1
|
Orihuela-Rivero R, Morente-López J, Reyes-Betancort JA, Schaefer H, Valido A, Menezes de Sequeira M, Romeiras MM, Góis-Marques CA, Salas-Pascual M, Vanderpoorten A, Fernández-Palacios JM, Patiño J. Geographic and Biological Drivers Shape Anthropogenic Extinctions in the Macaronesian Vascular Flora. GLOBAL CHANGE BIOLOGY 2025; 31:e70072. [PMID: 39962933 DOI: 10.1111/gcb.70072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 05/10/2025]
Abstract
Whether species extinctions have accelerated during the Anthropocene and the extent to which certain species are more susceptible to extinction due to their ecological preferences and intrinsic biological traits are among the most pressing questions in conservation biology. Assessing extinction rates is, however, challenging, as best exemplified by the phenomenon of 'dark extinctions': the loss of species that disappear before they are even formally described. These issues are particularly problematic in oceanic islands, where species exhibit high rates of endemism and unique biological traits but are also among the most vulnerable to extinction. Here, we document plant species extinctions since Linnaeus' Species Plantarum in Macaronesia, a biogeographic region comprised of five hyperdiverse oceanic archipelagos, and identify the key drivers behind these extinctions. We compiled 168 records covering 126 taxa, identifying 13 global and 155 local extinction events. Significantly higher extinction rates were observed compared to the expected global background rate. We uncovered differentiated extinction patterns along altitudinal gradients, highlighting a recent coastal hotspot linked to socioeconomic changes in Macaronesian archipelagos from the 1960s onwards. Key factors influencing extinction patterns include island age, elevation, introduced herbivorous mammals, and human population size. Trait-based analyses across the floras of the Azores and Canary Islands revealed that endemicity, pollination by vertebrates, nitrogen-fixing capacity, woodiness, and zoochory consistently tended to increase extinction risk. Our findings emphasize the critical role of geography and biological traits, alongside anthropogenic impacts, in shaping extinction dynamics on oceanic islands. Enhancing our knowledge of life-history traits within island floras is crucial for accurately predicting and mitigating future extinction risks, underscoring the urgent need for comprehensive biodiversity assessments in island ecosystems.
Collapse
Affiliation(s)
- Raúl Orihuela-Rivero
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Javier Morente-López
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
- Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - J Alfredo Reyes-Betancort
- Jardín de Aclimatación de La Orotava, Instituto Canario de Investigaciones Agrarias (ICIA), Puerto de La Cruz, Tenerife, Spain
| | - Hanno Schaefer
- Department of Life Science Systems, Plant Biodiversity Research, Technical University of Munich, Freising, Germany
| | - Alfredo Valido
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
| | - Miguel Menezes de Sequeira
- Madeira Botanical Group, Faculty of Life Sciences, Campus Universitário da Penteada, University of Madeira, Funchal, Portugal
- CIBIO, Centro de Investigação Em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada, Portugal
| | - María M Romeiras
- LEAF, Linking Landscape, Environment, Agriculture and Food & Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidadede Lisboa, Lisbon, Portugal
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Portugal
| | - Carlos A Góis-Marques
- Madeira Botanical Group, Faculty of Life Sciences, Campus Universitário da Penteada, University of Madeira, Funchal, Portugal
- CIBIO, Centro de Investigação Em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Instituto Dom Luiz (IDL), Laboratório Associado, Universidade de Lisboa, Campo Grande, Lisbon, Portugal
| | - Marcos Salas-Pascual
- Instituto de Estudios Ambientales y Recursos Naturales, Universidad de las Palmas de Gran Canaria, Campus de Tafira, Tafira Baja, Las Palmas de Gran Canaria Islas Canarias, Spain
| | | | | | - Jairo Patiño
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, La Laguna, Tenerife, Spain
| |
Collapse
|
2
|
Prévitali T, Rouault M, Pichereaux C, Gourion B. Lotus resistance against Ralstonia is enhanced by Mesorhizobium and does not impair mutualism. THE NEW PHYTOLOGIST 2025; 245:1249-1262. [PMID: 39562505 DOI: 10.1111/nph.20276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024]
Abstract
Legumes establish nitrogen-fixing symbioses with rhizobia. On the contrary, they can be attacked concomitantly by pathogens, raising the question of potential trade-offs between mutualism and immunity. In order to study such trade-offs, we used a tripartite system involving the model legume Lotus japonicus, its rhizobial symbiont Mesorhizobium loti and the soilborne pathogen Ralstonia solanacearum. We investigated the impact of mutualism on plant defense and the reciprocal influence of plant defense on mutualism. We found that Lotus age-related resistance against Ralstonia was improved by the interaction with rhizobia especially when nodulation is triggered. Conversely, age-related resistance did not compromise nodule organogenesis or functioning under pathogen attack. Proteomic characterization indicates that this resistance is associated with distinct proteome modifications in roots and nodules. This resistance questions the concept of interference between efficient defense reactions and mutualistic interactions and is of great interest for agricultural purposes as it not only restricts pathogen colonization, but would also preserve nitrogen fixation and yield.
