerant Acacia celastrifolia. AOB PLANTS 2022; 14:plac037. [PMID: 36196393 PMCID: PMC9521482 DOI: 10.1093/aobpla/plac037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 08/15/2022] [Indexed: 05/31/2023]
Abstract
Many plant species from regions with ancient, highly weathered nutrient-depleted soils have specialized adaptations for acquiring phosphorus (P) and are sensitive to excess P supply. Mycorrhizal associations may regulate P uptake at high external P concentrations, potentially reducing P toxicity. We predicted that excess P application will negatively impact species from the nutrient-depleted Jarrah forest of Western Australia and that mycorrhizal inoculation will reduce P toxicity by regulating P uptake. For seedlings of the N2-fixing legume Acacia celastrifolia and the tree species Eucalyptus marginata, we measured growth at P concentrations of 0-90 mg kg-1 soil and in relation to inoculation with the arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis. Non-inoculated A. celastrifolia maintained leaf P concentrations at <2 mg g-1 dry mass (DM) across the range of external P concentrations. However, for non-inoculated E. marginata, as external P concentrations increased, leaf P also increased, reaching >9 mg g-1 DM at 30 mg P kg-1 soil. Acacia celastrifolia DM increased with increasing external P concentrations, while E. marginata DM was maximal at 15 mg P kg-1 soil, declining at higher external P concentrations. Neither DM nor leaf P of A. celastrifolia was affected by inoculation with AMF. For E. marginata, even at 90 mg P kg-1 soil, inoculation with AMF resulted in leaf P remaining <1 mg g-1 DM, and DM being maintained. These data strengthen the evidence base that AMF may not only facilitate P uptake at low external P concentrations, but are also important for moderating P uptake at elevated external P concentrations and maintaining plant P concentrations within a relatively narrow concentration range.
Collapse
Affiliation(s)
| | - Matthew I Daws
- Department of Sustainable Land Management and Soil Research Centre, School of Agricultural Policy and Development, University of Reading, Reading, Berkshire RG6 6AR, UK
| | - Megan H Ryan
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
6
|
Peng L, Shan X, Yang Y, Wang Y, Druzhinina IS, Pan X, Jin W, He X, Wang X, Zhang X, Martin FM, Yuan Z. Facultative symbiosis with a saprotrophic soil fungus promotes potassium uptake in American sweetgum trees. PLANT, CELL & ENVIRONMENT 2021; 44:2793-2809. [PMID: 33764571 DOI: 10.1111/pce.14053] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Several species of soil free-living saprotrophs can sometimes establish biotrophic symbiosis with plants, but the basic biology of this association remains largely unknown. Here, we investigate the symbiotic interaction between a common soil saprotroph, Clitopilus hobsonii (Agaricomycetes), and the American sweetgum (Liquidambar styraciflua). The colonized root cortical cells were found to contain numerous microsclerotia-like structures. Fungal colonization led to increased plant growth and facilitated potassium uptake, particularly under potassium limitation (0.05 mM K+ ). The expression of plant genes related to potassium uptake was not altered by the symbiosis, but colonized roots contained the transcripts of three fungal genes with homology to K+ transporters (ACU and HAK) and channel (SKC). Heterologously expressed ChACU and ChSKC restored the growth of a yeast K+ -uptake-defective mutant. Upregulation of ChACU transcript under low K+ conditions (0 and 0.05 mM K+ ) compared to control (5 mM K+ ) was demonstrated in planta and in vitro. Colonized plants displayed a larger accumulation of soluble sugars under 0.05 mM K+ than non-colonized plants. The present study suggests reciprocal benefits of this novel tree-fungus symbiosis under potassium limitation mainly through an exchange of additional carbon and potassium between both partners.
Collapse
Affiliation(s)
- Long Peng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xiaoliang Shan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Yuzhan Yang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Yuchen Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Irina S Druzhinina
- Fungal Genomics Group, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xueyu Pan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Wei Jin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xinghua He
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xinyu Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xiaoguo Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Francis M Martin
- INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, Champenoux, France
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
7
|
Rocha Vasconcelos da Silva G, Henrique De Oliveira V, Tibbett M. Cadmium stress causes differential effects on growth and the secretion of carbon-degrading enzymes in four mycorrhizal basidiomycetes. MYCOSCIENCE 2021; 62:132-136. [PMID: 37089253 PMCID: PMC9721516 DOI: 10.47371/mycosci.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022]
Abstract
We hypothesised that cadmium exposure would hinder growth and secretion of carbon-degrading enzymes by mycorrhizal fungi, and that this would vary according to their tolerance to cadmium stress. The enzymes measured were β-Glucosidase, β-Xylosidase, β-D-cellubiosidase, N-acetyl-β-Glucosaminidase in three strains of ectomycorrhizal fungi Hebeloma subsaponaceum, Scleroderma sp., Hebeloma sp. and a feremycorrhizal fungus Austroboletus occidentalis. Fungi were subjected to cadmium stress for 28 d (in modified Melin-Norkrans liquid medium). The results showed unanticipated differential response of enzyme activities among the fungal species, including potential hormesis effects. Austroboletus occidentalis showed an increase in enzyme activity under cadmium stress.
