1
|
Si Y, Zhang H, Ma S, Zheng S, Niu J, Tian S, Cui X, Zhu K, Yan X, Lu Q, Zhang Z, Du T, Lu P, Chen Y, Wu Q, Xie J, Guo G, Gu M, Wu H, Li Y, Yuan C, Li Z, Liu Z, Dong L, Ling HQ, Li M. Genomic structural variation in an alpha/beta hydrolase triggers hybrid necrosis in wheat. Nat Commun 2025; 16:2655. [PMID: 40102399 PMCID: PMC11920055 DOI: 10.1038/s41467-025-57750-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
Hybrid necrosis, a century-old mystery in wheat, is caused by complementary genes Ne1 and Ne2. Ne2, encoding a nucleotide-binding leucine-rich repeat (NLR) immune receptor, has been cloned, yet Ne1 remains elusive. Here, we report that Ne1, which encodes an alpha/beta hydrolase (ABH) protein generated by structural variation, triggers hybrid necrosis with Ne2 by activating autoimmune responses. We further verify that not only allelic variation but also copy number variation (CNV) of Ne1 are pivotal for hybrid necrosis diversity in wheat. Ne1 likely originates from wild emmer wheat, potentially through duplication and ectopic recombination events. Unlike Ne2, which is frequently selected for rust resistance in wheat breeding, the lower prevalence of Ne1 in modern wheat cultivars is attributed to its association with hybrid necrosis. Altogether, these findings illuminate the co-evolution of the NLR/ABH gene pair in plant development and innate immunity, offering potential benefits for wheat breeding.
Collapse
Affiliation(s)
- Yaoqi Si
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huaizhi Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shengwei Ma
- Yazhouwan National Laboratory, Sanya, Hainan Province, China
| | - Shusong Zheng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jianqing Niu
- Yazhouwan National Laboratory, Sanya, Hainan Province, China
- Hainan Seed Industry Laboratory, Sanya, Hainan Province, China
| | - Shuiquan Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xuejia Cui
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Keyu Zhu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaocui Yan
- Hebei Agricultural University, Baoding, Hebei Province, China
| | - Qiao Lu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhimeng Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tingting Du
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ping Lu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | - Qiuhong Wu
- Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Jingzhong Xie
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghao Guo
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mengjun Gu
- Biomedical Research Center for Structural Analysis, Shandong University, Jinan, Shandong, China
| | - Huilan Wu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yiwen Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | - Zaifeng Li
- Hebei Agricultural University, Baoding, Hebei Province, China
| | - Zhiyong Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- Hainan Seed Industry Laboratory, Sanya, Hainan Province, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Lingli Dong
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Hong-Qing Ling
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- Yazhouwan National Laboratory, Sanya, Hainan Province, China.
- Hainan Seed Industry Laboratory, Sanya, Hainan Province, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Miaomiao Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Wu F, Sun C, Zhu Z, Deng L, Yu F, Xie Q, Li C. A multiprotein regulatory module, MED16-MBR1&2, controls MED25 homeostasis during jasmonate signaling. Nat Commun 2025; 16:772. [PMID: 39824838 PMCID: PMC11748718 DOI: 10.1038/s41467-025-56041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
Mediator25 (MED25) has been ascribed as a signal-processing and -integrating center that controls jasmonate (JA)-induced and MYC2-dependent transcriptional output. A better understanding of the regulation of MED25 stability will undoubtedly advance our knowledge of the precise regulation of JA signaling-related transcriptional output. Here, we report that Arabidopsis MED16 activates JA-responsive gene expression by promoting MED25 stability. Conversely, two homologous E3 ubiquitin ligases, MED25-BINDING RING-H2 PROTEIN1 (MBR1) and MBR2, negatively regulate JA-responsive gene expression by promoting MED25 degradation. MED16 competes with MBR1&2 to bind to the von Willebrand Factor A (vWF-A) domain of MED25, thereby antagonizing the MBR1&2-mediated degradation of MED25 in vivo. In addition, we show that MED16 promotes hormone-induced interactions between MYC2 and MED25, leading to the activation of JA-responsive gene expression. Collectively, our findings reveal a multiprotein regulatory module that robustly and tightly maintains MED25 homeostasis, which determines the strength of the transcriptional output of JA signaling.
Collapse
Affiliation(s)
- Fangming Wu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Chuanlong Sun
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ziying Zhu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Deng
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Qi Xie
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chuanyou Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
3
|
Chang CY, Hsieh EJ, Wang SL, Grillet L. L-DOPA promotes cadmium tolerance and modulates iron deficiency genes in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2025; 177:e70024. [PMID: 39727040 DOI: 10.1111/ppl.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
Cadmium (Cd) is a toxic element and a widespread health hazard. Preventing its entry into crops is an outstanding issue. 3,4-Dihydroxy-L-phenylalanine (L-DOPA) is a non-proteinogenic amino acid that is secreted by a few legume plants and affects neighboring plants. Exogenous L-DOPA triggers iron (Fe) uptake by roots of Arabidopsis thaliana Columbia-0 ecotype through transcriptional activation of Fe deficiency genes, including IRONMANs (IMAs), which encode peptides regulating Fe homeostasis. Ectopic expression of IRONMAN1 was reported to enhance Cd tolerance in Arabidopsis. We therefore hypothesized that L-DOPA could also enhance Cd tolerance by stimulating the expression of IMAs. In the present study, the elemental profile and the expression of key genes of plants exposed to a combination of Cd and L-DOPA were studied. The results show that exogenous L-DOPA considerably enhances the Cd tolerance of Arabidopsis thaliana, abolishing the Cd-induced chlorosis and necrosis, and reducing Cd accumulation. This increased tolerance is not due to an enhanced Fe uptake and is not mediated by IMAs. Instead, L-DOPA triggered a peculiar transcriptional program that led to an increased expression of a branch of the Fe deficiency pathway comprising the transcription factor bHLH39 but, surprisingly, not its target genes FRO2 and IRT1. The NICOTIANAMINE SYNTHASE 4 (NAS4) gene, which mediates Cd tolerance, was highly and specifically upregulated by the application of L-DOPA and Cd combined. These results suggest that Fe homeostasis is controlled by small molecules through currently unknown mechanisms that could be leveraged to manipulate Fe and Cd accumulation in plants.
Collapse
Affiliation(s)
- Ching-Yuan Chang
- Department of Agricultural Chemistry, College of Agriculture and Bioresources, National Taiwan University, Taipei, Taiwan
| | - En-Jung Hsieh
- Department of Agricultural Chemistry, College of Agriculture and Bioresources, National Taiwan University, Taipei, Taiwan
| | - Shan-Li Wang
- Department of Agricultural Chemistry, College of Agriculture and Bioresources, National Taiwan University, Taipei, Taiwan
| | - Louis Grillet
- Department of Agricultural Chemistry, College of Agriculture and Bioresources, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Schippers JHM, von Bongartz K, Laritzki L, Frohn S, Frings S, Renziehausen T, Augstein F, Winkels K, Sprangers K, Sasidharan R, Vertommen D, Van Breusegem F, Hartman S, Beemster GTS, Mhamdi A, van Dongen JT, Schmidt-Schippers RR. ERFVII-controlled hypoxia responses are in part facilitated by MEDIATOR SUBUNIT 25 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:748-768. [PMID: 39259461 DOI: 10.1111/tpj.17018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Flooding impairs plant growth through oxygen deprivation, which activates plant survival and acclimation responses. Transcriptional responses to low oxygen are generally associated with the activation of group VII ETHYLENE-RESPONSE FACTOR (ERFVII) transcription factors. However, the exact mechanisms and molecular components by which ERFVII factors initiate gene expression are not fully elucidated. Here, we show that the ERFVII factors RELATED TO APETALA 2.2 (RAP2.2) and RAP2.12 cooperate with the Mediator complex subunit AtMED25 to coordinate gene expression under hypoxia in Arabidopsis thaliana. Respective med25 knock-out mutants display reduced low-oxygen stress tolerance. AtMED25 physically associates with a distinct set of hypoxia core genes and its loss partially impairs transcription under hypoxia due to decreased RNA polymerase II recruitment. Association of AtMED25 with target genes requires the presence of ERFVII transcription factors. Next to ERFVII protein stabilisation, also the composition of the Mediator complex including AtMED25 is potentially affected by hypoxia stress as shown by protein-complex pulldown assays. The dynamic response of the Mediator complex to hypoxia is furthermore supported by the fact that two subunits, AtMED8 and AtMED16, are not involved in the establishment of hypoxia tolerance, whilst both act in coordination with AtMED25 under other environmental conditions. We furthermore show that AtMED25 function under hypoxia is independent of ethylene signalling. Finally, functional conservation at the molecular level was found for the MED25-ERFVII module between A. thaliana and the monocot species Oryza sativa, pointing to a potentially universal role of MED25 in coordinating ERFVII-dependent transcript responses to hypoxia in plants.