Collapse
Affiliation(s)
- Thomas Prévitali
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, France
| | - Mathilde Rouault
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, France
| | - Carole Pichereaux
- Fédération de Recherche Agrobiosciences, Interactions et Biodiversité (FRAIB), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Castanet-Tolosan, F-31326, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, F-31077, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, F-31077, France
| | - Benjamin Gourion
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, France
| |
Collapse
|
3
|
Wendlandt CE, Basu S, Montoya AP, Roberts P, Stewart JD, Coffin AB, Crowder DW, Kiers ET, Porter SS. Managing Friends and Foes: Sanctioning Mutualists in Mixed-Infection Nodules Trades off With Defense Against Antagonists. Evol Appl 2025; 18:e70064. [PMID: 39742388 PMCID: PMC11683190 DOI: 10.1111/eva.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025] Open
Abstract
Successful plant growth requires plants to minimize harm from antagonists and maximize benefit from mutualists. However, these outcomes may be difficult to achieve simultaneously, since plant defenses activated in response to antagonists can compromise mutualism function, and plant resources allocated to defense may trade off with resources allocated to managing mutualists. Here, we investigate how antagonist attack affects plant ability to manage mutualists with sanctions, in which a plant rewards cooperative mutualists and/or punishes uncooperative mutualists. We studied interactions among wild and domesticated pea plants, pea aphids, an aphid-vectored virus (Pea Enation Mosaic Virus, PEMV), and mutualistic rhizobial bacteria that fix nitrogen in root nodules. Using isogenic rhizobial strains that differ in their ability to fix nitrogen and express contrasting fluorescent proteins, we found that peas demonstrated sanctions in both singly-infected nodules and mixed-infection nodules containing both strains. However, the plant's ability to manage mutualists in mixed-infection nodules traded off with its ability to defend against antagonists: when plants were attacked by aphids, they stopped sanctioning within mixed-infection nodules, and plants that exerted stricter sanctions within nodules during aphid attack accumulated higher levels of the aphid-vectored virus, PEMV. Our findings suggest that plants engaged in defense against antagonists suffer a reduced ability to select for the most beneficial symbionts in mixed-infection tissues. Mixed-infection tissues may be relatively common in this mutualism, and reduced plant sanctions in these tissues could provide a refuge for uncooperative mutualists and compromise the benefit that plants obtain from mutualistic symbionts during antagonist attack. Understanding the conflicting selective pressures plants face in complex biotic environments will be crucial for breeding crop varieties that can maximize benefits from mutualists even when they encounter antagonists.
Collapse
Affiliation(s)
| | - Saumik Basu
- Department of EntomologyWashington State UniversityPullmanWashingtonUSA
- Department of EntomologyUniversity of GeorgiaTiftonGeorgiaUSA
| | | | - Paige Roberts
- School of Biological SciencesWashington State UniversityVancouverWashingtonUSA
| | - Justin D. Stewart
- Amsterdam Institute for Life and Environment (A‐LIFE), Section Ecology & EvolutionVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Allison B. Coffin
- Department of Integrative Physiology and NeuroscienceWashington State UniversityVancouverWashingtonUSA
| | - David W. Crowder
- Department of EntomologyWashington State UniversityPullmanWashingtonUSA
| | - E. Toby Kiers
- Amsterdam Institute for Life and Environment (A‐LIFE), Section Ecology & EvolutionVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Stephanie S. Porter
- School of Biological SciencesWashington State UniversityVancouverWashingtonUSA
| |
Collapse
|
4
|
Ruffatto K, da Silva LCO, Neves CDO, Kuntzler SG, de Lima JC, Almeida FA, Silveira V, Corrêa FM, Minello LVP, Johann L, Sperotto RA. Unravelling soybean responses to early and late Tetranychus urticae (Acari: Tetranychidae) infestation. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1223-1239. [PMID: 39250320 DOI: 10.1111/plb.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024]
Abstract
Soybean is a crucial source of food, protein, and oil worldwide that is facing challenges from biotic stresses. Infestation of Tetranychus urticae Koch (Acari: Tetranychidae) stands out as detrimentally affecting plant growth and grain production. Understanding soybean responses to T. urticae infestation is pivotal for unravelling the dynamics of mite-plant interactions. We evaluated the physiological and molecular responses of soybean plants to mite infestation after 5 and 21 days. We employed visual/microscopy observations of leaf damage, H2O2 accumulation, and lipid peroxidation. Additionally, the impact of mite infestation on shoot length/dry weight, chlorophyll concentration, and development stages was analysed. Proteomic analysis identified differentially abundant proteins (DAPs) after early (5 days) and late (21 days) infestation. Furthermore, GO, KEGG, and protein-protein interaction analyses were performed to understand effects on metabolic pathways. Throughout the analysed period, symptoms of leaf damage, H2O2 accumulation, and lipid peroxidation consistently increased. Mite infestation reduced shoot length/dry weight, chlorophyll concentration, and development stage duration. Proteomics revealed 185 and 266 DAPs after early and late mite infestation, respectively, indicating a complex remodelling of metabolic pathways. Photorespiration, chlorophyll synthesis, amino acid metabolism, and Krebs cycle/energy production were impacted after both early and late infestation. Additionally, specific metabolic pathways were modified only after early or late infestation. This study underscores the detrimental effects of mite infestation on soybean physiology and metabolism. DAPs offer potential in breeding programs for enhanced resistance. Overall, this research highlights the complex nature of soybean response to mite infestation, providing insights for intervention and breeding strategies.
Collapse
Affiliation(s)
- K Ruffatto
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - L C O da Silva
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - C D O Neves
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - S G Kuntzler
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - J C de Lima
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - F A Almeida
- Laboratory of Biotechnology, Bioscience and Biotechnology Center (CBB), State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - V Silveira
- Laboratory of Biotechnology, Bioscience and Biotechnology Center (CBB), State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - F M Corrêa
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - L V P Minello
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - L Johann
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - R A Sperotto
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
5
|
Calvert MB, Hoque M, Wood CW. Genotypic variation in resource exchange, use, and production traits in the legume-rhizobia mutualism. Ecol Evol 2024; 14:e70245. [PMID: 39498196 PMCID: PMC11532390 DOI: 10.1002/ece3.70245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 11/07/2024] Open
Abstract
Mutualisms, reciprocally beneficial interactions between two or more species, are ubiquitous in nature. A common feature of mutualisms is extensive context-dependent variation in fitness outcomes. This context-dependency is hypothesized to stem from the environment's mediation of the relative costs and benefits associated with mutualisms. However, traits related to the exchange of goods and services in mutualisms have received little attention in comparison to net fitness outcomes. In this study, we quantified the contribution of host and symbiont genotypes to variation in resource exchange, use, and production traits measured in the host using the model mutualism between legumes and nitrogen-fixing rhizobia. We predicted that plant genotype × rhizobia genotype (G × G) effects would be common to resource exchange traits because resource exchange is hypothesized to be governed by both interacting partners through bargaining. On the other hand, we predicted that plant genotype effects would dominate host resource use and production traits because these traits are only indirectly related to the exchange of resources. Consistent with our prediction for resource exchange traits, but not our prediction for resource use and production traits, we found that rhizobia genotype and G × G effects were the most common sources of variation in the traits that we measured. The results of this study complement the commonly observed phenomenon of G × G effects for fitness by showing that numerous mutualism traits also exhibit G × G variation. Furthermore, our results highlight the possibility that the exchange of resources as well as how partners use and produce traded resources can influence the evolution of mutualistic interactions. Our study lays the groundwork for future work to explore the relationship between resource exchange, use and production traits and fitness (i.e., selection) to test the competing hypotheses proposed to explain the maintenance of fitness variation in mutualisms.