Collapse
Affiliation(s)
- Gilka Rocha Vasconcelos da Silva
- Department of Sustainable Land Management and Soil Research Centre, School of Agriculture Policy and Development, University of Reading Earley Gate
| | | | - Mark Tibbett
- Department of Sustainable Land Management and Soil Research Centre, School of Agriculture Policy and Development, University of Reading Earley Gate
| |
Collapse
|
8
|
|
9
|
Tian H, Kah M, Kariman K. Are Nanoparticles a Threat to Mycorrhizal and Rhizobial Symbioses? A Critical Review. Front Microbiol 2019; 10:1660. [PMID: 31396182 PMCID: PMC6668500 DOI: 10.3389/fmicb.2019.01660] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/04/2019] [Indexed: 11/13/2022] Open
Abstract
Soil microorganisms can be exposed to, and affected by, nanoparticles (NPs) that are either purposely released into the environment (e.g., nanoagrochemicals and NP-containing amendments) or reach soil as nanomaterial contaminants. It is crucial to evaluate the potential impact of NPs on key plant-microbe symbioses such as mycorrhizas and rhizobia, which are vital for health, functioning and sustainability of both natural and agricultural ecosystems. Our critical review of the literature indicates that NPs may have neutral, negative, or positive effects on development of mycorrhizal and rhizobial symbioses. The net effect of NPs on mycorrhizal development is driven by various factors including NPs type, speciation, size, concentration, fungal species, and soil physicochemical properties. As expected for potentially toxic substances, NPs concentration was found to be the most critical factor determining the toxicity of NPs against mycorrhizas, as even less toxic NPs such as ZnO NPs can be inhibitory at high concentrations, and highly toxic NPs such as Ag NPs can be stimulatory at low concentrations. Likewise, rhizobia show differential responses to NPs depending on the NPs concentration and the properties of NPs, rhizobia, and growth substrate, however, most rhizobial studies have been conducted in soil-less media, and the documented effects cannot be simply interpreted within soil systems in which complex interactions occur. Overall, most studies indicating adverse effects of NPs on mycorrhizas and rhizobia have been performed using either unrealistically high NP concentrations that are unlikely to occur in soil, or simple soil-less media (e.g., hydroponic cultures) that provide limited information about the processes occurring in the real environment/agrosystems. To safeguard these ecologically paramount associations, along with other ecotoxicological considerations, large-scale application of NPs in farming systems should be preceded by long-term field trials and requires an appropriate application rate and comprehensive (preferably case-specific) assessment of the context parameters i.e., the properties of NPs, microbial symbionts, and soil. Directions and priorities for future research are proposed based on the gaps and experimental restrictions identified.
Collapse
Affiliation(s)
- Hui Tian
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Melanie Kah
- School of Environment, The University of Auckland, Auckland, New Zealand
| | - Khalil Kariman
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
10
|
Asgari Lajayer B, Khadem Moghadam N, Maghsoodi MR, Ghorbanpour M, Kariman K. Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8468-8484. [PMID: 30712209 DOI: 10.1007/s11356-019-04241-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 01/14/2019] [Indexed: 05/22/2023]
Abstract
Accumulation of heavy metals (HMs) in soil, water and air is one of the major environmental concerns worldwide, which mainly occurs due to anthropogenic activities such as industrialization, urbanization, and mining. Conventional remediation strategies involving physical or chemical techniques are not cost-effective and/or eco-friendly, reinforcing the necessity for development of novel approaches. Phytoextraction has attracted considerable attention over the past decades and generally refers to use of plants for cleaning up environmental pollutants such as HMs. Compared to other plant types such as edible crops and medicinal plants, ornamental plants (OPs) seem to be a more viable option as they offer several advantages including cleaning up the HMs pollution, beautification of the environment, by-product generation and related economic benefits, and not generally being involved in the food/feed chain or other direct human applications. Phytoextraction ability of OPs involve diverse detoxification pathways such as enzymatic and non-enzymatic (secondary metabolites) antioxidative responses, distribution and deposition of HMs in the cell walls, vacuoles and metabolically inactive tissues, and chelation of HMs by a ligand such as phytochelatins followed by the sequestration of the metal-ligand complex into the vacuoles. The phytoextraction efficiency of OPs can be improved through chemical, microbial, soil amending, and genetic approaches, which primarily target bioavailability, uptake, and sequestration of HMs. In this review, we explore the phytoextraction potential of OPs for remediation of HMs-polluted environments, underpinning mechanisms, efficiency improvement strategies, and highlight the potential future research directions.
Collapse
Affiliation(s)
- Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Nader Khadem Moghadam
- Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | | | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Khalil Kariman
- School of Agriculture and Environment M087, The University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
11
|
Kariman K, Barker SJ, Tibbett M. Structural plasticity in root-fungal symbioses: diverse interactions lead to improved plant fitness. PeerJ 2018; 6:e6030. [PMID: 30533314 PMCID: PMC6284451 DOI: 10.7717/peerj.6030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/30/2018] [Indexed: 01/08/2023] Open
Abstract
Root-fungal symbioses such as mycorrhizas and endophytes are key components of terrestrial ecosystems. Diverse in trophy habits (obligate, facultative or hemi-biotrophs) and symbiotic relations (from mutualism to parasitism), these associations also show great variability in their root colonization and nutritional strategies. Specialized interface structures such as arbuscules and Hartig nets are formed by certain associations while others are restricted to non-specialized intercellular or intracellular hyphae in roots. In either case, there are documented examples of active nutrient exchange, reinforcing the fact that specialized structures used to define specific mycorrhizal associations are not essential for reciprocal exchange of nutrients and plant growth promotion. In feremycorrhiza (with Austroboletus occidentalis and eucalypts), the fungal partner markedly enhances plant growth and nutrient acquisition without colonizing roots, emphasizing that a conventional focus on structural form of associations may have resulted in important functional components of rhizospheres being overlooked. In support of this viewpoint, mycobiome studies using the state-of-the-art DNA sequencing technologies have unearthed much more complexity in root-fungal relationships than those discovered using the traditional morphology-based approaches. In this review, we explore the existing literature and most recent findings surrounding structure, functioning, and ecology of root-fungal symbiosis, which highlight the fact that plant fitness can be altered by taxonomically/ecologically diverse fungal symbionts regardless of root colonization and interface specialization. Furthermore, transition from saprotrophy to biotrophy seems to be a common event that occurs in diverse fungal lineages (consisting of root endophytes, soil saprotrophs, wood decayers etc.), and which may be accompanied by development of specialized interface structures and/or mycorrhiza-like effects on plant growth and nutrition.
