1
|
Zhu J, Huang H, Xu X, Wang X, Zhu G, Wang B, Zhu J, Yuan F. LbMYB368 from the recretohalophyte Limonium bicolor promotes salt gland development and salinity tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112486. [PMID: 40164311 DOI: 10.1016/j.plantsci.2025.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Halophytes can grow and reproduce normally in an environment containing more than 200 mM NaCl, offering untapped gene resources for improving crop salinity tolerance. As a recretohalophyte, Limonium bicolor can secrete excess Na+ through salt glands, specialized structures on the leaf and stem epidermis. Here, we identified a MYB transcription factor gene, LbMYB368, that is highly expressed during salt gland development. We confirmed its expression in salt glands using RNA in situ hybridization and a promoter reporter construct. To investigate in detail the roles of LbMYB368 in salinity tolerance, we overexpressed and knocked down the gene, via virus-induced gene silencing (VIGS), in L. bicolor. The transgenic L. bicolor overexpression lines developed more salt glands, while the VIGS plants had fewer salt glands. The salt secretion ability and salt tolerance of these plants were correlated with the changes in salt gland development, indicating that LbMYB368 plays an important role in the salt tolerance of L. bicolor by enhancing salt gland development and salt secretion. We also investigated the effect of LbMYB368 on enhanced salinity tolerance when heterologously expressed in Arabidopsis to assess its potential applications in non-halophytes for future conferring salinity tolerance in crops.
Collapse
Affiliation(s)
- Jianglu Zhu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Haoxuan Huang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Xiaojing Xu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Xi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Guoyong Zhu
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224002, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Jingwen Zhu
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224002, China.
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, China.
| |
Collapse
|
2
|
Feng C, Chen B, Hofer J, Shi Y, Jiang M, Song B, Cheng H, Lu L, Wang L, Howard A, Bendahmane A, Fouchal A, Moreau C, Sawada C, LeSignor C, Zhang C, Vikeli E, Tsanakas G, Zhao H, Cheema J, Barclay JE, Hou J, Sayers L, Wingen L, Vigouroux M, Vickers M, Ambrose M, Dalmais M, Higuera-Poveda P, Li P, Yuan Q, Spanner R, Horler R, Wouters R, Chundakkad S, Wu T, Zhao X, Li X, Sun Y, Huang Z, Wu Z, Deng XW, Steuernagel B, Domoney C, Ellis N, Chayut N, Cheng S. Genomic and genetic insights into Mendel's pea genes. Nature 2025:10.1038/s41586-025-08891-6. [PMID: 40269167 DOI: 10.1038/s41586-025-08891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 03/12/2025] [Indexed: 04/25/2025]
Abstract
Mendel1 studied in detail seven pairs of contrasting traits in pea (Pisum sativum), establishing the foundational principles of genetic inheritance. Here we investigate the genetic architecture that underlies these traits and uncover previously undescribed alleles for the four characterized Mendelian genes2-7, including a rare revertant of Mendel's white-flowered a allele. Primarily, we focus on the three remaining uncharacterized traits and find that (1) an approximately 100-kb genomic deletion upstream of the Chlorophyll synthase (ChlG) gene disrupts chlorophyll biosynthesis through the generation of intergenic transcriptional fusion products, conferring the yellow pod phenotype of gp mutants; (2) a MYB gene with an upstream Ogre element insertion and a CLE peptide-encoding gene with an in-frame premature stop codon explain the v and p alleles, which disrupt secondary cell wall thickening and lignification, resulting in the parchmentless, edible-pod phenotype; and (3) a 5-bp exonic deletion in a CIK-like co-receptor kinase gene, in combination with a genetic modifier locus, is associated with the fasciated stem (fa) phenotype. Furthermore, we characterize genes and alleles associated with diverse agronomic traits, such as axil ring anthocyanin pigmentation, seed size and the 'semi-leafless' form. This study establishes a foundation for fundamental research, education in biology and genetics, and pea breeding practices.
Collapse
Affiliation(s)
- Cong Feng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Baizhi Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Julie Hofer
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Yan Shi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mei Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bo Song
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hong Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lu Lu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Luyao Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Alex Howard
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Abdel Bendahmane
- INRAE UMR 1403, Institute of Plant Sciences Paris-Saclay, Gif-sur-Yvette, France
| | - Anissa Fouchal
- INRAE UMR 1403, Institute of Plant Sciences Paris-Saclay, Gif-sur-Yvette, France
| | - Carol Moreau
- John Innes Centre, Norwich Research Park, Norwich, UK
- Paleogenomics Laboratory, INRAE Clermont-Auvergne-Rhône-Alpes, CS 60032, Clermont-Ferrand, France
| | - Chie Sawada
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Cuijun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Eleni Vikeli
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Hang Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jitender Cheema
- John Innes Centre, Norwich Research Park, Norwich, UK
- EMBL-EBI, European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, UK
| | | | - Junliang Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Liz Sayers
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Luzie Wingen
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | - Mike Ambrose
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marion Dalmais
- INRAE UMR 1403, Institute of Plant Sciences Paris-Saclay, Gif-sur-Yvette, France
| | | | - Pengfeng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Quan Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Rebecca Spanner
- John Innes Centre, Norwich Research Park, Norwich, UK
- Department of Plant Pathology, University of Minnesota, St Paul, MN, USA
| | | | | | | | - Tian Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaoxiao Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiuli Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuchen Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zejian Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhen Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xing Wang Deng
- State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | | | | | - Noel Ellis
- John Innes Centre, Norwich Research Park, Norwich, UK.
| | - Noam Chayut
- John Innes Centre, Norwich Research Park, Norwich, UK.
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
3
|
Sun T, Wang M, Ren H, Xiong Q, Xu J, Yang X, Chen Y, Zhang W. Comprehensive analysis of the physiological, metabolome, and transcriptome provided insights into anthocyanin biosynthesis and degradation of Malus crabapple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109821. [PMID: 40147329 DOI: 10.1016/j.plaphy.2025.109821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Malus crabapple is highly regarded for its ornamental and garden applications, with leaf color changes serving as an essential indicator of aesthetic appeal. Despite this significance, studies focusing on crabapple leaf color transformations, particularly the fading of purplish-red hues, remain limited. This research investigates the physiological and molecular mechanisms driving leaf color changes in crabapple through physiological, transcriptional, and metabolic assays. Leaf color was analyzed across 86 crabapple varieties, with three representative varieties in different color development paths (the color change from young to mature stage) selected for detailed examination of gene expression and metabolite accumulation within the flavonoid biosynthetic pathway. Our findings revealed greater variation in young leaves compared to mature ones, along with higher stability in the 'Purple to Purple' (P-P) color path compared to the 'Green to Green' (G-G) and 'Purple to Green' (P-G) paths. The comprehensive analysis highlighted anthocyanins, particularly pelargonidin and peonidin 3-glucoside in green crabapple leaves and cyanidin in purplish-red crabapple leaves, as central to leaf color regulation. Transcriptomic analysis revealed that the fading of purplish-red is attributable to decreased accumulation of total anthocyanin and degradation of cyanidin. This process is governed by the down-regulation of anthocyanidin synthase (ANS) gene and the up-regulation of the anthocyanin degradation gene, peroxidase (PRX). Additionally, two transcription factors potentially involved in the regulation of cyanidin biosynthesis and two transcription factors regulating pelargonidin biosynthesis were identified. This study identifies candidate genes influencing anthocyanin accumulation in purplish-red leaves, providing a foundation for future investigations into leaf coloration mechanisms and crabapple breeding efforts.
Collapse
Affiliation(s)
- Tiantian Sun
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Mengzhu Wang
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Hongfang Ren
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Qingqing Xiong
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianfeng Xu
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaoqian Yang
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongxia Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Civil Engineering, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Wangxiang Zhang
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
4
|
Ye D, Liu X, Zhang X, Luo X, Lei Y, Wen X, Zhang X, Xie Y, Li M, Xia H, Liang D. Two AcMYB22 Alleles Differently Regulate Flavonoid Biosynthesis Resulting in Varied Flesh Color in Kiwifruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6059-6071. [PMID: 40008475 DOI: 10.1021/acs.jafc.4c11168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Flavonoids are essential nutrient compounds in kiwifruit, yet the specific regulatory mechanism governing their biosynthesis remains poorly understood. In this study, we identified an R2R3-MYB transcription factor (TF), AcMYB22, associated with flavonoid biosynthesis in kiwifruit. Two alleles of AcMYB22 were isolated: AcMYB22-1 is exclusively present in the cultivar "Hongyang", while both AcMYB22-1 and AcMYB22-2 were identified in its mutant "H-16", with nine single nucleotide polymorphisms. Overexpression of AcMYB22 in kiwifruit resulted in enhanced yellow flesh coloration with a b* hue value and a significant increase in flavonoid content. Moreover, transgenic kiwifruit plants of overexpressing AcMYB22 exhibited more pronounced yellow leaves with red margins accompanied by significant increases in total flavonoid and anthocyanin levels. The expression levels of flavonoid biosynthesis genes were significantly upregulated in transgenic plants with notably higher increases in AcMYB22-2 overexpressing plants compared to those overexpressing AcMYB22-1. Furthermore, yeast one-hybrid assays, electrophoretic mobility shift assays (EMSAs), and GUS activity assays confirmed that both AcMYB22-1 and AcMYB22-2 can physically bind to the promoters of AcF3H and AcUFGT, positively activating their transcription, with AcMYB22-2 exhibiting stronger activation activity than AcMYB22-1. These findings provide new insights into the regulatory mechanism of flavonoid biosynthesis in kiwifruit.
Collapse
Affiliation(s)
- Daolin Ye
- College of Horticulture, Sichuan Agricultural University, Huimin Road 211, Chengdu 611130, China
| | - Xinling Liu
- College of Horticulture, Sichuan Agricultural University, Huimin Road 211, Chengdu 611130, China
| | - Xuefeng Zhang
- College of Horticulture, Sichuan Agricultural University, Huimin Road 211, Chengdu 611130, China
| | - Xiaoyan Luo
- College of Horticulture, Sichuan Agricultural University, Huimin Road 211, Chengdu 611130, China
| | - Yuxin Lei
- College of Horticulture, Sichuan Agricultural University, Huimin Road 211, Chengdu 611130, China
| | - Xueling Wen
- College of Horticulture, Sichuan Agricultural University, Huimin Road 211, Chengdu 611130, China
| | - Xiaoli Zhang
- College of Horticulture, Sichuan Agricultural University, Huimin Road 211, Chengdu 611130, China
| | - Yue Xie
- Key Laboratory of Kiwifruit Breeding and Utilization in Sichuan Province, Sichuan Academy of Natural Resource Sciences, Chengdu 610041, China
| | - Minzhang Li
- Key Laboratory of Kiwifruit Breeding and Utilization in Sichuan Province, Sichuan Academy of Natural Resource Sciences, Chengdu 610041, China
| | - Hui Xia
- College of Horticulture, Sichuan Agricultural University, Huimin Road 211, Chengdu 611130, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Huimin Road 211, Chengdu 611130, China
| |
Collapse
|
5
|
Fu S, Wang L, Li C, Zhao Y, Zhang N, Yan L, Li CM, Niu Y. Integrated Transcriptomic, Proteomic, and Metabolomic Analyses Revealed Molecular Mechanism for Salt Resistance in Soybean ( Glycine max L.) Seedlings. Int J Mol Sci 2024; 25:13559. [PMID: 39769326 PMCID: PMC11678865 DOI: 10.3390/ijms252413559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Salt stress poses a significant challenge to plant growth and restricts agricultural development. To delve into the intricate mechanisms involved in soybean's response to salt stress and find targets to improve the salt resistance of soybean, this study integrated transcriptomic, proteomic, and metabolomic analyses to explore the regulatory networks involved in soybean salt tolerance. Transcriptomic analysis revealed significant changes in transcription factors, hormone-related groups, and calcium ion signaling. Notably, the biosynthetic pathways of cutin, suberine, and wax biosynthesis play an important role in this process. Proteomic results indicated salt-induced DNA methylation and the enrichment of phosphopyruvate hydrase post-salt stress, as well as its interaction with enzymes from various metabolic pathways. Metabolomic data unveiled the synthesis of various metabolites, including lipids and flavonoids, in soybean following salt stress. Furthermore, the integrated multiomics results highlighted the activation of multiple metabolic pathways in soybean in response to salt stress, with six pathways standing out prominently: stilbenoid, diarylheptanoid, and gingerol biosynthesis; carotenoid biosynthesis; carbon fixation in photosynthetic organisms; alanine, aspartate, and glutamate metabolism; thiamine metabolism; and pyruvate metabolism. These findings not only offer valuable insights into leveraging multiomics profiling techniques for uncovering salt tolerance mechanisms but also identify candidate genes for soybean improvement.