Collapse
Affiliation(s)
- McCall B. Calvert
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Maliha Hoque
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Corlett W. Wood
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
6
|
Parshuram ZA, Harrison TL, Simonsen AK, Stinchcombe JR, Frederickson ME. Nonsymbiotic legumes are more invasive, but only if polyploid. THE NEW PHYTOLOGIST 2023; 237:758-765. [PMID: 36305214 DOI: 10.1111/nph.18579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Both mutualism and polyploidy are thought to influence invasion success in plants, but few studies have tested their joint effects. Mutualism can limit range expansion when plants cannot find a compatible partner in a novel habitat, or facilitate range expansion when mutualism increases a plant's niche breadth. Polyploids are also expected to have greater niche breadth because of greater self-compatibility and phenotypic plasticity, increasing invasion success. For 847 legume species, we compiled data from published sources to estimate ploidy, symbiotic status with rhizobia, specificity on rhizobia, and the number of introduced ranges. We found that diploid species have had limited spread around the globe regardless of whether they are symbiotic or how many rhizobia partners they can host. Polyploids, by contrast, have been successfully introduced to many new ranges, but interactions with rhizobia constrain their range expansion. In a hidden state model of trait evolution, we also found evidence of a high rate of re-diploidization in symbiotic legume lineages, suggesting that symbiosis and ploidy may interact at macroevolutionary scales. Overall, our results suggest that symbiosis with rhizobia limits range expansion when legumes are polyploid but not diploid.
Collapse
Affiliation(s)
- Zoe A Parshuram
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Tia L Harrison
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Anna K Simonsen
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
7
|
Komatsu KJ, Esch NL, Bloodworth KJ, Burghardt KT, McGurrin K, Pullen JD, Parker JD. Rhizobial diversity impacts soybean resistance, but not tolerance, to herbivory during drought. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Cassidy ST, Markalanda S, McFadden CJ, Wood CW. Herbivory modifies plant symbiont number and impact on host plant performance in the field. Evolution 2022; 76:2945-2958. [PMID: 36221227 DOI: 10.1111/evo.14641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 01/22/2023]
Abstract
Species interactions are a unifying theme in ecology and evolution. Both fields are currently moving beyond their historical focus on isolated pairwise relationships to understand how ecological communities affect focal interactions. Additional species can modify both the number of interactions and the fitness consequences of each interaction (i.e., selection). Although only selection affects the evolution of the focal interaction, the two are often conflated, limiting our understanding of the evolution of multispecies interactions. We manipulated aboveground herbivory on the legume Medicago lupulina in the field and quantified its effect on number of symbionts and the per-symbiont impact on plant performance in two belowground symbioses: mutualistic rhizobia bacteria (Ensifer meliloti) and parasitic root-knot nematodes (Meloidogyne hapla). We found that herbivores modified the number of rhizobia nodules, as well as the benefit per nodule. However, each effect was specific to a distinct herbivory regime: natural herbivory affected nodule number, whereas leafhoppers (Cicadellidae) weakened the per nodule benefit. We did not detect any effect of herbivory on nematode gall number or the cost of infection. Our data demonstrate that distinguishing between symbiont number from the fitness consequences of symbiosis is crucial to accurately infer how pairwise interactions will evolve in a community.
Collapse
Affiliation(s)
- Steven T Cassidy
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.,Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| | - Shaniya Markalanda
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Connor J McFadden
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Corlett W Wood
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.,Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
9
|
Mathesius U. Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153765. [PMID: 35952452 DOI: 10.1016/j.jplph.2022.153765] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 05/14/2023]
Abstract
Nitrogen fixing symbioses between plants and bacteria are ancient and, while not numerous, are formed in diverse lineages of plants ranging from microalgae to angiosperms. One symbiosis stands out as the most widespread one is that between legumes and rhizobia, leading to the formation of nitrogen-fixing nodules. The legume family is one of the largest and most diverse group of plants and legumes have been used by humans since the beginning of agriculture, both as high nitrogen food, as well as pastures and rotation crops. One open question is whether their ability to form a nitrogen-fixing symbiosis has contributed to legumes' success, and whether legumes have any unique characteristics that have made them more diverse and widespread than other groups of plants. This review examines the evolutionary journey that has led to the diversification of legumes, in particular its nitrogen-fixing symbiosis, and asks four questions to investigate which legume traits might have contributed to their success: 1. In what ways do legumes differ from other plant groups that have evolved nitrogen-fixing symbioses? In order to answer this question, the characteristics of the symbioses, and efficiencies of nitrogen fixation are compared between different groups of nitrogen fixing plants. 2. Could certain unique features of legumes be a reason for their success? This section examines the manifestations and possible benefits of a nitrogen-rich 'lifestyle' in legumes. 3. If nitrogen fixation was a reason for such a success, why have some species lost the symbiosis? Formation of symbioses has trade-offs, and while these are less well known for non-legumes, there are known energetic and ecological reasons for loss of symbiotic potential in legumes. 4. What can we learn from the unique traits of legumes for future crop improvements? While exploiting some of the physiological properties of legumes could be used to improve legume breeding, our increasing molecular understanding of the essential regulators of root nodule symbioses raise hope of creating new nitrogen fixing symbioses in other crop species.