Collapse
Affiliation(s)
- Khalil Kariman
- School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
| | - Susan Jane Barker
- School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
| | - Mark Tibbett
- Centre for Agri-Environmental Research & Soil Research Centre, School of Agriculture Policy and Development, University of Reading, Berkshire, United Kingdom
| |
Collapse
|
12
|
Becquer A, Garcia K, Amenc L, Rivard C, Doré J, Trives-Segura C, Szponarski W, Russet S, Baeza Y, Lassalle-Kaiser B, Gay G, Zimmermann SD, Plassard C. The Hebeloma cylindrosporum HcPT2 Pi transporter plays a key role in ectomycorrhizal symbiosis. THE NEW PHYTOLOGIST 2018; 220:1185-1199. [PMID: 29944179 DOI: 10.1111/nph.15281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/28/2018] [Indexed: 05/23/2023]
Abstract
Through a mutualistic relationship with woody plant roots, ectomycorrhizal fungi provide growth-limiting nutrients, including inorganic phosphate (Pi), to their host. Reciprocal trades occur at the Hartig net, which is the symbiotic interface of ectomycorrhizas where the two partners are symplasmically isolated. Fungal Pi must be exported to the symbiotic interface, but the proteins facilitating this transfer are unknown. In the present study, we combined transcriptomic, microscopy, whole plant physiology, X-ray fluorescence mapping, 32 P labeling and fungal genetic approaches to unravel the role of HcPT2, a fungal Pi transporter, during the Hebeloma cylindrosporum-Pinus pinaster ectomycorrhizal association. We localized HcPT2 in the extra-radical hyphae and the Hartig net and demonstrated its determinant role for both the establishment of ectomycorrhizas and Pi allocation towards P. pinaster. We showed that the host plant induces HcPT2 expression and that the artificial overexpression of HcPT2 is sufficient to significantly enhance Pi export towards the central cylinder. Together, our results reveal that HcPT2 plays an important role in ectomycorrhizal symbiosis, affecting both Pi influx in the mycelium and efflux towards roots under the control of P. pinaster.
Collapse
Affiliation(s)
- Adeline Becquer
- Eco & Sols, Université de Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, 34060, Montpellier, France
| | - Kevin Garcia
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
- BPMP, Université de Montpellier, CNRS, INRA, SupAgro, 34060, Montpellier, France
| | - Laurie Amenc
- Eco & Sols, Université de Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, 34060, Montpellier, France
| | - Camille Rivard
- CEPIA, INRA, 44300, Nantes, France
- Synchrotron SOLEIL, 91190, Gif-sur-Yvette, France
| | - Jeanne Doré
- LEM, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 69622, Villeurbanne, France
| | - Carlos Trives-Segura
- Eco & Sols, Université de Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, 34060, Montpellier, France
| | - Wojciech Szponarski
- BPMP, Université de Montpellier, CNRS, INRA, SupAgro, 34060, Montpellier, France
| | - Sylvie Russet
- Eco & Sols, Université de Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, 34060, Montpellier, France
| | - Yoan Baeza
- Eco & Sols, Université de Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, 34060, Montpellier, France
| | | | - Gilles Gay
- LEM, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 69622, Villeurbanne, France
| | | | - Claude Plassard
- Eco & Sols, Université de Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, 34060, Montpellier, France
| |
Collapse
|
13
|
Halbwachs H, Easton GL, Bol R, Hobbie EA, Garnett MH, Peršoh D, Dixon L, Ostle N, Karasch P, Griffith GW. Isotopic evidence of biotrophy and unusual nitrogen nutrition in soil-dwelling Hygrophoraceae. Environ Microbiol 2018; 20:3573-3588. [PMID: 30105856 PMCID: PMC6849620 DOI: 10.1111/1462-2920.14327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 02/04/2023]
Abstract
Several lines of evidence suggest that the agaricoid, non-ectomycorrhizal members of the family Hygrophoraceae (waxcaps) are biotrophic with unusual nitrogen nutrition. However, methods for the axenic culture and lab-based study of these organisms remain to be developed, so our current knowledge is limited to field-based investigations. Addition of nitrogen, lime or organophosphate pesticide at an experimental field site (Sourhope) suppressed fruiting of waxcap basidiocarps. Furthermore, stable isotope natural abundance in basidiocarps were unusually high in 15 N and low in 13 C, the latter consistent with mycorrhizal nutritional status. Similar patterns were found in waxcap basidiocarps from diverse habitats across four continents. Additional data from 14 C analysis of basidiocarps and 13 C pulse label experiments suggest that these fungi are not saprotrophs but rather biotrophic endophytes and possibly mycorrhizal. The consistently high but variable δ15 N values (10-20‰) of basidiocarps further indicate that N acquisition or processing differ from other fungi; we suggest that N may be derived from acquisition of N via soil fauna high in the food chain.