Collapse
Affiliation(s)
- Siqi Fu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China; (S.F.)
| | - Lu Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China; (S.F.)
| | - Chunqian Li
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China; (S.F.)
| | - Yinhui Zhao
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China; (S.F.)
| | - Nan Zhang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China; (S.F.)
| | - Lei Yan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China; (S.F.)
| | - Chang Ming Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China; (S.F.)
| |
Collapse
|
6
|
Ma S, Qi Y, Ma J, Wang Y, Feng G, Huang L, Nie G, Zhang X. Functional characterization of TrGSTF15, a glutathione S-transferase gene family member, on the transport and accumulation of anthocyanins and proanthocyanidins in Trifolium repens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109038. [PMID: 39163651 DOI: 10.1016/j.plaphy.2024.109038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/13/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Abstract
Anthocyanins and proanthocyanidins (PAs) are important secondary metabolites in plants, high contents of which are an important goal for quality breeding of white clover (Trifolium repens). However, the involvement of glutathione S-transferase (GST) in the transport of anthocyanins and PAs remains unexplored in white clover. This study identified 153 different TrGSTs in white clover. At the transcriptional level, compared to other TrGSTFs, TrGSTF10 and TrGSTF15 are highly expressed in the 'Purple' white clover, and they may work with the anthocyanin biosynthesis structural genes CHS and CHI to contribute to pigment buildup in white clover. Subcellular localization confirmed that TrGSTF10 and TrGSTF15 are located in the cytoplasm. Additionally, molecular docking experiments showed that TrGSTF10 and TrGSTF15 have similar binding affinity with two flavonoid monomers. Overexpression of TrGSTF15 complemented the deficiency of anthocyanin coloring and PA accumulation in the Arabidopsis tt19 mutant. The initial findings of this research indicate that TrGSTF15 encodes an important transporter of anthocyanin and PA in white clover, thus providing a new perspective for the further exploration of related transport and regulatory mechanisms.
Collapse
Affiliation(s)
- Sainan Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yali Qi
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jieyu Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yang Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
7
|
Krishnamoorthi S, Tan GZH, Dong Y, Leong R, Wu TY, Urano D. Hyperspectral imaging of liverwort Marchantia polymorpha identifies MpWRKY10 as a key regulator defining Foliar pigmentation patterns. Cell Rep 2024; 43:114463. [PMID: 38985675 DOI: 10.1016/j.celrep.2024.114463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/10/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
Foliar pigmentation patterns vary among plant species and growth conditions. In this study, we utilize hyperspectral imaging to assess foliar pigmentation in the bryophyte Marchantia polymorpha under nutrient stress and identify associated genetic factors. Using singular value decomposition (SVD) for feature selection, we quantitate color variations induced by deficiencies in phosphate, nitrate, magnesium, calcium, and iron. Pseudo-colored thallus images show that disrupting MpWRKY10 causes irregular pigmentation with auronidin accumulation. Transcriptomic profiling shows that MpWRKY10 regulates phenylpropanoid pathway enzymes and R2R3-MYB transcription factors during phosphate deficiency, with MpMYB14 upregulation preceding pigment accumulation. MpWRKY10 is downregulated in older, pigmented thalli under phosphate deficiency but maintained in young thalli, where it suppresses pigmentation genes. This downregulation is absent in pigmented thalli due to aging. Comparative transcriptome analysis suggests similar WRKY and MYB roles in nutrient response and pigmentation in red-leaf lettuce, alluding to conserved genetic factors controlling foliar pigmentation patterns under nutrient deficiency.
Collapse
Affiliation(s)
| | | | - Yating Dong
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Richalynn Leong
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Ting-Ying Wu
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
8
|
Yi S, Cai Q, Yang Y, Shen H, Sun Z, Li L. Identification and Functional Characterization of the SaMYB113 Gene in Solanum aculeatissimum. PLANTS (BASEL, SWITZERLAND) 2024; 13:1570. [PMID: 38891379 PMCID: PMC11174649 DOI: 10.3390/plants13111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024]
Abstract
The MYB transcription factors (TFs) have substantial functions in anthocyanin synthesis as well as being widely associated with plant responses to various adversities. In the present investigation, we found an unreported MYB TF from Solanum aculeatissimum (a wild relative of eggplant) and named it SaMYB113 in reference to its homologous gene. Bioinformatics analysis demonstrated that the open reading frame of SaMYB113 was 825 bp in length, encoding 275 amino acids, with a typical R2R3-MYB gene structure, and predicted subcellular localization in the nucleus. Analysis of the tissue-specific expression pattern through qRT-PCR showed that the SaMYB113 was expressed at a high level in young stems as well as leaves of S. aculeatissimum. Transgenic Arabidopsis and tobacco plants overexpressing SaMYB113 pertinent to the control of the 35S promoter exhibited a distinct purple color trait, suggesting a significant change in their anthocyanin content. Furthermore, we obtained three tobacco transgenic lines with significant differences in anthocyanin accumulation and analyzed the differences in anthocyanin content by LC-MS/MS. The findings demonstrated that overexpression of SaMYB113 caused tobacco to have considerably raised levels of several anthocyanin components, with the most significant increases in delphinidin-like anthocyanins and cyanidin-like anthocyanins. The qRT-PCR findings revealed significant differences in the expression levels of structural genes for anthocyanin synthesis among various transgenic lines. In summary, this study demonstrated that the SaMYB113 gene has a substantial impact on anthocyanin synthesis, and overexpression of the SaMYB113 gene leads to significant modifications to the expression levels of a variety of anthocyanin-synthesizing genes, which leads to complex changes in anthocyanin content and affects plant phenotypes. This present research offers the molecular foundation for the research of the mechanism of anthocyanin formation within plants, as well as providing some reference for the improvement of traits in solanum crops.
Collapse
Affiliation(s)
- Songheng Yi
- College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China; (S.Y.); (Q.C.); (H.S.)
| | - Qihang Cai
- College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China; (S.Y.); (Q.C.); (H.S.)
| | - Yanbo Yang
- College of Geography and Ecotourism, Southwest Forestry University, Kunming 650224, China;
| | - Hongquan Shen
- College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China; (S.Y.); (Q.C.); (H.S.)
| | - Zhenghai Sun
- College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China; (S.Y.); (Q.C.); (H.S.)
| | - Liping Li
- College of Wetland, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
9
|
Gao H, Ma J, Zhao Y, Zhang C, Zhao M, He S, Sun Y, Fang X, Chen X, Ma K, Pang Y, Gu Y, Dongye Y, Wu J, Xu P, Zhang S. The MYB Transcription Factor GmMYB78 Negatively Regulates Phytophthora sojae Resistance in Soybean. Int J Mol Sci 2024; 25:4247. [PMID: 38673832 PMCID: PMC11050205 DOI: 10.3390/ijms25084247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Phytophthora root rot is a devastating disease of soybean caused by Phytophthora sojae. However, the resistance mechanism is not yet clear. Our previous studies have shown that GmAP2 enhances sensitivity to P. sojae in soybean, and GmMYB78 is downregulated in the transcriptome analysis of GmAP2-overexpressing transgenic hairy roots. Here, GmMYB78 was significantly induced by P. sojae in susceptible soybean, and the overexpressing of GmMYB78 enhanced sensitivity to the pathogen, while silencing GmMYB78 enhances resistance to P. sojae, indicating that GmMYB78 is a negative regulator of P. sojae. Moreover, the jasmonic acid (JA) content and JA synthesis gene GmAOS1 was highly upregulated in GmMYB78-silencing roots and highly downregulated in overexpressing ones, suggesting that GmMYB78 could respond to P. sojae through the JA signaling pathway. Furthermore, the expression of several pathogenesis-related genes was significantly lower in GmMYB78-overexpressing roots and higher in GmMYB78-silencing ones. Additionally, we screened and identified the upstream regulator GmbHLH122 and downstream target gene GmbZIP25 of GmMYB78. GmbHLH122 was highly induced by P. sojae and could inhibit GmMYB78 expression in resistant soybean, and GmMYB78 was highly expressed to activate downstream target gene GmbZIP25 transcription in susceptible soybean. In conclusion, our data reveal that GmMYB78 triggers soybean sensitivity to P. sojae by inhibiting the JA signaling pathway and the expression of pathogenesis-related genes or through the effects of the GmbHLH122-GmMYB78-GmbZIP25 cascade pathway.
Collapse
Affiliation(s)
- Hong Gao
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Jia Ma
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Yuxin Zhao
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Chuanzhong Zhang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Ming Zhao
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Shengfu He
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Yan Sun
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Xin Fang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Xiaoyu Chen
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Kexin Ma
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Yanjie Pang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Yachang Gu
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Yaqun Dongye
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Soybean Cultivation of Ministry of Agriculture, Harbin 150030, China;
| | - Pengfei Xu
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Shuzhen Zhang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| |
Collapse
|
10
|
Escaray FJ, Valeri MC, Damiani F, Ruiz OA, Carrasco P, Paolocci F. Multiple bHLH/MYB-based protein complexes regulate proanthocyanidin biosynthesis in the herbage of Lotus spp. PLANTA 2023; 259:10. [PMID: 38041705 PMCID: PMC10693531 DOI: 10.1007/s00425-023-04281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/04/2023] [Indexed: 12/03/2023]
Abstract
MAIN CONCLUSION The complexes involving MYBPA2, TT2b, and TT8 proteins are the critical regulators of ANR and LAR genes to promote the biosynthesis of proanthocyanidins in the leaves of Lotus spp. The environmental impact and health of ruminants fed with forage legumes depend on the herbage's concentration and structure of proanthocyanidins (PAs). Unfortunately, the primary forage legumes (alfalfa and clover) do not contain substantial levels of PAs. No significant progress has been made to induce PAs to agronomically valuable levels in their edible organs by biotechnological approaches thus far. Building this trait requires a profound knowledge of PA regulators and their interplay in species naturally committed to accumulating these metabolites in the target organs. Against this background, we compared the shoot transcriptomes of two inter-fertile Lotus species, namely Lotus tenuis and Lotus corniculatus, polymorphic for this trait, to search for differentially expressed MYB and bHLH genes. We then tested the expression of the above-reported regulators in L. tenuis x L. corniculatus interspecific hybrids, several Lotus spp., and different L. corniculatus organs with contrasting PA levels. We identified a novel MYB activator and MYB-bHLH-based complexes that, when expressed in Nicotiana benthamiana, trans-activated the promoters of L. corniculatus anthocyanidin reductase and leucoanthocyanidin reductase 1 genes. The last are the two critical structural genes for the biosynthesis of PAs in Lotus spp. Competition between MYB activators for the transactivation of these promoters also emerged. Overall, by employing Lotus as a model genus, we refined the transcriptional network underlying PA biosynthesis in the herbage of legumes. These findings are crucial to engineering this trait in pasture legumes.
Collapse
Affiliation(s)
- Francisco José Escaray
- Instituto de Biología Molecular de Plantas (IBMCP) Universitat Politécnica de València - C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022, Valencia, Spain
| | - Maria Cristina Valeri
- Institute of Biosciences and BioResources (IBBR), Consiglio Nazionale Delle Ricerche, Via Madonna Alta, 130, 06128, Perugia, Italy
| | - Francesco Damiani
- Institute of Biosciences and BioResources (IBBR), Consiglio Nazionale Delle Ricerche, Via Madonna Alta, 130, 06128, Perugia, Italy
| | - Oscar Adolfo Ruiz
- Unidad de Biotecnología 1, Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Intendente Marino KM 8.2, 7130, Chascomús, Buenos Aires, Argentina
| | - Pedro Carrasco
- Biotecmed, Department of Biochemistry and Molecular Biology, University of València, 46100, Burjassot, Valencia, Spain
| | - Francesco Paolocci
- Institute of Biosciences and BioResources (IBBR), Consiglio Nazionale Delle Ricerche, Via Madonna Alta, 130, 06128, Perugia, Italy.
| |
Collapse
|
11
|
Yuan Y, Li X, Yao X, Fu X, Cheng J, Shan H, Yin X, Kong H. Mechanisms underlying the formation of complex color patterns on Nigella orientalis (Ranunculaceae) petals. THE NEW PHYTOLOGIST 2023; 237:2450-2466. [PMID: 36527229 DOI: 10.1111/nph.18681] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Complex color patterns on petals are widespread in flowering plants, yet the mechanisms underlying their formation remain largely unclear. Here, by conducting detailed morphological, anatomical, biochemical, optical, transcriptomic, and functional studies, we investigated the cellular bases, chromogenic substances, reflectance spectra, developmental processes, and underlying mechanisms of complex color pattern formation on Nigella orientalis petals. We found that the complexity of the N. orientalis petals in color pattern is reflected at multiple levels, with the amount and arrangement of different pigmented cells being the key. We also found that biosynthesis of the chromogenic substances of different colors is sequential, so that one color/pattern is superimposed on another. Expression and functional studies further revealed that a pair of R2R3-MYB genes function cooperatively to specify the formation of the eyebrow-like horizontal stripe and the Mohawk haircut-like splatters. Specifically, while NiorMYB113-1 functions to draw a large splatter region, NiorMYB113-2 functions to suppress the production of anthocyanins from the region where a gap will form, thereby forming the highly specialized pattern. Our results provide a detailed portrait for the spatiotemporal dynamics of the coloration of N. orientalis petals and help better understand the mechanisms underlying complex color pattern formation in plants.
