1
|
Truong HN, Fournier C, Pateyron S, Paysant-Le Roux C, Gravot A, Clément G, Jeandroz S. Pathogen-induced root glutamine concentration is a determinant of the outcome of the Medicago truncatula-Aphanomyces euteiches interaction. PLANTA 2025; 262:8. [PMID: 40419777 DOI: 10.1007/s00425-025-04728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 05/15/2025] [Indexed: 05/28/2025]
Abstract
MAIN CONCLUSION Our work highlights that glutamine plays a central role in contributing to the outcome of disease in the Medicago truncatula-Aphanomyces euteiches interaction when modulating plant N supply. Nitrogen (N) is essential for the growth of plants and microorganisms. The quantity and quality of N supply can impact plant development but also its interaction with pathogens. Our previous work showed that N modulated Medicago truncatula (Mt) susceptibility to the oomycete pathogen Aphanomyces euteiches (Ae) when plants were grown in vitro and glutamine (Gln) was proposed to mediate this effect of N on plant disease. Using more than 30 lines representative of Mt diversity, we show here that pathogen-induced root Gln concentrations are correlated with higher susceptibility to Ae. N modulation of the response to Ae of the partially resistant Mt A17 genotype was associated with changes in the expression of MtGS1 genes encoding cytosolic glutamine synthetases (GSs). This raises the question of the importance of Gln during Mt/Ae interaction and a possible role of cytosolic GS in mediating Mt susceptibility to Ae. Interestingly, exogenous Gln induced a higher susceptibility of the A17 line to Ae and induced a metabolic profile of inoculated A17 roots similar to that of a susceptible genotype. RNAseq experiments highlighted a higher expression of numerous plant defense genes in non-inoculated roots on Gln. On the pathogen side, a higher expression of genes encoding proteases and a lower expression of genes encoding elicitins as well as a better growth of Ae on Gln could explain the higher susceptibility of Mt on Gln. Altogether our results highlight the delicate balance between plant immunity, pathogen growth and virulence in contributing to the outcome of disease when modulating N supply and that Gln plays a central role in this process.
Collapse
Affiliation(s)
- Hoai-Nam Truong
- Université Bourgogne Europe, Institut Agro Dijon, INRAE, Agroécologie, Dijon, France.
- Université Bourgogne Europe, Institut Agro Dijon, INRAE, Agroécologie, 17 Rue Sully, 21065, Dijon cedex, France.
| | - Carine Fournier
- Université Bourgogne Europe, Institut Agro Dijon, INRAE, Agroécologie, Dijon, France
| | - Stéphanie Pateyron
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif Sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif Sur Yvette, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif Sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif Sur Yvette, France
| | - Antoine Gravot
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650, Le Rheu, France
| | - Gilles Clément
- Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Sylvain Jeandroz
- Université Bourgogne Europe, Institut Agro Dijon, INRAE, Agroécologie, Dijon, France
| |
Collapse
|
2
|
Ye Q, Zhou C, Lin H, Luo D, Jain D, Chai M, Lu Z, Liu Z, Roy S, Dong J, Wang ZY, Wang T. Medicago2035: Genomes, functional genomics, and molecular breeding. MOLECULAR PLANT 2025; 18:219-244. [PMID: 39741417 DOI: 10.1016/j.molp.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025]
Abstract
Medicago, a genus in the Leguminosae or Fabaceae family, includes the most globally significant forage crops, notably alfalfa (Medicago sativa). Its close diploid relative Medicago truncatula serves as an exemplary model plant for investigating legume growth and development, as well as symbiosis with rhizobia. Over the past decade, advances in Medicago genomics have significantly deepened our understanding of the molecular regulatory mechanisms that underlie various traits. In this review, we comprehensively summarize research progress on Medicago genomics, growth and development (including compound leaf development, shoot branching, flowering time regulation, inflorescence development, floral organ development, and seed dormancy), resistance to abiotic and biotic stresses, and symbiotic nitrogen fixation with rhizobia, as well as molecular breeding. We propose avenues for molecular biology research on Medicago in the coming decade, highlighting those areas that have yet to be investigated or that remain ambiguous.
Collapse
Affiliation(s)
- Qinyi Ye
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China.
| | - Hao Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Dong Luo
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, China
| | - Divya Jain
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA
| | - Maofeng Chai
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhichao Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zhipeng Liu
- College of Pastoral Agriculture Science and Technology, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China.
| | - Sonali Roy
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zeng-Yu Wang
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Zancarini A, Le Signor C, Terrat S, Aubert J, Salon C, Munier-Jolain N, Mougel C. Medicago truncatula genotype drives the plant nutritional strategy and its associated rhizosphere bacterial communities. THE NEW PHYTOLOGIST 2025; 245:767-784. [PMID: 39610111 DOI: 10.1111/nph.20272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
Harnessing the plant microbiome through plant genetics is of increasing interest to those seeking to improve plant nutrition and health. While genome-wide association studies (GWAS) have been conducted to identify plant genes driving the plant microbiome, more multidisciplinary studies are required to assess the relationships among plant genetics, plant microbiome and plant fitness. Using a metabarcoding approach, we characterized the rhizosphere bacterial communities of a core collection of 155 Medicago truncatula genotypes along with the plant phenotype and investigated the plant genetic effects through GWAS. The different genotypes within the M. truncatula core collection showed contrasting growth and nutritional strategies but few loci were associated with these ecophysiological traits. To go further, we described its associated rhizosphere bacterial communities, dominated by Proteobacteria, Actinobacteria and Bacteroidetes, and defined a core rhizosphere bacterial community. Next, the occurrences of bacterial candidates predicting plant ecophysiological traits of interest were identified using random forest analyses. Some of them were heritable and plant loci were identified, pinpointing genes related to response to hormone stimulus, systemic acquired resistance, response to stress, nutrient starvation or transport, and root development. Together, these results suggest that plant genetics can affect plant growth and nutritional strategies by harnessing keystone bacteria in a well-connected interaction network.
Collapse
Affiliation(s)
- Anouk Zancarini
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Christine Le Signor
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Sébastien Terrat
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Julie Aubert
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 91120, Palaiseau, France
| | - Christophe Salon
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Nathalie Munier-Jolain
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Christophe Mougel
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
4
|
Mnafgui W, Jabri C, Jihnaoui N, Maiza N, Guerchi A, Zaidi N, Basson G, Keyster EM, Djébali N, Pecetti L, Hanana M, Annicchiarico P, Sakiroglu M, Ludidi N, Badri M. Discovering new genes for alfalfa ( Medicago sativa) growth and biomass resilience in combined salinity and Phoma medicaginis infection through GWAS. FRONTIERS IN PLANT SCIENCE 2024; 15:1348168. [PMID: 38756967 PMCID: PMC11096488 DOI: 10.3389/fpls.2024.1348168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
Salinity and Phoma medicaginis infection represent significant challenges for alfalfa cultivation in South Africa, Europe, Australia, and, particularly, Tunisia. These constraints have a severe impact on both yield and quality. The primary aim of this study was to establish the genetic basis of traits associated with biomass and growth of 129 Medicago sativa genotypes through genome-wide association studies (GWAS) under combined salt and P. medicaginis infection stresses. The results of the analysis of variance (ANOVA) indicated that the variation in these traits could be primarily attributed to genotype effects. Among the test genotypes, the length of the main stem, the number of ramifications, the number of chlorotic leaves, and the aerial fresh weight exhibited the most significant variation. The broad-sense heritability (H²) was relatively high for most of the assessed traits, primarily due to genetic factors. Cluster analysis, applied to morpho-physiological traits under the combined stresses, revealed three major groups of accessions. Subsequently, a GWAS analysis was conducted to validate significant associations between 54,866 SNP-filtered single-nucleotide polymorphisms (SNPs) and seven traits. The study identified 27 SNPs that were significantly associated with the following traits: number of healthy leaves (two SNPs), number of chlorotic leaves (five SNPs), number of infected necrotic leaves (three SNPs), aerial fresh weight (six SNPs), aerial dry weight (nine SNPs), number of ramifications (one SNP), and length of the main stem (one SNP). Some of these markers are related to the ionic transporters, cell membrane rigidity (related to salinity tolerance), and the NBS_LRR gene family (associated with disease resistance). These findings underscore the potential for selecting alfalfa genotypes with tolerance to the combined constraints of salinity and P. medicaginis infection.
Collapse
Affiliation(s)
- Wiem Mnafgui
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Cheima Jabri
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Nada Jihnaoui
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar Tunis, Tunisia
| | - Nourhene Maiza
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar Tunis, Tunisia
| | - Amal Guerchi
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar Tunis, Tunisia
| | - Nawres Zaidi
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar Tunis, Tunisia
| | - Gerhard Basson
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Eden Maré Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
- Plant Stress Tolerance Laboratory, University of Mpumalanga, Mbombela, South Africa
| | - Naceur Djébali
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Luciano Pecetti
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture, Lodi, Italy
| | - Mohsen Hanana
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Paolo Annicchiarico
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture, Lodi, Italy
| | - Muhammet Sakiroglu
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye
| | - Ndiko Ludidi
- Plant Stress Tolerance Laboratory, University of Mpumalanga, Mbombela, South Africa
- DSI-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville, South Africa
| | - Mounawer Badri
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
5
|
Moussart A, Lavaud C, Onfroy C, Leprévost T, Pilet-Nayel ML, Le May C. Pathotype characterization of Aphanomyces euteiches isolates collected from pea breeding nurseries. FRONTIERS IN PLANT SCIENCE 2024; 15:1332976. [PMID: 38606076 PMCID: PMC11007135 DOI: 10.3389/fpls.2024.1332976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/01/2024] [Indexed: 04/13/2024]
Abstract
Introduction Aphanomyces euteiches Drechsler is an oomycete pathogen that affects legume crops, causing root rot, a severe disease of peas (Pisum sativum L.) worldwide. While significant research progress has been made in breeding pea-resistant varieties, there is still a need for a deeper understanding of the diversity of pathogen populations present in breeding nurseries located in various legume-growing regions around the world. Methods We analysed the diversity of 51 pea-infecting isolates of A. euteiches, which were recovered from four American (Athena, OR; Le Sueur, MN; Mount Vernon, WA; Pullman, WA) and three French (Riec-sur-Belon, Templeux-le-Guérard, Dijon) resistance screening nurseries. Our study focused on evaluating their aggressiveness on two sets of differential hosts, comprising six pea lines and five Medicago truncatula accessions. Results The isolates clustered into three groups based on their aggressiveness on the whole pea set, confirming the presence of pathotypes I and III. Pathotype I was exclusive to French isolates and American isolates from Athena and Pullman, while all isolates from Le Sueur belonged to pathotype III. Isolates from both pathotypes were found in Mount Vernon. The M. truncatula set clustered the isolates into three groups based on their aggressiveness on different genotypes within the set, revealing the presence of five pathotypes. All the isolates from the French nurseries shared the same Fr pathotype, showing higher aggressiveness on one particular genotype. In contrast, nearly all-American isolates were assigned to four other pathotypes (Us1, Us2, Us3, Us4), differing in their higher aggressiveness on two to five genotypes. Most of American isolates exhibited higher aggressiveness than French isolates within the M. truncatula set, but showed lower aggressiveness than French isolates within the P. sativum set. Discussion These results provide valuable insights into A. euteiches pathotypes, against which the QTL and sources of resistance identified in these nurseries displayed effectiveness. They also suggest a greater adaptation of American isolates to alfalfa, a more widely cultivated host in the United States.
Collapse
Affiliation(s)
| | - Clément Lavaud
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
| | | | - Théo Leprévost
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
| | | | | |
Collapse
|
6
|
Gutierrez N, Pégard M, Solis I, Sokolovic D, Lloyd D, Howarth C, Torres AM. Genome-wide association study for yield-related traits in faba bean ( Vicia faba L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1328690. [PMID: 38545396 PMCID: PMC10965552 DOI: 10.3389/fpls.2024.1328690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/26/2024] [Indexed: 11/11/2024]
Abstract
Yield is the most complex trait to improve crop production, and identifying the genetic determinants for high yield is a major issue in breeding new varieties. In faba bean (Vicia faba L.), quantitative trait loci (QTLs) have previously been detected in studies of biparental mapping populations, but the genes controlling the main trait components remain largely unknown. In this study, we investigated for the first time the genetic control of six faba bean yield-related traits: shattering (SH), pods per plant (PP), seeds per pod (SP), seeds per plant (SPL), 100-seed weight (HSW), and plot yield (PY), using a genome-wide association study (GWAS) on a worldwide collection of 352 homozygous faba bean accessions with the aim of identifying markers associated with them. Phenotyping was carried out in field trials at three locations (Spain, United Kingdom, and Serbia) over 2 years. The faba bean panel was genotyped with the Affymetrix faba bean SNP-chip yielding 22,867 SNP markers. The GWAS analysis identified 112 marker-trait associations (MTAs) in 97 candidate genes, distributed over the six faba bean chromosomes. Eight MTAs were detected in at least two environments, and five were associated with multiple traits. The next step will be to validate these candidates in different genetic backgrounds to provide resources for marker-assisted breeding of faba bean yield.