Collapse
Affiliation(s)
- Hans Halbwachs
- Bavarian Forest National ParkFreyunger Str. 2, 94481, GrafenauGermany
| | - Gary L. Easton
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAdeilad Cledwyn, Penglais, Aberystwyth, Ceredigion, SY23 3DD, WalesUK
| | - Roland Bol
- Institute of Bio‐ and Geosciences, Agrosphere (IBG‐3). Forschungszentrum Jülich GmbHWilhelm‐Johnen‐Straße, 52428, JülichGermany
| | - Erik A. Hobbie
- Earth Systems Research Center, Morse HallUniversity of New Hampshire8 College Road, DurhamNH, 03824‐3525USA
| | - Mark H Garnett
- NERC Radiocarbon FacilityScottish Enterprise Technology ParkRankine Avenue, East Kilbride, G75 0QFScotland, UK
| | - Derek Peršoh
- Department of GeobotanyRuhr‐Universität BochumGebäude ND 03/170, Universitätsstraße 150, 44780, BochumGermany
| | - Liz Dixon
- Sustainable Soils and Grassland Systems, Rothamsted ResearchNorth Wyke, Okehampton, Devon, EX20 2SBEngland, UK
| | - Nick Ostle
- Lancaster Environment CentreLancaster UniversityLancaster, LA1 4YQEngland, UK
| | - Peter Karasch
- German Mycological SocietyKirchl 78. D‐94545, HohenauGermany
| | - Gareth W. Griffith
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAdeilad Cledwyn, Penglais, Aberystwyth, Ceredigion, SY23 3DD, WalesUK
| |
Collapse
|
14
|
Pecoraro L, Caruso T, Cai L, Gupta VK, Liu ZJ. Fungal networks and orchid distribution: new insights from above- and below-ground analyses of fungal communities. IMA Fungus 2018; 9:1-11. [PMID: 30018868 PMCID: PMC6048571 DOI: 10.5598/imafungus.2018.09.01.01] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/27/2018] [Indexed: 01/27/2023] Open
Abstract
Orchids are critically dependent on fungi for seedling establishment and growth, so the distribution and diversity of orchids might depend on the associated fungal communities. We characterised the communities associated with eight orchid species in three Mediterranean protected areas, using a combination of above-ground analyses of sporophores and below-ground molecular analyses of orchid root samples. In three years of sporophore collection in 25 plots around flowering orchid plants, 268 macrofungal species belonging to 84 genera were observed. Statistical analyses indicated a correlation between macrofungal diversity and orchid community variation, regardless of the effect of environmental and spatial factors characterizing the investigated orchid sites. Fungal ITS-DNA PCR amplification, cloning, and sequencing revealed Rhizoctonia-like fungi belonging to Ceratobasidiaceae (26 %), Tulasnellaceae (22.5 %), and Sebacinaceae (3.5 %), as well as other basidiomycetes and ascomycetes, in the roots of 99 orchid plants. Mycorrhizal specificity was low but co-occurring orchid species showed preferences for different partners. The diverse macrofungal communities found in the sites may contribute to orchid community variation without colonizing the orchid roots. Molecular analyses revealed a segregation of associated fungi, which may contribute to Mediterranean orchid coexistence in nature.
Collapse
Affiliation(s)
- Lorenzo Pecoraro
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, 518114 Shenzhen, China
- Center for Biotechnology & BioMedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, 518055 Shenzhen, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Tancredi Caruso
- School of Biological Sciences, Queen's University of Belfast, BT9 7BL Belfast, Northern Ireland
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Zhong-Jian Liu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, 518114 Shenzhen, China
| |
Collapse
|
15
|
De Oliveira VH, Tibbett M. Cd and Zn interactions and toxicity in ectomycorrhizal basidiomycetes in axenic culture. PeerJ 2018; 6:e4478. [PMID: 29568708 PMCID: PMC5845391 DOI: 10.7717/peerj.4478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/19/2018] [Indexed: 11/20/2022] Open
Abstract
Background Metal contamination in soils affects both above- and belowground communities, including soil microorganisms. Ectomycorrhizal (ECM) fungi are an important component in belowground community and tolerant strains have great potential in enhancing plant-based remediation techniques. We assessed cadmium and zinc toxicity in five ECM species in liquid media (Hebeloma subsaponaceum; H. cylindrosporum; H. crustuliniforme; Scleroderma sp.; Austroboletus occidentalis) and investigated the potential of Zn to alleviate Cd toxicity. Due to highly divergent results reported in the literature, liquid and solid media were compared experimentally for the first time in terms of differential toxicity thresholds in Cd and Zn interactions. Methods A wide range of Cd and Zn concentrations were applied to ectomycorrhizal fungi in axenic cultures (in mg L−1): 0; 1; 3; 9; 27; 81; 243 for the Cd treatments, and 0; 1; 30; 90; 270; 810; 2,430 for Zn. Combined Zn and Cd treatments were also applied to H. subsaponaceum and Scleroderma sp. Dry weight was recorded after 30 days, and in case of solid medium treatments, radial growth was also measured. Results and Discussion All species were adversely affected by high levels of Cd and Zn, and A. occidentalis was the most sensitive, with considerable biomass decrease at 1 mg L−1 Cd, while Scleroderma sp. and H. subsaponaceum were the most tolerant, which are species commonly found in highly contaminated sites. Cd was generally 10 times more toxic than Zn, which may explain why Zn had little impact in alleviating Cd effects. In some cases, Cd and Zn interactions led to a synergistic toxicity, depending on the concentrations applied and type of media used. Increased tolerance patterns were detected in fungi grown in solid medium and may be the cause of divergent toxicity thresholds found in the literature. Furthermore, solid medium allows measuring radial growth/mycelial density as endpoints which are informative and in this case appeared be related to the high tolerance indices found in H. subsaponaceum.