Collapse
Affiliation(s)
- Yi Yuan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xuan Li
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xu Yao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xuehao Fu
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Jie Cheng
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xiaofeng Yin
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| |
Collapse
|
12
|
Pan LY, Zhou J, Sun Y, Qiao BX, Wan T, Guo RQ, Zhang J, Shan DQ, Cai YL. Comparative transcriptome and metabolome analyses of cherry leaves spot disease caused by Alternaria alternata. FRONTIERS IN PLANT SCIENCE 2023; 14:1129515. [PMID: 36844070 PMCID: PMC9947566 DOI: 10.3389/fpls.2023.1129515] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Alternaria alternata is a necrotrophic fungal pathogen with a broad host range that causes widespread and devastating disease in sweet cherry (Prunus avium). We selected a resistant cultivar (RC) and a susceptible cultivar (SC) of cherry and used a combined physiological, transcriptomic, and metabolomic approach to investigate the molecular mechanisms underlying the plant's resistance to A. alternata, of which little is known. We found that A. alternata infection stimulated the outbreak of reactive oxygen species (ROS) in cherry. The responses of the antioxidant enzymes and chitinase to disease were observed earlier in the RC than in the SC. Moreover, cell wall defense ability was stronger in the RC. Differential genes and metabolites involved in defense responses and secondary metabolism were primarily enriched in the biosynthesis of phenylpropanoids, tropane, piperidine and pyridine alkaloids, flavonoids, amino acids, and α-linolenic acid. Reprogramming the phenylpropanoid pathway and the α-linolenic acid metabolic pathway led to lignin accumulation and early induction of jasmonic acid signaling, respectively, in the RC, which consequently enhanced antifungal and ROS scavenging activity. The RC contained a high level of coumarin, and in vitro tests showed that coumarin significantly inhibited A. alternata growth and development and had antifungal effect on cherry leaves. In addition, differentially expressed genes encoding transcription factors from the MYB, NAC, WRKY, ERF, and bHLH families were highly expressed, they could be the key responsive factor in the response of cherry to infection by A. alternata. Overall, this study provides molecular clues and a multifaceted understanding of the specific response of cherry to A. alternata.
Collapse
Affiliation(s)
- Liu-Yi Pan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yan Sun
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Bai-Xue Qiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tian Wan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui-Quan Guo
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Juan Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- College of Horticulture and Forestry, Tarim University, Alar, Xinjiang, China
| | - Dong-Qian Shan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu-Liang Cai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Ji N, Wang Q, Li S, Wen J, Wang L, Ding X, Zhao S, Feng H. Metabolic profile and transcriptome reveal the mystery of petal blotch formation in rose. BMC PLANT BIOLOGY 2023; 23:46. [PMID: 36670355 PMCID: PMC9854060 DOI: 10.1186/s12870-023-04057-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Petal blotch is a unique ornamental trait in angiosperm families, and blotch in rose petal is rare and has great esthetic value. However, the cause of the formation of petal blotch in rose is still unclear. The influence of key enzyme genes and regulatory genes in the pigment synthesis pathways needs to be explored and clarified. RESULTS In this study, the rose cultivar 'Sunset Babylon Eyes' with rose-red to dark red blotch at the base of petal was selected as the experimental material. The HPLC-DAD and UPLC-TQ-MS analyses indicated that only cyanidin 3,5-O-diglucoside (Cy3G5G) contributed to the blotch pigmentation of 'Sunset Babylon Eyes', and the amounts of Cy3G5G varied at different developmental stages. Only flavonols but no flavone were found in blotch and non-blotch parts. As a consequence, kaempferol and its derivatives as well as quercetin and its derivatives may act as background colors during flower developmental stages. Despite of the differences in composition, the total content of carotenoids in blotch and non-blotch parts were similar, and carotenoids may just make the petals show a brighter color. Transcriptomic data, quantitative real-time PCR and promoter sequence analyses indicated that RC7G0058400 (F3'H), RC6G0470600 (DFR) and RC7G0212200 (ANS) may be the key enzyme genes for the early formation and color deepening of blotch at later stages. As for two transcription factor, RC7G0019000 (MYB) and RC1G0363600 (WRKY) may bind to the promoters of critical enzyme genes, or RC1G0363600 (WRKY) may bind to the promoter of RC7G0019000 (MYB) to activate the anthocyanin accumulation in blotch parts of 'Sunset Babylon Eyes'. CONCLUSIONS Our findings provide a theoretical basis for the understanding of the chemical and molecular mechanism for the formation of petal blotch in rose.
Collapse
Affiliation(s)
- Naizhe Ji
- Beijing Key Lab of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing, China
| | - Qianyu Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Wen
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohao Ding
- College of Food Science, Fuyang Normal University, Fuyang, China
| | - Shiwei Zhao
- Beijing Key Lab of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing, China.
| | - Hui Feng
- Beijing Key Lab of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing, China.
| |
Collapse
|
14
|
Ma Y, Devi MJ, Feng X, Li Y, Song L, Gao H, Cao B. Transcriptome analysis reveals the fruit color variation in Ailanthus altissima. PHYSIOLOGIA PLANTARUM 2023; 175:e13867. [PMID: 36708240 DOI: 10.1111/ppl.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Anthocyanins are responsible for the intensity of color in plants; however, the systematic mechanisms underlying the color differences in the fruit of Ailanthus altissima remain unknown. Therefore, this study aims to analyze the transcriptomes of the white and red fruit of A. altissima by screening and validating the key genes involved in flavonoid and anthocyanin biosynthesis. Samples of A. altissima fruit were collected 30, 45, and 60 days after flowering, and their pigment and sugar content were determined. The anthocyanin content was significantly higher in red than in white fruits. Transcriptome analysis was also performed on the fruit samples, 73,807 unigenes were assembled and annotated to seven databases. Twenty-one co-expressed modules were identified via weighted gene co-expression network analysis, of which two were associated with flavonoids and anthocyanins. Furthermore, in three growth stages, 126, 30, and 124 differentially expressed genes were screened between white and red fruit. Genes involved in flavonoid and anthocyanin metabolism were identified. AaDFR (A. altissima bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase) and AaANS (A. altissima anthocyanidin synthase) were associated with flavonoid and anthocyanin metabolism. Members of the AaDFR and AaANS families were also identified, and their basic physicochemical characteristics, conserved domains, motif compositions, phylogenetics, and expression levels were analyzed. The overexpression of AaDFR and AaANS in transgenic Arabidopsis significantly increased the content of seed and foliar flavonoids and anthocyanins. The study elucidated the different mechanisms underlying fruit color development and provided insight into A. altissima plants breeding with commercially desirable properties.
Collapse
Affiliation(s)
- Yaping Ma
- School of Agriculture, Ningxia University, Yinchuan, China
- College of Forestry, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Mura Jyostna Devi
- USDA-ARS, Vegetable Crops Research Unit, Madison, Wisconsin, USA
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xuerui Feng
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yunmao Li
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Lihua Song
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Handong Gao
- College of Forestry, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Southern Tree Seed Inspection Center, Nanjing, China
| | - Bing Cao
- School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
15
|
Fairnie ALM, Yeo MTS, Gatti S, Chan E, Travaglia V, Walker JF, Moyroud E. Eco-Evo-Devo of petal pigmentation patterning. Essays Biochem 2022; 66:753-768. [PMID: 36205404 PMCID: PMC9750854 DOI: 10.1042/ebc20220051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Colourful spots, stripes and rings decorate the corolla of most flowering plants and fulfil important biotic and abiotic functions. Spatial differences in the pigmentation of epidermal cells can create these patterns. The last few years have yielded new data that have started to illuminate the mechanisms controlling the function, formation and evolution of petal patterns. These advances have broad impacts beyond the immediate field as pigmentation patterns are wonderful systems to explore multiscale biological problems: from understanding how cells make decisions at the microscale to examining the roots of biodiversity at the macroscale. These new results also reveal there is more to petal patterning than meets the eye, opening up a brand new area of investigation. In this mini-review, we summarise our current knowledge on the Eco-Evo-Devo of petal pigmentation patterns and discuss some of the most exciting yet unanswered questions that represent avenues for future research.
Collapse
Affiliation(s)
- Alice L M Fairnie
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - May T S Yeo
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EJ, U.K
| | - Stefano Gatti
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Emily Chan
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Valentina Travaglia
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Joseph F Walker
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Edwige Moyroud
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EJ, U.K
| |
Collapse
|
16
|
Overexpression of a Fragaria vesca MYB Transcription Factor Gene ( FvMYB82) Increases Salt and Cold Tolerance in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms231810538. [PMID: 36142448 PMCID: PMC9503638 DOI: 10.3390/ijms231810538] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
The MYB transcription factor (TF) family is one of the largest transcription families in plants, which is widely involved in the responses to different abiotic stresses, such as salt, cold, and drought. In the present study, a new MYB TF gene was cloned from Fragaria vesca (a diploid strawberry) and named FvMYB82. The open reading frame (ORF) of FvMYB82 was found to be 960 bp, encoding 319 amino acids. Sequence alignment results and predictions of the protein structure indicated that the FvMYB82 contained the conserved R2R3-MYB domain. Subcellular localization analysis showed that FvMYB82 was localized onto the nucleus. Furthermore, the qPCR showed that the expression level of FvMYB82 was higher in new leaves and roots than in mature leaves and stems. When dealing with different stresses, the expression level of FvMYB82 in F. vesca seedlings changed markedly, especially for salt and cold stress. When FvMYB82 was introduced into Arabidopsis thaliana, the tolerances to salt and cold stress of FvMYB82-OE A. thaliana were greatly improved. When dealt with salt and cold treatments, compared with wild-type and unloaded line (UL) A. thaliana, the transgenic lines had higher contents of proline and chlorophyll, as well as higher activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). However, the transgenic A. thaliana had lower level of malondialdehyde (MDA) and electrolytic leakage (EL) than wild-type and UL A. thaliana under salt and cold stress. Meanwhile, FvMYB82 can also regulate the expression of downstream genes associated with salt stress (AtSnRK2.4, AtSnRK2.6, AtKUP6, and AtNCED3) and cold stress (AtCBF1, AtCBF2, AtCOR15a, and AtCOR78). Therefore, these results indicated that FvMYB82 probably plays an important role in the response to salt and cold stresses in A. thaliana by regulating downstream related genes.
Collapse
|
17
|
Ma S, Yang Z, Wu F, Ma J, Fan J, Dong X, Hu R, Feng G, Li D, Wang X, Nie G, Zhang X. R2R3-MYB gene family: Genome-wide identification provides insight to improve the content of proanthocyanidins in Trifolium repens. Gene 2022; 829:146523. [PMID: 35452706 DOI: 10.1016/j.gene.2022.146523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022]
Abstract
The R2R3-MYB family is one of largest transcription factor families in plants playing significant roles in regulating anthocyanin and proanthocyanidin biosynthesis. Proanthocyanidins are one of major objectives to improve the quality of white clover (Trifolium repens L.), which have a beneficial effect on ruminant to prevent the lethal pasture bloat. A total of 133 TrR2R3-MYB genes were identified and distributed on all 16 chromosomes based on the whole genome information of white clover. Also, by exploring the gene structure, motifs and duplication events of TrR2R3-MYBs, as well as the evolutionary relationship with TrR2R3-MYB genes of other species, 10 TrR2R3-MYB genes with the potential to regulate the anthocyanins and proanthocyanidins biosynthesis were screened. These TrR2R3-MYB genes responded significantly to low temperature in white clover. In addition, they have different expression patterns in leaves, petioles and inflorescences of white clover. Importantly, TrMYB116 and TrMYB118 may positively regulate anthocyanin accumulation and low temperature response in white clover. TrMYB118 may also be associated with anthocyanin pigmentation pattern in Purple leaves. This study provides a basis for verifying the function of TrR2R3-MYB and breeding white clover cultivars with high proanthocyanidins.
Collapse
Affiliation(s)
- Sainan Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhongfu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Feifei Wu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jieyu Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jinwan Fan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xintan Dong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ruchang Hu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dandan Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xia Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
18
|
Wang N, Zhang B, Yao T, Shen C, Wen T, Zhang R, Li Y, Le Y, Li Z, Zhang X, Lin Z. Re enhances anthocyanin and proanthocyanidin accumulation to produce red foliated cotton and brown fiber. PLANT PHYSIOLOGY 2022; 189:1466-1481. [PMID: 35289870 PMCID: PMC9237731 DOI: 10.1093/plphys/kiac118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/16/2022] [Indexed: 05/04/2023]
Abstract
Red foliated cotton is a typical dominant mutation trait in upland cotton (Gossypium hirsutum). Although mutants have been described, few responsible genes have been identified and characterized. In this study, we performed map-based cloning of the red foliated mutant gene (Re) derived from the cross between G. hirsutum cv. Emian22 and G. barbadense acc. 3-79. Through expression profiling, metabolic pathway analysis, and sequencing of candidate genes, Re was identified as an MYB113 transcription factor. A repeat sequence variation in the promoter region increased the activity of the promoter, which enhanced the expression of Re. Re expression driven by the 35S promoter produced a red foliated phenotype, as expected. When the gene was driven by a fiber elongation-specific promoter, promoter of α-expansin 2 (PGbEXPA2), Re was specifically expressed in 5- to 10-day post-anthesis fibers rather than in other tissues, resulting in brown mature fibers. Re responded to light through phytochrome-interacting factor 4 and formed a dimer with transparent testa 8, which increased its expression as well as that of anthocyanin synthase and UDP-glucose:flavonoid 3-o-glucosyl transferase, and thus activated the entire anthocyanin metabolism pathway. Our research has identified the red foliated mutant gene in cotton, which paves the way for detailed studies of anthocyanin and proanthocyanidin metabolism and pigment accumulation in cotton and provides an alternative strategy for producing brown fiber.