Collapse
Affiliation(s)
- Natalia Gutierrez
- Área de Mejora Vegetal y Biotecnología, IFAPA Centro “Alameda del Obispo”, Córdoba, Spain
| | - Marie Pégard
- INRA, Centre Nouvelle-Aquitaine-Poitiers, UR4 (URP3F), Lusignan, France
| | | | | | - David Lloyd
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Catherine Howarth
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Ana M. Torres
- Área de Mejora Vegetal y Biotecnología, IFAPA Centro “Alameda del Obispo”, Córdoba, Spain
| |
Collapse
|
7
|
Neves C, Ribeiro B, Amaro R, Expósito J, Grimplet J, Fortes AM. Network of GRAS transcription factors in plant development, fruit ripening and stress responses. HORTICULTURE RESEARCH 2023; 10:uhad220. [PMID: 38077496 PMCID: PMC10699852 DOI: 10.1093/hr/uhad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/20/2023] [Indexed: 06/23/2024]
Abstract
The plant-specific family of GRAS transcription factors has been wide implicated in the regulation of transcriptional reprogramming associated with a diversity of biological functions ranging from plant development processes to stress responses. Functional analyses of GRAS transcription factors supported by in silico structural and comparative analyses are emerging and clarifying the regulatory networks associated with their biological roles. In this review, a detailed analysis of GRAS proteins' structure and biochemical features as revealed by recent discoveries indicated how these characteristics may impact subcellular location, molecular mechanisms, and function. Nomenclature issues associated with GRAS classification into different subfamilies in diverse plant species even in the presence of robust genomic resources are discussed, in particular how it affects assumptions of biological function. Insights into the mechanisms driving evolution of this gene family and how genetic and epigenetic regulation of GRAS contributes to subfunctionalization are provided. Finally, this review debates challenges and future perspectives on the application of this complex but promising gene family for crop improvement to cope with challenges of environmental transition.
Collapse
Affiliation(s)
- Catarina Neves
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Beatriz Ribeiro
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rute Amaro
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Jesús Expósito
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Jérôme Grimplet
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Ciencia Vegetal, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Ana Margarida Fortes
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
8
|
Song B, Ning W, Wei D, Jiang M, Zhu K, Wang X, Edwards D, Odeny DA, Cheng S. Plant genome resequencing and population genomics: Current status and future prospects. MOLECULAR PLANT 2023; 16:1252-1268. [PMID: 37501370 DOI: 10.1016/j.molp.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 05/30/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Advances in DNA sequencing technology have sparked a genomics revolution, driving breakthroughs in plant genetics and crop breeding. Recently, the focus has shifted from cataloging genetic diversity in plants to exploring their functional significance and delivering beneficial alleles for crop improvement. This transformation has been facilitated by the increasing adoption of whole-genome resequencing. In this review, we summarize the current progress of population-based genome resequencing studies and how these studies affect crop breeding. A total of 187 land plants from 163 countries have been resequenced, comprising 54 413 accessions. As part of resequencing efforts 367 traits have been surveyed and 86 genome-wide association studies have been conducted. Economically important crops, particularly cereals, vegetables, and legumes, have dominated the resequencing efforts, leaving a gap in 49 orders, including Lycopodiales, Liliales, Acorales, Austrobaileyales, and Commelinales. The resequenced germplasm is distributed across diverse geographic locations, providing a global perspective on plant genomics. We highlight genes that have been selected during domestication, or associated with agronomic traits, and form a repository of candidate genes for future research and application. Despite the opportunities for cross-species comparative genomics, many population genomic datasets are not accessible, impeding secondary analyses. We call for a more open and collaborative approach to population genomics that promotes data sharing and encourages contribution-based credit policy. The number of plant genome resequencing studies will continue to rise with the decreasing DNA sequencing costs, coupled with advances in analysis and computational technologies. This expansion, in terms of both scale and quality, holds promise for deeper insights into plant trait genetics and breeding design.
Collapse
Affiliation(s)
- Bo Song
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Weidong Ning
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Huazhong Agricultural University, College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, China
| | - Di Wei
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 53007, China
| | - Mengyun Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Kun Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Xingwei Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Damaris A Odeny
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) - Eastern and Southern Africa, Nairobi, Kenya
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
9
|
Boutet G, Lavaud C, Lesné A, Miteul H, Pilet-Nayel ML, Andrivon D, Lejeune-Hénaut I, Baranger A. Five Regions of the Pea Genome Co-Control Partial Resistance to D. pinodes, Tolerance to Frost, and Some Architectural or Phenological Traits. Genes (Basel) 2023; 14:1399. [PMID: 37510304 PMCID: PMC10379203 DOI: 10.3390/genes14071399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Evidence for reciprocal links between plant responses to biotic or abiotic stresses and architectural and developmental traits has been raised using approaches based on epidemiology, physiology, or genetics. Winter pea has been selected for years for many agronomic traits contributing to yield, taking into account architectural or phenological traits such as height or flowering date. It remains nevertheless particularly susceptible to biotic and abiotic stresses, among which Didymella pinodes and frost are leading examples. The purpose of this study was to identify and resize QTL localizations that control partial resistance to D. pinodes, tolerance to frost, and architectural or phenological traits on pea dense genetic maps, considering how QTL colocalizations may impact future winter pea breeding. QTL analysis revealed five metaQTLs distributed over three linkage groups contributing to both D. pinodes disease severity and frost tolerance. At these loci, the haplotypes of alleles increasing both partial resistance to D. pinodes and frost tolerance also delayed the flowering date, increased the number of branches, and/or decreased the stipule length. These results question both the underlying mechanisms of the joint control of biotic stress resistance, abiotic stress tolerance, and plant architecture and phenology and the methods of marker-assisted selection optimizing stress control and productivity in winter pea breeding.
Collapse
Affiliation(s)
- Gilles Boutet
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu, France
| | - Clément Lavaud
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu, France
| | - Angélique Lesné
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu, France
| | - Henri Miteul
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu, France
| | | | - Didier Andrivon
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu, France
| | - Isabelle Lejeune-Hénaut
- BioEcoAgro Joint Research Unit, INRAE, Université de Lille, Université de Liège, Université de Picardie Jules Verne, 80200 Estrées-Mons, France
| | - Alain Baranger
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu, France
| |
Collapse
|
10
|
Yadav AK, Singh CK, Kalia RK, Mittal S, Wankhede DP, Kakani RK, Ujjainwal S, Aakash, Saroha A, Nathawat NS, Rani R, Panchariya P, Choudhary M, Solanki K, Chaturvedi KK, Archak S, Singh K, Singh GP, Singh AK. Genetic diversity, population structure, and genome-wide association study for the flowering trait in a diverse panel of 428 moth bean (Vigna aconitifolia) accessions using genotyping by sequencing. BMC PLANT BIOLOGY 2023; 23:228. [PMID: 37120525 PMCID: PMC10148550 DOI: 10.1186/s12870-023-04215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Moth bean (Vigna aconitifolia) is an underutilized, protein-rich legume that is grown in arid and semi-arid areas of south Asia and is highly resistant to abiotic stresses such as heat and drought. Despite its economic importance, the crop remains unexplored at the genomic level for genetic diversity and trait mapping studies. To date, there is no report of SNP marker discovery and association mapping of any trait in this crop. Therefore, this study aimed to dissect the genetic diversity, population structure and marker-trait association for the flowering trait in a diversity panel of 428 moth bean accessions using genotyping by sequencing (GBS) approach. RESULTS A total of 9078 high-quality single nucleotide polymorphisms (SNPs) were discovered by genotyping of 428 moth bean accessions. Model-based structure analysis and PCA grouped the moth bean accessions into two subpopulations. Cluster analysis revealed accessions belonging to the Northwestern region of India had higher variability than accessions from the other regions suggesting that this region represents its center of diversity. AMOVA revealed more variations within individuals (74%) and among the individuals (24%) than among the populations (2%). Marker-trait association analysis using seven multi-locus models including mrMLM, FASTmrEMMA FASTmrEMMA, ISIS EM-BLASSO, MLMM, BLINK and FarmCPU revealed 29 potential genomic regions for the trait days to 50% flowering, which were consistently detected in three or more models. Analysis of the allelic effect of the major genomic regions explaining phenotypic variance of more than 10% and those detected in at least 2 environments showed 4 genomic regions with significant phenotypic effect on this trait. Further, we also analyzed genetic relationships among the Vigna species using SNP markers. The genomic localization of moth bean SNPs on genomes of closely related Vigna species demonstrated that maximum numbers of SNPs were getting localized on Vigna mungo. This suggested that the moth bean is most closely related to V. mungo. CONCLUSION Our study shows that the north-western regions of India represent the center of diversity of the moth bean. Further, the study revealed flowering-related genomic regions/candidate genes which can be potentially exploited in breeding programs to develop early-maturity moth bean varieties.
Collapse
Affiliation(s)
- Arvind Kumar Yadav
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Chandan Kumar Singh
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Rajwant K Kalia
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Shikha Mittal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | | | - Rajesh K Kakani
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Shraddha Ujjainwal
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Aakash
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Ankit Saroha
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - N S Nathawat
- ICAR- Central Arid Zone Research Institute, Regional Research Station, Bikaner, Rajasthan, India
| | - Reena Rani
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Pooja Panchariya
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Manoj Choudhary
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Kantilal Solanki
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - K K Chaturvedi
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, Delhi, India
| | - Sunil Archak
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Kuldeep Singh
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| | | | - Amit Kumar Singh
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India.
| |
Collapse
|
11
|
Demirjian C, Vailleau F, Berthomé R, Roux F. Genome-wide association studies in plant pathosystems: success or failure? TRENDS IN PLANT SCIENCE 2023; 28:471-485. [PMID: 36522258 DOI: 10.1016/j.tplants.2022.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Harnessing natural genetic variation is an established alternative to artificial genetic variation for investigating the molecular dialog between partners in plant pathosystems. Herein, we review the successes of genome-wide association studies (GWAS) in both plants and pathogens. While GWAS in plants confirmed that the genetic architecture of disease resistance is polygenic, dynamic during the infection kinetics, and dependent on the environment, GWAS shortened the time of identification of quantitative trait loci (QTLs) and revealed both complex epistatic networks and a genetic architecture dependent upon the geographical scale. A similar picture emerges from the few GWAS in pathogens. In addition, the ever-increasing number of functionally validated QTLs has revealed new molecular plant defense mechanisms and pathogenicity determinants. Finally, we propose recommendations to better decode the disease triangle.
Collapse
Affiliation(s)
- Choghag Demirjian
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Fabienne Vailleau
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Richard Berthomé
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Fabrice Roux
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.
| |
Collapse
|
12
|
Abbas A, Mubeen M, Sohail MA, Solanki MK, Hussain B, Nosheen S, Kashyap BK, Zhou L, Fang X. Root rot a silent alfalfa killer in China: Distribution, fungal, and oomycete pathogens, impact of climatic factors and its management. Front Microbiol 2022; 13:961794. [PMID: 36033855 PMCID: PMC9403511 DOI: 10.3389/fmicb.2022.961794] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Alfalfa plays a significant role in the pasture ecosystems of China's north, northeast, and northwest regions. It is an excellent forage for livestock, improves soil structure, prevents soil erosion, and has ecological benefits. Presently root rot is a significant threat to the alfalfa productivity because of the survival of the pathogens as soil-borne and because of lack of microbial competition in the impoverished nutrient-deficient soils and resistant cultivars. Furthermore, these regions' extreme ecological and environmental conditions predispose alfalfa to root rot. Moisture and temperature, in particular, have a considerable impact on the severity of root rot. Pathogens such as Fusarium spp. and Rhizoctonia solani are predominant, frequently isolated, and of major concern. These pathogens work together as disease complexes, so finding a host genotype resistant to disease complexes is challenging. Approaches to root rot control in these regions include mostly fungicides treatments and cultural practices and very few reports on the usage of biological control agents. As seed treatment, fungicides such as carbendazim are frequently used to combat root rot; however, resistance to fungicides has arisen. However, breeding and transgenic approaches could be more efficient and sustainable long-term control strategies, especially if resistance to disease complexes may be identified. Yet, research in China is mainly limited to field investigation of root rot and disease resistance evaluation. In this review, we describe climatic conditions of pastoral regions and the role of alfalfa therein and challenges of root rot, the distribution of root rot in the world and China, and the impact of root rot pathogens on alfalfa in particular R. solani and Fusarium spp., effects of environmental factors on root rot and summarize to date disease management approach.