Collapse
Affiliation(s)
- Jos H M Schippers
- Department of Molecular Genetics, Seed Development, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland, 06466, Germany
| | - Kira von Bongartz
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Lisa Laritzki
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Stephanie Frohn
- Department of Molecular Genetics, Seed Development, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland, 06466, Germany
| | - Stephanie Frings
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, Universitätsstraße 25, Bielefeld, 33615, Germany
- Center for Biotechnology, University of Bielefeld, Universitätsstraße 27, Bielefeld, 33615, Germany
| | - Tilo Renziehausen
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, Universitätsstraße 25, Bielefeld, 33615, Germany
- Center for Biotechnology, University of Bielefeld, Universitätsstraße 27, Bielefeld, 33615, Germany
| | - Frauke Augstein
- Department of Organismal Biology, Physiological Botany, and Linnean Centre for Plant Biology, Uppsala University, Ullsv. 24E, Uppsala, SE-75651, Sweden
| | - Katharina Winkels
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Katrien Sprangers
- IMPRES Research Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, G.U.613, Antwerpen, 2020, Belgium
| | - Rashmi Sasidharan
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Didier Vertommen
- de Duve Institute and MASSPROT platform, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels, 1200, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- Vlaams Instituut voor Biotechnologie (VIB), Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Sjon Hartman
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, Freiburg, 79104, Germany
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, Schänzlestraße 1, Freiburg, 79104, Germany
| | - Gerrit T S Beemster
- IMPRES Research Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, G.U.613, Antwerpen, 2020, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- Vlaams Instituut voor Biotechnologie (VIB), Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Joost T van Dongen
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Romy R Schmidt-Schippers
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, Universitätsstraße 25, Bielefeld, 33615, Germany
- Center for Biotechnology, University of Bielefeld, Universitätsstraße 27, Bielefeld, 33615, Germany
| |
Collapse
|
5
|
Freytes SN, Gobbini ML, Cerdán PD. The Plant Mediator Complex in the Initiation of Transcription by RNA Polymerase II. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:211-237. [PMID: 38277699 DOI: 10.1146/annurev-arplant-070623-114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Thirty years have passed since the discovery of the Mediator complex in yeast. We are witnessing breakthroughs and advances that have led to high-resolution structural models of yeast and mammalian Mediators in the preinitiation complex, showing how it is assembled and how it positions the RNA polymerase II and its C-terminal domain (CTD) to facilitate the CTD phosphorylation that initiates transcription. This information may be also used to guide future plant research on the mechanisms of Mediator transcriptional control. Here, we review what we know about the subunit composition and structure of plant Mediators, the roles of the individual subunits and the genetic analyses that pioneered Mediator research, and how transcription factors recruit Mediators to regulatory regions adjoining promoters. What emerges from the research is a Mediator that regulates transcription activity and recruits hormonal signaling modules and histone-modifying activities to set up an off or on transcriptional state that recruits general transcription factors for preinitiation complex assembly.
Collapse
Affiliation(s)
| | | | - Pablo D Cerdán
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina; , ,
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
6
|
Lei P, Jiang Y, Zhao Y, Jiang M, Ji X, Ma L, Jin G, Li J, Zhang S, Kong D, Zhao X, Meng F. Functions of Basic Helix-Loop-Helix (bHLH) Proteins in the Regulation of Plant Responses to Cold, Drought, Salt, and Iron Deficiency: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10692-10709. [PMID: 38712500 DOI: 10.1021/acs.jafc.3c09665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Abiotic stresses including cold, drought, salt, and iron deficiency severely impair plant development, crop productivity, and geographic distribution. Several bodies of research have shed light on the pleiotropic functions of BASIC HELIX-LOOP-HELIX (bHLH) proteins in plant responses to these abiotic stresses. In this review, we mention the regulatory roles of bHLH TFs in response to stresses such as cold, drought, salt resistance, and iron deficiency, as well as in enhancing grain yield in plants, especially crops. The bHLH proteins bind to E/G-box motifs in the target promoter and interact with various other factors to form a complex regulatory network. Through this network, they cooperatively activate or repress the transcription of downstream genes, thereby regulating various stress responses. Finally, we present some perspectives for future research focusing on the molecular mechanisms that integrate and coordinate these abiotic stresses. Understanding these molecular mechanisms is crucial for the development of stress-tolerant crops.
Collapse
Affiliation(s)
- Pei Lei
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Yaxuan Jiang
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Yong Zhao
- College of Life Sciences, Baicheng Normal University, Baicheng 137099, China
| | - Mingquan Jiang
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130022, China
| | - Ximei Ji
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Le Ma
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Guangze Jin
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Jianxin Li
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Subin Zhang
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Dexin Kong
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Fanjuan Meng
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
7
|
Trofimov K, Gratz R, Ivanov R, Stahl Y, Bauer P, Brumbarova T. FER-like iron deficiency-induced transcription factor (FIT) accumulates in nuclear condensates. J Cell Biol 2024; 223:e202311048. [PMID: 38393070 PMCID: PMC10890924 DOI: 10.1083/jcb.202311048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The functional importance of nuclear protein condensation remains often unclear. The bHLH FER-like iron deficiency-induced transcription factor (FIT) controls iron acquisition and growth in plants. Previously described C-terminal serine residues allow FIT to interact and form active transcription factor complexes with subgroup Ib bHLH factors such as bHLH039. FIT has lower nuclear mobility than mutant FITmSS271AA. Here, we show that FIT undergoes a light-inducible subnuclear partitioning into FIT nuclear bodies (NBs). Using quantitative and qualitative microscopy-based approaches, we characterized FIT NBs as condensates that were reversible and likely formed by liquid-liquid phase separation. FIT accumulated preferentially in NBs versus nucleoplasm when engaged in protein complexes with itself and with bHLH039. FITmSS271AA, instead, localized to NBs with different dynamics. FIT colocalized with splicing and light signaling NB markers. The NB-inducing light conditions were linked with active FIT and elevated FIT target gene expression in roots. FIT condensation may affect nuclear mobility and be relevant for integrating environmental and Fe nutrition signals.
Collapse
Affiliation(s)
- Ksenia Trofimov
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Regina Gratz
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tzvetina Brumbarova
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Dabravolski SA, Isayenkov SV. Recent Updates on ALMT Transporters' Physiology, Regulation, and Molecular Evolution in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3167. [PMID: 37687416 PMCID: PMC10490231 DOI: 10.3390/plants12173167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Aluminium toxicity and phosphorus deficiency in soils are the main interconnected problems of modern agriculture. The aluminium-activated malate transporters (ALMTs) comprise a membrane protein family that demonstrates various physiological functions in plants, such as tolerance to environmental Al3+ and the regulation of stomatal movement. Over the past few decades, the regulation of ALMT family proteins has been intensively studied. In this review, we summarise the current knowledge about this transporter family and assess their involvement in diverse physiological processes and comprehensive regulatory mechanisms. Furthermore, we have conducted a thorough bioinformatic analysis to decipher the functional importance of conserved residues, structural components, and domains. Our phylogenetic analysis has also provided new insights into the molecular evolution of ALMT family proteins, expanding their scope beyond the plant kingdom. Lastly, we have formulated several outstanding questions and research directions to further enhance our understanding of the fundamental role of ALMT proteins and to assess their physiological functions.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel;
| | - Stanislav V. Isayenkov
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse 3, 06120 Halle, Germany
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Osipovskogo Str. 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
9
|
Zheng L, Wu H, Wang A, Zhang Y, Liu Z, Ling HQ, Song XJ, Li Y. The SOD7/DPA4-GIF1 module coordinates organ growth and iron uptake in Arabidopsis. NATURE PLANTS 2023; 9:1318-1332. [PMID: 37550368 DOI: 10.1038/s41477-023-01475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 07/03/2023] [Indexed: 08/09/2023]
Abstract
Organ growth is controlled by both intrinsic genetic factors and external environmental signals. However, the molecular mechanisms that coordinate plant organ growth and nutrient supply remain largely unknown. We have previously reported that the B3 domain transcriptional repressor SOD7 (NGAL2) and its closest homologue DPA4 (NGAL3) act redundantly to limit organ and seed growth in Arabidopsis. Here we report that SOD7 represses the interaction between the transcriptional coactivator GRF-INTERACTING FACTOR 1 (GIF1) and growth-regulating factors (GRFs) by competitively interacting with GIF1, thereby limiting organ and seed growth. We further reveal that GIF1 physically interacts with FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT), which acts as a central regulator of iron uptake and homeostasis. SOD7 can competitively repress the interaction of GIF1 with FIT to influence iron uptake and responses. The sod7-2 dpa4-3 mutant enhances the expression of genes involved in iron uptake and displays high iron accumulation. Genetic analyses support that GIF1 functions downstream of SOD7 to regulate organ and seed growth as well as iron uptake and responses. Thus, our findings define a previously unrecognized mechanism that the SOD7/DPA4-GIF1 module coordinates organ growth and iron uptake by targeting key regulators of growth and iron uptake.
Collapse
Affiliation(s)
- Leiying Zheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Huilan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Anbin Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yueying Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zupei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| | - Xian-Jun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Krishna TPA, Ceasar SA, Maharajan T. Biofortification of Crops to Fight Anemia: Role of Vacuolar Iron Transporters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3583-3598. [PMID: 36802625 DOI: 10.1021/acs.jafc.2c07727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plant-based foods provide all the crucial nutrients for human health. Among these, iron (Fe) is one of the essential micronutrients for plants and humans. A lack of Fe is a major limiting factor affecting crop quality, production, and human health. There are people who suffer from various health problems due to the low intake of Fe in their plant-based foods. Anemia has become a serious public health issue due to Fe deficiency. Enhancing Fe content in the edible part of food crops is a major thrust area for scientists worldwide. Recent progress in nutrient transporters has provided an opportunity to resolve Fe deficiency or nutritional problems in plants and humans. Understanding the structure, function, and regulation of Fe transporters is essential to address Fe deficiency in plants and to improve Fe content in staple food crops. In this review, we summarized the role of Fe transporter family members in the uptake, cellular and intercellular movement, and long-distance transport of Fe in plants. We draw insights into the role of vacuolar membrane transporters in the crop for Fe biofortification. We also provide structural and functional insights into cereal crops' vacuolar iron transporters (VITs). This review will help highlight the importance of VITs for improving the Fe biofortification of crops and alleviating Fe deficiency in humans.
Collapse
Affiliation(s)
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi 683104, Kerala, India
| | - Theivanayagam Maharajan
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi 683104, Kerala, India
| |
Collapse
|
11
|
Lu CK, Liang G. Fe deficiency-induced ethylene synthesis confers resistance to Botrytis cinerea. THE NEW PHYTOLOGIST 2023; 237:1843-1855. [PMID: 36440498 DOI: 10.1111/nph.18638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Although iron (Fe) deficiency is an adverse condition to growth and development of plants, it increases the resistance to pathogens. How Fe deficiency induces the resistance to pathogens is still unclear. Here, we reveal that the inoculation of Botrytis cinerea activates the Fe deficiency response of plants, which further induces ethylene synthesis and then resistance to B. cinerea. FIT and bHLH Ib are a pair of bHLH transcription factors, which control the Fe deficiency response. Both the Fe deficiency-induced ethylene synthesis and resistance are blocked in fit-2 and bhlh4x-1 (a quadruple mutant for four bHLH Ib members). SAM1 and SAM2, two ethylene synthesis-associated genes, are induced by Fe deficiency in a FIT-bHLH Ib-dependent manner. Moreover, SAM1 and SAM2 are required for the increased ethylene and resistance to B. cinerea under Fe-deficient conditions. Our findings suggest that the FIT-bHLH Ib module activates the expression of SAM1 and SAM2, thereby inducing ethylene synthesis and resistance to B. cinerea. This study uncovers that Fe signaling also functions as a part of the plant immune system against pathogens.