Collapse
Affiliation(s)
- Nian Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Beibei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Tianwang Wen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Ruiting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanxue Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Le
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhonghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
19
|
Qi F, Liu Y, Luo Y, Cui Y, Lu C, Li H, Huang H, Dai S. Functional analysis of the ScAG and ScAGL11 MADS-box transcription factors for anthocyanin biosynthesis and bicolour pattern formation in Senecio cruentus ray florets. HORTICULTURE RESEARCH 2022; 9:uhac071. [PMID: 35734379 PMCID: PMC9209810 DOI: 10.1093/hr/uhac071] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
Cineraria (Senecio cruentus) is an ornamental plant with pure colour and bicolour cultivars, widely used for landscaping. Anthocyanin biosynthesis influences coloration patterns in cineraria. However, how anthocyanins accumulate and distribute in cineraria is poorly understood. This study investigated the molecular mechanisms underlying anthocyanin biosynthesis and bicolour formation in cineraria using pure colour and bicolour cultivars. Transcriptome and gene expression analysis showed that five genes, ScCHS2, ScF3H1, ScDFR3, ScANS, and ScbHLH17, were inhibited in the white cultivar and colourless regions of bicolour cultivars. In contrast, two MADS-box genes, ScAG and ScAGL11, showed significantly higher expression in the colourless regions of bicolour cultivars. ScAG and ScAGL11 were localized in the nucleus and co-expressed with the bicolour trait. Further functional analysis verified that ScAG inhibits anthocyanin accumulation in tobacco (Nicotiana tabacum). However, virus-induced gene silencing (VIGS) experiments showed that silencing of ScAG and ScAGL11 increases anthocyanin content in cineraria leaves. Similar results were observed when ScAG and ScAGL11 were silenced in the cineraria capitulum, accompanied by the smaller size of the colourless region, specifically in the ScAG/ScAGL11-silenced plants. The expression of ScCHS2, ScDFR3, and ScF3H1 increased in silenced cineraria leaves and capitulum. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments demonstrated that ScAG interacts with ScAGL11. Moreover, ScAG directly inhibited the transcription of ScF3H1 while ScAGL11 inhibited ScDFR3 expression by binding to their promoters separately. The findings reported herein indicate that ScAG and ScAGL11 negatively regulate anthocyanin biosynthesis in cineraria ray florets, and their differential expression in ray florets influences the bicolour pattern appearance.
Collapse
Affiliation(s)
- Fangting Qi
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yuting Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yiliu Luo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yumeng Cui
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Chenfei Lu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Hao Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - He Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
20
|
Albert NW, Lafferty DJ, Moss SMA, Davies KM. Flavonoids - flowers, fruit, forage and the future. J R Soc N Z 2022; 53:304-331. [PMID: 39439482 PMCID: PMC11459809 DOI: 10.1080/03036758.2022.2034654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
Abstract
Flavonoids are plant-specific secondary metabolites that arose early during land-plant colonisation, most likely evolving for protection from UV-B and other abiotic stresses. As plants increased in complexity, so too did the diversity of flavonoid compounds produced and their physiological roles. The most conspicuous are the pigments, including yellow aurones and chalcones, and the red/purple/blue anthocyanins, which provide colours to flowers, fruits and foliage. Anthocyanins have been particularly well studied, prompted by the ease of identifying mutants of genes involved in biosynthesis or regulation, providing an important model system to study fundamental aspects of genetics, gene regulation and biochemistry. This has included identifying the first plant transcription factor, and later resolving how multiple classes of transcription factor coordinate in regulating the production of various flavonoid classes - each with different activities and produced at differing developmental stages. In addition, dietary flavonoids from fruits/vegetables and forage confer human- and animal-health benefits, respectively. This has prompted strong interest in generating new plant varieties with increased flavonoid content through both traditional breeding and plant biotechnology. Gene-editing technologies provide new opportunities to study how flavonoids are regulated and produced and to improve the flavonoid content of flowers, fruits, vegetables and forages.
Collapse
Affiliation(s)
- Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Declan J. Lafferty
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Sarah M. A. Moss
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Kevin M. Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
21
|
Genome-Wide Identification of MYB Transcription Factors and Screening of Members Involved in Stress Response in Actinidia. Int J Mol Sci 2022; 23:ijms23042323. [PMID: 35216440 PMCID: PMC8875009 DOI: 10.3390/ijms23042323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/23/2022] Open
Abstract
MYB transcription factors (TFs) play an active role in plant responses to abiotic stresses, but they have not been systematically studied in kiwifruit (Actinidia chinensis). In this study, 181 AcMYB TFs were identified from the kiwifruit genome, unevenly distributed on 29 chromosomes. The high proportion (97.53%) of segmental duplication events (Ka/Ks values less than 1) indicated that AcMYB TFs underwent strong purification selection during evolution. According to the conservative structure, 91 AcR2R3-MYB TFs could be divided into 34 subgroups. A combination of transcriptomic data under drought and high temperature from four AcMYB TFs (AcMYB2, AcMYB60, AcMYB61 and AcMYB102) was screened out in response to stress and involvement in the phenylpropanoid pathway. They were highly correlated with the expression of genes related to lignin biosynthesis. qRT-PCR analysis showed that they were highly correlated with the expression of genes related to lignin biosynthesis in different tissues or under stress, which was consistent with the results of lignin fluorescence detection. The above results laid a foundation for further clarifying the role of MYB in stress.
Collapse
|
22
|
Roldan MB, Cousins G, Muetzel S, Zeller WE, Fraser K, Salminen JP, Blanc A, Kaur R, Richardson K, Maher D, Jahufer Z, Woodfield DR, Caradus JR, Voisey CR. Condensed Tannins in White Clover ( Trifolium repens) Foliar Tissues Expressing the Transcription Factor TaMYB14-1 Bind to Forage Protein and Reduce Ammonia and Methane Emissions in vitro. FRONTIERS IN PLANT SCIENCE 2022; 12:777354. [PMID: 35069633 PMCID: PMC8774771 DOI: 10.3389/fpls.2021.777354] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/26/2021] [Indexed: 05/29/2023]
Abstract
Grazing ruminants contribute to global climate change through enteric methane and nitrous oxide emissions. However, animal consumption of the plant polyphenolics, proanthocyanidins, or condensed tannins (CTs) can decrease both methane emissions and urine nitrogen levels, leading to reduced nitrous oxide emissions, and concomitantly increase animal health and production. CTs are largely absent in the foliage of important temperate pasture legumes, such as white clover (Trifolium repens), but found in flowers and seed coats. Attempts at enhancing levels of CT expression in white clover leaves by mutagenesis and breeding have not been successful. However, the transformation of white clover with the TaMYB14-1 transcription factor from Trifolium arvense has resulted in the production of CTs in leaves up to 1.2% of dry matter (DM). In this study, two generations of breeding elevated foliar CTs to >2% of DM. The CTs consisted predominantly of prodelphinidins (PD, 75-93%) and procyanidins (PC, 17-25%) and had a mean degree of polymerization (mDP) of approximately 10 flavan-3-ol subunits. In vitro studies showed that foliar CTs were bound to bovine serum albumin and white clover proteins at pH 6.5 and were released at pH 2.-2.5. Using rumen in vitro assays, white clover leaves containing soluble CTs of 1.6-2.4% of DM significantly reduced methane production by 19% (p ≤0.01) and ammonia production by 60% (p ≤ 0.01) relative to non-transformed wild type (WT) controls after 6 h of incubation. These results provide valuable information for further studies using CT expressing white clover leaves for bloat prevention and reduced greenhouse gas emissions in vivo.
Collapse
Affiliation(s)
- Marissa B. Roldan
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Greig Cousins
- PGG Wrightson Seeds Ltd, Palmerston North, New Zealand
| | - Stefan Muetzel
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Wayne E. Zeller
- ARS-USDA, US Dairy Forage Research Center, Madison, WI, United States
| | - Karl Fraser
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | - Alexia Blanc
- PGG Wrightson Seeds Ltd, Palmerston North, New Zealand
- AgroParis Tech, Paris, France
| | - Rupinder Kaur
- PGG Wrightson Seeds Ltd, Palmerston North, New Zealand
| | - Kim Richardson
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Dorothy Maher
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Zulfi Jahufer
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
23
|
Li M, Coneva V, Robbins KR, Clark D, Chitwood D, Frank M. Quantitative dissection of color patterning in the foliar ornamental coleus. PLANT PHYSIOLOGY 2021; 187:1310-1324. [PMID: 34618067 PMCID: PMC8566300 DOI: 10.1093/plphys/kiab393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/17/2021] [Indexed: 05/04/2023]
Abstract
Coleus (Coleus scutellarioides) is a popular ornamental plant that exhibits a diverse array of foliar color patterns. New cultivars are currently hand selected by both amateur and experienced plant breeders. In this study, we reimagine breeding for color patterning using a quantitative color analysis framework. Despite impressive advances in high-throughput data collection and processing, complex color patterns remain challenging to extract from image datasets. Using a phenotyping approach called "ColourQuant," we extract and analyze pigmentation patterns from one of the largest coleus breeding populations in the world. Working with this massive dataset, we can analyze quantitative relationships between maternal plants and their progeny, identify features that underlie breeder-selections, and collect and compare public input on trait preferences. This study is one of the most comprehensive explorations into complex color patterning in plant biology and provides insights and tools for exploring the color pallet of the plant kingdom.
Collapse
Affiliation(s)
- Mao Li
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Viktoriya Coneva
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Kelly R Robbins
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14850, USA
| | - David Clark
- Department of Environmental Horticulture, University of Florida, Gainesville, Florida 32611-0670, USA
| | - Dan Chitwood
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Computational Mathematics, Michigan State University, East Lansing, Michigan 48824, USA
| | - Margaret Frank
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|
24
|
Wu C, Deng C, Hilario E, Albert NW, Lafferty D, Grierson ERP, Plunkett BJ, Elborough C, Saei A, Günther CS, Ireland H, Yocca A, Edger PP, Jaakola L, Karppinen K, Grande A, Kylli R, Lehtola VP, Allan AC, Espley RV, Chagné D. A chromosome-scale assembly of the bilberry genome identifies a complex locus controlling berry anthocyanin composition. Mol Ecol Resour 2021; 22:345-360. [PMID: 34260155 DOI: 10.1111/1755-0998.13467] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022]
Abstract
Bilberry (Vaccinium myrtillus L.) belongs to the Vaccinium genus, which includes blueberries (Vaccinium spp.) and cranberry (V. macrocarpon). Unlike its cultivated relatives, bilberry remains largely undomesticated, with berry harvesting almost entirely from the wild. As such, it represents an ideal target for genomic analysis, providing comparisons with the domesticated Vaccinium species. Bilberry is prized for its taste and health properties and has provided essential nutrition for Northern European indigenous populations. It contains high concentrations of phytonutrients, with perhaps the most important being the purple colored anthocyanins, found in both skin and flesh. Here, we present the first bilberry genome assembly, comprising 12 pseudochromosomes assembled using Oxford Nanopore (ONT) and Hi-C Technologies. The pseudochromosomes represent 96.6% complete BUSCO genes with an assessed LAI score of 16.3, showing a high conservation of synteny against the blueberry genome. Kmer analysis showed an unusual third peak, indicating the sequenced samples may have been from two individuals. The alternate alleles were purged so that the final assembly represents only one haplotype. A total of 36,404 genes were annotated after nearly 48% of the assembly was masked to remove repeats. To illustrate the genome quality, we describe the complex MYBA locus, and identify the key regulating MYB genes that determine anthocyanin production. The new bilberry genome builds on the genomic resources and knowledge of Vaccinium species, to help understand the genetics underpinning some of the quality attributes that breeding programs aspire to improve. The high conservation of synteny between bilberry and blueberry genomes means that comparative genome mapping can be applied to transfer knowledge about marker-trait association between these two species, as the loci involved in key characters are orthologous.