Collapse
Affiliation(s)
- Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT, 2601, Australia.
| |
Collapse
|
10
|
Legume plant defenses and nutrients mediate indirect interactions between soil rhizobia and chewing herbivores. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Burr AA, Woods KD, Cassidy ST, Wood CW. Priority effects alter the colonization success of a host-associated parasite and mutualist. Ecology 2022; 103:e3720. [PMID: 35396706 DOI: 10.1002/ecy.3720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 11/07/2022]
Abstract
Priority effects shape the assembly of free-living communities and host-associated communities. However, the current literature does not fully incorporate two features of host-symbiont interactions-correlated host responses to multiple symbionts and ontogenetic changes in host responses to symbionts-leading to an incomplete picture of the role of priority effects in host-associated communities. We factorially manipulated the inoculation timing of two plant symbionts (mutualistic rhizobia bacteria and parasitic root-knot nematodes) and tested how host age at arrival, arrival order, and arrival synchrony affected symbiont colonization success in the model legume Medicago truncatula. We found that host age, arrival order, and arrival synchrony significantly affected colonization of one or both symbionts. Host age at arrival only affected nematodes but not rhizobia: younger plants were more heavily infected than older plants. By contrast, arrival order only affected rhizobia but not nematodes: plants formed more rhizobia nodules when rhizobia arrived before nematodes. Finally, synchronous arrival decreased colonization both symbionts, an effect that depended on host age. Our results demonstrate that priority effects compromise the host's ability to control colonization by two major symbionts, and suggest that the role of correlated host responses and host ontogeny in the assembly of host-associated communities deserve further attention.
Collapse
Affiliation(s)
- Audrey A Burr
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kamron D Woods
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven T Cassidy
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Corlett W Wood
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Markalanda SH, McFadden CJ, Cassidy ST, Wood CW. The soil microbiome increases plant survival and modifies interactions with root endosymbionts in the field. Ecol Evol 2022; 12:e8283. [PMID: 35126998 PMCID: PMC8796929 DOI: 10.1002/ece3.8283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 11/07/2022] Open
Abstract
Evidence is accumulating that the soil microbiome-the community of microorganisms living in soils-has a major effect on plant traits and fitness. However, most work to date has taken place under controlled laboratory conditions and has not experimentally disentangled the effect of the soil microbiome on plant performance from the effects of key endosymbiotic constituents. As a result, it is difficult to extrapolate from existing data to understand the role of the soil microbiome in natural plant populations. To address this gap, we performed a field experiment using the black medick Medicago lupulina to test how the soil microbiome influences plant performance and colonization by two root endosymbionts (the mutualistic nitrogen-fixing bacteria Ensifer spp. and the parasitic root-knot nematode Meloidogyne hapla) under natural conditions. We inoculated all plants with nitrogen-fixing bacteria and factorially manipulated the soil microbiome and nematode infection. We found that plants grown in microbe-depleted soil exhibit greater mortality, but that among the survivors, there was no effect of the soil microbiome on plant performance (shoot biomass, root biomass, or shoot-to-root ratio). The soil microbiome also impacted parasitic nematode infection and affected colonization by mutualistic nitrogen-fixing bacteria in a plant genotype-dependent manner, increasing colonization in some plant genotypes and decreasing it in others. Our results demonstrate the soil microbiome has complex effects on plant-endosymbiont interactions and may be critical for survival under natural conditions.
Collapse
Affiliation(s)
| | - Connor J. McFadden
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Steven T. Cassidy
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
- Present address:
Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Corlett W. Wood
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
- Present address:
Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
13
|
Basu S, Clark RE, Blundell R, Casteel CL, Charlton AM, Crowder DW. Reciprocal plant‐mediated antagonism between a legume plant virus and soil rhizobia. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Saumik Basu
- Department of Entomology Washington State University Pullman WA USA
| | - Robert E. Clark
- Department of Entomology Washington State University Pullman WA USA
| | - Robert Blundell
- Department of Plant Pathology University of California Davis Davis CA USA
- School of Integrative Plant Science, Plant Pathology and Plant‐Microbe Biology Section Cornell University Ithaca NY USA
| | - Clare L. Casteel
- Department of Plant Pathology University of California Davis Davis CA USA
- School of Integrative Plant Science, Plant Pathology and Plant‐Microbe Biology Section Cornell University Ithaca NY USA
| | | | - David W. Crowder
- Department of Entomology Washington State University Pullman WA USA
| |
Collapse
|
14
|
Boyle JA, Simonsen AK, Frederickson ME, Stinchcombe JR. Priority effects alter interaction outcomes in a legume-rhizobium mutualism. Proc Biol Sci 2021; 288:20202753. [PMID: 33715440 PMCID: PMC7944086 DOI: 10.1098/rspb.2020.2753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Priority effects occur when the order of species arrival affects the final community structure. Mutualists often interact with multiple partners in different orders, but if or how priority effects alter interaction outcomes is an open question. In the field, we paired the legume Medicago lupulina with two nodulating strains of Ensifer bacteria that vary in nitrogen-fixing ability. We inoculated plants with strains in different orders and measured interaction outcomes. The first strain to arrive primarily determined plant performance and final relative abundances of rhizobia on roots. Plants that received effective microbes first and ineffective microbes second grew larger than plants inoculated with the same microbes in the opposite order. Our results show that mutualism outcomes can be influenced not just by partner identity, but by the interaction order. Furthermore, hosts receiving high-quality mutualists early can better tolerate low-quality symbionts later, indicating that priority effects may help explain the persistence of ineffective symbionts.
Collapse
Affiliation(s)
- Julia A Boyle
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S3B2
| | - Anna K Simonsen
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S3B2
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S3B2.,Koffler Scientific Reserve, University of Toronto, Toronto, Ontario, Canada M5S3B2
| |
Collapse
|
15
|
Vaidya P, Stinchcombe JR. The Potential for Genotype-by-Environment Interactions to Maintain Genetic Variation in a Model Legume-Rhizobia Mutualism. PLANT COMMUNICATIONS 2020; 1:100114. [PMID: 33367267 PMCID: PMC7747969 DOI: 10.1016/j.xplc.2020.100114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/10/2020] [Accepted: 10/08/2020] [Indexed: 05/10/2023]
Abstract
The maintenance of genetic variation in mutualism-related traits is key for understanding mutualism evolution, yet the mechanisms maintaining variation remain unclear. We asked whether genotype-by-environment (G×E) interaction is a potential mechanism maintaining variation in the model legume-rhizobia system, Medicago truncatula-Ensifer meliloti. We planted 50 legume genotypes in a greenhouse under ambient light and shade to reflect reduced carbon availability for plants. We found an expected reduction under shaded conditions for plant performance traits, such as leaf number, aboveground and belowground biomass, and a mutualism-related trait, nodule number. We also found G×E for nodule number, with ∼83% of this interaction due to shifts in genotype fitness rank order across light environments, coupled with strong positive directional selection on nodule number regardless of light environment. Our results suggest that G×E can maintain genetic variation in a mutualism-related trait that is under consistent positive directional selection across light environments.