Collapse
Affiliation(s)
- Cheng Kai Lu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Pagani MA, Gomez-Casati DF. Advances in Iron Retrograde Signaling Mechanisms and Uptake Regulation in Photosynthetic Organisms. Methods Mol Biol 2023; 2665:121-145. [PMID: 37166598 DOI: 10.1007/978-1-0716-3183-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Iron (Fe) is an essential metal for the growth and development of different organisms, including plants and algae. This metal participates in different biological processes, among which are cellular respiration and photosynthesis. Fe is found associated with heme groups and as part of inorganic Fe-S groups as cofactors of numerous cellular proteins. Although Fe is abundant in soils, it is often not bioavailable due to soil pH. For this reason, photosynthetic organisms have developed different strategies for the uptake, the sensing of Fe intracellular levels but also different mechanisms that maintain and regulate adequate concentrations of this metal in response to physiological needs. This work focuses on discussing recent advances in the characterization of the mechanisms of Fe homeostasis and Fe retrograde signaling in photosynthetic organisms.
Collapse
Affiliation(s)
- Maria A Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina.
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
13
|
Tan B, Ingvarsson PK. Integrating genome-wide association mapping of additive and dominance genetic effects to improve genomic prediction accuracy in Eucalyptus. THE PLANT GENOME 2022; 15:e20208. [PMID: 35441826 DOI: 10.1002/tpg2.20208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies (GWAS) is a powerful and widely used approach to decipher the genetic control of complex traits. Still, a significant challenge for dissecting quantitative traits in forest trees is statistical power. This study uses a population consisting of 1,123 samples derived from two successive generations of crosses between Eucalyptus grandis (W. Hill) and E. urophylla (S.T. Blake). All samples have been phenotyped for growth and wood property traits and genotyped using the EuChip60K chip, yielding 37,832 informative single nucleotide polymorphisms (SNPs). We use multi-locus GWAS models to assess additive and dominance effects to identify markers associated with growth and wood property traits in the eucalypt hybrids. Additive and dominance association models identified 78 and 82 significant SNPs across all traits, respectively, which captured between 39 and 86% of the genomic-based heritability. We also used SNPs identified from the GWAS and SNPs using less stringent significance thresholds to evaluate predictive abilities in a genomic selection framework. Genomic selection models based on the top 1% SNPs captured a substantially greater proportion of the genetic variance of traits compared with when we used all SNPs for model training. The prediction ability of estimated breeding values improved significantly for all traits when using either the top 1% SNPs or SNPs identified using a relaxed p value threshold (p < 10-3 ). This study also highlights the added value of incorporating dominance effects for identifying genomic regions controlling growth traits in trees. Moreover, integrating GWAS results into genomic selection method provides enhanced power relative to discrete associations for identifying genomic variation potentially valuable for forest tree breeding.
Collapse
Affiliation(s)
- Biyue Tan
- Umeå Plant Science Centre, Dep. of Ecology and Environmental Science, Umeå Univ., Umeå, SE-90187, Sweden
- Stora Enso AB, Nacka, SE-131 04, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Dep. of Plant Biology, Uppsala BioCenter, Swedish Univ. of Agricultural Sciences, Uppsala, SE-750 07, Sweden
| |
Collapse
|
14
|
Chen J, Yang S, Fan B, Zhu C, Chen Z. The Mediator Complex: A Central Coordinator of Plant Adaptive Responses to Environmental Stresses. Int J Mol Sci 2022; 23:ijms23116170. [PMID: 35682844 PMCID: PMC9181133 DOI: 10.3390/ijms23116170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 01/25/2023] Open
Abstract
As sessile organisms, plants are constantly exposed to a variety of environmental stresses and have evolved adaptive mechanisms, including transcriptional reprogramming, in order to survive or acclimate under adverse conditions. Over the past several decades, a large number of gene-specific transcription factors have been identified in the transcriptional regulation of plant adaptive responses. The Mediator complex plays a key role in transducing signals from gene-specific transcription factors to the transcription machinery to activate or repress target gene expression. Since its first purification about 15 years ago, plant Mediator complex has been extensively analyzed for its composition and biological functions. Mutants of many plant Mediator subunits are not lethal but are compromised in growth, development and response to biotic and abiotic stress, underscoring a particularly important role in plant adaptive responses. Plant Mediator subunits also interact with partners other than transcription factors and components of the transcription machinery, indicating the complexity of the regulation of gene expression by plant Mediator complex. Here, we present a comprehensive discussion of recent analyses of the structure and function of plant Mediator complex, with a particular focus on its roles in plant adaptive responses to a wide spectrum of environmental stresses and associated biological processes.
Collapse
Affiliation(s)
- Jialuo Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
| | - Su Yang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
| | - Baofang Fan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-8683-6090 (C.Z.); +1-765-494-4657 (Z.C.)
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-8683-6090 (C.Z.); +1-765-494-4657 (Z.C.)
| |
Collapse
|
15
|
Giustozzi M, Freytes SN, Jaskolowski A, Lichy M, Mateos J, Falcone Ferreyra ML, Rosano GL, Cerdán P, Casati P. Arabidopsis mediator subunit 17 connects transcription with DNA repair after UV-B exposure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1047-1067. [PMID: 35220621 DOI: 10.1111/tpj.15722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Mediator 17 (MED17) is a subunit of the Mediator complex that regulates transcription initiation in eukaryotic organisms. In yeast and humans, MED17 also participates in DNA repair, physically interacting with proteins of the nucleotide excision DNA repair system, but this function in plants has not been investigated. We studied the role of MED17 in Arabidopsis plants exposed to UV-B radiation. Our results demonstrate that med17 and OE MED17 plants have altered responses to UV-B, and that MED17 participates in various aspects of the DNA damage response (DDR). Comparison of the med17 transcriptome with that of wild-type (WT) plants showed that almost one-third of transcripts with altered expression in med17 plants were also changed by UV-B exposure in WT plants. Increased sensitivity to DNA damage after UV-B in med17 plants could result from the altered regulation of UV-B responsive transcripts but MED17 also physically interacts with DNA repair proteins, suggesting a direct role of this Mediator subunit during repair. Finally, we show that MED17 is necessary to regulate the DDR activated by ataxia telangiectasia and Rad3 related (ATR), and that programmed cell death 5 (PDCD5) overexpression reverts the deficiencies in DDR shown in med17 mutants. Our data demonstrate that MED17 is an important regulator of DDR after UV-B irradiation in Arabidopsis.
Collapse
Affiliation(s)
- Marisol Giustozzi
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | | | - Aime Jaskolowski
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Micaela Lichy
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Julieta Mateos
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - María Lorena Falcone Ferreyra
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Germán L Rosano
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biologia Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Pablo Cerdán
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Casati
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| |
Collapse
|
16
|
Huerta-Venegas PI, Raya-González J, López-García CM, Barrera-Ortiz S, Ruiz-Herrera LF, López-Bucio J. Mutation of MEDIATOR16 promotes plant biomass accumulation and root growth by modulating auxin signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111117. [PMID: 34895546 DOI: 10.1016/j.plantsci.2021.111117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
The MEDIATOR complex influences the transcription of genes acting as a RNA pol II co-activator. The MED16 subunit has been related to low phosphate sensing in roots, but how it influences the overall plant growth and root development remains unknown. In this study, we compared the root growth of Arabidopsis wild-type (WT), and two alleles of MED16 (med16-2 and med16-3) mutants in vitro. The MED16 loss-of-function seedlings showed longer primary roots with higher cell division capacity of meristematic cells, and an increased number of lateral roots than WT plants, which correlated with improved biomass accumulation. The auxin response reported by DR5:GFP fluorescence was comparable in WT and med16-2 root tips, but strongly decreased in pericycle cells and lateral root primordia in the mutants. Dose-response analysis supplementing indole-3-acetic acid (IAA), or the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA), indicated normal responses to auxin in the med16-2 and med16-3 mutants regarding primary root growth and lateral root formation, but strong resistance to NPA in primary roots, which could be correlated with cell division and elongation. Expression analysis of pPIN1::PIN1::GFP, pPIN3::PIN3::GFP, pIAA14:GUS, pIAA28:GUS and 35S:MED16-GFP suggests that MED16 could mediate auxin signaling. Our data imply that an altered auxin response in the med16 mutants is not necessarily deleterious for overall growth and developmental patterning and may instead directly regulate basic cellular programmes.
Collapse
Affiliation(s)
- Pedro Iván Huerta-Venegas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico.
| | - Javier Raya-González
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico.
| | - Claudia Marina López-García
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico.
| | - Salvador Barrera-Ortiz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico.
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico.
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
17
|
Si Y, Zheng S, Niu J, Tian S, Gu M, Lu Q, He Y, Zhang J, Shi X, Li Y, Ling HQ. Ne2, a typical CC-NBS-LRR-type gene, is responsible for hybrid necrosis in wheat. THE NEW PHYTOLOGIST 2021; 232:279-289. [PMID: 34160845 DOI: 10.1111/nph.17575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Hybrid necrosis, caused by complementary genes Ne1 and Ne2, is a serious barrier for combining desirable traits from different genotypes of wheat, affecting the full utilisation of heterosis. To date, both Ne1 and Ne2 are still not isolated although they were documented decades ago. We report here the map-based cloning and functional characterisation of Ne2, encoding a coiled coil-nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR) protein. Homozygous frameshift mutations generated using the CRISPR/Cas9 approach confirmed the Ne2-inducing hybrid necrosis in wheat. Upregulated expression of Ne2 induced by Ne1 and excess hydrogen peroxide accumulation are associated with the necrosis formation. Genetic analyses of a Ne2 allele (Ne2m ) and leaf rust resistance gene LrLC10/Lr13 revealed that they might be the same gene. Furthermore, we demonstrated that the frequency of the Ne2 allele was much lower in landraces (2.00%) compared with that in modern cultivars (13.62%), suggesting that Ne2 allele has been partially applied in wheat genetic improvement. Our findings open opportunities of thoroughly investigating the molecular mechanism of hybrid necrosis, selecting Lr13 and simultaneously avoiding hybrid necrosis in wheat breeding through marker-assisted selection.