Collapse
Affiliation(s)
- Chen Wu
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand.,Genomics Aotearoa, Dunedin, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand.,Genomics Aotearoa, Dunedin, New Zealand
| | - Elena Hilario
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand.,Genomics Aotearoa, Dunedin, New Zealand
| | | | - Declan Lafferty
- PFR, Palmerston North, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Blue J Plunkett
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Caitlin Elborough
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Ali Saei
- BioLumic Limited, Palmerston North, New Zealand
| | - Catrin S Günther
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Hilary Ireland
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Alan Yocca
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA.,Department of Horticultural Science, Michigan State University, East Lansing, Michigan, USA
| | - Patrick P Edger
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway.,NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Katja Karppinen
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
| | | | - Ritva Kylli
- History, Culture and Communication studies, University of Oulu, Oulu, Finland
| | | | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - David Chagné
- Genomics Aotearoa, Dunedin, New Zealand.,PFR, Palmerston North, New Zealand
| |
Collapse
|
25
|
Albert NW, Butelli E, Moss SM, Piazza P, Waite CN, Schwinn KE, Davies KM, Martin C. Discrete bHLH transcription factors play functionally overlapping roles in pigmentation patterning in flowers of Antirrhinum majus. THE NEW PHYTOLOGIST 2021; 231:849-863. [PMID: 33616943 PMCID: PMC8248400 DOI: 10.1111/nph.17142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/30/2020] [Indexed: 05/08/2023]
Abstract
Floral pigmentation patterning is important for pollinator attraction as well as aesthetic appeal. Patterning of anthocyanin accumulation is frequently associated with variation in activity of the Myb, bHLH and WDR transcription factor complex (MBW) that regulates anthocyanin biosynthesis. Investigation of two classic mutants in Antirrhinum majus, mutabilis and incolorata I, showed they affect a gene encoding a bHLH protein belonging to subclade bHLH-2. The previously characterised gene, Delila, which encodes a bHLH-1 protein, has a bicoloured mutant phenotype, with residual lobe-specific pigmentation conferred by Incolorata I. Both Incolorata I and Delila induce expression of the anthocyanin biosynthetic gene DFR. Rosea 1 (Myb) and WDR1 proteins compete for interaction with Delila, but interact positively to promote Incolorata I activity. Delila positively regulates Incolorata I and WDR1 expression. Hierarchical regulation can explain the bicoloured patterning of delila mutants, through effects on both regulatory gene expression and the activity of promoters of biosynthetic genes like DFR that mediate MBW regulation. bHLH-1 and bHLH-2 proteins contribute to establishing patterns of pigment distribution in A. majus flowers in two ways: through functional redundancy in regulating anthocyanin biosynthetic gene expression, and through differences between the proteins in their ability to regulate genes encoding transcription factors.
Collapse
Affiliation(s)
- Nick W. Albert
- Plant & Food Research Food Industry Science CentreFitzherbert Science CentreBatchelar RoadPalmerston North4474New Zealand
| | | | - Sarah M.A. Moss
- Plant & Food Research Food Industry Science CentreFitzherbert Science CentreBatchelar RoadPalmerston North4474New Zealand
| | - Paolo Piazza
- Oxford Genomics CentreUniversity of OxfordRoosevelt DriveOxford,OX3 7BNUK
| | - Chethi N. Waite
- Plant & Food Research Food Industry Science CentreFitzherbert Science CentreBatchelar RoadPalmerston North4474New Zealand
| | - Kathy E. Schwinn
- Plant & Food Research Food Industry Science CentreFitzherbert Science CentreBatchelar RoadPalmerston North4474New Zealand
| | - Kevin M. Davies
- Plant & Food Research Food Industry Science CentreFitzherbert Science CentreBatchelar RoadPalmerston North4474New Zealand
| | | |
Collapse
|
26
|
Rodrigues JA, Espley RV, Allan AC. Genomic analysis uncovers functional variation in the C-terminus of anthocyanin-activating MYB transcription factors. HORTICULTURE RESEARCH 2021; 8:77. [PMID: 33790254 PMCID: PMC8012628 DOI: 10.1038/s41438-021-00514-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 05/26/2023]
Abstract
MYB transcription factors regulate diverse aspects of plant development and secondary metabolism, often by partnering in transcriptional regulatory complexes. Here, we harness genomic resources to identify novel MYBs, thereby producing an updated eudicot MYB phylogeny with revised relationships among subgroups as well as new information on sequence variation in the disordered C-terminus of anthocyanin-activating MYBs. BLAST® and hidden Markov model scans of gene annotations identified a total of 714 MYB transcription factors across the genomes of four crops that span the eudicots: apple, grape, kiwifruit and tomato. Codon model-based phylogenetic inference identified novel members of previously defined subgroups, and the function of specific anthocyanin-activating subgroup 6 members was assayed transiently in tobacco leaves. Sequence conservation within subgroup 6 highlighted one previously described and two novel short linear motifs in the disordered C-terminal region. The novel motifs have a mix of hydrophobic and acidic residues and are predicted to be relatively ordered compared with flanking protein sequences. Comparison of motifs with the Eukaryotic Linear Motif database suggests roles in protein-protein interaction. Engineering of motifs and their flanking regions from strong anthocyanin activators into weak activators, and vice versa, affected function. We conclude that, although the MYB C-terminal sequence diverges greatly even within MYB clades, variation within the C-terminus at and near relatively ordered regions offers opportunities for exploring MYB function and developing superior alleles for plant breeding.
Collapse
Affiliation(s)
- Jessica A Rodrigues
- The New Zealand Institute for Plant and Food Research Limited, 120 Mount Albert Road, Sandringham, Auckland, 1025, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited, 120 Mount Albert Road, Sandringham, Auckland, 1025, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited, 120 Mount Albert Road, Sandringham, Auckland, 1025, New Zealand.
- School of Biological Sciences, University of Auckland, 3A Symonds St, Auckland, 1010, New Zealand.
| |
Collapse
|
27
|
Yan H, Pei X, Zhang H, Li X, Zhang X, Zhao M, Chiang VL, Sederoff RR, Zhao X. MYB-Mediated Regulation of Anthocyanin Biosynthesis. Int J Mol Sci 2021; 22:3103. [PMID: 33803587 PMCID: PMC8002911 DOI: 10.3390/ijms22063103] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins are natural water-soluble pigments that are important in plants because they endow a variety of colors to vegetative tissues and reproductive plant organs, mainly ranging from red to purple and blue. The colors regulated by anthocyanins give plants different visual effects through different biosynthetic pathways that provide pigmentation for flowers, fruits and seeds to attract pollinators and seed dispersers. The biosynthesis of anthocyanins is genetically determined by structural and regulatory genes. MYB (v-myb avian myeloblastosis viral oncogene homolog) proteins are important transcriptional regulators that play important roles in the regulation of plant secondary metabolism. MYB transcription factors (TFs) occupy a dominant position in the regulatory network of anthocyanin biosynthesis. The TF conserved binding motifs can be combined with other TFs to regulate the enrichment and sedimentation of anthocyanins. In this study, the regulation of anthocyanin biosynthetic mechanisms of MYB-TFs are discussed. The role of the environment in the control of the anthocyanin biosynthesis network is summarized, the complex formation of anthocyanins and the mechanism of environment-induced anthocyanin synthesis are analyzed. Some prospects for MYB-TF to modulate the comprehensive regulation of anthocyanins are put forward, to provide a more relevant basis for further research in this field, and to guide the directed genetic modification of anthocyanins for the improvement of crops for food quality, nutrition and human health.
Collapse
Affiliation(s)
- Huiling Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xiaona Pei
- Harbin Research Institute of Forestry Machinery, State Administration of Forestry and Grassland, Harbin 150086, China;
- Research Center of Cold Temperate Forestry, CAF, Harbin 150086, China
| | - Heng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xinxin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Minghui Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ronald Ross Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| |
Collapse
|
28
|
Wang C, Ji W, Liu Y, Zhou P, Meng Y, Zhang P, Wen J, Mysore KS, Zhai J, Young ND, Tian Z, Niu L, Lin H. The antagonistic MYB paralogs RH1 and RH2 govern anthocyanin leaf markings in Medicago truncatula. THE NEW PHYTOLOGIST 2021; 229:3330-3344. [PMID: 33222243 PMCID: PMC7986808 DOI: 10.1111/nph.17097] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/14/2020] [Indexed: 05/11/2023]
Abstract
Patterned leaf coloration in plants generates remarkable diversity in nature, but the underlying mechanisms remain largely unclear. Here, using Medicago truncatula leaf marking as a model, we show that the classic M. truncatula leaf anthocyanin spot trait depends on two R2R3 MYB paralogous regulators, RED HEART1 (RH1) and RH2. RH1 mainly functions as an anthocyanin biosynthesis activator that specifically determines leaf marking formation depending on its C-terminal activation motif. RH1 physically interacts with the M. truncatula bHLH protein MtTT8 and the WDR family member MtWD40-1, and this interaction facilitates RH1 function in leaf anthocyanin marking formation. RH2 has lost transcriptional activation activity, due to a divergent C-terminal domain, but retains the ability to interact with the same partners, MtTT8 and MtWD40-1, as RH1, thereby acting as a competitor in the regulatory complex and exerting opposite effects. Moreover, our results demonstrate that RH1 can activate its own expression and that RH2-mediated competition can repress RH1 expression. Our findings reveal the molecular mechanism of the antagonistic gene paralogs RH1 and RH2 in determining anthocyanin leaf markings in M. truncatula, providing a multidimensional paralogous-antagonistic regulatory paradigm for fine-tuning patterned pigmentation.
Collapse
Affiliation(s)
- Chongnan Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Wenkai Ji
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Yucheng Liu
- StateKey Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, the Innovative Academy of Seed DesignChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100101China
| | - Peng Zhou
- Department of Plant PathologyUniversity of MinnesotaSt PaulMN55108USA
| | - Yingying Meng
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Pengcheng Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | | | | | - Jixian Zhai
- Institute of Plant and Food ScienceDepartment of BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Nevin D. Young
- Department of Plant PathologyUniversity of MinnesotaSt PaulMN55108USA
| | - Zhixi Tian
- StateKey Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, the Innovative Academy of Seed DesignChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100101China
| | - Lifang Niu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Hao Lin
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| |
Collapse
|
29
|
Zhu Y, Bao Y. Genome-Wide Mining of MYB Transcription Factors in the Anthocyanin Biosynthesis Pathway of Gossypium Hirsutum. Biochem Genet 2021; 59:678-696. [PMID: 33502632 DOI: 10.1007/s10528-021-10027-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
The MYB family, one of the largest transcription factor (TF) families, plays an important role in plant growth, development, and stress response. Although genome-wide analysis of the MYB family has been performed in many species based on sequence similarity, predicting the potential functions of the MYB genes and classifying the regulators into specific metabolic pathways remains difficult. In this study, using a hidden Markov model search and co-expression regulatory network analysis, we demonstrated a process to screen and identify potential MYB TFs in the anthocyanin biosynthesis pathway of Gossypium hirsutum. As a result, we identified 617 and 784 MYB genes (812 in total) from the previously reported and recently released genomes, respectively. Using 126 structural genes involved in the anthocyanin biosynthesis pathway as targets for several co-expression network analyses, we sorted out 31 R2R3-MYB genes, which are potential regulators in the specific pathway. Phylogenetic and collinearity analyses indicated that 83.9% of the 31 MYB genes originated from whole genome duplication or polyploidization. In addition, we revealed relatively specific regulatory relationships between the MYB TFs and their target structural genes. Approximately, 71% of the MYBs could regulate only a single anthocyanin-related structural gene. Moreover, we found that the A- and D- subgenome homoeologs of MYB TFs in G. hirsutum rarely co-regulate the same target gene. The current study not only demonstrated an easy method to rapidly predict potential TFs in a specific metabolic pathway, but also enhanced our understanding of the evolution, gene characteristics, expression, and regulatory pattern of MYB TFs in G. hirsutum.
Collapse
Affiliation(s)
- Yingjie Zhu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Ying Bao
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
| |
Collapse
|
30
|
Dong J, Cao L, Zhang X, Zhang W, Yang T, Zhang J, Che D. An R2R3-MYB Transcription Factor RmMYB108 Responds to Chilling Stress of Rosa multiflora and Conferred Cold Tolerance of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:696919. [PMID: 34386027 PMCID: PMC8353178 DOI: 10.3389/fpls.2021.696919] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/30/2021] [Indexed: 05/19/2023]
Abstract
A sudden cooling in the early spring or late autumn negatively impacts the plant growth and development. Although a number of studies have characterized the role of the transcription factors (TFs) of plant R2R3-myeloblastosis (R2R3-MYB) in response to biotic and abiotic stress, plant growth, and primary and specific metabolisms, much less is known about their role in Rosa multiflora under chilling stress. In the present study, RmMYB108, which encodes a nuclear-localized R2R3-MYB TF with a self-activation activity, was identified based on the earlier published RNA-seq data of R. multiflora plants exposed to short-term low-temperature stress and also on the results of prediction of the gene function referring Arabidopsis. The RmMYB108 gene was induced by stress due to chilling, salt, and drought and was expressed in higher levels in the roots than in the leaves. The heterologous expression of RmMYB108 in Arabidopsis thaliana significantly enhanced the tolerance of transgenic plants to freezing, water deficit, and high salinity, enabling higher survival and growth rates, earlier flowering and silique formation, and better seed quantity and quality compared with the wild-type (WT) plants. When exposed to a continuous low-temperature stress at 4°C, transgenic Arabidopsis lines-overexpressing RmMYB108 showed higher activities of superoxide dismutase and peroxidase, lower relative conductivity, and lower malondialdehyde content than the WT. Moreover, the initial fluorescence (F o) and maximum photosynthetic efficiency of photosystem II (F v/F m) changed more dramatically in the WT than in transgenic plants. Furthermore, the expression levels of cold-related genes involved in the ICE1 (Inducer of CBF expression 1)-CBFs (C-repeat binding factors)-CORs (Cold regulated genes) cascade were higher in the overexpression lines than in the WT. These results suggest that RmMYB108 was positively involved in the tolerance responses when R. multiflora was exposed to challenges against cold, freeze, salt, or drought and improved the cold tolerance of transgenic Arabidopsis by reducing plant damage and promoting plant growth.