Collapse
Affiliation(s)
- Aqleem Abbas
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Aamir Sohail
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Manoj Kumar Solanki
- Faculty of Natural Sciences, Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Babar Hussain
- Department of Plant Sciences, Karakoram International University, Gilgit, Gilgit Baltistan, Pakistan
| | - Shaista Nosheen
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, India
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiangling Fang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Yang B, Zhao Y, Guo Z. Research Progress and Prospect of Alfalfa Resistance to Pathogens and Pests. PLANTS (BASEL, SWITZERLAND) 2022; 11:2008. [PMID: 35956485 PMCID: PMC9370300 DOI: 10.3390/plants11152008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022]
Abstract
Alfalfa is one of the most important legume forages in the world and contributes greatly to the improvement of ecosystems, nutrition, and food security. Diseases caused by pathogens and pests severely restrict the production of alfalfa. Breeding resistant varieties is the most economical and effective strategy for the control of alfalfa diseases and pests, and the key to breeding resistant varieties is to identify important resistance genes. Plant innate immunity is the theoretical basis for identifying resistant genes and breeding resistant varieties. In recent years, the framework of plant immunity theory has been gradually formed and improved, and considerable progress has been made in the identification of alfalfa resistance genes and the revelation of the related mechanisms. In this review, we summarize the basic theory of plant immunity and identify alfalfa resistance genes to different pathogens and insects and resistance mechanisms. The current situation, problems, and future prospects of alfalfa resistance research are also discussed. Breeding resistant cultivars with effective resistance genes, together with other novel plant protection technologies, will greatly improve alfalfa production.
Collapse
Affiliation(s)
- Bo Yang
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yao Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
14
|
Dolatabadian A, Fernando WGD. Genomic Variations and Mutational Events Associated with Plant-Pathogen Interactions. BIOLOGY 2022; 11:421. [PMID: 35336795 PMCID: PMC8945218 DOI: 10.3390/biology11030421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022]
Abstract
Phytopathologists are actively researching the molecular basis of plant-pathogen interactions. The mechanisms of responses to pathogens have been studied extensively in model crop plant species and natural populations. Today, with the rapid expansion of genomic technologies such as DNA sequencing, transcriptomics, proteomics, and metabolomics, as well as the development of new methods and protocols, data analysis, and bioinformatics, it is now possible to assess the role of genetic variation in plant-microbe interactions and to understand the underlying molecular mechanisms of plant defense and microbe pathogenicity with ever-greater resolution and accuracy. Genetic variation is an important force in evolution that enables organisms to survive in stressful environments. Moreover, understanding the role of genetic variation and mutational events is essential for crop breeders to produce improved cultivars. This review focuses on genetic variations and mutational events associated with plant-pathogen interactions and discusses how these genome compartments enhance plants' and pathogens' evolutionary processes.
Collapse
Affiliation(s)
- Aria Dolatabadian
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | | |
Collapse
|
15
|
Camborde L, Kiselev A, Pel MJC, Le Ru A, Jauneau A, Pouzet C, Dumas B, Gaulin E. An oomycete effector targets a plant RNA helicase involved in root development and defense. THE NEW PHYTOLOGIST 2022; 233:2232-2248. [PMID: 34913494 DOI: 10.1111/nph.17918] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Oomycete plant pathogens secrete effector proteins to promote disease. The damaging soilborne legume pathogen Aphanomyces euteiches harbors a specific repertoire of Small Secreted Protein effectors (AeSSPs), but their biological functions remain unknown. Here we characterize AeSSP1256. The function of AeSSP1256 is investigated by physiological and molecular characterization of Medicago truncatula roots expressing the effector. A potential protein target of AeSSP1256 is identified by yeast-two hybrid, co-immunoprecipitation, and fluorescent resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM) assays, as well as promoter studies and mutant characterization. AeSSP1256 impairs M. truncatula root development and promotes pathogen infection. The effector is localized to the nucleoli rim, triggers nucleoli enlargement and downregulates expression of M. truncatula ribosome-related genes. AeSSP1256 interacts with a functional nucleocytoplasmic plant RNA helicase (MtRH10). AeSSP1256 relocates MtRH10 to the perinucleolar space and hinders its binding to plant RNA. MtRH10 is associated with ribosome-related genes, root development and defense. This work reveals that an oomycete effector targets a plant RNA helicase, possibly to trigger nucleolar stress and thereby promote pathogen infection.
Collapse
Affiliation(s)
- Laurent Camborde
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, 31320, France
| | - Andrei Kiselev
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, 31320, France
| | - Michiel J C Pel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, 31320, France
| | - Aurélie Le Ru
- Plateforme d'Imagerie FRAIB-TRI, Université de Toulouse, CNRS, Auzeville-Tolosane, 31320, France
| | - Alain Jauneau
- Plateforme d'Imagerie FRAIB-TRI, Université de Toulouse, CNRS, Auzeville-Tolosane, 31320, France
| | - Cécile Pouzet
- Plateforme d'Imagerie FRAIB-TRI, Université de Toulouse, CNRS, Auzeville-Tolosane, 31320, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, 31320, France
| | - Elodie Gaulin
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, 31320, France
| |
Collapse
|
16
|
Paape T, Heiniger B, Santo Domingo M, Clear MR, Lucas MM, Pueyo JJ. Genome-Wide Association Study Reveals Complex Genetic Architecture of Cadmium and Mercury Accumulation and Tolerance Traits in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2022; 12:806949. [PMID: 35154199 PMCID: PMC8832151 DOI: 10.3389/fpls.2021.806949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/13/2021] [Indexed: 05/15/2023]
Abstract
Heavy metals are an increasing problem due to contamination from human sources that and can enter the food chain by being taken up by plants. Understanding the genetic basis of accumulation and tolerance in plants is important for reducing the uptake of toxic metals in crops and crop relatives, as well as for removing heavy metals from soils by means of phytoremediation. Following exposure of Medicago truncatula seedlings to cadmium (Cd) and mercury (Hg), we conducted a genome-wide association study using relative root growth (RRG) and leaf accumulation measurements. Cd and Hg accumulation and RRG had heritability ranging 0.44 - 0.72 indicating high genetic diversity for these traits. The Cd and Hg trait associations were broadly distributed throughout the genome, indicated the traits are polygenic and involve several quantitative loci. For all traits, candidate genes included several membrane associated ATP-binding cassette transporters, P-type ATPase transporters, oxidative stress response genes, and stress related UDP-glycosyltransferases. The P-type ATPase transporters and ATP-binding cassette protein-families have roles in vacuole transport of heavy metals, and our findings support their wide use in physiological plant responses to heavy metals and abiotic stresses. We also found associations between Cd RRG with the genes CAX3 and PDR3, two linked adjacent genes, and leaf accumulation of Hg associated with the genes NRAMP6 and CAX9. When plant genotypes with the most extreme phenotypes were compared, we found significant divergence in genomic regions using population genomics methods that contained metal transport and stress response gene ontologies. Several of these genomic regions show high linkage disequilibrium (LD) among candidate genes suggesting they have evolved together. Minor allele frequency (MAF) and effect size of the most significant SNPs was negatively correlated with large effect alleles being most rare. This is consistent with purifying selection against alleles that increase toxicity and abiotic stress. Conversely, the alleles with large affect that had higher frequencies that were associated with the exclusion of Cd and Hg. Overall, macroevolutionary conservation of heavy metal and stress response genes is important for improvement of forage crops by harnessing wild genetic variants in gene banks such as the Medicago HapMap collection.
Collapse
Affiliation(s)
- Timothy Paape
- Brookhaven National Laboratory, Upton, NY, United States
| | - Benjamin Heiniger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Miguel Santo Domingo
- Department of Soil, Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, Madrid, Spain
| | | | - M. Mercedes Lucas
- Department of Soil, Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, Madrid, Spain
| | - José J. Pueyo
- Department of Soil, Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, Madrid, Spain
| |
Collapse
|
17
|
Delplace F, Huard-Chauveau C, Berthomé R, Roby D. Network organization of the plant immune system: from pathogen perception to robust defense induction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:447-470. [PMID: 34399442 DOI: 10.1111/tpj.15462] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The plant immune system has been explored essentially through the study of qualitative resistance, a simple form of immunity, and from a reductionist point of view. The recent identification of genes conferring quantitative disease resistance revealed a large array of functions, suggesting more complex mechanisms. In addition, thanks to the advent of high-throughput analyses and system approaches, our view of the immune system has become more integrative, revealing that plant immunity should rather be seen as a distributed and highly connected molecular network including diverse functions to optimize expression of plant defenses to pathogens. Here, we review the recent progress made to understand the network complexity of regulatory pathways leading to plant immunity, from pathogen perception, through signaling pathways and finally to immune responses. We also analyze the topological organization of these networks and their emergent properties, crucial to predict novel immune functions and test them experimentally. Finally, we report how these networks might be regulated by environmental clues. Although system approaches remain extremely scarce in this area of research, a growing body of evidence indicates that the plant response to combined biotic and abiotic stresses cannot be inferred from responses to individual stresses. A view of possible research avenues in this nascent biology domain is finally proposed.
Collapse
Affiliation(s)
- Florent Delplace
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Carine Huard-Chauveau
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Richard Berthomé
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Dominique Roby
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| |
Collapse
|
18
|
Rudaya ES, Kozyulina PY, Pavlova OA, Dolgikh AV, Ivanova AN, Dolgikh EA. Regulation of the Later Stages of Nodulation Stimulated by IPD3/CYCLOPS Transcription Factor and Cytokinin in Pea Pisum sativum L. PLANTS (BASEL, SWITZERLAND) 2021; 11:56. [PMID: 35009060 PMCID: PMC8747635 DOI: 10.3390/plants11010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
The IPD3/CYCLOPS transcription factor was shown to be involved in the regulation of nodule primordia development and subsequent stages of nodule differentiation. In contrast to early stages, the stages related to nodule differentiation remain less studied. Recently, we have shown that the accumulation of cytokinin at later stages may significantly impact nodule development. This conclusion was based on a comparative analysis of cytokinin localization between pea wild type and ipd3/cyclops mutants. However, the role of cytokinin at these later stages of nodulation is still far from understood. To determine a set of genes involved in the regulation of later stages of nodule development connected with infection progress, intracellular accommodation, as well as plant tissue and bacteroid differentiation, the RNA-seq analysis of pea mutant SGEFix--2 (sym33) nodules impaired in these processes compared to wild type SGE nodules was performed. To verify cytokinin's influence on late nodule development stages, the comparative RNA-seq analysis of SGEFix--2 (sym33) mutant plants treated with cytokinin was also conducted. Findings suggest a significant role of cytokinin in the regulation of later stages of nodule development.
Collapse
Affiliation(s)
- Elizaveta S. Rudaya
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, 196608 St. Petersburg, Russia; (E.S.R.); (P.Y.K.); (O.A.P.); (A.V.D.)
| | - Polina Yu. Kozyulina
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, 196608 St. Petersburg, Russia; (E.S.R.); (P.Y.K.); (O.A.P.); (A.V.D.)
| | - Olga A. Pavlova
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, 196608 St. Petersburg, Russia; (E.S.R.); (P.Y.K.); (O.A.P.); (A.V.D.)
| | - Alexandra V. Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, 196608 St. Petersburg, Russia; (E.S.R.); (P.Y.K.); (O.A.P.); (A.V.D.)
| | - Alexandra N. Ivanova
- Komarov Botanical Institute RAS, Prof. Popov St., 2, 197376 St. Petersburg, Russia;
- Faculty of Biology, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia
| | - Elena A. Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, 196608 St. Petersburg, Russia; (E.S.R.); (P.Y.K.); (O.A.P.); (A.V.D.)