Collapse
Affiliation(s)
- Vinicius H De Oliveira
- Centre for Agri-Environmental Research & Soil Research Centre, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, United Kingdom
| | - Mark Tibbett
- Centre for Agri-Environmental Research & Soil Research Centre, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, United Kingdom
| |
Collapse
|
16
|
Kumaresan D, Cross AT, Moreira-Grez B, Kariman K, Nevill P, Stevens J, Allcock RJN, O'Donnell AG, Dixon KW, Whiteley AS. Microbial Functional Capacity Is Preserved Within Engineered Soil Formulations Used In Mine Site Restoration. Sci Rep 2017; 7:564. [PMID: 28373716 PMCID: PMC5428872 DOI: 10.1038/s41598-017-00650-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/07/2017] [Indexed: 11/21/2022] Open
Abstract
Mining of mineral resources produces substantial volumes of crushed rock based wastes that are characterised by poor physical structure and hydrology, unstable geochemistry and potentially toxic chemical conditions. Recycling of these substrates is desirable and can be achieved by blending waste with native soil to form a ‘novel substrate’ which may be used in future landscape restoration. However, these post-mining substrate based ‘soils’ are likely to contain significant abiotic constraints for both plant and microbial growth. Effective use of these novel substrates for ecosystem restoration will depend on the efficacy of stored topsoil as a potential microbial inoculum as well as the subsequent generation of key microbial soil functions originally apparent in local pristine sites. Here, using both marker gene and shotgun metagenome sequencing, we show that topsoil storage and the blending of soil and waste substrates to form planting substrates gives rise to variable bacterial and archaeal phylogenetic composition but a high degree of metabolic conservation at the community metagenome level. Our data indicates that whilst low phylogenetic conservation is apparent across substrate blends we observe high functional redundancy in relation to key soil microbial pathways, allowing the potential for functional recovery of key belowground pathways under targeted management.
Collapse
Affiliation(s)
- Deepak Kumaresan
- UWA School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Adam T Cross
- School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.,Kings Park and Botanic Garden, 1 Kattidj Close, Kings Park, WA, 6005, Australia
| | - Benjamin Moreira-Grez
- UWA School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Khalil Kariman
- UWA School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Paul Nevill
- Department of Environment and Agriculture, Curtin University, GPO Box U1987, Bentley, WA, 6102, Australia
| | - Jason Stevens
- School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.,Kings Park and Botanic Garden, 1 Kattidj Close, Kings Park, WA, 6005, Australia
| | - Richard J N Allcock
- School of Pathology and Laboratory Medicine, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.,Pathwest Laboratory Medicine WA, QEII Medical Centre, Monash Avenue, Nedlands, WA, 6009, Australia
| | - Anthony G O'Donnell
- Faculty of Science, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Kingsley W Dixon
- School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.,Department of Environment and Agriculture, Curtin University, GPO Box U1987, Bentley, WA, 6102, Australia
| | - Andrew S Whiteley
- UWA School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| |
Collapse
|
17
|
Wen Z, Shi L, Tang Y, Shen Z, Xia Y, Chen Y. Effects of Pisolithus tinctorius and Cenococcum geophilum inoculation on pine in copper-contaminated soil to enhance phytoremediation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:387-394. [PMID: 27739883 DOI: 10.1080/15226514.2016.1244155] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We used Pisolithus tinctorius and Cenococcum geophilum to determine the copper (Cu) resistance of ectomycorrhizal (ECM) fungi and their potential for improving phytoremediation of Cu-contaminated soil by Chinese red pine (Pinus tabulaeformis). The results showed that nutrient accumulation in C. geophilum mycelium was significantly lower under higher Cu concentrations in the soil, which was not observed in P. tinctorius. Meanwhile, P. tinctorius exhibited greater Cu tolerance than C. geophilum. Inoculation with ECM fungi significantly improved the growth of pine shoots planted in polluted soil in pot experiments (p < 0.01). The total accumulated Cu in pine seedlings planted in Cu-contaminated soil increased by 72.8% and 113.3% when inoculated with P. tinctorius and C. geophilum, respectively, indicating that ECM fungi may help their host to phytoextract heavy metals. Furthermore, the majority of the total absorbed metals remained in the roots, confirming the ability of ECM fungi to promote heavy metal phytostabilization. There were no differences between the effects of the two fungi in helping the host stabilize and absorb Cu, even though they have different Cu tolerances. Inoculation with ECM fungi can benefit plant establishment in polluted environments and assist plants with phytoremediating heavy-metal-contaminated soils.