Collapse
Affiliation(s)
- Jie Dong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Lei Cao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Xiaoying Zhang
- Horticultural Research Institute, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Wuhua Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Tao Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Jinzhu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- *Correspondence: Jinzhu Zhang,
| | - Daidi Che
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Daidi Che,
| |
Collapse
|
31
|
Wang M, Hao J, Chen X, Zhang X. SlMYB102 expression enhances low-temperature stress resistance in tomato plants. PeerJ 2020; 8:e10059. [PMID: 33083130 PMCID: PMC7547593 DOI: 10.7717/peerj.10059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/07/2020] [Indexed: 01/05/2023] Open
Abstract
Herein, we identified the tomato SlMYB102 gene as a MYB family transcription factor of the R2R3-MYB subfamily. We additionally determined that the SlMYB102 promoter region contains photoresponsive, abiotic stress-responsive, and hormone-responsive regulatory elements, and we detected higher SlMYB102 expression in the reproductive organs of tomato than that in vegetative organs, with the expression being highest in ripe fruits and in roots. SlMYB102 expression was also shown to be cold-inducible. The protein encoded by SlMYB102 localized to the nucleus wherein it was found to mediate the transcriptional activation of target genes through its C-terminal domain. Overexpression of SlMYB102 in tomato plants conferred enhanced tolerance to cold stress. Under such cold stress conditions, we found that proline levels in the leaves of SlMYB102 overexpressing transgenic plants were higher than those in WT plants. In addition, S1MYB102 overexpression was associated with the enhanced expression of cold response genes including SlCBF1, SlCBF3, SlDREB1, SlDEB2, and SlICE1. We also found that the overexpression of SlMYB102 further enhanced the cold-induced upregulation of SlP5CS and SlAPX2. Taken together, these results suggest that SlMYB102 may be involved in the C-repeat binding transcription factor (CBF) and proline synthesis pathways, thereby improving tomato plant cold resistance.
Collapse
Affiliation(s)
- Meiling Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Juan Hao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xiuhua Chen
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xichun Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
32
|
Wang M, Hao J, Chen X, Zhang X. SlMYB102 expression enhances low-temperature stress resistance in tomato plants. PeerJ 2020; 8:e10059. [PMID: 33083130 DOI: 10.7717/peerj.10059/supp-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/07/2020] [Indexed: 05/27/2023] Open
Abstract
Herein, we identified the tomato SlMYB102 gene as a MYB family transcription factor of the R2R3-MYB subfamily. We additionally determined that the SlMYB102 promoter region contains photoresponsive, abiotic stress-responsive, and hormone-responsive regulatory elements, and we detected higher SlMYB102 expression in the reproductive organs of tomato than that in vegetative organs, with the expression being highest in ripe fruits and in roots. SlMYB102 expression was also shown to be cold-inducible. The protein encoded by SlMYB102 localized to the nucleus wherein it was found to mediate the transcriptional activation of target genes through its C-terminal domain. Overexpression of SlMYB102 in tomato plants conferred enhanced tolerance to cold stress. Under such cold stress conditions, we found that proline levels in the leaves of SlMYB102 overexpressing transgenic plants were higher than those in WT plants. In addition, S1MYB102 overexpression was associated with the enhanced expression of cold response genes including SlCBF1, SlCBF3, SlDREB1, SlDEB2, and SlICE1. We also found that the overexpression of SlMYB102 further enhanced the cold-induced upregulation of SlP5CS and SlAPX2. Taken together, these results suggest that SlMYB102 may be involved in the C-repeat binding transcription factor (CBF) and proline synthesis pathways, thereby improving tomato plant cold resistance.
Collapse
Affiliation(s)
- Meiling Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Juan Hao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xiuhua Chen
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xichun Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
33
|
Erfatpour M, Pauls KP. A R2R3-MYB gene-based marker for the non-darkening seed coat trait in pinto and cranberry beans (Phaseolus vulgaris L.) derived from 'Wit-rood boontje'. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1977-1994. [PMID: 32112124 PMCID: PMC7237406 DOI: 10.1007/s00122-020-03571-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/21/2020] [Indexed: 05/28/2023]
Abstract
KEY MESSAGE The gene Phvul.010G130600 which codes for a MYB was shown to be tightly associated with seed coat darkening in Phaseolus vulgaris and a single nucleotide deletion in the allele in Wit-rood disrupts a transcription activation region that likely prevents its functioning in this non-darkening genotype. The beige and white background colors of the seed coats of conventional pinto and cranberry beans turn brown through a process known as postharvest darkening (PHD). Seed coat PHD is attributed to proanthocyanidin accumulation and its subsequent oxidation in the seed coat. The J gene is an uncharacterized classical genetic locus known to be responsible for PHD in common bean (P. vulgaris) and individuals that are homozygous for its recessive allele have a non-darkening (ND) seed coat phenotype. A previous study identified a major colorimetrically determined QTL for seed coat color on chromosome 10 that was associated with the ND trait. The objectives of this study were to identify a gene associated with seed coat postharvest darkening in common bean and understand its function in promoting seed coat darkening. Amplicon sequencing of 21 candidate genes underlying the QTL associated with the ND trait revealed a single nucleotide deletion (c.703delG) in the candidate gene Phvul.010G130600 in non-darkening recombinant inbred lines derived from crosses between ND 'Wit-rood boontje' and a regular darkening pinto genotype. In silico analysis indicated that Phvul.010G130600 encodes a protein with strong amino acid sequence identity (70%) with a R2R3-MYB-type transcription factor MtPAR, which has been shown to regulate proanthocyanidin biosynthesis in Medicago truncatula seed coat tissue. The deletion in the 'Wit-rood boontje' allele of Phvul.010G130600 likely causes a translational frame shift that disrupts the function of a transcriptional activation domain contained in the C-terminus of the R2R3-MYB. A gene-based dominant marker was developed for the dominant allele of Phvul.010G130600 which can be used for marker-assisted selection of ND beans.
Collapse
Affiliation(s)
- M Erfatpour
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - K P Pauls
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
34
|
Xie S, Lei Y, Chen H, Li J, Chen H, Zhang Z. R2R3-MYB Transcription Factors Regulate Anthocyanin Biosynthesis in Grapevine Vegetative Tissues. FRONTIERS IN PLANT SCIENCE 2020; 11:527. [PMID: 32457776 PMCID: PMC7221203 DOI: 10.3389/fpls.2020.00527] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/07/2020] [Indexed: 06/02/2023]
Abstract
Anthocyanins with important physiological functions mainly accumulate in grape berry, but teinturier grape cultivars can accumulate anthocyanins in both reproductive and vegetative tissues. The molecular regulatory mechanisms of anthocyanin biosynthesis in grapevine reproductive and vegetative tissues are different. Therefore, teinturier grapevine cultivar provides opportunities to investigate transcriptional regulation of vegetative anthocyanins, and to compare with mechanisms that regulate grape berry anthocyanins. Yan73 is a teinturier Vitis vinifera variety with vegetative tissues able to accumulate anthocyanins, but the anthocyanin pattern and the molecular mechanism regulating anthocyanin biosynthesis in these tissues remain uncharacterized. We analyzed the anthocyanin metabolic and transcriptome profiles of the vegetative tissues of Yan73 and its male parent with HPLC-ESI-MS/MS and RNA-sequencing technologies. Yan73 vegetative tissues had relatively high 3'-OH, acylated, and methoxylated anthocyanins. Furthermore, peonidin-3-O-(trans-6-coumaryl)-glucoside is the most abundant anthocyanin in Yan73 grapevine vegetative tissues. A total of 30,17 and 10 anthocyanin biosynthesis genes showed up-regulated expression in Yan73 leaf, stem and tendril, respectively, indicating anthocyanin biosynthesis in Yan73 vegetative tissues is regulated by transcription factors. The up-regulated expression of VvMYBA1 on chromosome 2 and VvMYBA5, VvMYBA6, and VvMYBA7 on chromosome 14 are responsible for the anthocyanin patterns of Yan73 vegetative tissues. The expression of a set of R2R3-MYB C2 repressor genes is activated and may negatively regulate anthocyanin biosynthesis in Yan73 vegetative tissues. These findings enhance our understanding of anthocyanin biosynthesis in grapevine.
Collapse
Affiliation(s)
- Sha Xie
- College of Enology, Northwest A&F University, Xianyang, China
| | - Yujuan Lei
- College of Food Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Huawei Chen
- College of Enology, Northwest A&F University, Xianyang, China
| | - Junnan Li
- College of Enology, Northwest A&F University, Xianyang, China
| | - Huangzhao Chen
- College of Enology, Northwest A&F University, Xianyang, China
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Xianyang, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang, China
| |
Collapse
|
35
|
Roldan MB, Cousins G, Fraser K, Hancock KR, Collette V, Demmer J, Woodfield DR, Caradus JR, Jones C, Voisey CR. Elevation of Condensed Tannins in the Leaves of Ta-MYB14-1 White Clover ( Trifolium repens L.) Outcrossed with High Anthocyanin Lines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2927-2939. [PMID: 31241924 DOI: 10.1021/acs.jafc.9b01185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Condensed tannins (CT) are highly desirable in forage as they sequester dietary protein and reduce bloat and methane emissions in ruminants. However, the widely used forage legume white clover (Trifolium repens) only produces CTs in flowers and trichomes and at levels too low to achieve therapeutic effects. Genetic transformation with transcription factor Ta-MYB14-1 from Trifolium arvense was effective in inducing CTs to 0.6% of leaf dry matter. CT synthesis has been elevated further by crossing the primary white clover transgenic line with wild type genotypes producing the related phenylpropanoids, anthocyanins. CT levels in leaves were highest under the anthocyanin leaf marks associated with the "red midrib" trait; however, there was no evidence for CT accumulation in leaf sections with the "red V" anthocyanin marking. Ta-MYB14-1 was stably inherited in two generations of crosses, and T2 progeny produced up to 3.6-fold higher CTs than the T0 parent. The profile of small CT oligomers such as dimers and trimers was consistent in T0, T1, T2, and BC2 progeny and consisted predominantly of prodelphinidins (PD), with lesser amounts of procyanidins (PC) and mixed PC:PD oligomers.
Collapse
Affiliation(s)
| | - Greig Cousins
- PGG Wrightson Seeds Ltd., Palmerston North 4442, New Zealand
| | - Karl Fraser
- AgResearch Limited, Palmerston North 4442, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Kerry R Hancock
- University of Southern Queensland, Toowoomba, Queensland 4350, Australia
| | - Vern Collette
- Plant and Food Research, Palmerston North 4442, New Zealand
| | - Jerome Demmer
- Halcyon Bioconsulting Ltd., Auckland 0571, New Zealand
| | | | - John R Caradus
- Grasslanz Technology Ltd., Palmerston North 4442, New Zealand
| | - Chris Jones
- International Livestock Research Institute, Nairobi 00100, Kenya
| | | |
Collapse
|
36
|
Hughes NM, Gigantino GM, Grace MH, Hoffman KM, Lila MA, Willans BN, Wommack AJ. Photosynthetic Profiles of Green, Purple, and Spotted-Leaf Morphotypes of Tipularia discolor (Orchidaceae). SOUTHEAST NAT 2019. [DOI: 10.1656/058.018.0415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Nicole M. Hughes
- Department of Biology, High Point University, High Point, NC 27262
| | | | - Mary H. Grace
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081
| | - Kevin M. Hoffman
- Department of Biology, High Point University, High Point, NC 27262
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081
| | | | - Andrew J. Wommack
- Department of Chemistry, High Point University, High Point, NC 27262
| |
Collapse
|
37
|
Tirumalai V, Swetha C, Nair A, Pandit A, Shivaprasad PV. miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4775-4792. [PMID: 31145783 PMCID: PMC6760283 DOI: 10.1093/jxb/erz264] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/21/2019] [Indexed: 05/20/2023]
Abstract
MicroRNAs are a class of non-coding small RNAs involved in the negative regulation of gene expression, which play critical roles in developmental and metabolic pathways. Studies in several plants have identified a few microRNAs and other small RNAs that target regulators of the phenylpropanoid metabolic pathway called the MYB transcription factors. However, it is not well understood how sRNA-mediated regulation of MYBs influences the accumulation of specific secondary metabolites. Using sRNA sequencing, degradome analysis, mRNA sequencing, and proteomic analysis, we establish that grape lines with high anthocyanin content express two MYB-targeting microRNAs abundantly, resulting in the differential expression of specific MYB proteins. miR828 and miR858 target coding sequences of specific helix motifs in the mRNA sequences of MYB proteins. Targeting by miR828 caused MYB RNA decay and the production of a cascade of secondary siRNAs that depend on RNA-dependent RNA polymerase 6. MYB suppression and cascade silencing was more robust in grape lines with high anthocyanin content than in a flavonol-rich grape line. We establish that microRNA-mediated silencing targeted the repressor class of MYBs to promote anthocyanin biosynthesis in grape lines with high anthocyanins. We propose that this process regulates the expression of appropriate MYBs in grape lines to produce specific secondary metabolites.