Collapse
Affiliation(s)
- Priya Vaidya
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S3B2, Canada
- Corresponding author
| | - John R. Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S3B2, Canada
- Koffler Scientific Reserve at Joker's Hill, University of Toronto, Toronto, ON M5S3B2, Canada
| |
Collapse
|
16
|
Ulrich J, Bucher SF, Eisenhauer N, Schmidt A, Türke M, Gebler A, Barry K, Lange M, Römermann C. Invertebrate Decline Leads to Shifts in Plant Species Abundance and Phenology. FRONTIERS IN PLANT SCIENCE 2020; 11:542125. [PMID: 33042175 PMCID: PMC7527414 DOI: 10.3389/fpls.2020.542125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/25/2020] [Indexed: 05/24/2023]
Abstract
Climate and land-use change lead to decreasing invertebrate biomass and alter invertebrate communities. These biotic changes may affect plant species abundance and phenology. Using 24 controlled experimental units in the iDiv Ecotron, we assessed the effects of invertebrate decline on an artificial grassland community formed by 12 herbaceous plant species. More specifically, we used Malaise traps and sweep nets to collect invertebrates from a local tall oatgrass meadow and included them in our Ecotron units at two different invertebrate densities: 100% (no invertebrate decline) and 25% (invertebrate decline of 75%). Another eight EcoUnits received no fauna and served as a control. Plant species abundance and flowering phenology was observed weekly over a period of 18 weeks. Our results showed that invertebrate densities affected the abundance and phenology of plant species. We observed a distinct species abundance shift with respect to the invertebrate treatment. Notably, this shift included a reduction in the abundance of the dominant plant species, Trifolium pratense, when invertebrates were present. Additionally, we found that the species shifted their flowering phenology as a response to the different invertebrate treatments, e.g. with decreasing invertebrate biomass Lotus corniculatus showed a later peak flowering time. We demonstrated that in addition to already well-studied abiotic drivers, biotic components may also drive phenological changes in plant communities. This study clearly suggests that invertebrate decline may contribute to already observed mismatches between plants and animals, with potential negative consequences for ecosystem services like food provision and pollination success. This deterioration of ecosystem function could enhance the loss of insects and plant biodiversity.
Collapse
Affiliation(s)
- Josephine Ulrich
- Institute of Ecology and Evolution, Friedrich Schiller University, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Anja Schmidt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Manfred Türke
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Alban Gebler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Kathryn Barry
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Markus Lange
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Christine Römermann
- Institute of Ecology and Evolution, Friedrich Schiller University, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
17
|
Batstone RT, Peters MAE, Simonsen AK, Stinchcombe JR, Frederickson ME. Environmental variation impacts trait expression and selection in the legume-rhizobium symbiosis. AMERICAN JOURNAL OF BOTANY 2020; 107:195-208. [PMID: 32064599 DOI: 10.1002/ajb2.1432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/04/2019] [Indexed: 05/22/2023]
Abstract
PREMISE The ecological outcomes of mutualism are well known to shift across abiotic or biotic environments, but few studies have addressed how different environments impact evolutionary responses, including the intensity of selection on and the expression of genetic variance in key mutualism-related traits. METHODS We planted 30 maternal lines of the legume Medicago lupulina in four field common gardens and compared our measures of selection on and genetic variance in nodulation, a key trait reflecting legume investment in the symbiosis, with those from a previous greenhouse experiment using the same 30 M. lupulina lines. RESULTS We found that both the mean and genetic variance for nodulation were much greater in the greenhouse than in the field and that the form of selection on nodulation significantly differed across environments. We also found significant genotype-by-environment (G × E) effects for fitness-related traits that were generated by differences in the rank order of plant lines among environments. CONCLUSIONS Overall, our results suggest that the expression of genotypic variation and selection on nodulation differ across environments. In the field, significant rank-order changes for plant fitness potentially help maintain genetic variation in natural populations, even in the face of directional or stabilizing selection.
Collapse
Affiliation(s)
- Rebecca T Batstone
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Carl Woese Institute for Genomic Biology, University of Illinois at Champaign-Urbana, Urbana, IL, 61801, USA
| | - Madeline A E Peters
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Anna K Simonsen
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Koffler Scientific Reserve, University of Toronto, King, ON, L7B 1K5, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
18
|
Porter SS, Bantay R, Friel CA, Garoutte A, Gdanetz K, Ibarreta K, Moore BM, Shetty P, Siler E, Friesen ML. Beneficial microbes ameliorate abiotic and biotic sources of stress on plants. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13499] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | - Roxanne Bantay
- Department of Plant Biology Michigan State University East Lansing MI USA
| | - Colleen A. Friel
- Department of Plant Biology Michigan State University East Lansing MI USA
| | - Aaron Garoutte
- Department of Plant Biology Michigan State University East Lansing MI USA
- Department of Plant Soil & Microbial Sciences Michigan State University East Lansing MI USA
| | - Kristi Gdanetz
- Department of Plant Biology Michigan State University East Lansing MI USA
| | - Kathleen Ibarreta
- School of Biological Sciences Washington State University Vancouver WA USA
| | - Bethany M. Moore
- Department of Plant Biology Michigan State University East Lansing MI USA
| | - Prateek Shetty
- Department of Plant Biology Michigan State University East Lansing MI USA
| | - Eleanor Siler
- Department of Plant Biology Michigan State University East Lansing MI USA
| | - Maren L. Friesen
- Department of Plant Biology Michigan State University East Lansing MI USA
- Department of Plant Pathology Washington State University Pullman WA USA
- Department of Crop & Soil Sciences Washington State University Pullman WA USA
| |
Collapse
|
19
|
Nitrogen-fixing and non-fixing trees differ in leaf chemistry and defence but not herbivory in a lowland Costa Rican rain forest. JOURNAL OF TROPICAL ECOLOGY 2019. [DOI: 10.1017/s0266467419000233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractNitrogen-fixing plants provide critical nitrogen inputs that support the high productivity of tropical forests, but our understanding of the ecology of nitrogen fixers – and especially their interactions with herbivores – remains incomplete. Herbivores may interact differently with nitrogen fixers vs. non-fixers due to differences in leaf nitrogen content and herbivore defence strategies. To examine these potential differences, our study compared leaf carbon, nitrogen, toughness, chemical defence and herbivory for four nitrogen-fixing tree species (Inga oerstediana, Inga sapindoides, Inga thibaudiana and Pentaclethra macroloba) and three non-fixing species (Anaxagorea crassipetala, Casearia arborea and Dipteryx panamensis) in a lowland tropical rain forest. Leaf chemical defence, not nutritional content, was the primary driver of herbivore damage among our species. Even though nitrogen fixers exhibited 21.1% higher leaf nitrogen content, 20.1% lower C:N ratios and 15.4% lower leaf toughness than non-fixers, we found no differences in herbivory or chemical defence between these two plant groups. Our results do not support the common hypotheses that nitrogen fixers experience preferential herbivory or that they produce more nitrogen-rich defensive compounds than non-fixers. Rather, these findings suggest strong species-specific differences in plant–herbivore relationships among both nitrogen-fixing and non-fixing tropical trees.