Collapse
Affiliation(s)
- Yaoqi Si
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shusong Zheng
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqing Niu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuiquan Tian
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengjun Gu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiao Lu
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yilin He
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Zhang
- Shi Jia Zhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, 050041, China
| | - Xiaoli Shi
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiwen Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Kanwar P, Baby D, Bauer P. Interconnection of iron and osmotic stress signalling in plants: is FIT a regulatory hub to cross-connect abscisic acid responses? PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:31-38. [PMID: 33772999 DOI: 10.1111/plb.13261] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Osmotic stresses, such as salinity and drought, have deleterious effects on uptake and translocation of essential mineral nutrients. Iron (Fe) is an important micronutrient that regulates many processes in plants. Plants have adopted various molecular and physiological strategies for Fe acquisition from soil and transport to and within plants. Dynamic Fe signalling in plants tightly regulates Fe uptake and homeostasis. In this way, Fe nutrition is adjusted to growth and stress conditions, and Fe deficiency-regulated transcription factors, such as FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT), act as regulatory hubs in these responses. Here, we review and analyse expression of the various components of the Fe signalling during osmotic stresses. We discuss common players in the Fe and osmotic stress signalling. Furthermore, this review focuses on exploring a novel and exciting direct connection of regulatory mechanisms of Fe intake and acquisition with ABA-mediated environmental stress cues, like salt/drought. We propose a model that discuss how environmental stress affects Fe uptake and acquisition and vice versa at molecular-physiological levels in plants.
Collapse
Affiliation(s)
- P Kanwar
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany
| | - D Baby
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany
| | - P Bauer
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
19
|
Riaz N, Guerinot ML. All together now: regulation of the iron deficiency response. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2045-2055. [PMID: 33449088 PMCID: PMC7966950 DOI: 10.1093/jxb/erab003] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/08/2021] [Indexed: 05/17/2023]
Abstract
Iron (Fe) is one of the essential micronutrients required by both plants and animals. In humans, Fe deficiency causes anemia, the most prevalent nutritional disorder. Most people rely on plant-based foods as their major Fe source, but plants are a poor source of dietary Fe. Therefore, there is a critical need to better understand the mechanisms involved in the uptake and trafficking of Fe and how plants adapt to Fe deficiency. Fe participates in key cellular functions such as photosynthesis and respiration. Perturbations of Fe uptake, transport, or storage affect plant growth as well as crop yield and plant product quality. Excess Fe has toxic effects due to its high redox activity. Plants, therefore, tightly regulate Fe uptake, distribution, and allocation. Here, we review the regulatory mechanisms involved at the transcriptional and post-translational levels that are critical to prevent Fe uptake except when plants experience Fe deficiency. We discuss the key regulatory network of basic helix-loop-helix (bHLH) transcription factors, including FIT, subgroup Ib, subgroup IVc, and URI (bHLH121), crucial for regulating Fe uptake in Arabidopsis thaliana. Furthermore, we describe the regulators of these transcription factors that either activate or inhibit their function, ensuring optimal Fe uptake that is essential for plant growth.
Collapse
Affiliation(s)
- Nabila Riaz
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
- Correspondence:
| |
Collapse
|
20
|
Lee M, Dominguez-Ferreras A, Kaliyadasa E, Huang WJ, Antony E, Stevenson T, Lehmann S, Schäfer P, Knight MR, Ntoukakis V, Knight H. Mediator Subunits MED16, MED14, and MED2 Are Required for Activation of ABRE-Dependent Transcription in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:649720. [PMID: 33777083 PMCID: PMC7991908 DOI: 10.3389/fpls.2021.649720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 05/29/2023]
Abstract
The Mediator complex controls transcription of most eukaryotic genes with individual subunits required for the control of particular gene regulons in response to various perturbations. In this study, we reveal the roles of the plant Mediator subunits MED16, MED14, and MED2 in regulating transcription in response to the phytohormone abscisic acid (ABA) and we determine which cis elements are under their control. Using synthetic promoter reporters we established an effective system for testing relationships between subunits and specific cis-acting motifs in protoplasts. Our results demonstrate that MED16, MED14, and MED2 are required for the full transcriptional activation by ABA of promoters containing both the ABRE (ABA-responsive element) and DRE (drought-responsive element). Using synthetic promoter motif concatamers, we showed that ABA-responsive activation of the ABRE but not the DRE motif was dependent on these three Mediator subunits. Furthermore, the three subunits were required for the control of water loss from leaves but played no role in ABA-dependent growth inhibition, highlighting specificity in their functions. Our results identify new roles for three Mediator subunits, provide a direct demonstration of their function and highlight that our experimental approach can be utilized to identify the function of subunits of plant transcriptional regulators.
Collapse
Affiliation(s)
- Morgan Lee
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Anna Dominguez-Ferreras
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Ewon Kaliyadasa
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Wei-Jie Huang
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Edna Antony
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Tracey Stevenson
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Silke Lehmann
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
- Institute of Molecular Botany, Ulm University, Ulm, Germany
| | - Marc R. Knight
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Heather Knight
- Department of Biosciences, Durham University, Durham, United Kingdom
| |
Collapse
|
21
|
Ohama N, Moo TL, Chua NH. Differential requirement of MED14/17 recruitment for activation of heat inducible genes. THE NEW PHYTOLOGIST 2021; 229:3360-3376. [PMID: 33251584 DOI: 10.1111/nph.17119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/09/2020] [Indexed: 05/06/2023]
Abstract
The mechanism of heat stress response in plants has been studied, focusing on the function of transcription factors (TFs). Generally, TFs recruit coactivators, such as Mediator, are needed to assemble the transcriptional machinery. However, despite the close relationship with TFs, how coactivators are involved in transcriptional regulation under heat stress conditions is largely unclear. We found a severe thermosensitive phenotype of Arabidopsis mutants of MED14 and MED17. Transcriptomic analysis revealed that a quarter of the heat stress (HS)-inducible genes were commonly downregulated in these mutants. Furthermore, chromatin immunoprecipitation assay showed that the recruitment of Mediator by HsfA1s, the master regulators of heat stress response, is an important step for the expression of HS-inducible genes. There was a differential requirement of Mediator among genes; TF genes have a high requirement whereas heat shock proteins (HSPs) have a low requirement. Furthermore, artificial activation of HsfA1d mimicking perturbation of protein homeostasis induced HSP gene expression without MED14 recruitment but not TF gene expression. Considering the essential role of MED14 in Mediator function, other coactivators may play major roles in HSP activation depending on the cellular conditions. Our findings highlight the importance of differential recruitment of Mediator for the precise control of HS responses in plants.
Collapse
Affiliation(s)
- Naohiko Ohama
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Teck Lim Moo
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| |
Collapse
|
22
|
Raya-González J, Ojeda-Rivera JO, Mora-Macias J, Oropeza-Aburto A, Ruiz-Herrera LF, López-Bucio J, Herrera-Estrella L. MEDIATOR16 orchestrates local and systemic responses to phosphate scarcity in Arabidopsis roots. THE NEW PHYTOLOGIST 2021; 229:1278-1288. [PMID: 33034045 DOI: 10.1111/nph.16989] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/30/2020] [Indexed: 05/21/2023]
Abstract
Phosphate (Pi ) is a critical macronutrient for the biochemical and molecular functions of cells. Under phosphate limitation, plants manifest adaptative strategies to increase phosphate scavenging. However, how low phosphate sensing links to the transcriptional machinery remains unknown. The role of the MEDIATOR (MED) transcriptional co-activator, through its MED16 subunit in Arabidopsis root system architecture remodeling in response to phosphate limitation was assessed. Its critical function acting over the SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1)-ALUMINUM-ACTIVATED MALATE TRANSPORT1 (ALMT1) signaling module was tested through a combination of genetic, biochemical, and genome-wide transcriptomic approaches. Root system configuration in response to phosphate scarcity involved MED16 functioning, which modulates the expression of a large set of low-phosphate-induced genes that respond to local and systemic signals in the Arabidopsis root tip, including those directly activated by STOP1. Biomolecular fluorescence complementation analysis suggests that MED16 is required for the transcriptional activation of STOP1 targets, including the membrane permease ALMT1, to increase malate exudation in response to low phosphate. Our results unveil the function of a critical transcriptional component, MED16, in the root adaptive responses to a scarce plant macronutrient, which helps understanding how plant cells orchestrate root morphogenesis to gene expression with the STOP1-ALMT1 module.
Collapse
Affiliation(s)
- Javier Raya-González
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, 36821 Campus Irapuato, Guanajuato, Mexico
- Facultad de Químico Farmacobiología, Avenida Tzintzuntzan 173, Col. Matamoros, Morelia, Michoacán, Mexico
| | - Jonathan Odilón Ojeda-Rivera
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, 36821 Campus Irapuato, Guanajuato, Mexico
| | - Javier Mora-Macias
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, 36821 Campus Irapuato, Guanajuato, Mexico
| | - Araceli Oropeza-Aburto
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, 36821 Campus Irapuato, Guanajuato, Mexico
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria, Morelia, Michoacán, 58030, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria, Morelia, Michoacán, 58030, Mexico
| | - Luis Herrera-Estrella
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, 36821 Campus Irapuato, Guanajuato, Mexico
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Box 42122, Lubbock, TX, 79409, USA
| |
Collapse
|
23
|
Zhang H, Zheng D, Yin L, Song F, Jiang M. Functional Analysis of OsMED16 and OsMED25 in Response to Biotic and Abiotic Stresses in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:652453. [PMID: 33868352 PMCID: PMC8044553 DOI: 10.3389/fpls.2021.652453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 05/19/2023]
Abstract
Mediator complex is a multiprotein complex that regulates RNA polymerase II-mediated transcription. Moreover, it functions in several signaling pathways, including those involved in response to biotic and abiotic stresses. We used virus-induced gene silencing (VIGS) to study the functions of two genes, namely OsMED16 and OsMED25 in response to biotic and abiotic stresses in rice. Both genes were differentially induced by Magnaporthe grisea (M. grisea), the causative agent of blast disease, hormone treatment, and abiotic stress. We found that both BMV: OsMED16- and BMV: OsMED25-infiltrated seedlings reduced the resistance to M. grisea by regulating the accumulation of H2O2 and expression of defense-related genes. Furthermore, BMV: OsMED16-infiltrated seedlings decreased the tolerance to cold by increasing the malondialdehyde (MDA) content and reducing the expression of cold-responsive genes.