| |
Collapse
|
19
|
Becking T, Kiselev A, Rossi V, Street-Jones D, Grandjean F, Gaulin E. Pathogenicity of animal and plant parasitic Aphanomyces spp and their economic impact on aquaculture and agriculture. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Chen Z, Ly Vu J, Ly Vu B, Buitink J, Leprince O, Verdier J. Genome-Wide Association Studies of Seed Performance Traits in Response to Heat Stress in Medicago truncatula Uncover MIEL1 as a Regulator of Seed Germination Plasticity. FRONTIERS IN PLANT SCIENCE 2021; 12:673072. [PMID: 34149774 PMCID: PMC8213093 DOI: 10.3389/fpls.2021.673072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Legume seeds are an important source of proteins, minerals, and vitamins for human and animal diets and represent a keystone for food security. With climate change and global warming, the production of grain legumes faces new challenges concerning seed vigor traits that allow the fast and homogenous establishment of the crop in a wide range of environments. These seed performance traits are regulated during seed maturation and are under the strong influence of the maternal environment. In this study, we used 200 natural Medicago truncatula accessions, a model species of legumes grown in optimal conditions and under moderate heat stress (26°C) during seed development and maturation. This moderate stress applied at flowering onwards impacted seed weight and germination capacity. Genome-wide association studies (GWAS) were performed to identify putative loci or genes involved in regulating seed traits and their plasticity in response to heat stress. We identified numerous significant quantitative trait nucleotides and potential candidate genes involved in regulating these traits under heat stress by using post-GWAS analyses combined with transcriptomic data. Out of them, MtMIEL1, a RING-type zinc finger family gene, was shown to be highly associated with germination speed in heat-stressed seeds. In Medicago, we highlighted that MtMIEL1 was transcriptionally regulated in heat-stressed seed production and that its expression profile was associated with germination speed in different Medicago accessions. Finally, a loss-of-function analysis of the Arabidopsis MIEL1 ortholog revealed its role as a regulator of germination plasticity of seeds in response to heat stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Jerome Verdier
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| |
Collapse
|
21
|
Bonhomme M, Bensmihen S, André O, Amblard E, Garcia M, Maillet F, Puech-Pagès V, Gough C, Fort S, Cottaz S, Bécard G, Jacquet C. Distinct genetic basis for root responses to lipo-chitooligosaccharide signal molecules from different microbial origins. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3821-3834. [PMID: 33675231 DOI: 10.1093/jxb/erab096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/25/2021] [Indexed: 05/12/2023]
Abstract
Lipo-chitooligosaccharides (LCOs) were originally found as symbiotic signals called Nod Factors (Nod-LCOs) controlling the nodulation of legumes by rhizobia. More recently, LCOs were also found in symbiotic fungi and, more surprisingly, very widely in the kingdom Fungi, including in saprophytic and pathogenic fungi. The LCO-V(C18:1, fucosylated/methyl fucosylated), hereafter called Fung-LCOs, are the LCO structures most commonly found in fungi. This raises the question of how legume plants such as Medicago truncatula can discriminate between Nod-LCOs and Fung-LCOs. To address this question, we performed a genome-wide association study on 173 natural accessions of M. truncatula, using a root branching phenotype and a newly developed local score approach. Both Nod-LCOs and Fung-LCOs stimulated root branching in most accessions, but the root responses to these two types of LCO molecules were not correlated. In addition, the heritability of the root response was higher for Nod-LCOs than for Fung-LCOs. We identified 123 loci for Nod-LCO and 71 for Fung-LCO responses, of which only one was common. This suggests that Nod-LCOs and Fung-LCOs both control root branching but use different molecular mechanisms. The tighter genetic constraint of the root response to Fung-LCOs possibly reflects the ancestral origin of the biological activity of these molecules.
Collapse
Affiliation(s)
- Maxime Bonhomme
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Sandra Bensmihen
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Olivier André
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Emilie Amblard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Magali Garcia
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Fabienne Maillet
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Virginie Puech-Pagès
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Clare Gough
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Sébastien Fort
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Sylvain Cottaz
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| |
Collapse
|
22
|
Genome-wide association study identified candidate genes for seed size and seed composition improvement in M. truncatula. Sci Rep 2021; 11:4224. [PMID: 33608604 PMCID: PMC7895968 DOI: 10.1038/s41598-021-83581-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Grain legumes are highly valuable plant species, as they produce seeds with high protein content. Increasing seed protein production and improving seed nutritional quality represent an agronomical challenge in order to promote plant protein consumption of a growing population. In this study, we used the genetic diversity, naturally present in Medicago truncatula, a model plant for legumes, to identify genes/loci regulating seed traits. Indeed, using sequencing data of 162 accessions from the Medicago HAPMAP collection, we performed genome-wide association study for 32 seed traits related to seed size and seed composition such as seed protein content/concentration, sulfur content/concentration. Using different GWAS and postGWAS methods, we identified 79 quantitative trait nucleotides (QTNs) as regulating seed size, 41 QTNs for seed composition related to nitrogen (i.e. storage protein) and sulfur (i.e. sulfur-containing amino acid) concentrations/contents. Furthermore, a strong positive correlation between seed size and protein content was revealed within the selected Medicago HAPMAP collection. In addition, several QTNs showed highly significant associations in different seed phenotypes for further functional validation studies, including one near an RNA-Binding Domain protein, which represents a valuable candidate as central regulator determining both seed size and composition. Finally, our findings in M. truncatula represent valuable resources to be exploitable in many legume crop species such as pea, common bean, and soybean due to its high synteny, which enable rapid transfer of these results into breeding programs and eventually help the improvement of legume grain production.
Collapse
|
23
|
Sokolkova A, Burlyaeva M, Valiannikova T, Vishnyakova M, Schafleitner R, Lee CR, Ting CT, Nair RM, Nuzhdin S, Samsonova M, von Wettberg E. Genome-wide association study in accessions of the mini-core collection of mungbean (Vigna radiata) from the World Vegetable Gene Bank (Taiwan). BMC PLANT BIOLOGY 2020; 20:363. [PMID: 33050907 PMCID: PMC7556912 DOI: 10.1186/s12870-020-02579-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/26/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Mungbean (Vigna radiata (L.) R. Wilczek, or green gram) is important tropical and sub-tropical legume and a rich source of dietary protein and micronutrients. In this study we employ GWAS to examine the genetic basis of variation in several important traits in mungbean, using the mini-core collection established by the World Vegetable Center, which includes 296 accessions that represent the major market classes. This collection has been grown in a common field plot in southern European part of Russia in 2018. RESULTS We used 5041 SNPs in 293 accessions that passed strict filtering for genetic diversity, linkage disequilibrium, population structure and GWAS analysis. Polymorphisms were distributed among all chromosomes, but with variable density. Linkage disequilibrium decayed in approximately 105 kb. Four distinct subgroups were identified within 293 accessions with 70% of accessions attributed to one of the four populations. By performing GWAS on the mini-core collection we have found several loci significantly associated with two important agronomical traits. Four SNPs associated with possibility of maturation in Kuban territory of Southern Russia in 2018 were identified within a region of strong linkage which contains genes encoding zinc finger A20 and an AN1 domain stress-associated protein. CONCLUSIONS The core collection of mungbean established by the World Vegetable Center is a valuable resource for mungbean breeding. The collection has been grown in southern European part of Russia in 2018 under incidental stresses caused by abnormally hot weather and different photoperiod. We have found several loci significantly associated with color of hypocotyl and possibility of maturation under these stressful conditions. SNPs associated with possibility of maturation localize to a region on chromosome 2 with strong linkage, in which genes encoding zinc finger A20 and AN1 domain stress associated protein (SAP) are located. Phenotyping of WorldVeg collection for maturation traits in temperate climatic locations is important as phenology remains a critical breeding target for mungbean. As demand rises for mungbean, production in temperate regions with shorter growing seasons becomes crucial to keep up with needs. Uncovering SNPs for phenology traits will speed breeding efforts.
Collapse
Affiliation(s)
- Alena Sokolkova
- Peter the Great St. Petersburg Polytechnic University, Department of Applied Mathematics, St. Petersburg, Russia
| | - Marina Burlyaeva
- Federal Research Centre All-Russian N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - Tatjana Valiannikova
- Kuban Branch of Federal Research Centre All-Russian N.I. Vavilov Institute of Plant Genetic Resources (VIR), Krasnodar region, Russia
| | - Margarita Vishnyakova
- Federal Research Centre All-Russian N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | | | | | | | - Ramakrishnan Madhavan Nair
- World Vegetable Center, South and Central Asia, ICRISAT Campus, Patancheru, Hyderabad, Telangana, 502324, India
| | - Sergey Nuzhdin
- Peter the Great St. Petersburg Polytechnic University, Department of Applied Mathematics, St. Petersburg, Russia
- University of Southern California, Los Angeles, CA, 90089, USA
| | - Maria Samsonova
- Peter the Great St. Petersburg Polytechnic University, Department of Applied Mathematics, St. Petersburg, Russia.
| | - Eric von Wettberg
- Peter the Great St. Petersburg Polytechnic University, Department of Applied Mathematics, St. Petersburg, Russia.
- University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
24
|
Ben Hdech D, Aubry C, Alibert B, Beucher D, Prosperi JM, Limami AM, Teulat B. Exploring natural diversity of Medicago truncatula reveals physiotypes and loci associated with the response of seedling performance to nitrate supply. PHYSIOLOGIA PLANTARUM 2020; 170:227-247. [PMID: 32492180 DOI: 10.1111/ppl.13144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Seedling pre-emergence is a critical phase of development for successful crop establishment because of its susceptibility to environmental conditions. In a context of reduced use of inorganic fertilizers, the genetic bases of the response of seedlings to nitrate supply received little attention. This issue is important even in legumes where nitrate absorption starts early after germination, before nodule development. Natural variation of traits characterizing seedling growth in the absence or presence of nitrate was investigated in a core collection of 192 accessions of Medicago truncatula. Plasticity indexes to the absence of nitrate were calculated. The genetic determinism of the traits was dissected by genome-wide association study (GWAS). The absence of nitrate affected seed biomass mobilization and root/shoot length ratio. However, the large range of genetic variability revealed different seedling performances within natural diversity. A principal component analysis (PCA) carried out with plasticity indexes highlighted four physiotypes of accessions differing in relationships between seedling elongation and seed biomass partitioning traits in response to the absence of nitrate. Finally, GWAS revealed 45 associations with single or combined traits corresponding to coordinates of accessions on PCA, as well as two clusters of genes encoding sugar transporters and glutathione transferases surrounding loci associated with seedling elongation traits.
Collapse
Affiliation(s)
- Douae Ben Hdech
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 42, rue Georges Morel, Beaucouzé, 49071, France
| | - Catherine Aubry
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 42, rue Georges Morel, Beaucouzé, 49071, France
| | - Bénédicte Alibert
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 42, rue Georges Morel, Beaucouzé, 49071, France
| | - Daniel Beucher
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 42, rue Georges Morel, Beaucouzé, 49071, France
| | - Jean-Marie Prosperi
- AGAP, Université de Montpellier, CIRAD, INRAE, Institut Agro, 2, place P. Viala, Montpellier cedex 1, 34060, France
| | - Anis M Limami
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 42, rue Georges Morel, Beaucouzé, 49071, France
| | - Béatrice Teulat
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 42, rue Georges Morel, Beaucouzé, 49071, France
| |
Collapse
|
25
|
Boyrie L, Moreau C, Frugier F, Jacquet C, Bonhomme M. A linkage disequilibrium-based statistical test for Genome-Wide Epistatic Selection Scans in structured populations. Heredity (Edinb) 2020; 126:77-91. [PMID: 32728044 DOI: 10.1038/s41437-020-0349-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 01/16/2023] Open
Abstract
The quest for signatures of selection using single nucleotide polymorphism (SNP) data has proven efficient to uncover genes involved in conserved and/or adaptive molecular functions, but none of the statistical methods were designed to identify interacting alleles as targets of selective processes. Here, we propose a statistical test aimed at detecting epistatic selection, based on a linkage disequilibrium (LD) measure accounting for population structure and heterogeneous relatedness between individuals. SNP-based ([Formula: see text]) and window-based ([Formula: see text]) statistics fit a Student distribution, allowing to test the significance of correlation coefficients. As a proof of concept, we use SNP data from the Medicago truncatula symbiotic legume plant and uncover a previously unknown gene coadaptation between the MtSUNN (Super Numeric Nodule) receptor and the MtCLE02 (CLAVATA3-Like) signaling peptide. We also provide experimental evidence supporting a MtSUNN-dependent negative role of MtCLE02 in symbiotic root nodulation. Using human HGDP-CEPH SNP data, our new statistical test uncovers strong LD between SLC24A5 (skin pigmentation) and EDAR (hairs, teeth, sweat glands development) world-wide, which persists after correction for population structure and relatedness in Central South Asian populations. This result suggests that epistatic selection or coselection could have contributed to the phenotypic make-up in some human populations. Applying this approach to genome-wide SNP data will facilitate the identification of coadapted gene networks in model or non-model organisms.
Collapse
Affiliation(s)
- Léa Boyrie
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet-Tolosan, France
| | - Corentin Moreau
- Institute of Plant Sciences-Paris Saclay (IPS2), Centre National de la Recherche Scientifique, Univ Paris-Sud, Univ Paris-Diderot, Univ d'Evry, Institut National de la Recherche Agronomique, Université Paris-Saclay, 91192, Gif-sur-Yvette, France
| | - Florian Frugier
- Institute of Plant Sciences-Paris Saclay (IPS2), Centre National de la Recherche Scientifique, Univ Paris-Sud, Univ Paris-Diderot, Univ d'Evry, Institut National de la Recherche Agronomique, Université Paris-Saclay, 91192, Gif-sur-Yvette, France
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet-Tolosan, France
| | - Maxime Bonhomme
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet-Tolosan, France.
| |
Collapse
|
26
|
Fraisier-Vannier O, Chervin J, Cabanac G, Puech V, Fournier S, Durand V, Amiel A, André O, Benamar OA, Dumas B, Tsugawa H, Marti G. MS-CleanR: A Feature-Filtering Workflow for Untargeted LC-MS Based Metabolomics. Anal Chem 2020; 92:9971-9981. [PMID: 32589017 DOI: 10.1021/acs.analchem.0c01594] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS) is currently the gold-standard technique to determine the full chemical diversity in biological samples. However, this approach still has many limitations; notably, the difficulty of accurately estimating the number of unique metabolites profiled among the thousands of MS ion signals arising from chromatograms. Here, we describe a new workflow, MS-CleanR, based on the MS-DIAL/MS-FINDER suite, which tackles feature degeneracy and improves annotation rates. We show that implementation of MS-CleanR reduces the number of signals by nearly 80% while retaining 95% of unique metabolite features. Moreover, the annotation results from MS-FINDER can be ranked according to the database chosen by the user, which enhance identification accuracy. Application of MS-CleanR to the analysis of Arabidopsis thaliana grown in three different conditions fostered class separation resulting from multivariate data analysis and led to annotation of 75% of the final features. The full workflow was applied to metabolomic profiles from three strains of the leguminous plant Medicago truncatula that have different susceptibilities to the oomycete pathogen Aphanomyces euteiches. A group of glycosylated triterpenoids overrepresented in resistant lines were identified as candidate compounds conferring pathogen resistance. MS-CleanR is implemented through a Shiny interface for intuitive use by end-users (available at https://github.com/eMetaboHUB/MS-CleanR).