Collapse
Affiliation(s)
- Varsha Tirumalai
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Chenna Swetha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Ashwin Nair
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Awadhesh Pandit
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- Correspondence:
| |
Collapse
|
38
|
Li X, Ouyang X, Zhang Z, He L, Wang Y, Li Y, Zhao J, Chen Z, Wang C, Ding L, Pei Y, Xiao Y. Over-expression of the red plant gene R1 enhances anthocyanin production and resistance to bollworm and spider mite in cotton. Mol Genet Genomics 2019; 294:469-478. [DOI: 10.1007/s00438-018-1525-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022]
|
39
|
Plunkett BJ, Espley RV, Dare AP, Warren BAW, Grierson ERP, Cordiner S, Turner JL, Allan AC, Albert NW, Davies KM, Schwinn KE. MYBA From Blueberry ( Vaccinium Section Cyanococcus) Is a Subgroup 6 Type R2R3MYB Transcription Factor That Activates Anthocyanin Production. FRONTIERS IN PLANT SCIENCE 2018; 9:1300. [PMID: 30254656 PMCID: PMC6141686 DOI: 10.3389/fpls.2018.01300] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/17/2018] [Indexed: 05/09/2023]
Abstract
The Vaccinium genus in the family Ericaceae comprises many species, including the fruit-bearing blueberry, bilberry, cranberry, huckleberry, and lingonberry. Commercially, the most important are the blueberries (Vaccinium section Cyanococcus), such as Vaccinium corymbosum (northern highbush blueberry), Vaccinium virgatum (rabbiteye blueberry), and Vaccinium angustifolium (lowbush blueberry). The rising popularity of blueberries can partly be attributed to their "superfood" status, with an increasing body of evidence around human health benefits resulting from the fruit metabolites, particularly products of the phenylpropanoid pathway such as anthocyanins. Activation of anthocyanin production by R2R3-MYB transcription factors (TFs) has been characterized in many species, but despite recent studies on blueberry, cranberry, and bilberry, no MYB anthocyanin regulators have been reported for Vaccinium. Indeed, there has been conjecture that at least in bilberry, MYB TFs divergent to the usual type are involved. We report identification of MYBA from blueberry, and show through sequence analysis and functional studies that it is homologous to known anthocyanin-promoting R2R3-MYBs of subgroup 6 of the MYB superfamily. In transient assays, MYBA complemented an anthocyanin MYB mutant of Antirrhinum majus and, together with a heterologous bHLH anthocyanin regulator, activated anthocyanin production in Nicotiana benthamiana. Furthermore anthocyanin accumulation and anthocyanin structural gene expression (assayed by qPCR and RNA-seq analyses) correlated with MYBA expression, and MYBA was able to transactivate the DFR promoter from blueberry and other species. The RNA-seq data also revealed a range of other candidate genes involved in the regulation of anthocyanin production in blueberry fruit. The identification of MYBA will help to resolve the regulatory mechanism for anthocyanin pigmentation in the Vaccinium genus. The sequence information should also prove useful in developing tools for the accelerated breeding of new Vaccinium cultivars.
Collapse
Affiliation(s)
- Blue J. Plunkett
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Andrew P. Dare
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Ben A. W. Warren
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Ella R. P. Grierson
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Sarah Cordiner
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Janice L. Turner
- The New Zealand Institute for Plant and Food Research Limited, Motueka, New Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Kevin M. Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Kathy E. Schwinn
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
40
|
Lo Piccolo E, Landi M, Pellegrini E, Agati G, Giordano C, Giordani T, Lorenzini G, Malorgio F, Massai R, Nali C, Rallo G, Remorini D, Vernieri P, Guidi L. Multiple Consequences Induced by Epidermally-Located Anthocyanins in Young, Mature and Senescent Leaves of Prunus. FRONTIERS IN PLANT SCIENCE 2018; 9:917. [PMID: 30013588 PMCID: PMC6036500 DOI: 10.3389/fpls.2018.00917] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/11/2018] [Indexed: 05/14/2023]
Abstract
Anthocyanic morphs are generally less efficient in terms of carbon gain, but, in turn, are more photoprotected than anthocyanin-less ones. To date, mature leaves of different morphs or leaves at different developmental stages within the same species have generally been compared, whereas there is a lack of knowledge regarding different stages of development of red vs. green leaves. Leaves (1-, 7-, and 13-week-old) of red- (RLP) and green-leafed (GLP) Prunus in terms of photosynthetic rate, carbon metabolism and photoprotective mechanisms were compared to test whether anthocyanin-equipped leaves perform better than anthocyanin-less leaves and whether photoprotection is the primary role of epidermally-located anthocyanins, using for the first time a recently-developed parameter of chlorophyll fluorescence (qPd). GLP leaves had a higher photosynthetic rate in 1- and 7-week-old leaves, but RLP leaves performed better at an early stage of senescence and had a longer leaf lifespan. Anthocyanins contributed to leaf photoprotection throughout the leaf development, but were tightly coordinated with carotenoids. Besides photoprotecting, we propose that epidermal anthocyanins may be principally synthetized to maintain an efficient carbon-sink strength in young and senescent leaves, thus extending the RLP leaf lifespan.
Collapse
Affiliation(s)
- Ermes Lo Piccolo
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Giovanni Agati
- “Nello Carrara” Institute of Applied Physics, CNR, Sesto Fiorentino, Italy
| | | | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Fernando Malorgio
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Rossano Massai
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Giovanni Rallo
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Damiano Remorini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Paolo Vernieri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
41
|
Zhang H, Tian H, Chen M, Xiong J, Cai H, Liu Y. Transcriptome analysis reveals potential genes involved in flower pigmentation in a red-flowered mutant of white clover (Trifolium repens L.). Genomics 2017; 110:191-200. [PMID: 28966045 DOI: 10.1016/j.ygeno.2017.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022]
Abstract
White clover (Trifolium repens L.) has been cultivated for ornamental use because of its flowers, leaf marks and creeping habit. Although a mutation in flower color is very infrequent in this species, the red-flowered mutant of white clover was a novel germplasm for ornamental white clover breeding. The mechanism of flower pigmentation in white clover is still limited because of the rarity of mutation materials and the lack of genomic data. In this study, two cDNA libraries from red-flowered white clover mutant between sunlight-exposed plants and shade-treated plants, respectively, were used for transcriptome sequencing. A total of 157,964 unigenes with an average length of 728bp and a median length of 1346bp were isolated. A large number of differentially expressed genes (6282) that were potentially involved in multiple biological and metabolic pathways, including anthocyanin flavonoid biosynthetic pathway and flavonoid biosynthetic pathway, were obtained, 70 of which could be identified as putative homologues of color-related genes. Furthermore, eight key candidate genes (CHS, F3'H, F3'5'H, UFGT, FLS, LAR, ANS, and DFR) in flavonoid biological synthesis pathway were identified by quantitative real-time PCR (qRT-PCR). Mass sequence data obtained by RNA-Seq of white clover and its red-flowered mutant provided basic sequence information and a platform for future molecular biological research on the red flower trait.
Collapse
Affiliation(s)
- Heshan Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hong Tian
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Mingxin Chen
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Junbo Xiong
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hua Cai
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yang Liu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
42
|
Escaray FJ, Passeri V, Perea-García A, Antonelli CJ, Damiani F, Ruiz OA, Paolocci F. The R2R3-MYB TT2b and the bHLH TT8 genes are the major regulators of proanthocyanidin biosynthesis in the leaves of Lotus species. PLANTA 2017; 246:243-261. [PMID: 28429079 DOI: 10.1007/s00425-017-2696-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/12/2017] [Indexed: 05/26/2023]
Abstract
By exploiting interspecific hybrids and their progeny, we identified key regulatory and transporter genes intimately related to proanthocyanidin biosynthesis in leaves of Lotus spp. Proanthocyanidins (PAs), known as condensed tannins, are polymeric flavonoids enriching forage legumes of key nutritional value to prevent bloating in ruminant animals. Unfortunately, major forage legumes such as alfalfa and clovers lack PAs in edible tissues. Therefore, engineering the PA trait in herbage of forage legumes is paramount to improve both ecological and economical sustainability of cattle production system. Progresses on the understanding of genetic determinants controlling PA biosynthesis and accumulation have been mainly made studying mutants of Arabidopsis, Medicago truncatula and Lotus japonicus, model species unable to synthesize PAs in the leaves. Here, we exploited interspecific hybrids between Lotus corniculatus, with high levels of PAs in the leaves, and Lotus tenuis, with no PAs in these organs, and relative F2 progeny, to identify among candidate PA regulators and transporters the genes mainly affecting this trait. We found that the levels of leaf PAs significantly correlate with the expression of MATE1, the putative transporter of glycosylated PA monomers, and, among the candidate regulatory genes, with the expression of the MYB genes TT2a, TT2b and MYB14 and the bHLH gene TT8. The expression levels of TT2b and TT8 also correlated with those of all key structural genes of the PA pathways investigated, MATE1 included. Our study unveils a different involvement of the three Lotus TT2 paralogs to the PA trait and highlights differences in the regulation of this trait in our Lotus genotypes with respect to model species. This information opens new avenues for breeding bloat safe forage legumes.
Collapse
Affiliation(s)
- Francisco José Escaray
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Valentina Passeri
- Institute of Biosciences and BioResources (CNR-IBBR), Perugia, Italy
| | - Ana Perea-García
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Cristian Javier Antonelli
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Francesco Damiani
- Institute of Biosciences and BioResources (CNR-IBBR), Perugia, Italy
| | - Oscar Adolfo Ruiz
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | | |
Collapse
|
43
|
Dou M, Fan S, Yang S, Huang R, Yu H, Feng X. Overexpression of AmRosea1 Gene Confers Drought and Salt Tolerance in Rice. Int J Mol Sci 2016; 18:ijms18010002. [PMID: 28025485 PMCID: PMC5297637 DOI: 10.3390/ijms18010002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022] Open
Abstract
Ectopic expression of the MYB transcription factor of AmROSEA1 from Antirrhinum majus has been reported to change anthocyanin and other metabolites in several species. In this study, we found that overexpression of AmRosea1 significantly improved the tolerance of transgenic rice to drought and salinity stresses. Transcriptome analysis revealed that a considerable number of stress-related genes were affected by exogenous AmRosea1 during both drought and salinity stress treatments. These affected genes are involved in stress signal transduction, the hormone signal pathway, ion homeostasis and the enzymes that remove peroxides. This work suggests that the AmRosea1 gene is a potential candidate for genetic engineering of crops.
Collapse
Affiliation(s)
- Mingzhu Dou
- Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Sanhong Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Rongfeng Huang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| | - Huiyun Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Xianzhong Feng
- Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
44
|
Bond DM, Albert NW, Lee RH, Gillard GB, Brown CM, Hellens RP, Macknight RC. Infiltration-RNAseq: transcriptome profiling of Agrobacterium-mediated infiltration of transcription factors to discover gene function and expression networks in plants. PLANT METHODS 2016; 12:41. [PMID: 27777610 PMCID: PMC5069895 DOI: 10.1186/s13007-016-0141-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/04/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Transcription factors (TFs) coordinate precise gene expression patterns that give rise to distinct phenotypic outputs. The identification of genes and transcriptional networks regulated by a TF often requires stable transformation and expression changes in plant cells. However, the production of stable transformants can be slow and laborious with no guarantee of success. Furthermore, transgenic plants overexpressing a TF of interest can present pleiotropic phenotypes and/or result in a high number of indirect gene expression changes. Therefore, fast, efficient, high-throughput methods for assaying TF function are needed. RESULTS Agroinfiltration is a simple plant biology method that allows transient gene expression. It is a rapid and powerful tool for the functional characterisation of TF genes in planta. High throughput RNA sequencing is now a widely used method for analysing gene expression profiles (transcriptomes). By coupling TF agroinfiltration with RNA sequencing (named here as Infiltration-RNAseq), gene expression networks and gene function can be identified within a few weeks rather than many months. As a proof of concept, we agroinfiltrated Medicago truncatula leaves with M. truncatula LEGUME ANTHOCYANIN PRODUCITION 1 (MtLAP1), a MYB transcription factor involved in the regulation of the anthocyanin pathway, and assessed the resulting transcriptome. Leaves infiltrated with MtLAP1 turned red indicating the production of anthocyanin pigment. Consistent with this, genes encoding enzymes in the anthocyanin biosynthetic pathway, and known transcriptional activators and repressors of the anthocyanin biosynthetic pathway, were upregulated. A novel observation was the induction of a R3-MYB transcriptional repressor that likely provides transcriptional feedback inhibition to prevent the deleterious effects of excess anthocyanins on photosynthesis. CONCLUSIONS Infiltration-RNAseq is a fast and convenient method for profiling TF-mediated gene expression changes. We utilised this method to identify TF-mediated transcriptional changes and TF target genes in M. truncatula and Nicotiana benthamiana. This included the identification of target genes of a TF not normally expressed in leaves, and targets of TFs from other plant species. Infiltration-RNAseq can be easily adapted to other plant species where agroinfiltration protocols have been optimised. The ability to identify downstream genes, including positive and negative transcriptional regulators, will result in a greater understanding of TF function.