Collapse
Affiliation(s)
- Zhugui Wen
- a College of Life Sciences , Nanjing Agricultural University , Nanjing , China
- b Jiangsu Coastal Area Institute of Agricultural Sciences , Yancheng , China
| | - Liang Shi
- a College of Life Sciences , Nanjing Agricultural University , Nanjing , China
| | - Yangze Tang
- a College of Life Sciences , Nanjing Agricultural University , Nanjing , China
| | - Zhenguo Shen
- a College of Life Sciences , Nanjing Agricultural University , Nanjing , China
- c Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource , National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation , Nanjing , China
| | - Yan Xia
- a College of Life Sciences , Nanjing Agricultural University , Nanjing , China
| | - Yahua Chen
- a College of Life Sciences , Nanjing Agricultural University , Nanjing , China
- c Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource , National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation , Nanjing , China
| |
Collapse
|
18
|
Torres-Aquino M, Becquer A, Le Guernevé C, Louche J, Amenc LK, Staunton S, Quiquampoix H, Plassard C. The host plant Pinus pinaster exerts specific effects on phosphate efflux and polyphosphate metabolism of the ectomycorrhizal fungus Hebeloma cylindrosporum: a radiotracer, cytological staining and 31 P NMR spectroscopy study. PLANT, CELL & ENVIRONMENT 2017; 40:190-202. [PMID: 27743400 DOI: 10.1111/pce.12847] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 05/23/2023]
Abstract
Ectomycorrhizal (ECM) association can improve plant phosphorus (P) nutrition. Polyphosphates (polyP) synthesized in distant fungal cells after P uptake may contribute to P supply from the fungus to the host plant if they are hydrolyzed to phosphate in ECM roots then transferred to the host plant when required. In this study, we addressed this hypothesis for the ECM fungus Hebeloma cylindrosporum grown in vitro and incubated without plant or with host (Pinus pinaster) and non-host (Zea mays) plants, using an experimental system simulating the symbiotic interface. We used 32 P labelling to quantify P accumulation and P efflux and in vivo and in vitro nuclear magnetic resonance (NMR) spectroscopy and cytological staining to follow the fate of fungal polyP. Phosphate supply triggered a massive P accumulation as newly synthesized long-chain polyP in H. cylindrosporum if previously grown under P-deficient conditions. P efflux from H. cylindrosporum towards the roots was stimulated by both host and non-host plants. However, the host plant enhanced 32 P release compared with the non-host plant and specifically increased the proportion of short-chain polyP in the interacting mycelia. These results support the existence of specific host plant effects on fungal P metabolism able to provide P in the apoplast of ectomycorrhizal roots.
Collapse
Affiliation(s)
- Margarita Torres-Aquino
- INRA, UMR Eco&Sols, 2 place Viala, 34060 CEDEX 1, Montpellier, France
- Colegio de Postgraduados, Campus San Luis Potosí, Agustín de Iturbide N 73, CP 78600, San Luis Potosí, Mexico
| | - Adeline Becquer
- INRA, UMR Eco&Sols, 2 place Viala, 34060 CEDEX 1, Montpellier, France
| | - Christine Le Guernevé
- INRA, UMR SPO (1083) Sciences pour l'Oenologie, 2 place Viala, 34060 CEDEX 1, Montpellier, France
| | - Julien Louche
- INRA, UMR Eco&Sols, 2 place Viala, 34060 CEDEX 1, Montpellier, France
| | - Laurie K Amenc
- INRA, UMR Eco&Sols, 2 place Viala, 34060 CEDEX 1, Montpellier, France
| | - Siobhan Staunton
- INRA, UMR Eco&Sols, 2 place Viala, 34060 CEDEX 1, Montpellier, France
| | - Hervé Quiquampoix
- INRA, UMR Eco&Sols, 2 place Viala, 34060 CEDEX 1, Montpellier, France
| | - Claude Plassard
- INRA, UMR Eco&Sols, 2 place Viala, 34060 CEDEX 1, Montpellier, France
| |
Collapse
|
19
|
Brundrett MC. Global Diversity and Importance of Mycorrhizal and Nonmycorrhizal Plants. BIOGEOGRAPHY OF MYCORRHIZAL SYMBIOSIS 2017. [DOI: 10.1007/978-3-319-56363-3_21] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Distribution and Evolution of Mycorrhizal Types and Other Specialised Roots in Australia. BIOGEOGRAPHY OF MYCORRHIZAL SYMBIOSIS 2017. [DOI: 10.1007/978-3-319-56363-3_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Młodzińska E, Zboińska M. Phosphate Uptake and Allocation - A Closer Look at Arabidopsis thaliana L. and Oryza sativa L. FRONTIERS IN PLANT SCIENCE 2016; 7:1198. [PMID: 27574525 PMCID: PMC4983557 DOI: 10.3389/fpls.2016.01198] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/27/2016] [Indexed: 05/17/2023]
Abstract
This year marks the 20th anniversary of the discovery and characterization of the two Arabidopsis PHT1 genes encoding the phosphate transporter in Arabidopsis thaliana. So far, multiple inorganic phosphate (Pi) transporters have been described, and the molecular basis of Pi acquisition by plants has been well-characterized. These genes are involved in Pi acquisition, allocation, and/or signal transduction. This review summarizes how Pi is taken up by the roots and further distributed within two plants: A. thaliana and Oryza sativa L. by plasma membrane phosphate transporters PHT1 and PHO1 as well as by intracellular transporters: PHO1, PHT2, PHT3, PHT4, PHT5 (VPT1), SPX-MFS and phosphate translocators family. We also describe the role of the PHT1 transporters in mycorrhizal roots of rice as an adaptive strategy to cope with limited phosphate availability in soil.