Collapse
Affiliation(s)
- Huijuan Zhang
- College of Life Science, Taizhou University, Taizhou, China
| | - Dewei Zheng
- College of Life Science, Taizhou University, Taizhou, China
| | - Longfei Yin
- College of Life Science, Taizhou University, Taizhou, China
| | - Fengming Song
- National Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ming Jiang
- College of Life Science, Taizhou University, Taizhou, China
- *Correspondence: Ming Jiang,
| |
Collapse
|
24
|
Tong J, Sun M, Wang Y, Zhang Y, Rasheed A, Li M, Xia X, He Z, Hao Y. Dissection of Molecular Processes and Genetic Architecture Underlying Iron and Zinc Homeostasis for Biofortification: From Model Plants to Common Wheat. Int J Mol Sci 2020; 21:E9280. [PMID: 33291360 PMCID: PMC7730113 DOI: 10.3390/ijms21239280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
The micronutrients iron (Fe) and zinc (Zn) are not only essential for plant survival and proliferation but are crucial for human health. Increasing Fe and Zn levels in edible parts of plants, known as biofortification, is seen a sustainable approach to alleviate micronutrient deficiency in humans. Wheat, as one of the leading staple foods worldwide, is recognized as a prioritized choice for Fe and Zn biofortification. However, to date, limited molecular and physiological mechanisms have been elucidated for Fe and Zn homeostasis in wheat. The expanding molecular understanding of Fe and Zn homeostasis in model plants is providing invaluable resources to biofortify wheat. Recent advancements in NGS (next generation sequencing) technologies coupled with improved wheat genome assembly and high-throughput genotyping platforms have initiated a revolution in resources and approaches for wheat genetic investigations and breeding. Here, we summarize molecular processes and genes involved in Fe and Zn homeostasis in the model plants Arabidopsis and rice, identify their orthologs in the wheat genome, and relate them to known wheat Fe/Zn QTL (quantitative trait locus/loci) based on physical positions. The current study provides the first inventory of the genes regulating grain Fe and Zn homeostasis in wheat, which will benefit gene discovery and breeding, and thereby accelerate the release of Fe- and Zn-enriched wheats.
Collapse
Affiliation(s)
- Jingyang Tong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Mengjing Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Yue Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Yong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Awais Rasheed
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing 100081, China;
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ming Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Xianchun Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing 100081, China;
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| |
Collapse
|
25
|
Wawrzyńska A, Sirko A. The Role of Selective Protein Degradation in the Regulation of Iron and Sulfur Homeostasis in Plants. Int J Mol Sci 2020; 21:E2771. [PMID: 32316330 PMCID: PMC7215296 DOI: 10.3390/ijms21082771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Plants are able to synthesize all essential metabolites from minerals, water, and light to complete their life cycle. This plasticity comes at a high energy cost, and therefore, plants need to tightly allocate resources in order to control their economy. Being sessile, plants can only adapt to fluctuating environmental conditions, relying on quality control mechanisms. The remodeling of cellular components plays a crucial role, not only in response to stress, but also in normal plant development. Dynamic protein turnover is ensured through regulated protein synthesis and degradation processes. To effectively target a wide range of proteins for degradation, plants utilize two mechanistically-distinct, but largely complementary systems: the 26S proteasome and the autophagy. As both proteasomal- and autophagy-mediated protein degradation use ubiquitin as an essential signal of substrate recognition, they share ubiquitin conjugation machinery and downstream ubiquitin recognition modules. Recent progress has been made in understanding the cellular homeostasis of iron and sulfur metabolisms individually, and growing evidence indicates that complex crosstalk exists between iron and sulfur networks. In this review, we highlight the latest publications elucidating the role of selective protein degradation in the control of iron and sulfur metabolism during plant development, as well as environmental stresses.
Collapse
Affiliation(s)
- Anna Wawrzyńska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | | |
Collapse
|
26
|
Schwarz B, Bauer P. FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and -independent gene signatures. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1694-1705. [PMID: 31922570 PMCID: PMC7067300 DOI: 10.1093/jxb/eraa012] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/08/2020] [Indexed: 05/05/2023]
Abstract
Iron (Fe) is vital for plant growth. Plants balance the beneficial and toxic effects of this micronutrient, and tightly control Fe uptake and allocation. Here, we review the role of the basic helix-loop-helix (bHLH) transcription factor FIT (FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) in Fe acquisition. FIT is not only essential, it is also a central regulatory hub in root cells to steer and adjust the rate of Fe uptake by the root in a changing environment. FIT regulates a subset of root Fe deficiency (-Fe) response genes. Based on a combination of co-expression network and FIT-dependent transcriptome analyses, we defined a set of FIT-dependent and FIT-independent gene expression signatures and co-expression clusters that encode specific functions in Fe regulation and Fe homeostasis. These gene signatures serve as markers to integrate novel regulatory factors and signals into the -Fe response cascade. FIT forms a complex with bHLH subgroup Ib transcription factors. Furthermore, it interacts with key regulators from different signaling pathways that either activate or inhibit FIT function to adjust Fe acquisition to growth and environmental constraints. Co-expression clusters and FIT protein interactions suggest a connection of -Fe with ABA responses and root cell elongation processes that can be explored in future studies.
Collapse
Affiliation(s)
- Birte Schwarz
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
27
|
Mao X, Weake VM, Chapple C. Mediator function in plant metabolism revealed by large-scale biology. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5995-6003. [PMID: 31504746 DOI: 10.1093/jxb/erz372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/07/2019] [Indexed: 05/16/2023]
Abstract
Mediator is a multisubunit transcriptional co-regulator that is involved in the regulation of an array of processes including plant metabolism. The pathways regulated by Mediator-dependent processes include those for the synthesis of phenylpropanoids (MED5), cellulose (MED16), lipids (MED15 and CDK8), and the regulation of iron homeostasis (MED16 and MED25). Traditional genetic and biochemical approaches laid the foundation for our understanding of Mediator function, but recent transcriptomic and metabolomic studies have provided deeper insights into how specific subunits cooperate in the regulation of plant metabolism. In this review, we highlight recent developments in the investigation of Mediator and plant metabolism, with particular emphasis on the large-scale biology studies of med mutants.
Collapse
Affiliation(s)
- Xiangying Mao
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
28
|
Kobayashi T. Understanding the Complexity of Iron Sensing and Signaling Cascades in Plants. PLANT & CELL PHYSIOLOGY 2019; 60:1440-1446. [PMID: 30796837 DOI: 10.1093/pcp/pcz038] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/12/2019] [Indexed: 05/06/2023]
Abstract
Under iron-deficient conditions, plants induce the expression of a set of genes involved in iron uptake and translocation. This response to iron deficiency is regulated by transcriptional networks mediated by transcription factors (TFs) and protein-level modification of key factors by ubiquitin ligases. Several of the basic helix-loop-helix TFs and the HRZ/BTS ubiquitin ligases are conserved across graminaceous and non-graminaceous plants. Other regulators are specific, such as IDEF1 and IDEF2 in graminaceous plants and FIT/FER and MYB10/72 in non-graminaceous plants. IMA/FEP peptides positively regulate the iron-deficiency responses in a wide range of plants by unknown mechanisms. Direct binding of iron or other metals to some key regulators, including HRZ/BTS and IDEF1, may be responsible for intracellular iron-sensing and -signaling events. In addition, key TFs such as FIT and IDEF1 interact with various proteins involved in signaling pathways of plant hormones, oxidative stress and metal abundance. Thus, FIT and IDEF1 might function as hubs for the integration of environmental signals to modulate the responses to iron deficiency. In addition to local iron signaling, root iron responses are modulated by shoot-derived long-distance signaling potentially mediated by phloem-mobile substances such as iron, iron chelates and IMA/FEP peptides.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, Japan
| |
Collapse
|
29
|
Fornero C, Rickerd T, Kirik V. Papillae formation on Arabidopsis leaf trichomes requires the function of Mediator tail subunits 2, 14, 15a, 16, and 25. PLANTA 2019; 249:1063-1071. [PMID: 30535640 DOI: 10.1007/s00425-018-3063-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Arabidopsis Mediator subunits 2, 14, 15a, 16, and 25 are required for papillae development on the trichome cell wall surface. Arabidopsis leaf hairs exhibit raised protrusions, termed papillae, on their cell wall surfaces. Here, we show that the glassy hair mutant, glh2, exhibits trichomes with an approximate 11-fold decrease in papillae density on their surfaces in comparison to wild type. This phenotype was found to be the result of mutations in Arabidopsis Mediator subunit 16. MED16 is localized to the nucleus of trichomes, consistent with Mediator's role in transcription. The expression patterns of the trichome development reporters, ETR2pro::GUS and GL2pro::GUS, as well as GL2 transcript levels were not altered in the glh2 mutant. Screening of available T-DNA insertion lines in other subunits of the Mediator tail module revealed glassy trichome phenotypes in med2, med14, and med15a mutants. The data suggest that the Mediator complex is required for expression of genes involved in trichome papillae development.
Collapse
Affiliation(s)
- Christy Fornero
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Trevor Rickerd
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Viktor Kirik
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA.
| |
Collapse
|
30
|
Romera FJ, García MJ, Lucena C, Martínez-Medina A, Aparicio MA, Ramos J, Alcántara E, Angulo M, Pérez-Vicente R. Induced Systemic Resistance (ISR) and Fe Deficiency Responses in Dicot Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:287. [PMID: 30915094 PMCID: PMC6421314 DOI: 10.3389/fpls.2019.00287] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/21/2019] [Indexed: 05/03/2023]
Abstract
Plants develop responses to abiotic stresses, like Fe deficiency. Similarly, plants also develop responses to cope with biotic stresses provoked by biological agents, like pathogens and insects. Some of these responses are limited to the infested damaged organ, but other responses systemically spread far from the infested organ and affect the whole plant. These latter responses include the Systemic Acquired Resistance (SAR) and the Induced Systemic Resistance (ISR). SAR is induced by pathogens and insects while ISR is mediated by beneficial microbes living in the rhizosphere, like bacteria and fungi. These root-associated mutualistic microbes, besides impacting on plant nutrition and growth, can further boost plant defenses, rendering the entire plant more resistant to pathogens and pests. In the last years, it has been found that ISR-eliciting microbes can induce both physiological and morphological responses to Fe deficiency in dicot plants. These results suggest that the regulation of both ISR and Fe deficiency responses overlap, at least partially. Indeed, several hormones and signaling molecules, like ethylene (ET), auxin, and nitric oxide (NO), and the transcription factor MYB72, emerged as key regulators of both processes. This convergence between ISR and Fe deficiency responses opens the way to the use of ISR-eliciting microbes as Fe biofertilizers as well as biopesticides. This review summarizes the progress in the understanding of the molecular overlap in the regulation of ISR and Fe deficiency responses in dicot plants. Root-associated mutualistic microbes, rhizobacteria and rhizofungi species, known for their ability to induce morphological and/or physiological responses to Fe deficiency in dicot plant species are also reviewed herein.