Collapse
|
20
|
Wood CW, Pilkington BL, Vaidya P, Biel C, Stinchcombe JR. Genetic conflict with a parasitic nematode disrupts the legume-rhizobia mutualism. Evol Lett 2018; 2:233-245. [PMID: 30283679 PMCID: PMC6121810 DOI: 10.1002/evl3.51] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/07/2018] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Abstract
Genetic variation for partner quality in mutualisms is an evolutionary paradox. One possible resolution to this puzzle is that there is a tradeoff between partner quality and other fitness‐related traits. Here, we tested whether susceptibility to parasitism is one such tradeoff in the mutualism between legumes and nitrogen‐fixing bacteria (rhizobia). We performed two greenhouse experiments with the legume Medicago truncatula. In the first, we inoculated each plant with the rhizobia Ensifer meliloti and with one of 40 genotypes of the parasitic root‐knot nematode Meloidogyne hapla. In the second experiment, we inoculated all plants with rhizobia and half of the plants with a genetically variable population of nematodes. Using the number of nematode galls as a proxy for infection severity, we found that plant genotypes differed in susceptibility to nematode infection, and nematode genotypes differed in infectivity. Second, we showed that there was a genetic correlation between the number of mutualistic structures formed by rhizobia (nodules) and the number of parasitic structures formed by nematodes (galls). Finally, we found that nematodes disrupt the rhizobia mutualism: nematode‐infected plants formed fewer nodules and had less nodule biomass than uninfected plants. Our results demonstrate that there is genetic conflict between attracting rhizobia and repelling nematodes in Medicago. If genetic conflict with parasitism is a general feature of mutualism, it could account for the maintenance of genetic variation in partner quality and influence the evolutionary dynamics of positive species interactions.
Collapse
Affiliation(s)
- Corlett W Wood
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S3B2 Canada
| | - Bonnie L Pilkington
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S3B2 Canada
| | - Priya Vaidya
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S3B2 Canada
| | - Caroline Biel
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S3B2 Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S3B2 Canada.,Koffler Scientific Reserve University of Toronto Toronto Ontario M5S3B2 Canada
| |
Collapse
|
21
|
Batstone RT, Carscadden KA, Afkhami ME, Frederickson ME. Using niche breadth theory to explain generalization in mutualisms. Ecology 2018; 99:1039-1050. [PMID: 29453827 DOI: 10.1002/ecy.2188] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/12/2017] [Accepted: 01/22/2018] [Indexed: 02/02/2023]
Abstract
For a mutualism to remain evolutionarily stable, theory predicts that mutualists should limit their associations to high-quality partners. However, most mutualists either simultaneously or sequentially associate with multiple partners that confer the same type of reward. By viewing mutualisms through the lens of niche breadth evolution, we outline how the environment shapes partner availability and relative quality, and ultimately a focal mutualist's partner breadth. We argue that mutualists that associate with multiple partners may have a selective advantage compared to specialists for many reasons, including sampling, complementarity, and portfolio effects, as well as the possibility that broad partner breadth increases breadth along other niche axes. Furthermore, selection for narrow partner breadth is unlikely to be strong when the environment erodes variation in partner quality, reduces the costs of interacting with low-quality partners, spatially structures partner communities, or decreases the strength of mutualism. Thus, we should not be surprised that most mutualists have broad partner breadth, even if it allows for ineffective partners to persist.
Collapse
Affiliation(s)
- Rebecca T Batstone
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Kelly A Carscadden
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada.,Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Michelle E Afkhami
- Department of Biology, University of Miami, Coral Gables, Florida, 33146, USA
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
22
|
Dijkhuizen LW, Brouwer P, Bolhuis H, Reichart G, Koppers N, Huettel B, Bolger AM, Li F, Cheng S, Liu X, Wong GK, Pryer K, Weber A, Bräutigam A, Schluepmann H. Is there foul play in the leaf pocket? The metagenome of floating fern Azolla reveals endophytes that do not fix N 2 but may denitrify. THE NEW PHYTOLOGIST 2018; 217:453-466. [PMID: 29084347 PMCID: PMC5901025 DOI: 10.1111/nph.14843] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/05/2017] [Indexed: 05/18/2023]
Abstract
Dinitrogen fixation by Nostoc azollae residing in specialized leaf pockets supports prolific growth of the floating fern Azolla filiculoides. To evaluate contributions by further microorganisms, the A. filiculoides microbiome and nitrogen metabolism in bacteria persistently associated with Azolla ferns were characterized. A metagenomic approach was taken complemented by detection of N2 O released and nitrogen isotope determinations of fern biomass. Ribosomal RNA genes in sequenced DNA of natural ferns, their enriched leaf pockets and water filtrate from the surrounding ditch established that bacteria of A. filiculoides differed entirely from surrounding water and revealed species of the order Rhizobiales. Analyses of seven cultivated Azolla species confirmed persistent association with Rhizobiales. Two distinct nearly full-length Rhizobiales genomes were identified in leaf-pocket-enriched samples from ditch grown A. filiculoides. Their annotation revealed genes for denitrification but not N2 -fixation. 15 N2 incorporation was active in ferns with N. azollae but not in ferns without. N2 O was not detectably released from surface-sterilized ferns with the Rhizobiales. N2 -fixing N. azollae, we conclude, dominated the microbiome of Azolla ferns. The persistent but less abundant heterotrophic Rhizobiales bacteria possibly contributed to lowering O2 levels in leaf pockets but did not release detectable amounts of the strong greenhouse gas N2 O.