Collapse
Affiliation(s)
- Ophélie Fraisier-Vannier
- Pharma Dev, Université de Toulouse, IRD, UPS, 31400 Toulouse, France.,Institut de Recherche en Informatique de Toulouse, Université de Toulouse, UPS, Toulouse 31400, France
| | - Justine Chervin
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France.,Metatoul-AgromiX Platform, MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, LRSV, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Guillaume Cabanac
- Institut de Recherche en Informatique de Toulouse, Université de Toulouse, UPS, Toulouse 31400, France
| | - Virginie Puech
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France.,Metatoul-AgromiX Platform, MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, LRSV, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Sylvie Fournier
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France.,Metatoul-AgromiX Platform, MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, LRSV, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Virginie Durand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Aurélien Amiel
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France.,De Sangosse, Bonnel, 47480 Pont-Du-Casse, France
| | - Olivier André
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France.,De Sangosse, Bonnel, 47480 Pont-Du-Casse, France
| | - Omar Abdelaziz Benamar
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France.,De Sangosse, Bonnel, 47480 Pont-Du-Casse, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan.,RIKEN Center for Integrative Medical Science, Yokohama 230-0045, Japan
| | - Guillaume Marti
- Pharma Dev, Université de Toulouse, IRD, UPS, 31400 Toulouse, France.,Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France.,Metatoul-AgromiX Platform, MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, LRSV, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France.,Institut de Recherche en Informatique de Toulouse, Université de Toulouse, UPS, Toulouse 31400, France
| |
Collapse
|
27
|
Sucher J, Mbengue M, Dresen A, Barascud M, Didelon M, Barbacci A, Raffaele S. Phylotranscriptomics of the Pentapetalae Reveals Frequent Regulatory Variation in Plant Local Responses to the Fungal Pathogen Sclerotinia sclerotiorum. THE PLANT CELL 2020; 32:1820-1844. [PMID: 32265317 PMCID: PMC7268813 DOI: 10.1105/tpc.19.00806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 05/13/2023]
Abstract
Quantitative disease resistance (QDR) is a conserved form of plant immunity that limits infections caused by a broad range of pathogens. QDR has a complex genetic determinism. The extent to which molecular components of the QDR response vary across plant species remains elusive. The fungal pathogen Sclerotinia sclerotiorum, causal agent of white mold diseases on hundreds of plant species, triggers QDR in host populations. To document the diversity of local responses to S. sclerotiorum at the molecular level, we analyzed the complete transcriptomes of six species spanning the Pentapetalae (Phaseolus vulgaris, Ricinus communis, Arabidopsis [Arabidopsis thaliana], Helianthus annuus, Solanum lycopersicum, and Beta vulgaris) inoculated with the same strain of S. sclerotiorum About one-third of plant transcriptomes responded locally to S. sclerotiorum, including a high proportion of broadly conserved genes showing frequent regulatory divergence at the interspecific level. Evolutionary inferences suggested a trend toward the acquisition of gene induction relatively recently in several lineages. Focusing on a group of ABCG transporters, we propose that exaptation by regulatory divergence contributed to the evolution of QDR. This evolutionary scenario has implications for understanding the QDR spectrum and durability. Our work provides resources for functional studies of gene regulation and QDR molecular mechanisms across the Pentapetalae.
Collapse
Affiliation(s)
- Justine Sucher
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Malick Mbengue
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Axel Dresen
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Marielle Barascud
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Marie Didelon
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Adelin Barbacci
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| |
Collapse
|
28
|
Renzi JP, Duchoslav M, Brus J, Hradilová I, Pechanec V, Václavek T, Machalová J, Hron K, Verdier J, Smýkal P. Physical Dormancy Release in Medicago truncatula Seeds Is Related to Environmental Variations. PLANTS (BASEL, SWITZERLAND) 2020; 9:E503. [PMID: 32295289 PMCID: PMC7238229 DOI: 10.3390/plants9040503] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/26/2022]
Abstract
Seed dormancy and timing of its release is an important developmental transition determining the survival of individuals, populations, and species in variable environments. Medicago truncatula was used as a model to study physical seed dormancy at the ecological and genetics level. The effect of alternating temperatures, as one of the causes releasing physical seed dormancy, was tested in 178 M. truncatula accessions over three years. Several coefficients of dormancy release were related to environmental variables. Dormancy varied greatly (4-100%) across accessions as well as year of experiment. We observed overall higher physical dormancy release under more alternating temperatures (35/15 °C) in comparison with less alternating ones (25/15 °C). Accessions from more arid climates released dormancy under higher experimental temperature alternations more than accessions originating from less arid environments. The plasticity of physical dormancy can probably distribute the germination through the year and act as a bet-hedging strategy in arid environments. On the other hand, a slight increase in physical dormancy was observed in accessions from environments with higher among-season temperature variation. Genome-wide association analysis identified 136 candidate genes related to secondary metabolite synthesis, hormone regulation, and modification of the cell wall. The activity of these genes might mediate seed coat permeability and, ultimately, imbibition and germination.
Collapse
Affiliation(s)
- Juan Pablo Renzi
- Instituto Nacional de Tecnología Agropecuaria, Hilario Ascasubi 8142, Argentina;
| | - Martin Duchoslav
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (M.D.); (I.H.)
| | - Jan Brus
- Department of Geoinformatics, Palacký University, 17. listopadu 50, 771 46 Olomouc, Czech Republic; (J.B.); (V.P.)
| | - Iveta Hradilová
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (M.D.); (I.H.)
| | - Vilém Pechanec
- Department of Geoinformatics, Palacký University, 17. listopadu 50, 771 46 Olomouc, Czech Republic; (J.B.); (V.P.)
| | - Tadeáš Václavek
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic; (T.V.); (J.M.); (K.H.)
| | - Jitka Machalová
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic; (T.V.); (J.M.); (K.H.)
| | - Karel Hron
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic; (T.V.); (J.M.); (K.H.)
| | - Jerome Verdier
- UMR 1345 Institut de Recherche en Horticulture et Semences, Agrocampus Ouest, INRA, Université d’Angers, SFR 4207 QUASAV, 49070 Beaucouzé, France;
| | - Petr Smýkal
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (M.D.); (I.H.)
| |
Collapse
|
29
|
Ma Y, Marzougui A, Coyne CJ, Sankaran S, Main D, Porter LD, Mugabe D, Smitchger JA, Zhang C, Amin MN, Rasheed N, Ficklin SP, McGee RJ. Dissecting the Genetic Architecture of Aphanomyces Root Rot Resistance in Lentil by QTL Mapping and Genome-Wide Association Study. Int J Mol Sci 2020; 21:ijms21062129. [PMID: 32244875 PMCID: PMC7139309 DOI: 10.3390/ijms21062129] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
Lentil (Lens culinaris Medikus) is an important source of protein for people in developing countries. Aphanomyces root rot (ARR) has emerged as one of the most devastating diseases affecting lentil production. In this study, we applied two complementary quantitative trait loci (QTL) analysis approaches to unravel the genetic architecture underlying this complex trait. A recombinant inbred line (RIL) population and an association mapping population were genotyped using genotyping by sequencing (GBS) to discover novel single nucleotide polymorphisms (SNPs). QTL mapping identified 19 QTL associated with ARR resistance, while association mapping detected 38 QTL and highlighted accumulation of favorable haplotypes in most of the resistant accessions. Seven QTL clusters were discovered on six chromosomes, and 15 putative genes were identified within the QTL clusters. To validate QTL mapping and genome-wide association study (GWAS) results, expression analysis of five selected genes was conducted on partially resistant and susceptible accessions. Three of the genes were differentially expressed at early stages of infection, two of which may be associated with ARR resistance. Our findings provide valuable insight into the genetic control of ARR, and genetic and genomic resources developed here can be used to accelerate development of lentil cultivars with high levels of partial resistance to ARR.
Collapse
Affiliation(s)
- Yu Ma
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (Y.M.); (D.M.); (S.P.F.)
| | - Afef Marzougui
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA; (A.M.); (S.S.); (C.Z.)
| | - Clarice J. Coyne
- USDA-ARS Plant Germplasm Introduction and Testing Unit, Washington State University, Pullman, WA 99164, USA;
| | - Sindhuja Sankaran
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA; (A.M.); (S.S.); (C.Z.)
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (Y.M.); (D.M.); (S.P.F.)
| | - Lyndon D. Porter
- USDA-ARS Grain Legume Genetics and Physiology Research Unit, Prosser, WA 99350, USA;
| | - Deus Mugabe
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA; (D.M.); (J.A.S.)
| | - Jamin A. Smitchger
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA; (D.M.); (J.A.S.)
| | - Chongyuan Zhang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA; (A.M.); (S.S.); (C.Z.)
| | - Md. Nurul Amin
- Breeder Seed Production Center, Bangladesh Agricultural Research Institute, Debiganj-5020, Panchagarh, Bangladesh;
| | - Naser Rasheed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Stephen P. Ficklin
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (Y.M.); (D.M.); (S.P.F.)
| | - Rebecca J. McGee
- USDA-ARS Grain Legume Genetics and Physiology Research Unit, Pullman, WA 99164, USA
- Correspondence: ; Tel.: +1-509-335-0300
| |
Collapse
|
30
|
Parallelisable non-invasive biomass, fitness and growth measurement of macroalgae and other protists with nephelometry. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Zhang S, Tian Z, Li H, Guo Y, Zhang Y, Roberts JA, Zhang X, Miao Y. Genome-wide analysis and characterization of F-box gene family in Gossypium hirsutum L. BMC Genomics 2019; 20:993. [PMID: 31856713 PMCID: PMC6921459 DOI: 10.1186/s12864-019-6280-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 11/13/2019] [Indexed: 11/18/2022] Open
Abstract
Background F-box proteins are substrate-recognition components of the Skp1-Rbx1-Cul1-F-box protein (SCF) ubiquitin ligases. By selectively targeting the key regulatory proteins or enzymes for ubiquitination and 26S proteasome mediated degradation, F-box proteins play diverse roles in plant growth/development and in the responses of plants to both environmental and endogenous signals. Studies of F-box proteins from the model plant Arabidopsis and from many additional plant species have demonstrated that they belong to a super gene family, and function across almost all aspects of the plant life cycle. However, systematic exploration of F-box family genes in the important fiber crop cotton (Gossypium hirsutum) has not been previously performed. The genome-wide analysis of the cotton F-box gene family is now possible thanks to the completion of several cotton genome sequencing projects. Results In current study, we first conducted a genome-wide investigation of cotton F-box family genes by reference to the published F-box protein sequences from other plant species. 592 F-box protein encoding genes were identified in the Gossypium hirsutume acc.TM-1 genome and, subsequently, we were able to present their gene structures, chromosomal locations, syntenic relationships with their parent species. In addition, duplication modes analysis showed that cotton F-box genes were distributed to 26 chromosomes, with the maximum number of genes being detected on chromosome 5. Although the WGD (whole-genome duplication) mode seems play a dominant role during cotton F-box gene expansion process, other duplication modes including TD (tandem duplication), PD (proximal duplication), and TRD (transposed duplication) also contribute significantly to the evolutionary expansion of cotton F-box genes. Collectively, these bioinformatic analysis suggest possible evolutionary forces underlying F-box gene diversification. Additionally, we also conducted analyses of gene ontology, and expression profiles in silico, allowing identification of F-box gene members potentially involved in hormone signal transduction. Conclusion The results of this study provide first insights into the Gossypium hirsutum F-box gene family, which lays the foundation for future studies of functionality, particularly those involving F-box protein family members that play a role in hormone signal transduction.