Collapse
Affiliation(s)
- Francisco J. Romera
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - María J. García
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Carlos Lucena
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Ainhoa Martínez-Medina
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Miguel A. Aparicio
- Department of Microbiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - José Ramos
- Department of Microbiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Esteban Alcántara
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Macarena Angulo
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
31
|
Wu H, Ling HQ. FIT-Binding Proteins and Their Functions in the Regulation of Fe Homeostasis. FRONTIERS IN PLANT SCIENCE 2019; 10:844. [PMID: 31297128 PMCID: PMC6607929 DOI: 10.3389/fpls.2019.00844] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/12/2019] [Indexed: 05/22/2023]
Abstract
Iron, as an essential micronutrient, is required by all living organisms. In plants, the deficiency and excess of iron will impair their growth and development. For maintaining a proper intracellular iron concentration, plants evolved different regulation mechanisms to tightly control iron uptake, translocation and storage. FIT, a bHLH transcription factor, is the master regulator of the iron deficiency responses and homeostasis in Arabidopsis. It interacts with different proteins, functioning in controlling the expression of various genes involved in iron uptake and homeostasis. In this review, we summarize the recent progress in the studies of FIT and FIT-binding proteins, and give an overview of FIT-regulated network in iron deficiency response and homeostasis.
Collapse
Affiliation(s)
- Huilan Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Hong-Qing Ling,
| |
Collapse
|
32
|
Gao F, Robe K, Gaymard F, Izquierdo E, Dubos C. The Transcriptional Control of Iron Homeostasis in Plants: A Tale of bHLH Transcription Factors? FRONTIERS IN PLANT SCIENCE 2019; 10:6. [PMID: 30713541 PMCID: PMC6345679 DOI: 10.3389/fpls.2019.00006] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/07/2019] [Indexed: 05/19/2023]
Abstract
Iron is one of the most important micronutrients in plants as it is involved in many cellular functions (e.g., photosynthesis and respiration). Any defect in iron availability will affect plant growth and development as well as crop yield and plant product quality. Thus, iron homeostasis must be tightly controlled in order to ensure optimal absorption of this mineral element. Understanding mechanisms governing iron homeostasis in plants has been the focus of several studies during the past 10 years. These studies have greatly improved our understanding of the mechanisms involved, revealing a sophisticated iron-dependent transcriptional regulatory network. Strikingly, these studies have also highlighted that this regulatory web relies on the activity of numerous transcriptional regulators that belong to the same group of transcription factors (TF), the bHLH (basic helix-loop-helix) family. This is best exemplified in Arabidopsis where, to date, 16 bHLH TF have been characterized as involved in this process and acting in a complex regulatory cascade. Interestingly, among these bHLH TF some form specific clades, indicating that peculiar function dedicated to the maintenance of iron homeostasis, have emerged during the course of the evolution of the green lineage. Within this mini review, we present new insights on the control of iron homeostasis and the involvement of bHLH TF in this metabolic process.
Collapse
|
33
|
Raya-González J, Oropeza-Aburto A, López-Bucio JS, Guevara-García ÁA, de Veylder L, López-Bucio J, Herrera-Estrella L. MEDIATOR18 influences Arabidopsis root architecture, represses auxin signaling and is a critical factor for cell viability in root meristems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:895-909. [PMID: 30270572 DOI: 10.1111/tpj.14114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
The Mediator (MED) complex plays a key role in the recruitment and assembly of the transcription machinery for the control of gene expression. Here, we report on the role of MEDIATOR18 (MED18) subunit in root development, auxin signaling and meristem cell viability in Arabidopsis thaliana seedlings. Loss-of-function mutations in MED18 reduce primary root growth, but increase lateral root formation and root hair development. This phenotype correlates with alterations in cell division and elongation likely caused by an increased auxin response and transport at the root tip, as evidenced by DR5:GFP, pPIN1::PIN1-GFP, pPIN2::PIN2-GFP and pPIN3::PIN3-GFP auxin-related gene expression. Noteworthy, med18 seedlings manifest cell death in the root meristem, which exacerbates with age and/or exposition to DNA-damaging agents, and display high expression of the cell regeneration factor ERF115. Cell death in the root tip was reduced in med18 seedlings grown in darkness, but remained when only the shoot was exposed to light, suggesting that MED18 acts to protect root meristem cells from local cell death, and/or in response to root-acting signal(s) emitted by the shoot in response to light stimuli. These data point to MED18 as an important component for auxin-regulated root development, cell death and cell regeneration in root meristems.
Collapse
Affiliation(s)
- Javier Raya-González
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Campus Irapuato, Guanajuato, México
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México
| | - Araceli Oropeza-Aburto
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Campus Irapuato, Guanajuato, México
| | - Jesús S López-Bucio
- CONACYT, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México
| | - Ángel A Guevara-García
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250, Cuernavaca, Morelos, México
| | - Lieven de Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Gent, Belgium
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México
| | - Luis Herrera-Estrella
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Campus Irapuato, Guanajuato, México
| |
Collapse
|
34
|
Transcriptome Analysis of Four Arabidopsis thaliana Mediator Tail Mutants Reveals Overlapping and Unique Functions in Gene Regulation. G3-GENES GENOMES GENETICS 2018; 8:3093-3108. [PMID: 30049745 PMCID: PMC6118316 DOI: 10.1534/g3.118.200573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Mediator complex is a central component of transcriptional regulation in Eukaryotes. The complex is structurally divided into four modules known as the head, middle, tail and kinase modules, and in Arabidopsis thaliana, comprises 28-34 subunits. Here, we explore the functions of four Arabidopsis Mediator tail subunits, MED2, MED5a/b, MED16, and MED23, by comparing the impact of mutations in each on the Arabidopsis transcriptome. We find that these subunits affect both unique and overlapping sets of genes, providing insight into the functional and structural relationships between them. The mutants primarily exhibit changes in the expression of genes related to biotic and abiotic stress. We find evidence for a tissue specific role for MED23, as well as in the production of alternative transcripts. Together, our data help disentangle the individual contributions of these MED subunits to global gene expression and suggest new avenues for future research into their functions.
Collapse
|
35
|
An ethylene response factor (MxERF4) functions as a repressor of Fe acquisition in Malus xiaojinensis. Sci Rep 2018; 8:1068. [PMID: 29348657 PMCID: PMC5773544 DOI: 10.1038/s41598-018-19518-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022] Open
Abstract
Iron (Fe) is an essential element for plants; however, its availability is limited as it forms insoluble complexes in the soil. Consequently, plants have developed mechanisms to adapt to low Fe conditions. We demonstrate that ethylene is involved in Fe deficiency-induced physiological responses in Malus xiaojinensis, and describe the identification of MxERF4 as a protein-protein interaction partner with the MxFIT transcription factor, which is involved in the iron deficiency response. Furthermore, we demonstrate that MxERF4 acts as an MxFIT interaction partner to suppresses the expression of the Fe transporter MxIRT1, by binding directly to its promoter, requiring the EAR motif of the MxERF4 protein. Suppression of MxERF4 expression in M. xiaojinensis, using virus induced gene silencing resulted in an increase in MxIRT1 expression. Taken together, the results suggest a repression mechanism, where ethylene initiates the Fe deficiency response, and the response is then dampened, which may require a transient inhibition of Fe acquisition via the action of MxERF4.
Collapse
|
36
|
Fornero C, Suo B, Zahde M, Juveland K, Kirik V. Papillae formation on trichome cell walls requires the function of the mediator complex subunit Med25. PLANT MOLECULAR BIOLOGY 2017; 95:389-398. [PMID: 28889249 PMCID: PMC6082409 DOI: 10.1007/s11103-017-0657-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Glassy Hair 1 (GLH1) gene that promotes papillae formation on trichome cell walls was identified as a subunit of the transcriptional mediator complex MED25. The MED25 gene is shown to be expressed in trichomes. The expression of the trichome development marker genes GLABRA2 (GL2) and Ethylene Receptor2 (ETR2) is not affected in the glh1 mutant. Presented data suggest that Arabidopsis MED25 mediator component is likely involved in the transcription of genes promoting papillae deposition in trichomes. The plant cell wall plays an important role in communication, defense, organization and support. The importance of each of these functions varies by cell type. Specialized cells, such as Arabidopsis trichomes, exhibit distinct cell wall characteristics including papillae. To better understand the molecular processes important for papillae deposition on the cell wall surface, we identified the GLASSY HAIR 1 (GLH1) gene, which is necessary for papillae formation. We found that a splice-site mutation in the component of the transcriptional mediator complex MED25 gene is responsible for the near papillae-less phenotype of the glh1 mutant. The MED25 gene is expressed in trichomes. Reporters for trichome developmental marker genes GLABRA2 (GL2) and Ethylene Receptor2 (ETR2) were not affected in the glh1 mutant. Collectively, the presented results show that MED25 is necessary for papillae formation on the cell wall surface of leaf trichomes and suggest that the Arabidopsis MED25 mediator component is likely involved in the transcription of a subset of genes that promote papillae deposition in trichomes.