Collapse
Affiliation(s)
- Laura W. Dijkhuizen
- Molecular Plant Physiology DepartmentUtrecht UniversityPadualaan 8Utrecht3584CHthe Netherlands
| | - Paul Brouwer
- Molecular Plant Physiology DepartmentUtrecht UniversityPadualaan 8Utrecht3584CHthe Netherlands
| | - Henk Bolhuis
- Department of Marine Microbiology and BiogeochemistryNetherlands Institute for Sea Research (NIOZ)Utrecht UniversityDen Hoorn1797SZthe Netherlands
| | - Gert‐Jan Reichart
- Department of Earth SciencesUtrecht UniversityUtrecht3508TAthe Netherlands
| | - Nils Koppers
- Department of Plant BiochemistryCluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorf40225Germany
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding ADIS/DNA Core FacilityCologne50829Germany
| | - Anthony M. Bolger
- Institute of Botany and Molecular Genetics IBMGIRWTH Aachen University52074AachenGermany
| | - Fay‐Wei Li
- Department of BiologyDuke UniversityDurhamNC27708USA
- Boyce Thompson Institute for Plant ResearchCornell UniversityIthacaNY14853USA
| | - Shifeng Cheng
- Beijing Genomics Institute‐ShenzhenShenzhen518083China
| | - Xin Liu
- Beijing Genomics Institute‐ShenzhenShenzhen518083China
| | - Gane Ka‐Shu Wong
- Beijing Genomics Institute‐ShenzhenShenzhen518083China
- Department of Biological SciencesUniversity of AlbertaEdmontonABT6G 2E9Canada
| | | | - Andreas Weber
- Department of Plant BiochemistryCluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorf40225Germany
| | - Andrea Bräutigam
- Department of Plant BiochemistryCluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorf40225Germany
| | - Henriette Schluepmann
- Molecular Plant Physiology DepartmentUtrecht UniversityPadualaan 8Utrecht3584CHthe Netherlands
| |
Collapse
|
23
|
Moyano G, Marco D, Knopoff D, Torres G, Turner C. Explaining coexistence of nitrogen fixing and non-fixing rhizobia in legume-rhizobia mutualism using mathematical modeling. Math Biosci 2017; 292:30-35. [DOI: 10.1016/j.mbs.2017.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 07/01/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
|
24
|
Clark TJ, Friel CA, Grman E, Shachar‐Hill Y, Friesen ML. Modelling nutritional mutualisms: challenges and opportunities for data integration. Ecol Lett 2017; 20:1203-1215. [DOI: 10.1111/ele.12810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/23/2016] [Accepted: 06/12/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Teresa J. Clark
- Department of Plant Biology Michigan State University 612 Wilson Rd. East Lansing MI48824 USA
| | - Colleen A. Friel
- Department of Plant Biology Michigan State University 612 Wilson Rd. East Lansing MI48824 USA
| | - Emily Grman
- Biology Department Eastern Michigan University 441 Mark Jefferson Science Complex Ypsilanti MI48197 USA
| | - Yair Shachar‐Hill
- Department of Plant Biology Michigan State University 612 Wilson Rd. East Lansing MI48824 USA
| | - Maren L. Friesen
- Department of Plant Biology Michigan State University 612 Wilson Rd. East Lansing MI48824 USA
| |
Collapse
|
25
|
Mutualisms Are Not on the Verge of Breakdown. Trends Ecol Evol 2017; 32:727-734. [PMID: 28739078 DOI: 10.1016/j.tree.2017.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 11/21/2022]
Abstract
Mutualisms teeter on a knife-edge between conflict and cooperation, or so the conventional wisdom goes. The costs and benefits of mutualism often depend on the abiotic or biotic context in which an interaction occurs, and experimental manipulations can induce shifts in interaction outcomes from mutualism all the way to parasitism. Yet, research suggests that mutualisms rarely turn parasitic in nature. Similarly, despite the potential for 'cheating' to undermine mutualism evolution, empirical evidence for fitness conflicts between partners and, thus, selection for cheating in mutualisms is scant. Furthermore, mutualism seldom leads to parasitism at macroevolutionary timescales. Thus, I argue here that mutualisms do not deserve their reputation for ecological and evolutionary instability, and are not on the verge of breakdown.
Collapse
|
26
|
Jack CN, Friesen ML, Hintze A, Sheneman L. Third-party mutualists have contrasting effects on host invasion under the enemy-release and biotic-resistance hypotheses. Evol Ecol 2017. [DOI: 10.1007/s10682-017-9912-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Harrison TL, Wood CW, Heath KD, Stinchcombe JR. Geographically structured genetic variation in the
Medicago lupulina
–
Ensifer
mutualism. Evolution 2017; 71:1787-1801. [DOI: 10.1111/evo.13268] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/08/2017] [Accepted: 04/15/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Tia L. Harrison
- Department of Ecology and Evolutionary BiologyUniversity of Toronto 25 Willcocks Street Toronto Ontario Canada M5S 3B2
| | - Corlett W. Wood
- Department of Ecology and Evolutionary BiologyUniversity of Toronto 25 Willcocks Street Toronto Ontario Canada M5S 3B2
| | - Katy D. Heath
- Department of Plant BiologyUniversity of Illinois 505 S. Goodwin Avenue Urbana Illinois 61801
| | - John R. Stinchcombe
- Department of Ecology and Evolutionary BiologyUniversity of Toronto 25 Willcocks Street Toronto Ontario Canada M5S 3B2
- Centre for Genome Evolution and FunctionUniversity of Toronto 25 Willcocks Street Toronto Ontario Canada M5S 3B2
| |
Collapse
|
28
|
Harrison TL, Wood CW, Borges IL, Stinchcombe JR. No evidence for adaptation to local rhizobial mutualists in the legume Medicago lupulina. Ecol Evol 2017; 7:4367-4376. [PMID: 28649348 PMCID: PMC5478075 DOI: 10.1002/ece3.3012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/15/2017] [Accepted: 03/27/2017] [Indexed: 12/31/2022] Open
Abstract
Local adaptation is a common but not ubiquitous feature of species interactions, and understanding the circumstances under which it evolves illuminates the factors that influence adaptive population divergence. Antagonistic species interactions dominate the local adaptation literature relative to mutualistic ones, preventing an overall assessment of adaptation within interspecific interactions. Here, we tested whether the legume Medicago lupulina is adapted to the locally abundant species of mutualistic nitrogen-fixing rhizobial bacteria that vary in frequency across its eastern North American range. We reciprocally inoculated northern and southern M. lupulina genotypes with the northern (Ensifer medicae) or southern bacterium (E. meliloti) in a greenhouse experiment. Despite producing different numbers of root nodules (the structures in which the plants house the bacteria), neither northern nor southern plants produced more seeds, flowered earlier, or were more likely to flower when inoculated with their local rhizobia. We then used a pre-existing dataset to perform a genome scan for loci that showed elevated differentiation between field-collected plants that hosted different bacteria. None of the loci we identified belonged to the well-characterized suite of legume-rhizobia symbiosis genes, suggesting that the rhizobia do not drive genetic divergence between M. lupulina populations. Our results demonstrate that symbiont local adaptation has not evolved in this mutualism despite large-scale geographic variation in the identity of the interacting species.