Collapse
Affiliation(s)
- Shulin Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Zailong Tian
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Haipeng Li
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Yutao Guo
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Yanqi Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Jeremy A Roberts
- Faculty of Science and Engineering, School of Biological & Marine Sciences, University of Plymouth, Devon, UK
| | - Xuebin Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.
| |
Collapse
|
32
|
Kankanala P, Nandety RS, Mysore KS. Genomics of Plant Disease Resistance in Legumes. FRONTIERS IN PLANT SCIENCE 2019; 10:1345. [PMID: 31749817 PMCID: PMC6842968 DOI: 10.3389/fpls.2019.01345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/27/2019] [Indexed: 05/15/2023]
Abstract
The constant interactions between plants and pathogens in the environment and the resulting outcomes are of significant importance for agriculture and agricultural scientists. Disease resistance genes in plant cultivars can break down in the field due to the evolution of pathogens under high selection pressure. Thus, the protection of crop plants against pathogens is a continuous arms race. Like any other type of crop plant, legumes are susceptible to many pathogens. The dawn of the genomic era, in which high-throughput and cost-effective genomic tools have become available, has revolutionized our understanding of the complex interactions between legumes and pathogens. Genomic tools have enabled a global view of transcriptome changes during these interactions, from which several key players in both the resistant and susceptible interactions have been identified. This review summarizes some of the large-scale genomic studies that have clarified the host transcriptional changes during interactions between legumes and their plant pathogens while highlighting some of the molecular breeding tools that are available to introgress the traits into breeding programs. These studies provide valuable insights into the molecular basis of different levels of host defenses in resistant and susceptible interactions.
Collapse
|
33
|
Gibelin-Viala C, Amblard E, Puech-Pages V, Bonhomme M, Garcia M, Bascaules-Bedin A, Fliegmann J, Wen J, Mysore KS, le Signor C, Jacquet C, Gough C. The Medicago truncatula LysM receptor-like kinase LYK9 plays a dual role in immunity and the arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2019; 223:1516-1529. [PMID: 31058335 DOI: 10.1111/nph.15891] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/24/2019] [Indexed: 05/26/2023]
Abstract
Plant -specific lysin-motif receptor-like kinases (LysM-RLKs) are implicated in the perception of N-acetyl glucosamine-containing compounds, some of which are important signal molecules in plant-microbe interactions. Among these, both lipo-chitooligosaccharides (LCOs) and chitooligosaccharides (COs) are proposed as arbuscular mycorrhizal (AM) fungal symbiotic signals. COs can also activate plant defence, although there are scarce data about CO production by pathogens, especially nonfungal pathogens. We tested Medicago truncatula mutants in the LysM-RLK MtLYK9 for their abilities to interact with the AM fungus Rhizophagus irregularis and the oomycete pathogen Aphanomyces euteiches. This prompted us to analyse whether A. euteiches can produce COs. Compared with wild-type plants, Mtlyk9 mutants had fewer infection events and were less colonised by the AM fungus. By contrast, Mtlyk9 mutants were more heavily infected by A. euteiches and showed more disease symptoms. Aphanomyces euteiches was also shown to produce short COs, mainly CO II, but also CO III and CO IV, and traces of CO V, both ex planta and in planta. MtLYK9 thus has a dual role in plant immunity and the AM symbiosis, which raises questions about the functioning and the ancestral origins of such a receptor protein.
Collapse
Affiliation(s)
| | - Emilie Amblard
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Virginie Puech-Pages
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Maxime Bonhomme
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Magali Garcia
- LIPM, INRA, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Adeline Bascaules-Bedin
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Judith Fliegmann
- LIPM, INRA, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Jiangqi Wen
- Noble Research Institute, LLC., 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Noble Research Institute, LLC., 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | | | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Clare Gough
- LIPM, INRA, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| |
Collapse
|
34
|
Bonhomme M, Fariello MI, Navier H, Hajri A, Badis Y, Miteul H, Samac DA, Dumas B, Baranger A, Jacquet C, Pilet-Nayel ML. A local score approach improves GWAS resolution and detects minor QTL: application to Medicago truncatula quantitative disease resistance to multiple Aphanomyces euteiches isolates. Heredity (Edinb) 2019; 123:517-531. [PMID: 31138867 DOI: 10.1038/s41437-019-0235-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/19/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022] Open
Abstract
Quantitative trait loci (QTL) with small effects, which are pervasive in quantitative phenotypic variation, are difficult to detect in genome-wide association studies (GWAS). To improve their detection, we propose to use a local score approach that accounts for the surrounding signal due to linkage disequilibrium, by accumulating association signals from contiguous single markers. Simulations revealed that, in a GWAS context with high marker density, the local score approach outperforms single SNP p-value-based tests for detecting minor QTL (heritability of 5-10%) and is competitive with regard to alternative methods, which also aggregate p-values. Using more than five million SNPs, this approach was applied to identify loci involved in Quantitative Disease Resistance (QDR) to different isolates of the plant root rot pathogen Aphanomyces euteiches, from a GWAS performed on a collection of 174 accessions of the model legume Medicago truncatula. We refined the position of a previously reported major locus, underlying MYB/NB-ARC/tyrosine kinase candidate genes conferring resistance to two closely related A. euteiches isolates belonging to pea pathotype I. We also discovered a diversity of minor resistance QTL, not detected using p-value-based tests, some of which being putatively shared in response to pea (pathotype I and III) and/or alfalfa (race 1 and 2) isolates. Candidate genes underlying these QTL suggest pathogen effector recognition and plant proteasome as key functions associated with M. truncatula resistance to A. euteiches. GWAS on any organism can benefit from the local score approach to uncover many weak-effect QTL.
Collapse
Affiliation(s)
- Maxime Bonhomme
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France.
| | - Maria Inés Fariello
- Universidad de la República, UdelaR, Facultad de Ingeniería, IMERL, Montevideo, Uruguay
| | - Hélène Navier
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, F-35650, Le Rheu, France
| | - Ahmed Hajri
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, F-35650, Le Rheu, France
| | - Yacine Badis
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France
| | - Henri Miteul
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, F-35650, Le Rheu, France
| | | | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France
| | - Alain Baranger
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, F-35650, Le Rheu, France
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France
| | | |
Collapse
|
35
|
Gentzbittel L, Ben C, Mazurier M, Shin MG, Lorenz T, Rickauer M, Marjoram P, Nuzhdin SV, Tatarinova TV. WhoGEM: an admixture-based prediction machine accurately predicts quantitative functional traits in plants. Genome Biol 2019; 20:106. [PMID: 31138283 PMCID: PMC6537182 DOI: 10.1186/s13059-019-1697-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
The explosive growth of genomic data provides an opportunity to make increased use of sequence variations for phenotype prediction. We have developed a prediction machine for quantitative phenotypes (WhoGEM) that overcomes some of the bottlenecks limiting the current methods. We demonstrated its performance by predicting quantitative disease resistance and quantitative functional traits in the wild model plant species, Medicago truncatula, using geographical locations as covariates for admixture analysis. The method's prediction reliability equals or outperforms all existing algorithms for quantitative phenotype prediction. WhoGEM analysis produces evidence that variation in genome admixture proportions explains most of the phenotypic variation for quantitative phenotypes.
Collapse
Affiliation(s)
- Laurent Gentzbittel
- EcoLab, Université de Toulouse, CNRS, Avenue de l’Agrobiopole BP 32607, Auzeville-Tolosane, F-31326 Castanet-Tolosan, France
| | - Cécile Ben
- EcoLab, Université de Toulouse, CNRS, Avenue de l’Agrobiopole BP 32607, Auzeville-Tolosane, F-31326 Castanet-Tolosan, France
| | - Mélanie Mazurier
- EcoLab, Université de Toulouse, CNRS, Avenue de l’Agrobiopole BP 32607, Auzeville-Tolosane, F-31326 Castanet-Tolosan, France
| | - Min-Gyoung Shin
- University of Southern California, 1050 Childs Way (USC), Los Angeles, CA 90089-0371 USA
| | - Todd Lorenz
- University of La Verne, 1950 3rd Street, La Verne, CA 91750 USA
| | - Martina Rickauer
- EcoLab, Université de Toulouse, CNRS, Avenue de l’Agrobiopole BP 32607, Auzeville-Tolosane, F-31326 Castanet-Tolosan, France
| | - Paul Marjoram
- University of Southern California, 1050 Childs Way (USC), Los Angeles, CA 90089-0371 USA
| | - Sergey V. Nuzhdin
- University of Southern California, 1050 Childs Way (USC), Los Angeles, CA 90089-0371 USA
| | - Tatiana V. Tatarinova
- University of La Verne, 1950 3rd Street, La Verne, CA 91750 USA
- Department of Fundamental Biology and Biotechnology, Siberian Federal University, 660074 Krasnoyarsk, Russia
| |
Collapse
|
36
|
Coyne CJ, Porter LD, Boutet G, Ma Y, McGee RJ, Lesné A, Baranger A, Pilet-Nayel ML. Confirmation of Fusarium root rot resistance QTL Fsp-Ps 2.1 of pea under controlled conditions. BMC PLANT BIOLOGY 2019; 19:98. [PMID: 30866817 PMCID: PMC6417171 DOI: 10.1186/s12870-019-1699-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/28/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Dry pea production has increased substantially in North America over the last few decades. With this expansion, significant yield losses have been attributed to an escalation in Fusarium root rots in pea fields. Among the most significant rot rotting pathogenic fungal species, Fusarium solani fsp. pisi (Fsp) is one of the main causal agents of root rot of pea. High levels of partial resistance to Fsp has been identified in plant genetic resources. Genetic resistance offers one of the best solutions to control this root rotting fungus. A recombinant inbred population segregating for high levels of partial resistance, previously single nucleotide polymorphism (SNP) genotyped using genotyping-by-sequencing, was phenotyped for disease reaction in replicated and repeated greenhouse trials. Composite interval mapping was deployed to identify resistance-associated quantitative trait loci (QTL). RESULTS Three QTL were identified using three disease reaction criteria: root disease severity, ratios of diseased vs. healthy shoot heights and dry plant weights under controlled conditions using pure cultures of Fusarium solani fsp. pisi. One QTL Fsp-Ps 2.1 explains 44.4-53.4% of the variance with a narrow confidence interval of 1.2 cM. The second and third QTL Fsp-Ps3.2 and Fsp-Ps3.3 are closely linked and explain only 3.6-4.6% of the variance. All of the alleles are contributed by the resistant parent PI 180693. CONCLUSION With the confirmation of Fsp-Ps 2.1 now in two RIL populations, SNPs associated with this region make a good target for marker-assisted selection in pea breeding programs to obtain high levels of partial resistance to Fusarium root rot caused by Fusarium solani fsp. pisi.
Collapse
Affiliation(s)
- Clarice J. Coyne
- USDA-ARS Plant Germplasm Introduction & Testing Research, Washington State University, Pullman, WA 99164 USA
| | - Lyndon D. Porter
- USDA-ARS Grain Legume Genetics & Physiology Research, 24106 N. Bunn Road, Prosser, WA 99350 USA
| | - Gilles Boutet
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, 35650 Le Rheu, France
| | - Yu Ma
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Rebecca J. McGee
- USDA-ARS, Grain Legume Genetics & Physiology Research, Pullman, WA 99164 USA
| | - Angélique Lesné
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, 35650 Le Rheu, France
| | - Alain Baranger
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, 35650 Le Rheu, France
| | - Marie-Laure Pilet-Nayel
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, 35650 Le Rheu, France
| |
Collapse
|
37
|
Liu XP, Hawkins C, Peel MD, Yu LX. Genetic Loci Associated with Salt Tolerance in Advanced Breeding Populations of Tetraploid Alfalfa Using Genome-Wide Association Studies. THE PLANT GENOME 2019; 12:180026. [PMID: 30951087 DOI: 10.3835/plantgenome2018.05.0026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many agricultural lands in the western United States consist of soil with high concentrations of salt, which is detrimental to alfalfa ( L.) growth and production, especially in the region where water resource is limited. Developing alfalfa varieties with salt tolerance is imperative for sustainable production under increasing soil salinity. In the present study, we used advanced alfalfa breeding populations and evaluated five traits related to salt tolerance including biomass dry weight (DW) and fresh weight (FW), plant height (PH), leaf relative water content (RWC), and stomatal conductance (SC) under control and salt stress. Stress susceptibility index (SSI) of each trait and single-nucleotide polymorphism (SNP) markers generated by genotyping-by-sequencing (GBS) were used for genome-wide association studies (GWAS) to identify loci associated with salt tolerance. A total of 53 significant SNPs associated with salt tolerance were identified and they were located at 49 loci through eight chromosomes. A Basic Local Alignment Search Tool (BLAST) search of the regions surrounding the SNPs revealed 21 putative candidate genes associated with salt tolerance. The genetic architecture for traits related to salt tolerance characterized in this report could help in understanding the genetic mechanism by which salt stress affects plant growth and production in alfalfa. The markers and candidate genes identified in the present study would be useful for marker-assisted selection (MAS) in breeding salt-tolerant alfalfa after validation of the markers.