Collapse
Affiliation(s)
- Christy Fornero
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Bangxia Suo
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Mais Zahde
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Katelyn Juveland
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Viktor Kirik
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA.
| |
Collapse
|
37
|
Raya-González J, López-Bucio JS, Prado-Rodríguez JC, Ruiz-Herrera LF, Guevara-García ÁA, López-Bucio J. The MEDIATOR genes MED12 and MED13 control Arabidopsis root system configuration influencing sugar and auxin responses. PLANT MOLECULAR BIOLOGY 2017; 95:141-156. [PMID: 28780645 DOI: 10.1007/s11103-017-0647-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/27/2017] [Indexed: 05/23/2023]
Abstract
Arabidopsis med12 and med13 mutants exhibit shoot and root phenotypes related to an altered auxin homeostasis. Sucrose supplementation reactivates both cell division and elongation in primary roots as well as auxin-responsive and stem cell niche gene expression in these mutants. An analysis of primary root growth of WT, med12, aux1-7 and med12 aux1 single and double mutants in response to sucrose and/or N-1-naphthylphthalamic acid (NPA) placed MED12 upstream of auxin transport for the sugar modulation of root growth. The MEDIATOR (MED) complex plays diverse functions in plant development, hormone signaling and biotic and abiotic stress tolerance through coordination of transcription. Here, we performed genetic, developmental, molecular and pharmacological analyses to characterize the role of MED12 and MED13 on the configuration of root architecture and its relationship with auxin and sugar responses. Arabidopsis med12 and med13 single mutants exhibit shoot and root phenotypes consistent with altered auxin homeostasis including altered primary root growth, lateral root development, and root hair elongation. MED12 and MED13 were required for activation of cell division and elongation in primary roots, as well as auxin-responsive and stem cell niche gene expression. Remarkably, most of these mutant phenotypes were rescued by supplying sucrose to the growth medium. The growth response of primary roots of WT, med12, aux1-7 and med12 aux1 single and double mutants to sucrose and application of auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) revealed the correlation of med12 phenotype with the activity of the auxin intake permease and suggests that MED12 acts upstream of AUX1 in the root growth response to sugar. These data provide compelling evidence that MEDIATOR links sugar sensing to auxin transport and distribution during root morphogenesis.
Collapse
Affiliation(s)
- Javier Raya-González
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | | | - José Carlos Prado-Rodríguez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | | | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
38
|
Tsai HH, Schmidt W. Mobilization of Iron by Plant-Borne Coumarins. TRENDS IN PLANT SCIENCE 2017; 22:538-548. [PMID: 28385337 DOI: 10.1016/j.tplants.2017.03.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/06/2017] [Accepted: 03/13/2017] [Indexed: 05/19/2023]
Abstract
Iron is one of the most abundant elements in soils, but its low phytoavailability at high pH restricts plant communities on alkaline soils to taxa that have evolved efficient strategies to increase iron solubility. Recent evidence provides support for a previously underestimated role of root-secreted coumarins in mobilizing iron through reduction and chelation as part of an orchestrated strategy evolved to improve the acquisition of iron from recalcitrant pools. Understanding the mechanisms that tune the production of iron-mobilizing coumarins and their intricate interplay with other biosynthesis pathways could yield clues for deciphering the molecular basis of 'iron efficiency' - the ability of plants to thrive on soils with limited iron availability - and may open avenues for generating iron-fortified crops.
Collapse
Affiliation(s)
- Huei Hsuan Tsai
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei 11529, Taiwan; Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan; Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wolfgang Schmidt
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei 11529, Taiwan; Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan; Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
39
|
Natural allelic variation of FRO2 modulates Arabidopsis root growth under iron deficiency. Nat Commun 2017; 8:15603. [PMID: 28537266 PMCID: PMC5458102 DOI: 10.1038/ncomms15603] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 04/05/2017] [Indexed: 02/02/2023] Open
Abstract
Low availability of Fe significantly limits crop yields in many parts of the world. However, it is largely unknown which genes and alleles adjust plant growth in Fe limited environments. Using natural variation of a geographically restricted panel of Arabidopsis thaliana accessions, we identify allelic variation at the FRO2 locus associated with root length under iron deficiency. We show that non-coding sequence variation at the FRO2 locus leads to variation of FRO2 transcript levels, as well as ferric chelate reductase activity, and is causal for a portion of the observed root length variation. These FRO2 allele dependent differences are coupled with altered seedling phenotypes grown on iron-limited soil. Overall, we show that these natural genetic variants of FRO2 tune its expression. These variants might be useful for improvement of agronomically relevant species under specific environmental conditions, such as in podzols or calcareous soils. Iron is an essential micronutrient for plants and a lack of iron availability limits crop yield in many parts of the world. Here the authors show that natural variation in root growth of Arabidopsis plants under iron deficiency can be caused by allelic variation at the FRO2 locus.
Collapse
|
40
|
Malik N, Agarwal P, Tyagi A. Emerging functions of multi-protein complex Mediator with special emphasis on plants. Crit Rev Biochem Mol Biol 2017; 52:475-502. [DOI: 10.1080/10409238.2017.1325830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Naveen Malik
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Akhilesh Tyagi
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
41
|
Li W, Lan P. The Understanding of the Plant Iron Deficiency Responses in Strategy I Plants and the Role of Ethylene in This Process by Omic Approaches. FRONTIERS IN PLANT SCIENCE 2017; 8:40. [PMID: 28174585 PMCID: PMC5259694 DOI: 10.3389/fpls.2017.00040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/09/2017] [Indexed: 05/19/2023]
Abstract
Iron (Fe) is an essential plant micronutrient but is toxic in excess. Fe deficiency chlorosis is a major constraint for plant growth and causes severe losses of crop yields and quality. Under Fe deficiency conditions, plants have developed sophisticated mechanisms to keep cellular Fe homeostasis via various physiological, morphological, metabolic, and gene expression changes to facilitate the availability of Fe. Ethylene has been found to be involved in the Fe deficiency responses of plants through pharmacological studies or by the use of ethylene mutants. However, how ethylene is involved in the regulations of Fe starvation responses remains not fully understood. Over the past decade, omics approaches, mainly focusing on the RNA and protein levels, have been used extensively to investigate global gene expression changes under Fe-limiting conditions, and thousands of genes have been found to be regulated by Fe status. Similarly, proteome profiles have uncovered several hallmark processes that help plants adapt to Fe shortage. To find out how ethylene participates in the Fe deficiency response and explore putatively novel regulators for further investigation, this review emphasizes the integration of those genes and proteins, derived from omics approaches, regulated both by Fe deficiency, and ethylene into a systemic network by gene co-expression analysis.
Collapse
Affiliation(s)
- Wenfeng Li
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, College of Biology and the Environment, Nanjing Forestry UniversityNanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
- *Correspondence: Ping Lan
| |
Collapse
|
42
|
Kazan K. The Multitalented MEDIATOR25. FRONTIERS IN PLANT SCIENCE 2017; 8:999. [PMID: 28659948 PMCID: PMC5467580 DOI: 10.3389/fpls.2017.00999] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/26/2017] [Indexed: 05/19/2023]
Abstract
The multi-subunit Mediator complex, which links DNA-bound transcription factors to RNA Pol II during transcription, is an essential regulator of gene expression in all eukaryotes. Individual subunits of the Mediator complex integrate numerous endogenous and exogenous signals. In this paper, diverse regulatory functions performed by MEDIATOR25 (MED25), one of the subunits of the plant Mediator complex are reviewed. MED25 was first identified as a regulator of flowering time and named PHYTOCHROME AND FLOWERING TIME1 (PFT1). Since then, MED25 has been implicated in a range of other plant functions that vary from hormone signaling (JA, ABA, ethylene, and IAA) to biotic and abiotic stress tolerance and plant development. MED25 physically interacts with transcriptional activators (e.g., AP2/ERFs, MYCs, and ARFs), repressors (e.g., JAZs and Aux/IAAs), and other Mediator subunits (MED13 and MED16). In addition, various genetic and epigenetic interactions involving MED25 have been reported. These features make MED25 one of the most multifunctional Mediator subunits and provide new insights into the transcriptional control of gene expression in plants.
Collapse
Affiliation(s)
- Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, BrisbaneQLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, The University of Queensland, BrisbaneQLD, Australia
- *Correspondence: Kemal Kazan,
| |
Collapse
|
43
|
Buendía-Monreal M, Gillmor CS. Mediator: A key regulator of plant development. Dev Biol 2016; 419:7-18. [PMID: 27287881 DOI: 10.1016/j.ydbio.2016.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
Abstract
Mediator is a multiprotein complex that regulates transcription at the level of RNA pol II assembly, as well as through regulation of chromatin architecture, RNA processing and recruitment of epigenetic marks. Though its modular structure is conserved in eukaryotes, its subunit composition has diverged during evolution and varies in response to environmental and tissue-specific inputs, suggesting different functions for each subunit and/or Mediator conformation. In animals, Mediator has been implicated in the control of differentiation and morphogenesis through modulation of numerous signaling pathways. In plants, studies have revealed roles for Mediator in regulation of cell division, cell fate and organogenesis, as well as developmental timing and hormone responses. We begin this review with an overview of biochemical mechanisms of yeast and animal Mediator that are likely to be conserved in all eukaryotes, as well as a brief discussion of the role of Mediator in animal development. We then present a comprehensive review of studies of the role of Mediator in plant development. Finally, we point to important questions for future research on the role of Mediator as a master coordinator of development.