Collapse
Affiliation(s)
- Ewa Młodzińska
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of WrocławWrocław, Poland
| | | |
Collapse
|
22
|
Kariman K, Barker SJ, Jost R, Finnegan PM, Tibbett M. Sensitivity of jarrah (Eucalyptus marginata) to phosphate, phosphite, and arsenate pulses as influenced by fungal symbiotic associations. MYCORRHIZA 2016; 26:401-15. [PMID: 26810895 PMCID: PMC4909810 DOI: 10.1007/s00572-015-0674-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 12/14/2015] [Indexed: 05/28/2023]
Abstract
Many plant species adapted to P-impoverished soils, including jarrah (Eucalyptus marginata), develop toxicity symptoms when exposed to high doses of phosphate (Pi) and its analogs such as phosphite (Phi) and arsenate (AsV). The present study was undertaken to investigate the effects of fungal symbionts Scutellospora calospora, Scleroderma sp., and Austroboletus occidentalis on the response of jarrah to highly toxic pulses (1.5 mmol kg(-1) soil) of Pi, Phi, and AsV. S. calospora formed an arbuscular mycorrhizal (AM) symbiosis while both Scleroderma sp. and A. occidentalis established a non-colonizing symbiosis with jarrah plants. All these interactions significantly improved jarrah growth and Pi uptake under P-limiting conditions. The AM fungal colonization naturally declines in AM-eucalypt symbioses after 2-3 months; however, in the present study, the high Pi pulse inhibited the decline of AM fungal colonization in jarrah. Four weeks after exposure to the Pi pulse, plants inoculated with S. calospora had significantly lower toxicity symptoms compared to non-mycorrhizal (NM) plants, and all fungal treatments induced tolerance against Phi toxicity in jarrah. However, no tolerance was observed for AsV-treated plants even though all inoculated plants had significantly lower shoot As concentrations than the NM plants. The transcript profile of five jarrah high-affinity phosphate transporter (PHT1 family) genes in roots was not altered in response to any of the fungal species tested. Interestingly, plants exposed to high Pi supplies for 1 day did not have reduced transcript levels for any of the five PHT1 genes in roots, and transcript abundance of four PHT1 genes actually increased. It is therefore suggested that jarrah, and perhaps other P-sensitive perennial species, respond positively to Pi available in the soil solution through increasing rather than decreasing the expression of selected PHT1 genes. Furthermore, Scleroderma sp. can be considered as a fungus with dual functional capacity capable of forming both ectomycorrhizal and non-colonizing associations, where both pathways are always accompanied by evident growth and nutritional benefits.
Collapse
Affiliation(s)
- Khalil Kariman
- School of Earth and Environment M087, The University of Western Australia, Crawley, WA, 6009, Australia
- School of Plant Biology M084, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Susan J Barker
- School of Plant Biology M084, The University of Western Australia, Crawley, WA, 6009, Australia
- Institute of Agriculture M082, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ricarda Jost
- School of Plant Biology M084, The University of Western Australia, Crawley, WA, 6009, Australia
- School of Life Science, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Patrick M Finnegan
- School of Plant Biology M084, The University of Western Australia, Crawley, WA, 6009, Australia
- Institute of Agriculture M082, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Mark Tibbett
- Centre for Agri-Environmental Research, and Soil Research Centre, School of Agriculture Policy and Development, University of Reading, Berkshire, RG6 6AR, UK.
| |
Collapse
|
23
|
Becquer A, Trap J, Irshad U, Ali MA, Claude P. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. FRONTIERS IN PLANT SCIENCE 2014; 5:548. [PMID: 25360140 PMCID: PMC4197793 DOI: 10.3389/fpls.2014.00548] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/25/2014] [Indexed: 05/19/2023]
Abstract
Phosphorus (P) is essential for plant growth and productivity. It is one of the most limiting macronutrients in soil because it is mainly present as unavailable, bound P whereas plants can only use unbound, inorganic phosphate (Pi), which is found in very low concentrations in soil solution. Some ectomycorrhizal fungi are able to release organic compounds (organic anions or phosphatases) to mobilize unavailable P. Recent studies suggest that bacteria play a major role in the mineralization of nutrients such as P through trophic relationships as they can produce specific phosphatases such as phytases to degrade phytate, the main form of soil organic P. Bacteria are also more effective than other microorganisms or plants at immobilizing free Pi. Therefore, bacterial grazing by grazers, such as nematodes, could release Pi locked in bacterial biomass. Free Pi may be taken up by ectomycorrhizal fungus by specific phosphate transporters and transferred to the plant by mechanisms that have not yet been identified. This mini-review aims to follow the phosphate pathway to understand the ecological and molecular mechanisms responsible for transfer of phosphate from the soil to the plant, to improve plant P nutrition.