Collapse
Affiliation(s)
- Donna M. Bond
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
| | - Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11-600, Palmerston North, New Zealand
| | - Robyn H. Lee
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
| | - Gareth B. Gillard
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Chris M. Brown
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
| | - Roger P. Hellens
- Centre for Tropical Crops and Biocommodities, Institute for Future Environments, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001 Australia
| | - Richard C. Macknight
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11-600, Palmerston North, New Zealand
| |
Collapse
|
45
|
Li P, Dong Q, Ge S, He X, Verdier J, Li D, Zhao J. Metabolic engineering of proanthocyanidin production by repressing the isoflavone pathways and redirecting anthocyanidin precursor flux in legume. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1604-18. [PMID: 26806316 PMCID: PMC5066740 DOI: 10.1111/pbi.12524] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 05/18/2023]
Abstract
MtPAR is a proanthocyanidin (PA) biosynthesis regulator; the mechanism underlying its promotion of PA biosynthesis is not fully understood. Here, we showed that MtPAR promotes PA production by a direct repression of biosynthesis of isoflavones, the major flavonoids in legume, and by redirecting immediate precursors, such as anthocyanidins, flux into PA pathway. Ectopic expression of MtPAR repressed isoflavonoid production by directly binding and suppressing isoflavone biosynthetic genes such as isoflavone synthase (IFS). Meanwhile, MtPAR up-regulated PA-specific genes and decreased the anthocyanin levels without altering the expression of anthocyanin biosynthetic genes. MtPAR may shift the anthocyanidin precursor flux from anthocyanin pathway to PA biosynthesis. MtPAR complemented PA-deficient phenotype of Arabidopsis tt2 mutant seeds, demonstrating their similar action on PA production. We showed the direct interactions between MtPAR, MtTT8 and MtWD40-1 proteins from Medicago truncatula and Glycine max, to form a ternary complex to trans-activate PA-specific ANR gene. Finally, MtPAR expression in alfalfa (Medicago sativa) hairy roots and whole plants only promoted the production of small amount of PAs, which was significantly enhanced by co-expression of MtPAR and MtLAP1. Transcriptomic and metabolite profiling showed an additive effect between MtPAR and MtLAP1 on the production of PAs, supporting that efficient PA production requires more anthocyanidin precursors. This study provides new insights into the role and mechanism of MtPAR in partitioning precursors from isoflavone and anthocyanin pathways into PA pathways for a specific promotion of PA production. Based on this, a strategy by combining MtPAR and MtLAP1 co-expression to effectively improve metabolic engineering performance of PA production in legume forage was developed.
Collapse
Affiliation(s)
- Penghui Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qiang Dong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shujun Ge
- College of Agronomy, Agricultural University of Hebei, Baoding, China
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, USA
| | - Xianzhi He
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Jerome Verdier
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, China
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
46
|
Li P, Chen B, Zhang G, Chen L, Dong Q, Wen J, Mysore KS, Zhao J. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8. THE NEW PHYTOLOGIST 2016; 210:905-21. [PMID: 26725247 DOI: 10.1111/nph.13816] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 11/22/2015] [Indexed: 05/20/2023]
Abstract
The MYB- basic helix-loop-helix (bHLH)-WD40 complexes regulating anthocyanin and proanthocyanidin (PA) biosynthesis in plants are not fully understood. Here Medicago truncatula bHLH MtTT8 was characterized as a central component of these ternary complexes that control anthocyanin and PA biosynthesis. Mttt8 mutant seeds have a transparent testa phenotype with reduced PAs and anthocyanins. MtTT8 restores PA and anthocyanin productions in Arabidopsis tt8 mutant. Ectopic expression of MtTT8 restores anthocyanins and PAs in mttt8 plant and hairy roots and further enhances both productions in wild-type hairy roots. Transcriptomic analyses and metabolite profiling of mttt8 mutant seeds and M. truncatula hairy roots (mttt8 mutant, mttt8 mutant complemented with MtTT8, or MtTT8 overexpression lines) indicate that MtTT8 regulates a subset of genes involved in PA and anthocyanin biosynthesis. MtTT8 is genetically regulated by MtLAP1, MtPAR and MtWD40-1. Combinations of MtPAR, MtLAP1, MtTT8 and MtWD40-1 activate MtTT8 promoter in yeast assay. MtTT8 interacts with these transcription factors to form regulatory complexes. MtTT8, MtWD40-1 and an MYB factor, MtPAR or MtLAP1, interacted and activated promoters of anthocyanidin reductase and anthocyanidin synthase to regulate PA and anthocyanin biosynthesis, respectively. Our results provide new insights into the complex regulation of PA and anthocyanin biosynthesis in M. truncatula.
Collapse
Affiliation(s)
- Penghui Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Beibei Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Gaoyang Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Longxiang Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Qiang Dong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Jiangqi Wen
- Plant Biology Division, the Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Plant Biology Division, the Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China
- Plant Biology Division, the Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| |
Collapse
|
47
|
Scully ED, Gries T, Sarath G, Palmer NA, Baird L, Serapiglia MJ, Dien BS, Boateng AA, Ge Z, Funnell-Harris DL, Twigg P, Clemente TE, Sattler SE. Overexpression of SbMyb60 impacts phenylpropanoid biosynthesis and alters secondary cell wall composition in Sorghum bicolor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:378-95. [PMID: 26712107 DOI: 10.1111/tpj.13112] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 05/05/2023]
Abstract
The phenylpropanoid biosynthetic pathway that generates lignin subunits represents a significant target for altering the abundance and composition of lignin. The global regulators of phenylpropanoid metabolism may include MYB transcription factors, whose expression levels have been correlated with changes in secondary cell wall composition and the levels of several other aromatic compounds, including anthocyanins and flavonoids. While transcription factors correlated with downregulation of the phenylpropanoid biosynthesis pathway have been identified in several grass species, few transcription factors linked to activation of this pathway have been identified in C4 grasses, some of which are being developed as dedicated bioenergy feedstocks. In this study we investigated the role of SbMyb60 in lignin biosynthesis in sorghum (Sorghum bicolor), which is a drought-tolerant, high-yielding biomass crop. Ectopic expression of this transcription factor in sorghum was associated with higher expression levels of genes involved in monolignol biosynthesis, and led to higher abundances of syringyl lignin, significant compositional changes to the lignin polymer and increased lignin concentration in biomass. Moreover, transgenic plants constitutively overexpressing SbMyb60 also displayed ectopic lignification in leaf midribs and elevated concentrations of soluble phenolic compounds in biomass. Results indicate that overexpression of SbMyb60 is associated with activation of monolignol biosynthesis in sorghum. SbMyb60 represents a target for modification of plant cell wall composition, with the potential to improve biomass for renewable uses.
Collapse
Affiliation(s)
- Erin D Scully
- Grain, Forage, and Bioenergy Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Tammy Gries
- Grain, Forage, and Bioenergy Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
| | - Gautam Sarath
- Grain, Forage, and Bioenergy Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
| | - Nathan A Palmer
- Grain, Forage, and Bioenergy Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
| | - Lisa Baird
- Department of Biology, Shiley Center for Science and Technology, University of San Diego, San Diego, CA, 92110, USA
| | - Michelle J Serapiglia
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Bruce S Dien
- National Center for Agricultural Utilization Research, USDA-ARS, 1815 North University Street, Peoria, IL, 61604, USA
| | - Akwasi A Boateng
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Zhengxiang Ge
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - Deanna L Funnell-Harris
- Grain, Forage, and Bioenergy Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Paul Twigg
- Biology Department, University of Nebraska-Kearney, Kearney, NE, 68849, USA
| | - Thomas E Clemente
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - Scott E Sattler
- Grain, Forage, and Bioenergy Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| |
Collapse
|
48
|
Albert NW. Subspecialization of R2R3-MYB Repressors for Anthocyanin and Proanthocyanidin Regulation in Forage Legumes. FRONTIERS IN PLANT SCIENCE 2015; 6:1165. [PMID: 26779194 PMCID: PMC4689181 DOI: 10.3389/fpls.2015.01165] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/07/2015] [Indexed: 05/18/2023]
Abstract
The synthesis of anthocyanin pigments and proanthocyanidins (condensed tannins) is regulated by MYB-bHLH-WDR (MBW) transcription factor complexes in all angiosperms studied to date. Tr-MYB133 and Tr-MYB134 were isolated from Trifolium repens and encode R2R3-MYBs that antagonize the activity of MBW activation complexes. These two genes are conserved in other legume species, and form two sub-clades within the larger anthocyanin/proanthocyanidin clade of MYB repressors. However, unlike petunia and Arabidopsis, these R2R3-MYB repressors do not prevent ectopic accumulation of anthocyanins or proanthocyanidins. Instead, they are expressed when anthocyanins or proanthocyanidins are being synthesized, and provide feedback regulation to MBW complexes. This feedback occurs because Tr-MYB133 and Tr-MYB134 are themselves regulated by MBW complexes. Tr-MYB133 is regulated by MBW complexes containing anthocyanin-related R2R3-MYB proteins (Tr-RED LEAF), while Tr-MYB134 is regulated by complexes containing the proanthocyanidin R2R3-MYBs (Tr-MYB14). Other features of the MBW gene regulation networks are also conserved within legumes, including the ability for the anthocyanin MBW complexes to activate the expression of the AN1/TT8 clade bHLH factor. The regulation of Tr-MYB133 and Tr-MYB134 by distinct, pathway-specific MBW complexes has resulted in subspecialization for controlling anthocyanin or proanthocyanidin synthesis.
Collapse
|
49
|
Boase MR, Brendolise C, Wang L, Ngo H, Espley RV, Hellens RP, Schwinn KE, Davies KM, Albert NW. Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia. PLANT CELL REPORTS 2015; 34:1817-23. [PMID: 26113165 DOI: 10.1007/s00299-015-1827-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/01/2015] [Accepted: 06/13/2015] [Indexed: 05/02/2023]
Abstract
The Md - MYB10 R6 gene from apple is capable of self-regulating in heterologous host species and enhancing anthocyanin pigmentation, but the activity of MYB10 is dependent on endogenous protein partners. Coloured foliage due to anthocyanin pigments (bronze/red/black) is an attractive trait that is often lacking in many bedding, ornamental and horticultural plants. Apples (Malus × domestica) containing an allelic variant of the anthocyanin regulator, Md-MYB10 R6 , are highly pigmented throughout the plant, due to autoregulation by MYB10 upon its own promoter. We investigated whether Md-MYB10 R6 from apple is capable of functioning within the heterologous host Petunia hybrida to generate plants with novel pigmentation patterns. The Md-MYB10 R6 transgene (MYB10-R6 pro :MYB10:MYB10 term ) activated anthocyanin synthesis when transiently expressed in Antirrhinum rosea (dorsea) petals and petunia leaf discs. Stable transgenic petunias containing Md-MYB10 R6 lacked foliar pigmentation but had coloured flowers, complementing the an2 phenotype of 'Mitchell' petunia. The absence of foliar pigmentation was due to the failure of the Md-MYB10 R6 gene to self-activate in vegetative tissues, suggesting that additional protein partners are required for Md-MYB10 to activate target genes in this heterologous system. In petunia flowers, where endogenous components including MYB-bHLH-WDR (MBW) proteins were present, expression of the Md-MYB10 R6 promoter was initiated, allowing auto-regulation to occur and activating anthocyanin production. Md-MYB10 is capable of operating within the petunia MBW gene regulation network that controls the expression of the anthocyanin biosynthesis genes, AN1 (bHLH) and MYBx (R3-MYB repressor) in petals.
Collapse
Affiliation(s)
- Murray R Boase
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Cyril Brendolise
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169 Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Lei Wang
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Hahn Ngo
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169 Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Roger P Hellens
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169 Auckland Mail Centre, Auckland, 1142, New Zealand
- Biochemistry Department, University of Otago, Dunedin, New Zealand
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology (QUT), Brisbane, Australia
| | - Kathy E Schwinn
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Nick W Albert
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand.
| |
Collapse
|
50
|
Production and transcriptional regulation of proanthocyanidin biosynthesis in forage legumes. Appl Microbiol Biotechnol 2015; 99:3797-806. [PMID: 25805345 DOI: 10.1007/s00253-015-6533-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 12/29/2022]
Abstract
Proanthocyanidins (PA), also known as condensed tannins, contribute to important forage legumes traits including disease resistance and forage quality. PA in forage plants has both positive and negative effects on feed digestibility and animal performance. The analytical methods and their applicability in measuring the contents of PA in forage plants are essential to studies on their nutritional effects. In spite of important breakthroughs in our understanding of the PA biosynthesis, important questions still remain to be answered such as the PA polymerization and transport. Recent advances in the understanding of transcription factor-mediated gene regulation mechanisms in anthocyanin and PA biosynthetic pathway in model plants suggest new approaches for the metabolic engineering of PA in forage plants. The present review will attempt to present the state-of-the-art of research in these areas and provide an update on the production and metabolic engineering of PA in forage plants. We hope that this will contribute to a better understanding of the ways in which PA production to manipulate the content of PA for beneficial effects in forage plants.
Collapse
|