Collapse
Affiliation(s)
- Manuel Buendía-Monreal
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato, Guanajuato, Mexico
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
44
|
Yang Y, Li L, Qu LJ. Plant Mediator complex and its critical functions in transcription regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:106-18. [PMID: 26172375 DOI: 10.1111/jipb.12377] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/07/2015] [Indexed: 05/08/2023]
Abstract
The Mediator complex is an important component of the eukaryotic transcriptional machinery. As an essential link between transcription factors and RNA polymerase II, the Mediator complex transduces diverse signals to genes involved in different pathways. The plant Mediator complex was recently purified and comprises conserved and specific subunits. It functions in concert with transcription factors to modulate various responses. In this review, we summarize the recent advances in understanding the plant Mediator complex and its diverse roles in plant growth, development, defense, non-coding RNA production, response to abiotic stresses, flowering, genomic stability and metabolic homeostasis. In addition, the transcription factors interacting with the Mediator complex are also highlighted.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ling Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
- The National Plant Gene Research Center (Beijing), Beijing 100101, China
| |
Collapse
|
45
|
Lucena C, Romera FJ, García MJ, Alcántara E, Pérez-Vicente R. Ethylene Participates in the Regulation of Fe Deficiency Responses in Strategy I Plants and in Rice. FRONTIERS IN PLANT SCIENCE 2015; 6:1056. [PMID: 26640474 PMCID: PMC4661236 DOI: 10.3389/fpls.2015.01056] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/13/2015] [Indexed: 05/18/2023]
Abstract
Iron (Fe) is very abundant in most soils but its availability for plants is low, especially in calcareous soils. Plants have been divided into Strategy I and Strategy II species to acquire Fe from soils. Strategy I species apply a reduction-based uptake system which includes all higher plants except the Poaceae. Strategy II species apply a chelation-based uptake system which includes the Poaceae. To cope with Fe deficiency both type of species activate several Fe deficiency responses, mainly in their roots. These responses need to be tightly regulated to avoid Fe toxicity and to conserve energy. Their regulation is not totally understood but some hormones and signaling substances have been implicated. Several years ago it was suggested that ethylene could participate in the regulation of Fe deficiency responses in Strategy I species. In Strategy II species, the role of hormones and signaling substances has been less studied. However, in rice, traditionally considered a Strategy II species but that possesses some characteristics of Strategy I species, it has been recently shown that ethylene can also play a role in the regulation of some of its Fe deficiency responses. Here, we will review and discuss the data supporting a role for ethylene in the regulation of Fe deficiency responses in both Strategy I species and rice. In addition, we will review the data about ethylene and Fe responses related to Strategy II species. We will also discuss the results supporting the action of ethylene through different transduction pathways and its interaction with other signals, such as certain Fe-related repressive signals occurring in the phloem sap. Finally, the possible implication of ethylene in the interactions among Fe deficiency responses and the responses to other nutrient deficiencies in the plant will be addressed.
Collapse
Affiliation(s)
- Carlos Lucena
- Department of Agronomy, University of CórdobaCórdoba, Spain
| | | | - María J. García
- Department of Botany, Ecology and Plant Physiology, University of CórdobaCórdoba, Spain
| | | | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, University of CórdobaCórdoba, Spain
| |
Collapse
|
46
|
Deciphering Mineral Homeostasis in Barley Seed Transfer Cells at Transcriptional Level. PLoS One 2015; 10:e0141398. [PMID: 26536247 PMCID: PMC4633283 DOI: 10.1371/journal.pone.0141398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022] Open
Abstract
In addition to the micronutrient inadequacy of staple crops for optimal human nutrition, a global downtrend in crop-quality has emerged from intensive breeding for yield. This trend will be aggravated by elevated levels of the greenhouse gas carbon dioxide. Therefore, crop biofortification is inevitable to ensure a sustainable supply of minerals to the large part of human population who is dietary dependent on staple crops. This requires a thorough understanding of plant-mineral interactions due to the complexity of mineral homeostasis. Employing RNA sequencing, we here communicate transfer cell specific effects of excess iron and zinc during grain filling in our model crop plant barley. Responding to alterations in mineral contents, we found a long range of different genes and transcripts. Among them, it is worth to highlight the auxin and ethylene signaling factors Arfs, Abcbs, Cand1, Hps4, Hac1, Ecr1, and Ctr1, diurnal fluctuation components Sdg2, Imb1, Lip1, and PhyC, retroelements, sulfur homeostasis components Amp1, Hmt3, Eil3, and Vip1, mineral trafficking components Med16, Cnnm4, Aha2, Clpc1, and Pcbps, and vacuole organization factors Ymr155W, RabG3F, Vps4, and Cbl3. Our analysis introduces new interactors and signifies a broad spectrum of regulatory levels from chromatin remodeling to intracellular protein sorting mechanisms active in the plant mineral homeostasis. The results highlight the importance of storage proteins in metal ion toxicity-resistance and chelation. Interestingly, the protein sorting and recycling factors Exoc7, Cdc1, Sec23A, and Rab11A contributed to the response as well as the polar distributors of metal-transporters ensuring the directional flow of minerals. Alternative isoform switching was found important for plant adaptation and occurred among transcripts coding for identical proteins as well as transcripts coding for protein isoforms. We also identified differences in the alternative-isoform preference between the treatments, indicating metal-affinity shifts among isoforms of metal transporters. Most important, we found the zinc treatment to impair both photosynthesis and respiration. A wide range of transcriptional changes including stress-related genes and negative feedback loops emphasize the importance to withhold mineral contents below certain cellular levels which otherwise might lead to agronomical impeding side-effects. By illustrating new mechanisms, genes, and transcripts, this report provides a solid platform towards understanding the complex network of plant mineral homeostasis.
Collapse
|
47
|
Murgia I, Giacometti S, Balestrazzi A, Paparella S, Pagliano C, Morandini P. Analysis of the transgenerational iron deficiency stress memory in Arabidopsis thaliana plants. FRONTIERS IN PLANT SCIENCE 2015; 6:745. [PMID: 26442058 PMCID: PMC4585125 DOI: 10.3389/fpls.2015.00745] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/31/2015] [Indexed: 05/23/2023]
Abstract
We investigated the existence of the transgenerational memory of iron (Fe) deficiency stress, in Arabidopsis thaliana. Plants were grown under Fe deficiency/sufficiency, and so were their offspring. The frequency of somatic homologous recombination (SHR) events, of DNA strand breaks as well as the expression of the transcription elongation factor TFIIS-like gene increase when plants are grown under Fe deficiency. However, SHR frequency, DNA strand break events, and TFIIS-like gene expression do not increase further when plants are grown for more than one generation under the same stress, and furthermore, they decrease back to control values within two succeeding generations grown under control conditions, regardless of the Fe deficiency stress history of the mother plants. Seedlings produced from plants grown under Fe deficiency evolve more oxygen than control seedlings, when grown under Fe sufficiency: however, this trait is not associated with any change in the protein profile of the photosynthetic apparatus and is not transmitted to more than one generation. Lastly, plants grown for multiple generations under Fe deficiency produce seeds with greater longevity: however, this trait is not inherited in offspring generations unexposed to stress. These findings suggest the existence of multiple-step control of mechanisms to prevent a genuine and stable transgenerational transmission of Fe deficiency stress memory, with the tightest control on DNA integrity.
Collapse
Affiliation(s)
- Irene Murgia
- Department of Biosciences, University of MilanoMilano, Italy
| | | | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of PaviaPavia, Italy
| | - Stefania Paparella
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of PaviaPavia, Italy
| | - Cristina Pagliano
- Applied Science and Technology Department – BioSolar Lab, Polytechnic University of TurinAlessandria, Italy
| | - Piero Morandini
- Department of Biosciences, University of MilanoMilano, Italy
| |
Collapse
|
48
|
Zhang C. Involvement of Iron-Containing Proteins in Genome Integrity in Arabidopsis Thaliana. Genome Integr 2015; 6:2. [PMID: 27330736 PMCID: PMC4911903 DOI: 10.4103/2041-9414.155953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 01/03/2023] Open
Abstract
The Arabidopsis genome encodes numerous iron-containing proteins such as iron-sulfur (Fe-S) cluster proteins and hemoproteins. These proteins generally utilize iron as a cofactor, and they perform critical roles in photosynthesis, genome stability, electron transfer, and oxidation-reduction reactions. Plants have evolved sophisticated mechanisms to maintain iron homeostasis for the assembly of functional iron-containing proteins, thereby ensuring genome stability, cell development, and plant growth. Over the past few years, our understanding of iron-containing proteins and their functions involved in genome stability has expanded enormously. In this review, I provide the current perspectives on iron homeostasis in Arabidopsis, followed by a summary of iron-containing protein functions involved in genome stability maintenance and a discussion of their possible molecular mechanisms.
Collapse
Affiliation(s)
- Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
49
|
Brumbarova T, Bauer P, Ivanov R. Molecular mechanisms governing Arabidopsis iron uptake. TRENDS IN PLANT SCIENCE 2015; 20:124-33. [PMID: 25499025 DOI: 10.1016/j.tplants.2014.11.004] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/07/2014] [Accepted: 11/17/2014] [Indexed: 05/18/2023]
Abstract
Plants are the principal source of dietary iron (Fe) for most of Earth's population and Fe deficiency can lead to major health problems. Developing strategies to improve plant Fe content is a challenge because Fe is essential and toxic and therefore regulating Fe uptake is crucial for plant survival. Acquiring soil Fe relies on complex regulatory events that occur in root epidermal cells. We review recent advances in elucidating many aspects of the regulation of Fe acquisition. These include the expanding protein network involved in FER-LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR (FIT)-dependent gene regulation and novel findings on the intracellular trafficking of the Fe transporter IRON-REGULATED TRANSPORTER 1 (IRT1). We outline future challenges and propose strategies, such as exploiting natural variation, to further expand our knowledge.
Collapse
Affiliation(s)
- Tzvetina Brumbarova
- Institute of Botany, Heinrich-Heine University, Universitätstrasse 1, D-40225 Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich-Heine University, Universitätstrasse 1, D-40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich-Heine University, Universitätstrasse 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
50
|
Samanta S, Thakur JK. Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:757. [PMID: 26442070 PMCID: PMC4584954 DOI: 10.3389/fpls.2015.00757] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/04/2015] [Indexed: 05/19/2023]
Abstract
Basic transcriptional machinery in eukaryotes is assisted by a number of cofactors, which either increase or decrease the rate of transcription. Mediator complex is one such cofactor, and recently has drawn a lot of interest because of its integrative power to converge different signaling pathways before channeling the transcription instructions to the RNA polymerase II machinery. Like yeast and metazoans, plants do possess the Mediator complex across the kingdom, and its isolation and subunit analyses have been reported from the model plant, Arabidopsis. Genetic, and molecular analyses have unraveled important regulatory roles of Mediator subunits at every stage of plant life cycle starting from flowering to embryo and organ development, to even size determination. It also contributes immensely to the survival of plants against different environmental vagaries by the timely activation of its resistance mechanisms. Here, we have provided an overview of plant Mediator complex starting from its discovery to regulation of stoichiometry of its subunits. We have also reviewed involvement of different Mediator subunits in different processes and pathways including defense response pathways evoked by diverse biotic cues. Wherever possible, attempts have been made to provide mechanistic insight of Mediator's involvement in these processes.
Collapse
Affiliation(s)
| | - Jitendra K. Thakur
- *Correspondence: Jitendra K. Thakur, Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|