Collapse
Affiliation(s)
- Tia L. Harrison
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Corlett W. Wood
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Isabela L. Borges
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - John R. Stinchcombe
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
- Centre for Genome Evolution and FunctionUniversity of TorontoTorontoONCanada
| |
Collapse
|
29
|
Barrett LG, Zee PC, Bever JD, Miller JT, Thrall PH. Evolutionary history shapes patterns of mutualistic benefit in
Acacia
–rhizobial interactions. Evolution 2016; 70:1473-85. [DOI: 10.1111/evo.12966] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 05/01/2016] [Accepted: 05/16/2016] [Indexed: 01/15/2023]
Affiliation(s)
| | - Peter C. Zee
- Department of Biology California State University Northridge California 91330
| | - James D. Bever
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey University of Kansas Lawrence Kansas 66045
| | - Joseph T. Miller
- National Research Collections Australia CSIRO National Facilities and Collections Canberra ACT 2601 Australia
- Division of Environmental Biology National Science Foundation Arlington Virginia 22230
| | | |
Collapse
|
30
|
Simonsen AK, Stinchcombe JR. Standing genetic variation in host preference for mutualist microbial symbionts. Proc Biol Sci 2015; 281:rspb.2014.2036. [PMID: 25355477 DOI: 10.1098/rspb.2014.2036] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many models of mutualisms show that mutualisms are unstable if hosts lack mechanisms enabling preferential associations with mutualistic symbiotic partners over exploitative partners. Despite the theoretical importance of mutualism-stabilizing mechanisms, we have little empirical evidence to infer their evolutionary dynamics in response to exploitation by non-beneficial partners. Using a model mutualism-the interaction between legumes and nitrogen-fixing soil symbionts-we tested for quantitative genetic variation in plant responses to mutualistic and exploitative symbiotic rhizobia in controlled greenhouse conditions. We found significant broad-sense heritability in a legume host's preferential association with mutualistic over exploitative symbionts and selection to reduce frequency of associations with exploitative partners. We failed to detect evidence that selection will favour the loss of mutualism-stabilizing mechanisms in the absence of exploitation, as we found no evidence for a fitness cost to the host trait or indirect selection on genetically correlated traits. Our results show that genetic variation in the ability to preferentially reduce associations with an exploitative partner exists within mutualisms and is under selection, indicating that micro-evolutionary responses in mutualism-stabilizing traits in the face of rapidly evolving mutualistic and exploitative symbiotic bacteria can occur in natural host populations.
Collapse
Affiliation(s)
- Anna K Simonsen
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Canada M5S 3B2
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology & Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, Canada M5S 3B2
| |
Collapse
|
31
|
Regus JU, Gano KA, Hollowell AC, Sofish V, Sachs JL. Lotus
hosts delimit the mutualism-parasitism continuum of Bradyrhizobium. J Evol Biol 2015; 28:447-56. [DOI: 10.1111/jeb.12579] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 10/15/2014] [Accepted: 12/22/2014] [Indexed: 01/24/2023]
Affiliation(s)
- J. U. Regus
- Department of Biology; University of California; Riverside CA USA
| | - K. A. Gano
- Department of Biology; University of California; Riverside CA USA
| | - A. C. Hollowell
- Department of Biology; University of California; Riverside CA USA
| | - V. Sofish
- Department of Biology; University of California; Riverside CA USA
| | - J. L. Sachs
- Department of Biology; University of California; Riverside CA USA
- Institute for Integrative Genome Biology; University of California; Riverside CA USA
| |
Collapse
|
32
|
Interactions among mutualism, competition, and predation foster species coexistence in diverse communities. THEOR ECOL-NETH 2015. [DOI: 10.1007/s12080-015-0251-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Porter SS, Simms EL. Selection for cheating across disparate environments in the legume-rhizobium mutualism. Ecol Lett 2014; 17:1121-9. [PMID: 25039752 DOI: 10.1111/ele.12318] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/19/2014] [Accepted: 06/03/2014] [Indexed: 01/18/2023]
Abstract
The primary dilemma in evolutionarily stable mutualisms is that natural selection for cheating could overwhelm selection for cooperation. Cheating need not entail parasitism; selection favours cheating as a quantitative trait whenever less-cooperative partners are more fit than more-cooperative partners. Mutualisms might be stabilised by mechanisms that direct benefits to more-cooperative individuals, which counter selection for cheating; however, empirical evidence that natural selection favours cheating in mutualisms is sparse. We measured selection on cheating in single-partner pairings of wild legume and rhizobium lineages, which prevented legume choice. Across contrasting environments, selection consistently favoured cheating by rhizobia, but did not favour legumes that provided less benefit to rhizobium partners. This is the first simultaneous measurement of selection on cheating across both host and symbiont lineages from a natural population. We empirically confirm selection for cheating as a source of antagonistic coevolutionary pressure in mutualism and a biological dilemma for models of cooperation.
Collapse
Affiliation(s)
- Stephanie S Porter
- Department of Integrative Biology, University of California, 1001 Valley Life Science Building #3140, Berkeley, California, 94720-3140, USA
| | | |
Collapse
|