Collapse
|
38
|
Rey T, André O, Nars A, Dumas B, Gough C, Bottin A, Jacquet C. Lipo-chitooligosaccharide signalling blocks a rapid pathogen-induced ROS burst without impeding immunity. THE NEW PHYTOLOGIST 2019; 221:743-749. [PMID: 30378690 DOI: 10.1111/nph.15574] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Molecular signals released by microbes at the surface of plant roots and leaves largely determine host responses, notably by triggering either immunity or symbiosis. How these signalling pathways cross-talk upon coincident perception of pathogens and symbionts is poorly described in plants forming symbiosis. Nitrogen fixing symbiotic Rhizobia spp. and arbuscular mycorrhizal fungi produce lipo-chitooligosaccharides (LCOs) to initiate host symbiotic programmes. In Medicago truncatula roots, the perception of LCOs leads to reduced efflux of reactive oxygen species (ROS). By contrast, pathogen perception generally triggers a strong ROS burst and activates defence gene expression. Here we show that incubation of M. truncatula seedlings with culture filtrate (CF) of the legume pathogen Aphanomyces euteiches alone or simultaneously with Sinorhizobium meliloti LCOs, resulted in a strong ROS release. However, this response was completely inhibited if CF was added after pre-incubation of seedlings with LCOs. By contrast, expression of immunity-associated genes in response to CF and disease resistance to A. euteiches remained unaffected by LCO treatment of M. truncatula roots. Our findings suggest that symbiotic plants evolved ROS inhibition response to LCOs to facilitate early steps of symbiosis whilst maintaining a parallel defence mechanisms toward pathogens.
Collapse
Affiliation(s)
- Thomas Rey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Olivier André
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Amaury Nars
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Clare Gough
- Laboratory of Plant-Microbe Interactions (LIPM), Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Arnaud Bottin
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| |
Collapse
|
39
|
Mousavi‐Derazmahalleh M, Bayer PE, Hane JK, Valliyodan B, Nguyen HT, Nelson MN, Erskine W, Varshney RK, Papa R, Edwards D. Adapting legume crops to climate change using genomic approaches. PLANT, CELL & ENVIRONMENT 2019; 42:6-19. [PMID: 29603775 PMCID: PMC6334278 DOI: 10.1111/pce.13203] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/10/2018] [Indexed: 05/05/2023]
Abstract
Our agricultural system and hence food security is threatened by combination of events, such as increasing population, the impacts of climate change, and the need to a more sustainable development. Evolutionary adaptation may help some species to overcome environmental changes through new selection pressures driven by climate change. However, success of evolutionary adaptation is dependent on various factors, one of which is the extent of genetic variation available within species. Genomic approaches provide an exceptional opportunity to identify genetic variation that can be employed in crop improvement programs. In this review, we illustrate some of the routinely used genomics-based methods as well as recent breakthroughs, which facilitate assessment of genetic variation and discovery of adaptive genes in legumes. Although additional information is needed, the current utility of selection tools indicate a robust ability to utilize existing variation among legumes to address the challenges of climate uncertainty.
Collapse
Affiliation(s)
- Mahsa Mousavi‐Derazmahalleh
- UWA School of Agriculture and EnvironmentThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Philipp E. Bayer
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - James K. Hane
- CCDM BioinformaticsCentre for Crop Disease Management, Curtin UniversityBentleyWestern Australia6102Australia
| | - Babu Valliyodan
- Division of Plant Sciences and National Center for Soybean BiotechnologyUniversity of MissouriColumbiaMO65211USA
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean BiotechnologyUniversity of MissouriColumbiaMO65211USA
| | - Matthew N. Nelson
- UWA School of Agriculture and EnvironmentThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
- Natural Capital and Plant HealthRoyal Botanic Gardens Kew, Wakehurst PlaceArdinglyWest SussexRH17 6TNUK
- The UWA Institute of AgricultureThe University of Western Australia35 Stirling HighwayPerthWestern Australia6009Australia
| | - William Erskine
- UWA School of Agriculture and EnvironmentThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
- Centre for Plant Genetics and BreedingThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
- The UWA Institute of AgricultureThe University of Western Australia35 Stirling HighwayPerthWestern Australia6009Australia
| | - Rajeev K. Varshney
- UWA School of Agriculture and EnvironmentThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
- The UWA Institute of AgricultureThe University of Western Australia35 Stirling HighwayPerthWestern Australia6009Australia
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)Patancheru502 324India
| | - Roberto Papa
- Department of Agricultural, Food, and Environmental SciencesUniversità Politecnica delle Marche60131AnconaItaly
| | - David Edwards
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
- The UWA Institute of AgricultureThe University of Western Australia35 Stirling HighwayPerthWestern Australia6009Australia
| |
Collapse
|
40
|
Singer SD, Hannoufa A, Acharya S. Molecular improvement of alfalfa for enhanced productivity and adaptability in a changing environment. PLANT, CELL & ENVIRONMENT 2018; 41:1955-1971. [PMID: 29044610 DOI: 10.1111/pce.13090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 05/09/2023]
Abstract
Due to an expanding world population and increased buying power, the demand for ruminant products such as meat and milk is expected to grow substantially in coming years, and high levels of forage crop production will therefore be a necessity. Unfortunately, urbanization of agricultural land, intensive agricultural practices, and climate change are all predicted to limit crop production in the future, which means that the development of forage cultivars with improved productivity and adaptability will be essential. Because alfalfa (Medicago sativa L.) is one of the most widely cultivated perennial forage crops, it has been the target of much research in this field. In this review, we discuss progress that has been made towards the improvement of productivity, abiotic stress tolerance, and nutrient-use efficiency, as well as disease and pest resistance, in alfalfa using biotechnological techniques. Furthermore, we consider possible future priorities and avenues for attaining further enhancements in this crop as a means of contributing to the realization of food security in a changing environment.
Collapse
Affiliation(s)
- Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3, Canada
| | - Surya Acharya
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, T1J 4B1, Canada
| |
Collapse
|
41
|
Capstaff NM, Miller AJ. Improving the Yield and Nutritional Quality of Forage Crops. FRONTIERS IN PLANT SCIENCE 2018; 9:535. [PMID: 29740468 PMCID: PMC5928394 DOI: 10.3389/fpls.2018.00535] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/06/2018] [Indexed: 05/02/2023]
Abstract
Despite being some of the most important crops globally, there has been limited research on forages when compared with cereals, fruits, and vegetables. This review summarizes the literature highlighting the significance of forage crops, the current improvements and some of future directions for improving yield and nutritional quality. We make the point that the knowledge obtained from model plant and grain crops can be applied to forage crops. The timely development of genomics and bioinformatics together with genome editing techniques offer great scope to improve forage crops. Given the social, environmental and economic importance of forage across the globe and especially in poorer countries, this opportunity has enormous potential to improve food security and political stability.
Collapse
|
42
|
Gaulin E, Pel MJC, Camborde L, San-Clemente H, Courbier S, Dupouy MA, Lengellé J, Veyssiere M, Le Ru A, Grandjean F, Cordaux R, Moumen B, Gilbert C, Cano LM, Aury JM, Guy J, Wincker P, Bouchez O, Klopp C, Dumas B. Genomics analysis of Aphanomyces spp. identifies a new class of oomycete effector associated with host adaptation. BMC Biol 2018; 16:43. [PMID: 29669603 PMCID: PMC5907361 DOI: 10.1186/s12915-018-0508-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023] Open
Abstract
Background Oomycetes are a group of filamentous eukaryotic microorganisms that have colonized all terrestrial and oceanic ecosystems, and they include prominent plant pathogens. The Aphanomyces genus is unique in its ability to infect both plant and animal species, and as such exemplifies oomycete versatility in adapting to different hosts and environments. Dissecting the underpinnings of oomycete diversity provides insights into their specificity and pathogenic mechanisms. Results By carrying out genomic analyses of the plant pathogen A. euteiches and the crustacean pathogen A. astaci, we show that host specialization is correlated with specialized secretomes that are adapted to the deconstruction of the plant cell wall in A. euteiches and protein degradation in A. astaci. The A. euteiches genome is characterized by a large repertoire of small secreted protein (SSP)-encoding genes that are highly induced during plant infection, and are not detected in other oomycetes. Functional analysis revealed an SSP from A. euteiches containing a predicted nuclear-localization signal which shuttles to the plant nucleus and increases plant susceptibility to infection. Conclusion Collectively, our results show that Aphanomyces host adaptation is associated with evolution of specialized secretomes and identify SSPs as a new class of putative oomycete effectors. Electronic supplementary material The online version of this article (10.1186/s12915-018-0508-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elodie Gaulin
- Laboratoire de Recherche en Sciences Végétales, CNRS UMR5546 Université de Toulouse, Paul Sabatier, 24, chemin de Borde Rouge BP 42617 Auzeville, 31326, Castanet-Tolosan, France.
| | - Michiel J C Pel
- Laboratoire de Recherche en Sciences Végétales, CNRS UMR5546 Université de Toulouse, Paul Sabatier, 24, chemin de Borde Rouge BP 42617 Auzeville, 31326, Castanet-Tolosan, France
| | - Laurent Camborde
- Laboratoire de Recherche en Sciences Végétales, CNRS UMR5546 Université de Toulouse, Paul Sabatier, 24, chemin de Borde Rouge BP 42617 Auzeville, 31326, Castanet-Tolosan, France
| | - Hélène San-Clemente
- Laboratoire de Recherche en Sciences Végétales, CNRS UMR5546 Université de Toulouse, Paul Sabatier, 24, chemin de Borde Rouge BP 42617 Auzeville, 31326, Castanet-Tolosan, France
| | - Sarah Courbier
- Laboratoire de Recherche en Sciences Végétales, CNRS UMR5546 Université de Toulouse, Paul Sabatier, 24, chemin de Borde Rouge BP 42617 Auzeville, 31326, Castanet-Tolosan, France.,Present Address: Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Marie-Alexane Dupouy
- Laboratoire de Recherche en Sciences Végétales, CNRS UMR5546 Université de Toulouse, Paul Sabatier, 24, chemin de Borde Rouge BP 42617 Auzeville, 31326, Castanet-Tolosan, France
| | - Juliette Lengellé
- Laboratoire de Recherche en Sciences Végétales, CNRS UMR5546 Université de Toulouse, Paul Sabatier, 24, chemin de Borde Rouge BP 42617 Auzeville, 31326, Castanet-Tolosan, France
| | - Marine Veyssiere
- Laboratoire de Recherche en Sciences Végétales, CNRS UMR5546 Université de Toulouse, Paul Sabatier, 24, chemin de Borde Rouge BP 42617 Auzeville, 31326, Castanet-Tolosan, France
| | - Aurélie Le Ru
- Fédération de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, 31326, Castanet-Tolosan, France
| | - Frédéric Grandjean
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Clément Gilbert
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS Université Paris-Sud UMR 9191, IRD 247, Gif sur Yvette, France
| | - Liliana M Cano
- University of Florida, UF/IFAS, Indian River Research and Education Center IRREC, 2199 South Rock Road, Fort Pierce, FL, 34945, USA
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie François-Jacob, Genoscope, F-92057, Evry, France
| | - Julie Guy
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie François-Jacob, Genoscope, F-92057, Evry, France
| | - Patrick Wincker
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie François-Jacob, Genoscope, CNRS UMR 8030, Université d'Evry, Evry, France
| | - Olivier Bouchez
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Christophe Klopp
- INRA, UR875, Plateforme Bioinformatique Genotoul, Castanet-Tolosan, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, CNRS UMR5546 Université de Toulouse, Paul Sabatier, 24, chemin de Borde Rouge BP 42617 Auzeville, 31326, Castanet-Tolosan, France
| |
Collapse
|
43
|
Thalineau E, Fournier C, Gravot A, Wendehenne D, Jeandroz S, Truong H. Nitrogen modulation of Medicago truncatula resistance to Aphanomyces euteiches depends on plant genotype. MOLECULAR PLANT PATHOLOGY 2018; 19:664-676. [PMID: 28296004 PMCID: PMC6638142 DOI: 10.1111/mpp.12550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/02/2017] [Accepted: 03/08/2017] [Indexed: 05/25/2023]
Abstract
Nitrogen (N) availability can impact plant resistance to pathogens by the regulation of plant immunity. To better understand the links between N nutrition and plant defence, we analysed the impact of N availability on Medicago truncatula resistance to the root pathogen Aphanomyces euteiches. This oomycete is considered to be the most limiting factor for legume production. Ten plant genotypes were tested in vitro for their resistance to A. euteiches in either complete or nitrate-deficient medium. N deficiency led to enhanced or reduced susceptibility depending on the plant genotype. Focusing on four genotypes displaying contrasting responses, we determined the impact of N deficiency on plant growth and shoot N concentration, and performed expression analyses on N- and defence-related genes, as well as the quantification of soluble phenolics and different amino acids in roots. Our analyses suggest that N modulation of plant resistance is not linked to plant response to N deprivation or to mechanisms previously identified to be involved in plant resistance. Furthermore, our studies highlight a role of glutamine in mediating the susceptibility to A. euteiches in M. truncatula.