Collapse
Affiliation(s)
- Adeline Becquer
- UMR Eco&Sols, Institut National de la Recherche AgronomiqueMontpellier, France
| | - Jean Trap
- UMR Eco&Sols, Institut de Recherche pour le DéveloppementMontpellier, France
| | - Usman Irshad
- Department of Environmental Sciences, COMSATS Institute of Information TechnologyAbbottabad, Pakistan
| | - Muhammad A. Ali
- Department of Soil Science, Bahauddin Zakariya UniversityMultan, Pakistan
| | - Plassard Claude
- UMR Eco&Sols, Institut National de la Recherche AgronomiqueMontpellier, France
| |
Collapse
|
24
|
Kariman K, Barker SJ, Finnegan PM, Tibbett M. Ecto- and arbuscular mycorrhizal symbiosis can induce tolerance to toxic pulses of phosphorus in jarrah (Eucalyptus marginata) seedlings. MYCORRHIZA 2014; 24:501-9. [PMID: 24584781 PMCID: PMC4156786 DOI: 10.1007/s00572-014-0567-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/06/2014] [Indexed: 05/20/2023]
Abstract
In common with many plants native to low P soils, jarrah (Eucalyptus marginata) develops toxicity symptoms upon exposure to elevated phosphorus (P). Jarrah plants can establish arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) associations, along with a non-colonizing symbiosis described recently. AM colonization is known to influence the pattern of expression of genes required for P uptake of host plants and our aim was to investigate this phenomenon in relation to P sensitivity. Therefore, we examined the effect on hosts of the presence of AM and ECM fungi in combination with toxic pulses of P and assessed possible correlations between the induced tolerance and the shoot P concentration. The P transport dynamics of AM (Rhizophagus irregularis and Scutellospora calospora), ECM (Scleroderma sp.), non-colonizing symbiosis (Austroboletus occidentalis), dual mycorrhizal (R. irregularis and Scleroderma sp.), and non-mycorrhizal (NM) seedlings were monitored following two pulses of P. The ECM and A. occidentalis associations significantly enhanced the shoot P content of jarrah plants growing under P-deficient conditions. In addition, S. calospora, A. occidentalis, and Scleroderma sp. all stimulated plant growth significantly. All inoculated plants had significantly lower phytotoxicity symptoms compared to NM controls 7 days after addition of an elevated P dose (30 mg P kg(-1) soil). Following exposure to toxicity-inducing levels of P, the shoot P concentration was significantly lower in R. irregularis-inoculated and dually inoculated plants compared to NM controls. Although all inoculated plants had reduced toxicity symptoms and there was a positive linear relationship between rank and shoot P concentration, the protective effect was not necessarily explained by the type of fungal association or the extent of mycorrhizal colonization.
Collapse
Affiliation(s)
- Khalil Kariman
- School of Earth and Environment M087, The University of Western Australia, Crawley, WA 6009 Australia
- School of Plant Biology M084, The University of Western Australia, Crawley, WA 6009 Australia
| | - Susan J. Barker
- School of Plant Biology M084, The University of Western Australia, Crawley, WA 6009 Australia
- Institute of Agriculture M082, The University of Western Australia, Crawley, WA 6009 Australia
| | - Patrick M. Finnegan
- School of Plant Biology M084, The University of Western Australia, Crawley, WA 6009 Australia
- Institute of Agriculture M082, The University of Western Australia, Crawley, WA 6009 Australia
| | - Mark Tibbett
- School of Earth and Environment M087, The University of Western Australia, Crawley, WA 6009 Australia
- Department of Environmental Science and Technology (B37), School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK 43 OAL England
| |
Collapse
|
25
|
Aghili F, Gamper HA, Eikenberg J, Khoshgoftarmanesh AH, Afyuni M, Schulin R, Jansa J, Frossard E. Green manure addition to soil increases grain zinc concentration in bread wheat. PLoS One 2014; 9:e101487. [PMID: 24999738 PMCID: PMC4084887 DOI: 10.1371/journal.pone.0101487] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 06/07/2014] [Indexed: 11/18/2022] Open
Abstract
Zinc (Zn) deficiency is a major problem for many people living on wheat-based diets. Here, we explored whether addition of green manure of red clover and sunflower to a calcareous soil or inoculating a non-indigenous arbuscular mycorrhizal fungal (AMF) strain may increase grain Zn concentration in bread wheat. For this purpose we performed a multifactorial pot experiment, in which the effects of two green manures (red clover, sunflower), ZnSO4 application, soil γ-irradiation (elimination of naturally occurring AMF), and AMF inoculation were tested. Both green manures were labeled with 65Zn radiotracer to record the Zn recoveries in the aboveground plant biomass. Application of ZnSO4 fertilizer increased grain Zn concentration from 20 to 39 mg Zn kg-1 and sole addition of green manure of sunflower to soil raised grain Zn concentration to 31 mg Zn kg-1. Adding the two together to soil increased grain Zn concentration even further to 54 mg Zn kg-1. Mixing green manure of sunflower to soil mobilized additional 48 µg Zn (kg soil)-1 for transfer to the aboveground plant biomass, compared to the total of 132 µg Zn (kg soil)-1 taken up from plain soil when neither green manure nor ZnSO4 were applied. Green manure amendments to soil also raised the DTPA-extractable Zn in soil. Inoculating a non-indigenous AMF did not increase plant Zn uptake. The study thus showed that organic matter amendments to soil can contribute to a better utilization of naturally stocked soil micronutrients, and thereby reduce any need for major external inputs.
Collapse
Affiliation(s)
- Forough Aghili
- Institute of Agricultural Sciences, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Switzerland
| | - Hannes A. Gamper
- Institute of Agricultural Sciences, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Switzerland
| | - Jost Eikenberg
- Paul Scherrer Institute (PSI), Radioanalytics Laboratory, Villigen, Switzerland
| | - Amir H. Khoshgoftarmanesh
- College of Agriculture, Department of Soil Sciences, Isfahan University of Technology, Isfahan, Iran
| | - Majid Afyuni
- College of Agriculture, Department of Soil Sciences, Isfahan University of Technology, Isfahan, Iran
| | - Rainer Schulin
- Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Switzerland
| | - Jan Jansa
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Emmanuel Frossard
- Institute of Agricultural Sciences, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Switzerland
| |
Collapse
|