Collapse
Affiliation(s)
- Elise Thalineau
- Agroécologie, AgroSup Dijon, CNRS, INRAUniversité Bourgogne Franche‐ComtéDijonFrance
| | - Carine Fournier
- Agroécologie, AgroSup Dijon, CNRS, INRAUniversité Bourgogne Franche‐ComtéDijonFrance
| | | | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRAUniversité Bourgogne Franche‐ComtéDijonFrance
| | - Sylvain Jeandroz
- Agroécologie, AgroSup Dijon, CNRS, INRAUniversité Bourgogne Franche‐ComtéDijonFrance
| | - Hoai‐Nam Truong
- Agroécologie, AgroSup Dijon, CNRS, INRAUniversité Bourgogne Franche‐ComtéDijonFrance
| |
Collapse
|
44
|
Desgroux A, Baudais VN, Aubert V, Le Roy G, de Larambergue H, Miteul H, Aubert G, Boutet G, Duc G, Baranger A, Burstin J, Manzanares-Dauleux M, Pilet-Nayel ML, Bourion V. Comparative Genome-Wide-Association Mapping Identifies Common Loci Controlling Root System Architecture and Resistance to Aphanomyces euteiches in Pea. FRONTIERS IN PLANT SCIENCE 2018; 8:2195. [PMID: 29354146 PMCID: PMC5761208 DOI: 10.3389/fpls.2017.02195] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/13/2017] [Indexed: 05/04/2023]
Abstract
Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes (PsLE, PsTFL1) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6, was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven additional intervals associated with plant architecture overlapped with GWA intervals previously identified for resistance to A. euteiches. This study provides innovative results about genetic interdependency of root disease resistance and RSA inheritance. It identifies pea lines, QTL, closely-linked markers and candidate genes for marker-assisted-selection of RSA loci to reduce Aphanomyces root rot severity in future pea varieties.
Collapse
Affiliation(s)
- Aurore Desgroux
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
- PISOM, UMT INRA/Terre Inovia, Le Rheu, France
| | - Valentin N. Baudais
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
| | - Véronique Aubert
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Gwenola Le Roy
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
- PISOM, UMT INRA/Terre Inovia, Le Rheu, France
| | - Henri de Larambergue
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Henri Miteul
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
- PISOM, UMT INRA/Terre Inovia, Le Rheu, France
| | - Grégoire Aubert
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Gilles Boutet
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
- PISOM, UMT INRA/Terre Inovia, Le Rheu, France
| | - Gérard Duc
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Alain Baranger
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
- PISOM, UMT INRA/Terre Inovia, Le Rheu, France
| | - Judith Burstin
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Maria Manzanares-Dauleux
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
| | - Marie-Laure Pilet-Nayel
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
- PISOM, UMT INRA/Terre Inovia, Le Rheu, France
| | - Virginie Bourion
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
45
|
Fuechtbauer W, Yunusov T, Bozsóki Z, Gavrin A, James EK, Stougaard J, Schornack S, Radutoiu S. LYS12 LysM receptor decelerates Phytophthora palmivora disease progression in Lotus japonicus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:297-310. [PMID: 29171909 DOI: 10.1111/tpj.13785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 05/19/2023]
Abstract
Phytophthora palmivora is a devastating oomycete plant pathogen. We found that P. palmivora induces disease in Lotus japonicus and used this interaction to identify cellular and molecular events in response to this oomycete, which has a broad host range. Transcript quantification revealed that Lys12 was highly and rapidly induced during P. palmivora infection. Mutants of Lys12 displayed accelerated disease progression, earlier plant death and a lower level of defence gene expression than the wild type, while the defence program after chitin, laminarin, oligogalacturonide or flg22 treatment and the root symbioses with nitrogen-fixing rhizobia and arbuscular mycorrhiza were similar to the wild type. On the microbial side, we found that P. palmivora encodes an active chitin synthase-like protein, and mycelial growth is impaired after treatment with a chitin-synthase inhibitor. However, wheat germ agglutinin-detectable N-acetyl-glucosamine (GlcNAc) epitopes were not identified when the oomycete was grown in vitro or while infecting the roots. This indicates that conventional GlcNAc-mers are unlikely to be produced and/or accumulate in P. palmivora cell walls and that LYS12 might perceive an unknown carbohydrate. The impact of Lys12 on progression of root rot disease, together with the finding that similar genes are present in other P. palmivora hosts, suggests that LYS12 might mediate a common early response to this pathogen.
Collapse
Affiliation(s)
- Winnie Fuechtbauer
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Temur Yunusov
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Zoltán Bozsóki
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Aleksandr Gavrin
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Sebastian Schornack
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| |
Collapse
|
46
|
Rey T, Bonhomme M, Chatterjee A, Gavrin A, Toulotte J, Yang W, André O, Jacquet C, Schornack S. The Medicago truncatula GRAS protein RAD1 supports arbuscular mycorrhiza symbiosis and Phytophthora palmivora susceptibility. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5871-5881. [PMID: 29186498 PMCID: PMC5854134 DOI: 10.1093/jxb/erx398] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/13/2017] [Indexed: 05/23/2023]
Abstract
The roots of most land plants are colonized by symbiotic arbuscular mycorrhiza (AM) fungi. To facilitate this symbiosis, plant genomes encode a set of genes required for microbial perception and accommodation. However, the extent to which infection by filamentous root pathogens also relies on some of these genes remains an open question. Here, we used genome-wide association mapping to identify genes contributing to colonization of Medicago truncatula roots by the pathogenic oomycete Phytophthora palmivora. Single-nucleotide polymorphism (SNP) markers most significantly associated with plant colonization response were identified upstream of RAD1, which encodes a GRAS transcription regulator first negatively implicated in root nodule symbiosis and recently identified as a positive regulator of AM symbiosis. RAD1 transcript levels are up-regulated both in response to AM fungus and, to a lower extent, in infected tissues by P. palmivora where its expression is restricted to root cortex cells proximal to pathogen hyphae. Reverse genetics showed that reduction of RAD1 transcript levels as well as a rad1 mutant are impaired in their full colonization by AM fungi as well as by P. palmivora. Thus, the importance of RAD1 extends beyond symbiotic interactions, suggesting a general involvement in M. truncatula microbe-induced root development and interactions with unrelated beneficial and detrimental filamentous microbes.
Collapse
Affiliation(s)
- Thomas Rey
- University of Cambridge, Sainsbury Laboratory, UK
| | - Maxime Bonhomme
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), France
| | | | | | | | - Weibing Yang
- University of Cambridge, Sainsbury Laboratory, UK
| | - Olivier André
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), France
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), France
| | | |
Collapse
|
47
|
Garmier M, Gentzbittel L, Wen J, Mysore KS, Ratet P. Medicago truncatula: Genetic and Genomic Resources. ACTA ACUST UNITED AC 2017; 2:318-349. [PMID: 33383982 DOI: 10.1002/cppb.20058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Medicago truncatula was chosen by the legume community, along with Lotus japonicus, as a model plant to study legume biology. Since then, numerous resources and tools have been developed for M. truncatula. These include, for example, its genome sequence, core ecotype collections, transformation/regeneration methods, extensive mutant collections, and a gene expression atlas. This review aims to describe the different genetic and genomic tools and resources currently available for M. truncatula. We also describe how these resources were generated and provide all the information necessary to access these resources and use them from a practical point of view. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marie Garmier
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France.,Institute of Plant Sciences Paris-Saclay, Université Paris Diderot, Université Sorbonne Paris-Cité, Orsay, France
| | - Laurent Gentzbittel
- EcoLab, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National Polytechnique de Toulouse, Université Paul Sabatier, Castanet-Tolosan, France
| | | | | | - Pascal Ratet
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France.,Institute of Plant Sciences Paris-Saclay, Université Paris Diderot, Université Sorbonne Paris-Cité, Orsay, France
| |
Collapse
|
48
|
Dreher D, Yadav H, Zander S, Hause B. Is there genetic variation in mycorrhization of Medicago truncatula? PeerJ 2017; 5:e3713. [PMID: 28894638 PMCID: PMC5592082 DOI: 10.7717/peerj.3713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/28/2017] [Indexed: 12/30/2022] Open
Abstract
Differences in the plant's response among ecotypes or accessions are often used to identify molecular markers for the respective process. In order to analyze genetic diversity of Medicago truncatula in respect to interaction with the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis, mycorrhizal colonization was evaluated in 32 lines of the nested core collection representing the genetic diversity of the SARDI collection. All studied lines and the reference line Jemalong A17 were inoculated with R. irregularis and the mycorrhization rate was determined at three time points after inoculation. There were, however, no reliable and consistent differences in mycorrhization rates among all lines. To circumvent possible overlay of potential differences by use of the highly effective inoculum, native sandy soil was used in an independent experiment. Here, significant differences in mycorrhization rates among few of the lines were detectable, but the overall high variability in the mycorrhization rate hindered clear conclusions. To narrow down the number of lines to be tested in more detail, root system architecture (RSA) of in vitro-grown seedlings of all lines under two different phosphate (Pi) supply condition was determined in terms of primary root length and number of lateral roots. Under high Pi supply (100 µM), only minor differences were observed, whereas in response to Pi-limitation (3 µM) several lines exhibited a drastically changed number of lateral roots. Five lines showing the highest alterations or deviations in RSA were selected and inoculated with R. irregularis using two different Pi-fertilization regimes with either 13 mM or 3 mM Pi. Mycorrhization rate of these lines was checked in detail by molecular markers, such as transcript levels of RiTubulin and MtPT4. Under high phosphate supply, the ecotypes L000368 and L000555 exhibited slightly increased fungal colonization and more functional arbuscules, respectively. To address the question, whether capability for mycorrhizal colonization might be correlated to general invasion by microorganisms, selected lines were checked for infection by the root rot causing pathogen, Aphanoymces euteiches. The mycorrhizal colonization phenotype, however, did not correlate with the resistance phenotype upon infection with two strains of A. euteiches as L000368 showed partial resistance and L000555 exhibited high susceptibility as determined by quantification of A. euteiches rRNA within infected roots. Although there is genetic diversity in respect to pathogen infection, genetic diversity in mycorrhizal colonization of M. truncatula is rather low and it will be rather difficult to use it as a trait to access genetic markers.
Collapse
Affiliation(s)
- Dorothée Dreher
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Heena Yadav
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Sindy Zander
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| |
Collapse
|
49
|
Liu Y, Hassan S, Kidd BN, Garg G, Mathesius U, Singh KB, Anderson JP. Ethylene Signaling Is Important for Isoflavonoid-Mediated Resistance to Rhizoctonia solani in Roots of Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:691-700. [PMID: 28510484 DOI: 10.1094/mpmi-03-17-0057-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The root-infecting necrotrophic fungal pathogen Rhizoctoniasolani causes significant disease to all the world's major food crops. As a model for pathogenesis of legumes, we have examined the interaction of R. solani AG8 with Medicago truncatula. RNAseq analysis of the moderately resistant M. truncatula accession A17 and highly susceptible sickle (skl) mutant (defective in ethylene sensing) identified major early transcriptional reprogramming in A17. Responses specific to A17 included components of ethylene signaling, reactive oxygen species metabolism, and consistent upregulation of the isoflavonoid biosynthesis pathway. Mass spectrometry revealed accumulation of the isoflavonoid-related compounds liquiritigenin, formononetin, medicarpin, and biochanin A in A17. Overexpression of an isoflavone synthase in M. truncatula roots increased isoflavonoid accumulation and resistance to R. solani. Addition of exogenous medicarpin suggested this phytoalexin may be one of several isoflavonoids required to contribute to resistance to R. solani. Together, these results provide evidence for the role of ethylene-mediated accumulation of isoflavonoids during defense against root pathogens in legumes. The involvement of ethylene signaling and isoflavonoids in the regulation of both symbiont-legume and pathogen-legume interactions in the same tissue may suggest tight regulation of these responses are required in the root tissue.
Collapse
Affiliation(s)
- Yao Liu
- 1 CSIRO Agriculture and Food, Floreat, Western Australia
- 2 Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Samira Hassan
- 3 Research School of Biology, Australian National University, Canberra, Australian Capital Territory; and
| | - Brendan N Kidd
- 1 CSIRO Agriculture and Food, Floreat, Western Australia
| | - Gagan Garg
- 1 CSIRO Agriculture and Food, Floreat, Western Australia
| | - Ulrike Mathesius
- 3 Research School of Biology, Australian National University, Canberra, Australian Capital Territory; and
| | - Karam B Singh
- 1 CSIRO Agriculture and Food, Floreat, Western Australia
- 4 The UWA Institute of Agriculture, University of Western Australia, Crawley, Western Australia
| | - Jonathan P Anderson
- 1 CSIRO Agriculture and Food, Floreat, Western Australia
- 4 The UWA Institute of Agriculture, University of Western Australia, Crawley, Western Australia
| |
Collapse
|
50
|
John R. Stinchcombe. THE NEW PHYTOLOGIST 2017; 215:935-936. [PMID: 28695679 DOI: 10.1111/nph.14650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|